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Abstract

By arguing that the limiting noise is the photoelectron shot noise, we show that the

sensitivity of image synthesis by an ideal optical interferometer is independent of the details of

beam-splitting and recombination. The signal-to-noise ratio of the synthesized image is

proportional to the square root of the total number of photoelectrons detected by the entire array. For

non-ideal interferometers, which are forced to employ a closure-phase method of indirect

inference of the visibility data, essentially the same result holds for strong sources, but at weak

light levels beam-splitting degrades sensitivity.

Section I: Introduction

A major distinction between synthetic aperture imaging of astronomical objects at radio

and at optical frequencies is that for the former the wave noise dominates the photon counting noise

while for the latter the reverse holds. This is especially significant since in the optical domain

noise-free amplification of the photon number does not seem possible and thus the photon counting

noise cannot be reduced simply by amplification. Furthermore, modern photoelectric detectors do

not suffer from significant dark currents or other sources of instrument noise. In other words, the

sensitivity of optical imaging via aperture synthesis is limited principally by photoelectron shot

noise, which is determined solely by the strength of the source and the collecting area of the array.

Here, we have analyzed the signal-to-noise ratio (SNR) and the distribution of noise across

the image plane of an optical aperture synthesis array, and the dependence of these quantities on

the beam combination geometry. The aperture synthesis method employs the van Cittert-Zernike

theorem (Goodman 1985), which states that the object intensity is the two-dimensional Fourier

transform of the distribution of spatial coherence in a plane. For a given total collecting area

spread over n apertures, there are many different ways of experimentally deducing the spatial
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correlationof the light field on the available nb= n(n - 1)/2 baselines. The different ways

correspond to how the original beams are first split and then recombined. For example, one could

split each of the original n beams into n-ler.l sub-beams and recombine r different sub-beams at a

time on nCr different detectors. We Shall henceforth call such an array an nC r array. The two

extreme cases of the nCr array are the nC 2 array, in which the fringes corresponding to the nb

individual baselines fall on n b separate detectors, and the nCn array, in which all fringes for all

baselines fall on a single detector. We have analyzed only these two arrays and found that the

sensitivity depends only slightly on the details of beam combination. The SNR is found, up to

factors of order 1, to be _-" where L is the total number of photoelectrons collected by the entire array

in the integration time.

Unlike space-based and lunar optical arrays, ground-based arrays are afflicted by the

atmospheric phase corruption of astronomical signals. Ground-based arrays thus suffer not only

from the photon shot noise but from the more important phase noise of the atmosphere, a fact that

forces them to employ a closure-phase method (Baldwin et al. 1986) of recovery of spatial coherence

data analogous to that in the radio domain (Pearson and Readhead 1984). We have also computed

in this report the SNR of the bispectrum, whose phase is the closure phase, for an nC 2 array.

Our work concerns only the analysis of noise coming from the detection of individual

fringe phasors, not the noise arising from an incomplete sampling of the spatial frequency plane,

since the latter is well understood, in this report we shall only present the most salient resull_s,

since these and several others will be derived in detail in a series of papers (Prasad and Kulkarni

1989, Kulkarni, Prasad, and Nakajima in preparation) to be published.

Section iI: An Ideal nC 2 Interferometer

Let there be n identical principal apertures from which we derive n main beams. Each

main beam is divided into n - 1 identical sub-beams by the use of beam splitters. The resulting

n(n-1) sub--beams are combined pairwise on nb= nC2 identical detectors, each with_P p_xels. Each

detector may thus be identified with_one Spatial frequency, or baseline. The average photoelectron

counts at the pixel p-_of the rth detector is proportional to the average intensity at that pixel and may

be written as

<kr(p)> = 2<K0 _>[1 +Tr cos(pCOr+_r)], (2.1)
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where Trei}risthe complex visibility,orspatialcoherence,forspatialfrequency _r • Here, <...>

referstoaveragingoverthe photoelectrondetectionprocess.The product pOOristobe understoodas

the scalarproductofthe pixelpositionvector_ and the spatialfrequency _r expressedin inverse

pixelunits.If< C> isthe averagenumber ofphotoelectronsdetectedby the entirearray inone

integrationperiod,then 2<N> - <C'>/nbisthe averagenumber ofphotoelectronsper detectorinthat

period.From equation(2.1),the averagenumber ofphotoelectronsper detectorisequal to2<Ko>P

and thus<Ko>P = <N>.

_z

I

Each detector yields two fringe phasors: zr, the spatial frequency component corresponding

to the baseline r, and z ° , the photoelectron count or the zero spatial frequency component derived

from the fringe pattern on that detector. These quantities are operationally defined by the

relations

P P

o _k(p)z r =Z kr(P) e'ip°_r, z r =

p =1 p =1

(2.2)

Throughout this article we will use the upper case for the ensemble average of a random variable.

There are two different ways by which the synthesized image can be constructed from the visibility

data: The first uses only the nonzero spatial frequencies in inversion ("inversion without total

photocounts"), while the second uses all frequencies including z°r ("true inversion"). Despite the

fact that the first method produces zero total photon number in the map, it is the standard method in

radio astronomy.

We now discuss for the two methods of noise distribution in the maps due to the statistical

nature of the photoelectric detection process, which limits the accuracy with which fringe phasors

may be measured via relations of kind (2.2). The statistics of the shot noi.se are Poissonian on

account of which the variance in the photoelectron count in pixel p is equal to the average

photoelectron count <k(p)>. In contrast to the sampling errors, which may be CLEANed away (see,

e.g., Perley, Schwab, and Bridle 1985), there is no technique by which the effects of shot noise can be

reduced. In what follows, we analyze the effect of shot noise on the maximum achievable SNR in

the synthesized map.
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a. Inversion Without Total Counts. The synthesized image is the real portion of the

Fourier transform of the spatial coherence function. On pixel q in the image, its value is

%

i l(q) -- Re_ zre _.
r=l

(2.3a)

The mean map Ii(q) is given by

r

The image Ii(q) may be referred to as the "dirty image," since it suffers from errors

caused by incomplete sampling of the spatial frequency plane. A synthesized image can be

obtained from the dirty image by any one of the popular deconvolution techniques (see Perley,

Schwab, and Bridle 1985).

The variance Viii(q)] in the synthesized map il(q) will clearly involve three kinds of

covariances: cov[Re(zr) , Re(zs)] , cov[Re(zr), Im(zs)], and cov[Im(zr), Im(zs)]. Since there is no

correlation of the photoelectron shot noise between different detectors or between different pixels of

the same detector, and since shot noise has Poisson statistics, one may show that

cov[Re(zr),Re(zs)] = cov[Im(zr), Im(zs)] = < N>Srs, (2.4)

while cov[Re(Zr), Im(zs)] = 0. After some algebra, the variance V[il(q)] in the map turns out to be

half the total number of photoelectrons intercepted by the entire array: Viii(q)] =< C>/2.

Furthermore, the variance is independent of the pixel position as well as the object structure. This

is certainly a desirable feature of any aperture synthesis technique.

For the specific case of a point source (Tr = 1) at the phase center (_r = 0), the central pixel in

the image, which is indicative of the entire map, has the mean value I1(0) = (< C>/2) and hence the

SNR
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 Vr l(O)l-/{c>2 (2.5)

m

Indeed, apart from the factor of _/1/2, this is the SNR expected physically. This variance refers to

the image obtained by synthesizing one single set of measurements of the nb phasors. If the

measurements were repeated m times then both the image and the variance would be scaled up by

rn and the SNR in the resulting map would be 4<--L->-_ where L = <C >m is the total number of

photoelectrons intercepted by the array over the rn coherent integration intervals.

b. _. According to the van Cittert-Zernike theorem, all the spatial frequency

components must be used to construct the images. In our inversion, we include only positive

nonzero spatial frequencies as in equation 2.3a. This is a valid procedure, since the

corresponding negative frequency components are merely their complex conjugates. Thus the

zero spatial frequency phasor, which is its own complex conjugate, must be halved (or

equivalently, all the positive frequency terms doubled) before it is included in such an inversion

procedure, one that suppresses all nonzero spatial frequencies of one sign. The synthesized image

is then specified by

i2(q)_-il(q)+12 o,
r

the mean value of which is

r 2

(2.6b)

which is nonnegative for all q since 7rCOS(_ + (Orq) +1 is so for all r.

As before, we estimate the variance due to the shot noise of the detection process. From

equation 2.6a it is clear that V[i2(q)] differs from V[il(q)] by terms containing covariances that

o We shall skip the details of the straightforward algebra and only give the final result:involve z r .

(2.7)
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Thusunlike thepreviousmethodthevarianceis nolongeruniformacrossthemap,being

composedof afixedamount(<C>/4) and a variable amount equal to the dirty image. Physically

this is so since the zero spatial frequency components are highly correlated with the corresponding

fringe phasors. This is a general result valid in the radio domain as well (Kulkarni 1989), where
= \ 2 :!

at low source strength the fringe phasors are uncorrelated while at high source strength they are

correlated. Correspondingly, in the first case the variance is uniform while in the second case it

is not.

Again for a point source at the phase center, _'r = 1 and _r = 0, the mean central pixel in the

map is I2(0) = <C >and the corresponding SNR is _ _]<-_, which represents an enhancement

tt

by a factor F= ,]8/5 over the previous case. Henceforth, we refer to F as the "enhancement factor,

using it as some kind of figure of merit. Thus, inclusion of the zero spatial frequency improves

the SNR but at the expense of a nonuniform variance.

Section III: Ideal n C¢ Inte_ffe_rgm_eters

In an nC n interferometer, all the nb different fringes lie on top of each other on a single

detector. Although equation (2.2) may be used to recover each of the nb fringe phasors

individually, one expects, at first glance, the image synthesis to be rather noisy, since the different

fringe phasors are not all uncorrelated. However, our careful analysis proves otherwise and

provides, at the same time, insight into improved schemes of imaging. We consider first an nC n

interferometer with no redundancy of baselines and then an n Cn interferometer with maximum

possible redundancy. The redundancy of baselines is not of much significance for lunar or

space-based arrays, except insofar as it inhibits a rapid coverage of the spatial-frequency plane.

We consider both cases because a lot of analytical simplifications that are possible in the former

are invalid in the latter. However, we show that in either case the SNR in the map is roughly the

same and, in fact, approximately equal to that of an n C2 interferometer.

: : == U: 7 :7 .

a. A Fully Nonredundant Mask. Let us consider the general case of a nonredundant

mask of n identical apertures, labeled by lower-case roman letterS, being illuminated by a source.

The classical intensity distribution of the interference pattern bY the n apertures translates into the

following form for the average photocounts at pixel p of the detector:
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_k(P)>=(Qo>In+2 _ YghC°S(pWgh+CJgh) 1"
L g <h =1

(3.1)

Here < Qo > has pretty much the same meaning as Ko in Section II. However, since there is no

beam splitting, < Qo > = (n-1)<Ko >.

As before, we need to compute the means, variances, and covariances of the fringe phasors,

zij, to estimate the variance in the synthesized image. The mean phasor on the/j baseline (i.e., the

baseline connecting aperture i to aperture j) is given by

m

r
=

Zij =_ Q0> Zp e-OWO In +2 g< hZ 7gh c°s(p_gh+_bgh )

(3.2)

while the covariance, of say the real parts of two fringe phasors zij and zk[ , is given by

cov[Re(z_/),Re(zk_)]= Z < kp>cos_w_i)cos(Pwk_ .)

P (3.3.)

: _Q0>Z[n+2 Z Ygh cos(peOgh+_bgh)] cos(poJ0")cos_)_kQ.).
p g< h

By writing every cosine as a sum of two exponentials, we have terms in (3.2) and (3.3) that involve

all possible combinations of two and three spatial frequencies + coij + ¢okfL and + cogh + o_j + cokj_ .

Contributions from the pixel sum survive only when these frequency combinations vanish. We

now impose two nonredundancy conditions on the array: (i) "nonredundancy of baselines,"

which requires that ¢_ij _ +- o3k_. aunless (/j) and (gh) refer to the same baseline and (ii)

"nonredundancy of triangles," which requires that
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¢Ogh+_0_j + ¢0kl[_ 0, (3.4)

unless (gh), (03, and (k_) form the sides of a triangle. Thus while the first condition maximally

constrains the baselines or vectors in any array, the second condition imposes the maximal

nonredundancy condition on triangles. As before, we shall only summarize results. The reader

is referred to our paper (Prasad and Kulkarni 1989) for details.

(i) Inversion Without Total Counts. Following the formulation in Section IIa we find the

mean synthesized image to be

z<j

(3.5)

To evaluate the variance, we first expand it in terms of the covariances of the individual fringe

phasors. After long algebra, one obtains the following final expression:

V [i 3(q)] - Inn 1 (3.6)

The variance consists of a constant component nb <C>/2 and a comparable variable

component. The latter disappears for n=2, in consistency with the results of Section II. For a point

source at the phase center for which ij = 1 and ij = 0, the SNR of the central pixel turns out to be

V [i3(0)] 3n -4

(3.7)

The enhancement factor F = q(2n- 2)/(3n-4) is unity for n=2 and steadily decreases to _/_'_" as the

number of apertures increases. Thus this interferometer is not quite as efficient as the nC 2

interferometer.

(ii) True Inversion. The mean and the variance of the map constructed by including zo

are given by appending to equations (3.5) and (3.6) terms that arise from the inclusion ofzo in the

Fourier inversion. One has
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and

I4(q)=(M) I n--_-+ E$ijc°s(qe°iJ+_i) 12i<j

(3.8)

I 1 +nb)+2(n.1)EY_icos(qo)_i+_i)l " (3.9)V [i4(q)]= M__ n (-_ i<j
2

Clearly even for n=2, a single nontrivial baseline, the variance is not uniform throughout the

map. However, the SNR at the map center for a point source (7/j = 1, _ q = 0).

X/V [i4 (0)] " 3n2-Sn+3 '

is larger by a factor of 8q'_5", for n=2, than for the previous case in which zo was excluded. But, as

in Section IIIa, for large n the enhancement factor F attains the asymptotic value of _.

b. A Maximally Redundant n Cn Interferometer. To demonstrate that the degree of

redundancy does not affect the sensitivity of an interferometer in an essential way, we consider

here an array of n regularly spaced apertures in a one-dimensional geometry. There are (n - 1)

distinct spatial frequencies COo,2coo,..., (n - 1)coo, where COois the spatial frequency of the baseline

connecting two successive apertures. Clearly the spatial frequency reoo (1 < r _<n - 1) is (n - r)-fold

redundant.

For simplicity, consider the case of a point source at the phase center. The average

photoelectron count is given by

n-1

(kP)=(Qo)In+2 E(n'r) c°s(pr°)°) _ "r=l

(3.11)
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Thefringe phasorZr for spatial frequency reoo has the mean value

<Zr> = <M>(n - r) (3.12)

We need to calculate the covariances of the real and imaginary parts Of Zr to estimate the

variance in the image. As before, we suppress the details of algebra and only present the final

results for the map, made first without the zero spatial frequency and later with it. The results are

at this stage still quite opaque and we, therefore, restrict even further to considering only the

central pixel in the image.

(i) Inversion without Total Counts. At the phase center, the mean and variance are

z x (n- 1) ,
15 (0) = _ C/> -- 2-- (3.13)

V[i5(0)] (C_ [5n2 9n+4] , (3.14)

leading to an SNR at the phase center of amount

I5(0) = F F C-_ , (3.15)

where F = q6n - 5/(5n - 4 ) is our enhancement factor. For n=2 we find F=I while the value ofF in

the limit of large n is G-_'_-. i

m
(ii) True Inversion. Including the zero spatial frequency component in the Fourier

inversion, we obtain the following mean and variance at the central pixel:

16(0)= (C)---_n , and V[i (0)]- _C) [5n2-3n+l]
(3.16)

2 6 _ '
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Thus the SNR at the phase center is F _-(C>/2 where F, the enhancement factor, is

F_- 6n 25n 2-3n+1

(3.17)

For n=2, by including Zo in the reconstruction process, F has been enhanced from 1 to 8q_. The

limiting value of F for large n is

In figure 1 we display our results for the enhancement factor F of the SNR as a function of

the number of array elements for all six interferometers considered so far. What is most striking

about the graph is that the SNR is more or less independent of the details of the array, whether it is

nC2 or n Cn or whether it is redundant or not. The sensitivity of ideal Michelson interferometers is

limited solely by the total number of photoelectrons detected by the entire array and not by how

individual beams are combined on the detectors. Thus, if detectors are limited only by the

photoelectron counting noise, then the sensitivity of an nCr array should be qualitatively

independent of r, the number of sub-beams per detector.

Section IV: An nC_ Ground-Based Array

A direct determination of the visibility phasors with ground-based synthetic aperture

arrays is nearly impossible due to the phase corruption of the incident optical signals by the

atmosphere. One must employ of closure-phase method of indirectly inferring the visibility data

from estimators called variously as "triple products," "bispectra," etc. (Wirnitzer 1985, Baldwin

et al. 1986). A bispectrum b refers to a set of three apertures, say i,j, k, and is defined as the product

of the complex fringe phasors on the three baselines/j, jk, and ki that form the sides of the triangle

with vertices i, j, k. The random phases contributed by the atmosphere at different apertures

exactly cancel each other in the complex phase, the so called closure phase, of any such triple

product.

We consider an nC 2 array which has in all nt - nC3 triple products only nb = nC2

independent baselines. Thus not all triple products are independent. Furthermore, there is no

analytical procedure by which the complex phasors can be exactly computed from the triple-product
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data. Thereare iterative numerical schemes developed in the radio regime (Pearson and

Readhead 1984), which may also be used in the optical regime to accomplish this approximately.

For a point source the only parameter that can be analytically inferred from the triple

products is the source flux F. An estimate ofFis S 1/3 where

nt

S= Z bs.
s =1

(4.1)

We argue that the SNR ofF is a good indicator of the SNR of the map inferred numerically from

the bispectrum data. Clearly, the SNR ot'Fis three times the SNR orS. In what follows, we restrict

our discussions to a point source at the phase center of the array. For this case, all bispectra are

equivalent just as all fringe phasors are.

To compute the SNR ofF, we first compute the covariances of the individual triple products,

bs. Each bs is correlated with itself as well as with the 3(n- 3) other triangles that share one side

with it. Let and pab2 represent the self-correlation (variance) and cross-correlation

(covariance) of the bispectra. Then

SNR(F) =
3nt (N ) 3

V nta_+3(n 3)ntI_cr _

(4.2)

where we haveused the fact that all the fringe phasors are independent of one another for an nC2

array and each have the average value <N>. It is not too hard to show (Kulkarni, Prasad, and

Nakajima in preparation) that

2 2
%= 6<N>5+ 12<N>4+ 8<N> 3 and I_b= 2<N> 5. (4.3)

Thus the final expression of SNR (F) is

3 N
SNR(F) = (4.4)
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(i) High-Photon-Number Limit: <N >>>1. The SNR of the measured source strength

tends in the limit <N >>>1 to the value <C@-C-_2. This is essentially the same SNR as attainable in

ideal imaging considered in Section IIa. Thus, in the high-photon-number limit, imaging

sensitivity is limited solely by the total photon number intercepted by the array, not by the details of

the imaging algorithm.

(ii) Low-Photon-Number Limit. <N><<I. For very weak source strengths, the SNR ofF

tends to the value _]9n(n-1)(n-2)<N >3/48. In terms of the <M>, the number of photons per primary

beam, (<N >=<M>/(n-1)) this expression reduces to 3<M >3/2/q'_ for a large number n of

apertures. In this double limit, therefore, the SNR depends only on the number of photons collected

by a single aperture and not by the entire array.

Nakajima (1988) has shown that if the primary beams are not split and recombined, then

the SNR ofF is much greater than the preceding result at low photon numbers. Thus, at low photon

numbers, beam splitting is a distinct detriment to the sensitivity of ground-based interferometers

using the closure-phase method of triple products.

Section V: Discussion

In this work, we have studied the dependence of the sensitivity and of the distribution of

noise across the image plane of an optical interferometer on the details of beam splitting and

recombination. Of the many possibilities, we have studied two extreme cases: (i) the so called nC2

interferometer in which the beam from each element is split equally into n-1 sub-beams and the

resulting n(n-1) sub-beams combined pair-wise onto nb= nC2 detectors and (ii) an nCn

interferometer in which all the beams are combined on one detector. Our most important result is

that up to factors of order 1 the SNR in the directly synthesized image for either kind of array is

equal to q'_-_2 where <L > is the total number of photoelectrons collected by the array. Thus the

beam combination geometry should not be a critical issue in the design of a space interferometer.

Direct synthesis is not possible for ground-based arrays that suffer from atmospheric phase

aberrations, and one must use the closure-phase method of indirect computation of the visibility

data. We have looked at a nominal SNR for measurements from an nC 2 array and found the

physically reasonable result that at high photon numbers both direct and indirect imaging are

105



equallysensitive.However, at low photon numbers the sensitivity depends only on the photon

number collected by each aperture and not by the entire array.

This work was done entirely in collaboration with S.R. Kulkarni at Caltech, who had most

of the early ideas.
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nonredundant nC n array, and F5 and F6 refer to the maximally redundant nC n array.
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PART III

SPACE-BASED INTERFEROMETERS

This sectionofthe proceedingsisdevotedtodiscussionsofrecentproposalsforEarth-

orbitingoptical/IRinterferometers.Beforebuildinga long-baselineopticalinterferometeron the

Moon, we must firstgain experienceon short-baselinearraysin space. These papers describe

innovativeideas fororbitinginterferometers,the technicalchallenges,and the sciencedrivers.

M. Shao begins with a brief discussion of the technical requirements and performance of a

first-generation space interferometer, with particular emphasis on OSI, a project for the Space

Station. Pierre Bely and colleagues next describe HARDI, a high-angular-resolution deployable

interferometer for space, that will have a 6-meter baseline and thus greatly improve the resolution

of the Hubble Space TelescoPe (HST). The support and servicing of large observatories in space,

based on experience with HST, is summarized by T.E. Styczynski. The final paper by S.T.

Ridgway serves as a bridge between Parts III and IV of these proceedings by describing the science

drivers and technical requirements for interferometers in Earth-orbit and on the Moon.
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