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Abstract

The conversion of particle-energy spectra into a linear energy

transfer (LET) distribution is a guide in assessing biologically sig-

nificant components. The mapping of LET to energy is triple valued

and can be defined only on open subintervals. A well-defined numeri-

cal procedure is found to allow generation of LET spectra on the open

subintervals that are integrable in spite of their singular nature.

Introduction

A customary assumption is that the biological re-

sponse (or risk) to radiation exposure is related to the

energy absorbed per unit mass within a macroscopic
volume of the biological material. This implies a cer-

tain uniformity in the energy deposited (which is true
for the radiation of low linear energy transfer (LET))

such as from X-ray, 7-ray, and/3-ray exposures. As

experience was gained from exposures with high-LET

radiation, the nonuniformity of the energy deposit

was clearly an important determinant of biological

response, and LET-dependent relative biological ef-
fectiveness factors came under intense study and pro-

vided the basis for the LET-dependent quality factor

for use in radiation protection (ref. 1). The micro-

dosimeter concept was developed as an instrument to
measure such LET fluctuations.

Although the concept of an LET-dependent rel-

ative biological effectiveness (RBE) was useful for

charged particles of relatively low kinetic energy, con-
cerns for the biological effects of the high charge and

energy ions (HZE) in deep space result from the lat-

eral spread of the energy deposit that is larger than

a typical cell nucleus (ref. 2). In this case, LET is
not sufficient to define an RBE, but the track width

also plays an important role. This was the origin of

the limited LET concepts (refs. 1 and 3) as related

to the lateral spread of the energy deposit. The im-

portance of such track-structure effects on biologi-
cal response has been demonstrated for a number of

biological systems (ref. 4).

Even though LET as a biological-response indica-
tor is most applicable to low charge Z and low-energy

particles, LET is considered as a rough indicator for

HZE particles as well. For this reason, we are in-

terested in the generation of differential LET distri-

butions as a guide to identify biologically significant

components.

Differential LET Spectra

In radiobiology, relating biological response to the
LET of the radiation environment is a tradition. For

example, RBE and the quality factor Q are generally

taken as being related to LET. As a consequence,
the concept of LET spectra has played a role in

estimating biological response. Unfortunately, this

concept is most useful if the flux (eL(L) dL) of

particles with LET (that is, L) between L and L + dL
is known. This is generally found by knowing thc

energy flux (¢E(E) dE) of particles with energy (E)
between E and E + dE, where L is known as a
function of E so that

IdL -_¢L (L) = dE ¢E (E) (1)

where the prefactor on the right-hand side is the Ja-
cobian between the E and L spaces. The difficulty

with this approach is that dL/dE = 0 at the max-
ima and minima of the LET curve; ¢L(L) must be

replaced by the sum over the various branch func-
tions as

¢L (L) = _B _ ¢E (EB) (2)

whcrc E B is the energy of each branch associated

with L. That is, for all values of EB,

L = L (EB) (3)

Clearly, ¢L(L) does not exist for every value of L but
is defined on open intervals not containing values for

which alL�dE = 0. Furthermore, ¢L(L) is unbound

on the open subintervals over which it is defined, even

though eL(L) is integrable over its domain. From
the above arguments, enough challenges obviously

exist in finding a representation for ¢L (L), especially
as some data set to be used by others in specific

applications. This problem is simplified since L(E)
has but one maximum and one minimum other than

at zero energy. Furthermore, L(E) has continuous

second derivatives allowing a Taylor series expansion
as

1 L"
L (E) ._ L (EB) + 2 (EB) (E - EB) 2 (4)



in theneighborhoodof the branchlimits. However,
one finds

[j ]1eL (L) _ CE (EB) 2 IL_ (L - LB)[ (5)

in the neighborhood of the branch points, where the

subscript B denotes evaluation at the branch limit.

We implement the above considerations as fol-

lows. The LET is defined over a numerical grid given

by the sequence {Ei}. The maximum and mini-
mum branch points are found at dL/dE = 0 and

are noted by Emax and Emin, respectively. The se-

quence {Ei}L is defined as those values of E i less

than Emax, with the main sequence {Ei}m being de-

fined by Emax < Ei < Emin and the sequence {Ei}H
defined by Emin < El. The three branch functions

are then represented by

E i E {Ei} B (6)

where B denotes one of the three branches (that

is, B = L, m, or H). Giving a table of values

{(¢Li, Li)}B in order to reconstruct an adequate
representation of tile function over each branch is not

sufficient because eLi is unbound near tile branch

limits and an extrapolation into the neighborhood

of the branch limit must be provided. If {Ei} is
sufficiently (:lose, then the LET spectrum may be

represented as

eL (L) _ eli (ILi- LBI/[L - LBI) v2 (7)

where L i is the nearest grid value to the branch

limit L B in the appropriate domain. Thus, the
data set required to reconstruct the LET spectrum

is the branch limit values of Emax, Emin, Lmax, and

nmin and the sequences {Ei}, {Li}, and {¢Ei}- The
numerical values of the above parameters depend on

the charge and mass of the particles of the field.

Thus, Emax, Emin, Lmax, and Lmi n must bc specified

for each ion type in the radiation field.

Stopping Powers

The energT imparted to the medium by a passing

charged particle is related to the stopping powers

(the energy" loss per unit distance traveled) and is

known as the linear energy transfer (LET), where

L -= S(E). To calculate the spectrum of energy
deposit, wc must evaluate tile LET spectrum given

by equation (1). Clearly, a method of generating

dS/dE as a function of E is required. As explained

elsewhere (rcf. 5), the stopping powers used arc

2

taken from the fitted curves for protons and alpha

particles of Ziegler at low energy (ref. 6), and they
are extrapolated to the Bethe formula at high energy.

The stopping power of ions with a charge greater

than 2 is scaled using the effective charge formalism

and the alpha particle stopping power. The stopping

power is stored in a data array for 15 ion charge
values (1 to 92) over an energy grid of 60 points

between 10 keV and 50 GeV. Extrapolation to lower

energy and higher energy is accomplished by making

the stopping power and its first derivative continuous
at the boundaries of the energy grid. The numerical

values are scaled by In tzl_S(In E,Z)] to minimize

numerical errors.

Thc scalcd array is fitted by a two-dimensional

spline with appropriate boundary conditions from

which the derivative of S(E) with respect to E is

found. The derivatives, which arc shown in figure 1,
vanish at the LET maximum at low energy and the

LET minimum at high energy because of relativistic

effects. The energies associated with the maximum

are shown in figure 2 along with the corresponding
energies at the minimum. Figure 3 shows the cor-

responding values of Lmax and Lmi n. These provide

the basic data for constructing differential LET (that

is, L) spectra.
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Figure 1. Derivatives of LET for several ions.

Equilibrium Spectra

Regardless of whether the source of ions is at the

boundary or an interior volume source, the ftuenee
approaches a characteristic equilibrium spectrum

that depends on the composition of the medium. The

equilibrium spectrum for volume sources has been
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Figure 3. Values of LET at branch limits.

given elsewhere (ref. 7). The fluence within a medium
at a distance x from the boundary is

¢ (x, E) = S (Ex)
S (E) ¢ (0,Ex) (S)

where ¢(0, E) is the fluence at the boundary,
Ez = R-1 JR(E) + x] is the energy at the boundary,

and R(E) is the range of the particle. The ¢(x, E)

term of equation (8) results from (ref. 7)

[o 0 ]Ox _S (E) _ (x, E) = Nuclear gains and losses (9)

where the nuclear effects are assumed to be 0. We

note that when x >> R(E), then Ez _ R-l(x) and

¢ (x, E) _ (lO)
s (E)

which is the equilibrium spectral limit. The LET

spectra for x = 0, 0.5, 1, 3, and 5 cm of tissue are
shown in figure 4 for three large solar events of solar

cycles 19 and 20. The nuclear reaction products

are neglected (refs. 7 and 8). One may observe in

figure 4 that the equilibrium spectrum is achieved

rather quickly above 40 MeV/cm corresponding to

12 MeV protons. Equilibrium is achieved above

10 MeV/cm for the 5-cm depth corresponding to 60
to 70 MeV protons. The limit of a pure equilibrium

spectrum (for particle type j) at all energies is given
by

c

CE (E) - Sj (E) (11)

wherc c is a constant. The equilibrium differential

LET spectra for c = 1 are shown in figure 5.

Integral LET Spectra

The integral LET spectrum is given as

Lmax(> L) = eL (L') dL' (12)
JL

which may be related to integral energy spectra as

¢b(> L)=ff(>E1)-ff(> E2)+cb(>E3) (13)

where El, E2, and E 3 are the three roots (branch

functions) of

S (E) = L (14)

The three branch functions of equation (13) are

shown in figure 6 for a range of L values. The
integral LET spectra for the three solar fares shown

previously are shown in figure 7. To gain perspective,

we also evaluate the integral equilibrium spectrum of

equation (11) as

fE dEI(> E) = L (E') - R (_) - R (E) (15)

where we arbitrarily take the variable _ to be 10 GeV.

The integral LET spectrum for _ > E 3 is then

• (> L) = R(E2) - R(E1) + R(_) - R(E3) (16)

If we examine only the high-LET region, then

¢P(> L) = R(E2) - R(E1) (17)

Results from equation (17) are shown in figure 8.

Thus, the integral LET spectra are characterized by
the main branch of the LET curve as

¢ (> L) _ R (E2) (lS)

3
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Figure 4. Differential LET spectra for three solar flares of

cycles 19 and 20.
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except at the highest LET values where

(> L) _ (E 2 -- El)/S (Emax) (19)

The integral LET spectra associated with the three
solar events in figure 4 are shown in figure 7 and
should be compared in shape to the equilibrium curve
for protons in figure 8. :

As an application of the present procedure, the
differential LET spectra for the solar minimum en-
vironment arc shown in figure 9 at three depths
in tissue-equivalent material behind a slab of alu-
minum shielding of 5 g/cm 2. The reduction of high-
LET components at larger tissue depths increases the
low-LET component distributions as shown. The
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correspondingintegral LET spectraare shownin
figure10.

Concluding Remarks

Theproblemof generatinglinearenergytransfer
(LET)spectrahasbeenclearlydelineated.Although
integralLET spectraarecontinuousfunctions,the
differentialLET spectraaredefinedonly overopen
subintervalsand are unboundnear the openend
points. An accuratemethodof constructingthe
spectraover their domainhasbeengiven. These
methodswill beusefulin analyzingamplicationsof
shieldingfor protectionof biologicalandelectronic
equipment.

NASALangleyResearchCenter

Hampton, VA 23681-0001

October 19, 1992
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