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PROJECT SUMMARY

The purpose of this research was to develop a reliable submillimeter
wave spectrometer for space-borne high frequency spectral line work.

The emphasis was on improving the efficiency of frequency multipliers to
1imit the system components to rugged, low power consumption solid-state
devices. This research has allowed Millitech to develop increased
efficiency and performance in Millitech's existing line of submillimeter

components and systems.

Millitech has fabricated and tested a complete solid-state spectrometer
front end for use at 560 GHz (the 1jg to 1p; transition of water vapor).
The spectrometer was designed with the rigors of flight conditions in
mind. The spectrometer uses a phase-locked, solid-state Gunn diode
oscillator as the local oscillator, employing a tripler to produce about
3 mW of power at 285 GHz, and a low noise second harmonic waveguide
mixer which requires <2 mW of LO power. The LO (and the signal) is
injected into the mixer by means of a quasioptical diplexer. The
measured system noise temperature is 2800 K (DSB) over 400 MHz. The
whole spectrometer front end is compact (21 cm by 21 cm by 24 cm), Tight
(7.4 kg), and has a power consumption of <8 W. Other topics explored in
this work include compact frequency agile phase lock loops, optical

filters, and InP Gunn oscillators for low noise applications.

As a result of this research, the improvement in the design of .
multipliers and harmonic mixers will allow their use as the LO power for
a variety of satellite-borne receivers operating in the 200 to 600 GHz

frequency range.






1.0 SYSTEM _OVERVIEW/INTRODUCTION

1.1 DEVELOPMENT OBJECTIVES

For NASA's SBIR Program Phase II, Millitech proposed to design, develop,
and build a solid-state submillimeter receiver, with the inherent
ability to be space qualified (see Appendix 1). Constraining the
package size to a 20 cm cube and low power consumption were also

considered important goals for aerospace applications.

Although no system performance specification was called out, the design

was targeted at the following performance levels:

° System center frequency 557 GHz; tunability should be +10 GHz with a
minimum number of adjustments. (This frequency range covers a number
of interesting spectral 1lines including H20 2(1,1) to 2(0,2)

transition.)

° System noise temperature of <3000 K (DSB) over 500 MHz bandwidth,

with increased instantaneous bandwidth (> 1 GHz) as a goal.
° A1l solid-state system; power consumption < 10 W.
° Mass < 5 kg.
° Compact: system to fit in 26 cm by 20 cm by 20 cm volume.

°* High reliability and ruggedness: system should survive temperature,
vibration, and humidity extremes characteristic of shuttle launch and

space operation.

Based on previous experience from a University of Massachusetts/Lincoln
Labs cooperation, a harmonic mixer approach for a frequency of 557 GHz
seemed feasible. 1In this work a klystron LO pumped a tripler which in
turn pumped a harmonic mixer for 557 GHz. The IF amplifier was a 1.4

GHz low noise FET amp, and the overall receiver noise temperature at the

Use or disclosure of data contained on this sheet is subject to the
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best frequencies (near 560 GHz) was 3900 K DSB. Since this mixer was
not optimized it seemed reasonable to expect better results with a more

advanced design.

With the advent of high power diodes, an adequate output at 92.7 GHz is
now quite feasible using a Gunn oscillator to replace the klystron LO.
At the beginning of this work only GaAs Gunn devices were available
producing 50 mW at 92.7 GHz. As work progressed, Millitech's in-house

oscillator facility produced oscillators using InP diodes with even more

power,

In previous work under Phase I of this contract, a study of tripler
efficiency was undertaken to optimize the output power at millimeter
wave frequencies. As an outgrowth of this work, a tripler pump was
developed for 278 GHz with an output power which proved quite adequate

for the system application.

The harmonic mixer required the most study. The mixer was developed
using both computer studies of theoretical harmonic mixer noise, and
model studies of actual mixer structures. An additional constraint was
an IF bandwidth of 400 MHz which required use of a microwave design
program to optimize the IF port impedances. The mixer that was built
appears to validate the design concepts and in fact is a substantial

improvement on the previous work.

1.2 RESULTS

In building the 550 GHz radiometer, Millitech has solved a major problem
confronting submillimeter heterodyne systems, that of having sufficient
local oscillator power supplied by a rugged solid-state device with low
power requirements. Historically, carcinotrons (BWO's), lasers, or
klystrons have (when available) provided the local oscillator for high
frequency systems. Such sources must be supported by power/control
units that are very large, exceedingly heavy, and require high voltages
{~2 kV) and currents (~30 mA), which render them inappropriate for

Use or disclosure of data contained on this sheet is subject to the
restriction on the title page of this final report.
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spaceflight applications. By using a second harmonic mixer with low LO
drive requirements and a multiplied Gunn oscillator source (2.5 W DC
required power), the radiometer power consdmption is < 8 Watts, the
majority of which is required by the phase-lock loop electronics. The
radiometer box is compact (21 cm by 21 cm by 24 cm) and relatively light
jn weight (7.4 kg), and could be made even lighter and slightly more

compact if necessary.
A summary of the system test results are as follows:

System Noise Temperature Versus IF Frequency

IF Frequency (GHz) Y (dB) Tsys (DSB °K)
1.1 0.22 4055
1.2 0.285 3091
1.3 .28 3036
1.4 0.295 2991
1.5 0.30 2927
1.6 0.295 2991
1.7 0.29 3036
1.8 0.24 3692

For optimum system noise temperature, see Figure 3.2-4 in Section 3.2,

The system block diagﬁam (Figure 1.1) illustrates the position of major
system components detailed in the following report. " In the
corresponding report section, the design, development, and
implementation of each subsystem and major component is described. Also
included are other devices that were explored under this contract but

not installed in the final radiometer.

Use or disclosure of data contained on this sheet is subJect to the
restriction on the title page of this final report.
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FIGURE 1.1 -- Radiometer Block Diagram
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2.0 INPUT OPTICS

2.1 CONFOCAL RESONATOR FILTER

Filters play an important role in many types of microwave and millimeter
wave systems. In the context of heterodyne radiometric systems, uses

include:

(1) local oscillator filtering to reduce LO noise

(2) single sideband filtering to select one input sideband of a
mixer

(3) diplexers to provide combined signal and local oscillator to a

single-ended mixer.

At microwave frequencies, different types of filters have been developed
for the various transmission media which are employed. Microstrip
circuits often employ coupled 1line and dielectric resonator filters.
Cavity filters are widely used in waveguide systems. The low loss of
waveguide at wavelengths >3mm results in these filters having high Q and

Tow absorption.

At shorter millimeter frequencies, single mode waveguide has been the
dominant transmission medium, but increasing loss at higher frequencies
limits the performance of filter circuits. Resonant ring filters for
local oscil1ator/signa1 diplexing work very well up to ~100 GHz (loss
<0.4 dB for signal), but performance in the 120 to 170 GHz.range is
noticeably worse (~0.75 dB). Thus, alternatives to waveguide filters
are needed. Since the transmission medium gaining increasing acceptance
at short millimeter and submillimeter wavelengths is quasioptical
transmission, and as filter design is relatively less developed at these
high frequencies, it is appropriate to investigate new quasioptical

filter designs.

Different types of quasioptical filters have been developed, most of
which derive from designs previously used in guided wave media at longer

wavelengths. These will be briefly considered below.

Use or disclosure of data contained on this sheet is subject to the
restriction on the title page of this final report.
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The dual beam interferometer exists in various realizations including
amplitude division (Mach-Zehnder) and polarization rotating (Martin-
Puplett) versionsl. These devices are designed to have a sinusoidal
response, which is produced by the difference between the paths traveled
by the two parts of the beam. The minima and maxima of response can be
very close to zero and unity for an optimized design, but the bandwidth
is directly related to the periodicity of the response through the
sinusoidal form of the transmission function. (More complex variations
have been devised which partially overcome this limitation2.) The dual
beam interferometer is an exact analog of the circuit formed by
connecting together two waveguide hybrid tees with two different lengths

of waveguide, as shown in Figure 2.1-1.

Filters employing the concept of multiple reflections between mirrors
are generally referred to as "Fabry-Perot filters" in optics and both
this and the designation "multiple beam interferometer” are used for
quasioptical versions of this device. Two partially reflecting surfaces
are used, but many different configurations are used to overcome
problems of walkoff. This problem arises when the beam is at non-normal
incidence. Waveguide filters using multiple reflections are widely
used; the reflections can be produced by posts or irises in the
waveguide, as shown in Figure 2.1-2. Most such devices employ more than
two reflections in order to adjust the response of the filter; this
technique has been extended to quasioptical multiple beam
interferometers but has not been widely used in practice. Some methods
of changing the impedance level in quasioptical and waveguide filter
sections are shown in Figure 2.1-3. Dielectric filling lowers the
impedance level in all cases ((a) through (c)). MWaveguide sections can
change Z by varying height (d) and/or width of guide (e). Quasioptical
filters can obtain Z>Z, by employing a section with thin metal plates
parallel to the electric field. The impedance of this device wWill
necessarily be relatively frequency dependent as are impedances in
waveguides. This is a distinct disadvantage compared to the frequency

independent impedances in quasioptical filter sections based solely on

Use or disclosure of data contained on this sheet is subject to the
restriction on the title page of this final report.
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FIGURE 2.1-1 - COMPARISON OF QUASIOPTICAL AND WAVEGUIDE
DUAL BEAM INTERFEROMETERS
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FIGURE 2.1-2 - COMPARISON OF QUASIOPTICAL MULTIPLE BEAM
INTERFEROMETERS AND WAVEGUIDE FILTERS
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FIGURE 2.1-3 - SOME METHODS OF CHANGING IMPEDANCE LEVELS IN
QUASIOPTICAL AND WAVEGUIDE FILTERS
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dielectrics. However, since the Tlatter produce only Z<Z,, the filter
designs using only dielectrics are necessarily somewhat restricted.

A major problem with quasioptical filters is the effect of diffraction.
For a Gaussian beam, this can be expressed in terms of the growth of the
beam radius away from the beam waist, where the beam radius W has its
minimum value W,. The relationship is given by

X

W=w| 1+/[az |2

g2

where Z 1is the distance along the axis of propagation from the beam
waist, and A is the wavelength. The effect of diffraction is not simply
to enlarge the beam (which could be dealt with by transformation using a
lens or mirror), but since quasioptical filters employ beams which have
traveled different distances, the degree of interference is reduced if
the radii (and curvatures) of the beams are not identical. This has
been analyzed for dual beam interferometers[l] and for Fabry-Perot
interferometers{3]. For the latter devices, it has been found that a
device filled completely with material of index of refraction n has
diffraction loss approximately a factor n4 smaller than a device with
similar response characteristics but in free spacel4]. This method of
reducing losses due to diffraction has been used in systems at
millimeter wave1engths[5]. It is, however, limited in its effectiveness

by absorption loss in the dielectric material.

It has been recognized for some time that diffraction loss can also be
reduced by refocusing the beam after each pass through a Fabry-Perot
interferometer. Such devices are generally called resonators. Coupling
energy in and out of resonators can be accomplished by small diameter
irises if waveguides are the external transmission medium, but achieving
proper coupling and reasonable transmission through the resonator is
difficultl6], certain types of resonators can be effectively coupled to
propagating Gaussian beams by partially reflecting mirrors[7].[8], which

are illustrated in Figure 2.1-4.

Use or disclosure of data contained on this sheet is subject to the
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FIGURE 2.1-4 - QUASIOPTICAL RESONATORS
(a) GOLDSMITH AND SCHLOSSBERG, 1980
(b) PICKETT AND CHIOU, 1983
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These resonators do have greatly reduced diffraction 1oss as expected,
since the resonant wave is refocused after each pass and returns to the
original mode. Ideally, the unwanted loss per pass 1is only due to the
spillover and to absorption in mirrors. Unfortunately, there is a
serious drawback to both of these designs, which 1is that the mirror
spacing d cannot be made arbitrarily small 1in ‘comparison to the mirror
size, and hence with respect to the beam diameter. This means that for
a reasonable level of spillover 1loss, the free spectral range (= spacing
between resonances = c¢/2d) has a lower limit. This can be a serious
problem if one wants to avoid spurious responses over a relatively large

frequency range.

To overcome this drawback while retaining the 1low diffraction loss
advantage of the resonator structure, we have investigated the design
shown 1in Figure 2.1-5. The resonator is of the semi-confocal type, wWith
one plane and one flat mirror. The radius of curvature Ry of the
spherical mirror 1is equal to twice the mirror spacing, d = 2.46 cm. In

this situation the resonant frequencies are given by

f=_c [qa+5
2d 4

where q is an integer, and the beam waist radius is

Wo =(ARM| ¥ = 0.50 cm
tid

at a wavelength of 0.32 cm. The diffraction loss per pass is givén by

PL = exp -2 DM 2

PINC W
where Dy 1is the diameter of the mirror, and W is the beam radius which
is equal to W, at the flat mirror (where the waist is located) and W, V2

at the curved mirror.

The dinnovative feature of our design is that we use the two resonator
mirrors themselves as the partially reflective surfaces for coupling the

radiation into and out of the resonator. This is done using metal mesh,

Use or disclosure of data contained on this sheet is subject to the
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FIGURE 2.1-5 - QUASIOPTICAL RESONATORS USING CURVED
AND FLAT PARTIAL REFLECTORS
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which acts as a partial reflector. The flat mirror 1is straightforward,
but we have also found that the mesh can be glued to a curved surface
and that the resulting mirror works very well. This allows us to
analyze the resonator as a "normal" Fabry-Perot interferometer with
essentially zero diffraction 1loss. We also have the option to make the
plate spacing arbitrarily small (if a large free spectral range is
required) and still have a mirror diameter 1large enough compared to the

waist radius so that diffraction loss is very small.

The resonator built to verify this concept, as discussed above, was

designed for operation at a wavelength of 0.32 cm. The mirror diameters

are 3.75 cm so that at the curved mirror, where W = 0.707 cm, the
diffraction loss 1is 8x10°7. Thus, the response should be entirely
dominated by the mirror reflectivity. For mirrors having fractional

power reflection R, the resonator transmission is given by

1t]2 = 1
1+H sin2(a)

4R/(1-R)2 and
one-half the round trip phase delay.

where H

a

Resonances occur for a equal to a multiple of =n, and the theoretical
maximum transmission is unity. The minima occur for odd multiples of

n/2 and are equal to (1 + H) - 1,

The mirrors are made by gluing rectangular copper mesh (made by Buckbee
Mears Co.) onto rexolite disks; the disk thickness 4is chosen to be
resonant at the nominal operating wavelength. The mesh had a nominal 50
lines per inch spacing, with a grid period of 0.051 cm and aperture size
of 0.045 cm. Mounted on a rexolite holder, the insertion loss of a
single grid is 9 dB, corresponding to R = 0.874. The theoretical value
of H is then 221 and the minimum transmission 0.0045 (-23 dB).

The coupling to the resonator 1is effected by lenses which match the

beams produced by scalar feedhorns to the size and location of the

Use or disclosure of data contained on this sheet is subject to the
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resonator waist. The design of the system is shown in Figures 2.1-6 and
2.1-7.

Data were obtained with a BWO sweep oscillator and detector attached to
the feedhorns. In Figure 2.1-8 we show a transmission curve. The
minimum loss is less than a few tenths of a dB, indicating very low
mirror absorption. The minimum transmission is approximately -24 dB
which agrees very well with that predicted from the mirror reflectivity.
The resonances are quite clean, indicating that higher order modes are
not being excited. This is not always the case; as shown in Figure
2.1-9, if a small (few mm) lateral misalignment of one of the feedhorns
occurs, other modes do enter, the basic response of the resonator is not

appreciably changed.

We conclude that the semi-confocal resonator with only 2 mirrors, which
are the coupling mirrors, has attractive features for millimeter and
submillimeter applications. It can work effectively as a LO or SSB
filter, and the availability of a large free-spectral range combined

with low loss and compact size are valuable attributes.
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FIGURE 2.1-6 - SEMI-CONFOCAL RESONATOR
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FIGURE 2.1-7 - SEMI-CONFOCAL RESONATOR
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FIGURE 2.1-8
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FIGURE 2.1-9
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2.2 SUBMILLIMETER FEEDHORNS

As discussed elsewhere in this report, waveguide mixers have various
advantages for use at longer submillimeter wavelengths, in terms of
control of diode embedding impedance at frequencies critical for mixer
operation. In order to take advantage of these, however, radiation must
be efficiently coupled in from free space. The ideal free
space-to-waveguide transformer or feedhorn would have the following

properties:

(1) Low loss

(2) Symmetric, highly Gaussian pattern with minimum sidelobes
(3) Polarization purity

(4) Ease and reproducibility of fabrication

These qualities cannot necessarily all be satisfied by just any type of
submillimeter feedhorn. At centimeter and millimeter wavelengths,
scalar or hybrid mode feedhorns satisfy the first three criteria. The
question of fabrication is dictated by the requirement of the quarter
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wavelength deep grooves spaced by a half wavelength or less, which form
the reactive surface of this type of feedhorn. Although the grooves are
responsible for the desirable properties of scalar feedhorns,' the
fabrication difficulties represented at submillimeter wavelengths are
suffuciently great that we have been forced to utilize a feedhorn having

simpler construction and greater ease of fabrication.

Among the alternatives available, we find that the dual mode feedhorn,
while relatively simple to fabricate, is a narrowband device.
Dielectric 1lined feeds are broadband, but launching the proper mode
presents a major problem. Consequently, we are left with the most basic
feedhorns as options - the rectangular and smooth-walled conical
feedhorns. These are well-analyzed theoretically, and extensive data is
available for design. The conical feedhorn appears advantageous in
terms of ease of fabrication. As discussed further in Section 2.2.1 it
has moderately low sidelobes and fair polarization purity. The major
problem is the inherent assymetry in its radiation pattern. This can be
corrected with an assymetric optical system based on Gaussian beam

propagation, as discussed in Section 2.2.2.

2.2.1 Conical Feedhorns

The radjation pattern of conical feedhorns can be analyzed with
reasonable accuracy by using an aperture field method. We assume that
the electric field distribution in the aperture is the same TE11 mode
as launched by a rectangular-to-circular tranformer in the throat of the
horn, as shown in Figure 2.2-1. The geometry for calculating the
radiation pattern is given in Figure 2.2-2. In the horn aperture of
radius a, r' and ¢' are the polar coordinates while 8 and ¢ describe the
position of an observation point taken to be in the far field of the

horn.

The TEy; mode field distribution is given in terms of radial and

azimuthal coordinates by:
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FIGURE 2.2-1 - SMOOTH WALLED CONICAL FEEDHORN
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FIGURE 2.2-2 - GEOMETRY FOR CALCULATING RADIATION
PATTERN OF CONICAL FEEDHORN
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Er = __Aa Jy/1.841r' sin ¢'
1.841r' a

E'= A J1'(1.841r') cos ¢'
a

where A is a constant, J; and Ji' are the first order Bessel functions
and derivative thereof, respectively. The first zero of Ji is 1.841,
reflecting the fact that E¢' = o at the wall of the feedhorn which is

taken to have infinite conductivity. The Cartesian components are given

by

Ey = En' cos ¢' - Eo' sin ¢!
X r

Ey = E' sin ¢' + Eo' cos ¢’

The field in the horn aperture is assumed to be given by the above,
modified by a phase function obtained by assuming that the curvature of
the wavefront is determined by the condition that the field lines be
perpendicular to the walls in the flared section. This approximation

will hold accurately only for horns of modest flare angle 6.

In this case the radius of curvature of the spherical wave is equal to

the slant length Lg of the horn, given by
Lg = a/sin 8q.

The aperture phase function is

§(r') = -nr'2 = -gal [r'\ 2
Alg Alg \a
We define a normalized radial aperture coordinate p given by
p=r'/a 0<p €1l

so that the aperture phase distribution can be written

5¢ = 2nAp2
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where A = a/2ALs

is the axis-to-edge phase difference mesured in wavelengths. Thus, the

aperture field components are given by

UgR (P,¢') = A exp (j69)[J1(1.841p) |- J1'(p) cos ¢' sin ¢'
1.841p
UyA (P,¢') = A exp (jo¢) J1(1.841p) sinZ ¢' + J1'(p) cos ¢'

1.841p

The far field radiation patterns are obtained using Fraunhoffer

diffraction integral

Ux,y(8¢¢) = C pdp sin ¢'de'Uy, y(p.9")exp [jup cos (d¢'-¢)]
p=0 ¢'=0
where we have defined
u=2r a sin 6/A
as a normalized off-axis angular coordinate.

It is apparent that the conical feedhorn radiation patterns will not be
axially symmetric. It is also clear that, due to the field distribution
in the aperture, there will be a significant cross-polarized component
in the radiated pattern. In Figures 2.2-3a and 2.2-3b we give the
calculated power patterns (proportional to | U(B,¢)I2) for a conical
feedhorn with a = 1.27 cm, Lg = 12.5 cm, for a wavelength of 0.429 cm.
The phase error A is equal to 0.15 in this case, and the patterns are
typical for small phase error horns. In Figure 2.2-4a and 2.2-4b we
give the measured patterns for the same feedhorn. The agreement is very
good. In the measured patterns the contours are spaced by 3 dB and the

peak of the cross-polarization (Ex) pattern is at a level of -16 dB
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FIGURE 2.2-3a
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FIGURE 2.2-3b
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FIGURE 2.2-4a
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FIGURE 2.2-4b
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rejative to the peak of the copolarization (Ey) pattern. The
copolarized and cross-polarized intensities are nearly equal at the
locations of the cross-polarized peaks, located at +45° with respect to

the principal planes.

The absence of axial symmetry, as well as the E-plane sidelobes, prevent
analysis in terms of a reasonably small number of Gaussian modes from
being an accurate representation of the copolarized radiation pattern.
If, however, we consider the beam down to -20 dB we find a relatively
well-behaved pattern with a ratio of the H-plane (azimuth) width to
E-plane (elevation) width of 1.25:1. Fitting a fundamental mode
Gaussian indicates that for small phase error conical feedhorns (A <

0.2) the waist radii are given by

0.31D
0.39D

WoH
WoE

where D is the diameter of the horn aperture.

2.2.2 Symmetrizing Conical Feedhorn Pattern

As discussed above, the main lobe of a conical feedhorn is asymmetric
with a 1.25:1 ratio of widths, but 1is reasonably Gaussian in form.
Since the propagation of Gaussian beams in two orthogonal coordinates
perpendicular to the axis of propagation 1is +independent, we have the
possibility of correcting the pattern asymmetry using optics wﬁich treat
the E-plane and H-plane differently. This can be done with a variety of
elements including, most simply, cylindrical mirrors and lenses. A
cylindrical mirror affects the beam parameter only of the coordinate
along which the mirror is curved; the parameters of the orthogonal
coordinate are not affected. Even with such a simple system it is
possible to select a mirror curvature and distance to the horn which
results in a symmetric beam having the beam waists for both coordinates
at the same location. The analysis of this transformation has been

published in the IEEE Transactions on Antennas and Propagation and is

included in Appendix 2.
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Two arrangements using a cylindrical mirror inclined at 45° are shown in
Figure 2.2-5. In both cases, the curved coordinate is used to narrow
the H-plane pattern by creating a larger effective H-plane waist. The
original and corrected patterns are compared in Figure 2.2-6. The horn
is the same as described in Section 2.2.1. We see that the H-plane
pattern is narrowed by the desired amount. The sidelobes are largely

unaffected.

While still not offering the low sidelobes and polarization purity of a
scalar feedhorn, symmetrization of a conical feedhorn pattern using low
loss Gaussian beam optics offers moderate efficiency, and a symmetric
radiation pattern, in a system which is easy to manufacture and usable

throughout the submillimeter range.
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FIGURE 2.2-5
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2.3 RECEIVER OPTICS

In order to simplify construction of the mixer we used a smooth-walled
conical horn of the type discussed in Section 2.2 integrated info the
mixer waveguide, with just a smooth taper transition from the circular
horn to the reduced height rectangular waveguide. A conical horn was
selected because it has inherently lower side-lobes than a rectangular
horn, and is more easily machined. However the E-plane and H-plane
beam patterns differ in width by 20% for such a horn requiring some
optical correction. 1Initially we planned to do this correction with a
cylindrical mirror as discussed in the previous section, but we tried
this corrector and found it did not work as planned. Then we tried
focussing with a simple off-axis ellipsoidal mirror, and found that this
could produce equal E- and H-plane patterns. The reason for this is
that the phase centers for the E- and H-plane beams are at different

locations in the horn and thus it is possible to operate with one plane
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in focus and the other somewhat out of focus. With the ellipsoid we
happened to choose, in combination with the horn flare angle, we could
produce almost identical far field patterns. The two planes stifl
originate from different phase centers even after the mirror, but if the
mean location is chosen in a system then the patterns will still be of
equal width. This difference in phase center locations is the apparent
reason the cylindrical corrector did not behave as planned. Phase
center locations are a complex function of the flare angle of the horn.
In this case the phase centers are located further inside the horn than
expected, making it 1impossible to locate the cylindrical mirror

properly.

The collimated beam has a full width of 1.5 degrees to the 3 dB points
or 2.7 degrees to the 10 dB points. The optics diameter is 1.25 in, (32
mm) with a beam waist approximately at the mirror with W = 7.8 mm. This

leaves a clearance of 4 W within the optics.

A sideband filter was designed for the receiver to improve calibration
accuracy. This is necessary because mixers may have unequal sideband
response even with a very low IF relative to the signal frequency, and
because this radiometer was designed for a frequency where the
atmospheric attenuation is a very sensitive function of frequency. Due
to the relatively high system temperature, there is little disadvantage
to terminating the. unwanted sideband at ambient temperature. A
Martin-Puplett interferometer was chosen because it is readily tunable,
making for a more versatile system, and because its losses are very low.
It is probably not the best choice for a truly fixed-tuned system, since
it is more fragile and able to get out of adjustment. This sideband
filter adds a loss to the signal of 10%, partially due to truncation of
the sidelobes of the signal beam, and partially due to
cross-polarization reflection by the grids. There 1is virtually no
actual Joss in such a filter. The sideband ratio of the mixer is
approximately 45/55 at an LO of 556 GHz.

The filter can be tuned for any frequency by a single-turn knob on the

~ outside of the receiver. This knob produces a 0.025" difference in path
which is more than one wavelength at 557 GHz.
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3.0 RF COMPONENTS

3.1 FREQUENCY TRIPLER

Two triplers were made for this system of somewhat different design.
Both were based on studies of optimum tripler efficiency, and used the
lowest possible output waveguide height for best output watch (an
~0.0045 in. high guide seemed a practical minimum height). The
principle difference was in the choke structure connecting the two
waveguides. One choke was based on the tripler prototype which has a
fairly narrow fixed-tuned bandwidth while the other was designed to have

a wider bandwidth.

In practice there did not appear to be a large difference between
triplers. With 50 mW input the prototype design produced 3.0 mhW. Peak
efficiency for the first was 10%, while for the second 9%, but for both
the peak occurs at only 20 mW input. Both show a strong saturation in
output above 30 mW input; for the first the output increases from 2.6 to
3.0 mW when the input varies from 30 to 50 mW. The reason for this
sharp saturation is not understood. The tripler was studied in
considerable detail to investigate this problem. The diode C(V)
relationship was measured with a sensitive Boonton bridge and found to
be essentially that of an abrupt junction, with the expected 20 V
reverse breakdown. The input VSWR was reasonably low even at 50 mW
input. One odd effect was in the behavior of output power versus bias

voltage. The output was quite flat over a wide range of bias voltages,

'an effect which could not be modeled using a multiplier analysis program

for any set of embedding impedances. In fact this flat behavior is
rather abnormal for triplers of this design and remains unexplained.
This subject would have been pursued further, perhaps by changing the
diode, except for the discovery that more LO power was not needed.
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3.2 HARMONIC MIXER

The generalized theory of mixing predicts that fundamental and second
harmonic mixing in an exponential diode can have comparable conversion
loss in an optimized mixer,1 although greater LO power 1is needed for
harmonic mixing. However the noise behavior requires a more detailed
treatment, which is now easily done using a computer program by seigel.?
This program includes all diode parameters including junction
capacitance, and allows inputs of circuit impedances at 3 harmonics of
the LO. Mixer bias voltage and current are also parameters (and thus
indirectly the LO power). Outputs are conversion loss for conversion
products up to the third harmonic, and the mixer noise temperature for
fundamental mixing. For this study the mixer noise temperature for
harmonic mixing may be found approximately by deriving a diode effective

noise temperature from:
TMixer = (Lc=2) Tpiode

To= Tm1
(Lcl'z)

And using this Tp in the same formula but with Lo for harmonic mixing:

Tz = (Lep -2) __Twa
(Lcl'z)

where Lci, Lc2, TMi. and Ty2 refer to the conversion loss and mixer
noise for fundamental and second harmonic mixing, respectively. These
formulas are from the resistive attenuator mixer noise model of Kerr3
and are only correct as long as all loss in the mixer occurs at the same
effective temperature. For a submillimeter mixer where the series
resistance plays an important role in the conversion loss this is not
strictly true since the diode junction noise may have a rather different
effective temperature than that of the series resistance (which should
be at ambient). However, use of this formula saves rewriting the noise

analysis portion of the program.
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Since harmonic mixers tend to require a substantial LO power which may
not always be available at 278 GHz, this power was put in as a
constraint in the mixer impedance optimization. In the program we-also
assumed that the impedances at the two sidebands and the LO were the
same for each harmonic. The impedance at the second LO harmonic was
chosen to equal the closest match achievable in a waveguide mixer, and
the third harmonic impedance was chosen at an estimated value (its exact
value is not critical). The major variable was then the impedance at
the LO fundamental frequency. Once an approximate value was found, the
mixer bias current was optimized and fixed. LO power was fixed at 2 mW
since only this much could be expected at the diode junction. At this
point the conversion loss was calculated for a range of fundamental
impedances, and plotted on a Smith chart, shown in Figure 3.2-1. Points
near the conversion loss minimum are desirable since the IF contribution
will be minimized here, although a low mixer noise temperature is also
needed. As may be seen, the conversion loss is fairly insensitive to
the fundamental impedance except for a narrow region where much lower
loss appears possible. This region may be partly an artifact of the
computer program since very low conversion loss appears in one area (not
plotted). Such a sharp resonance in impedance space is of marginal
interest in any case since it is very hard to achieve such a precise
circuit impedance. However, with a tunable backshort it is possible to
achieve a wide range of impedances, and there is some evidence for a
sharp resonance in the experimental data. This plot also shows a
typical impedance circle measured for a model mixer as the backshort is

tuned.

Also shown in Figure 3.2-2 is a plot of expected mixer noise and
conversion loss versus LO power, at a constant bias current of 0.2 mA
and for impedances of Z; = 100, Z; = 80 + 120 j, and Z3 = 50 + 50 j.

An interesting effect discovered in this modeling is that for a range of
readily obtainable embedding impedances, the effective diode noise

temperature is well below ambient, typically 200 to 240 K. This leads
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FIGURE 3.2.1 DOTTED LINE = IMPEDANCE CIRCLE OF MIXER MODEL
AS BACKSHORT IS TUNED
SOLID LINE = CONVERSION LOSS CONTOURS
NUMBERS = CONVERSION LOSS IN dB
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to a relatively low mixer noise temperature. In addition, the
conversion loss is not substantially higher than for a fundamental mixer
(only 1 to 2 dB difference), and fundamental mixers typically show
somewhat higher diode noise. Thus the overall difference in noise

between the two mixers is relatively small.

3.2.1 Mixer Modeling

In order to design an actual mixer having the optimized impedances it is
necessary to do some modeling in order to fully understand the waveguide
embedding structure. Initially the signal waveguide dimensions and
whisker Tength were chosen to achieve a reasonable impedance at the
signal frequency. The waveguide height was chosen to be as low as
practical for reasonable fabrication since even the lowest height was

too great for optimum matching.

The whisker impedance was then modeled at the LO frequency. This
behavior 1is somewhat complex, and does not appear as a simple

inductance due to the presence of evanescent waveguide modes.

Using Touchstone, a computer-aided microwave design program (EESOF, CA),
a three section coaxial filter was designed to present a short circuit
at the top wall of the waveguide for the signal frequency, but a nearly
optimum LO  impedance when the effect of the contact whisker and LO
waveguide were taken into account. The LO backshort was assumed to be
at the open circuit position in this design -to maximize the fixed tuned
bandwidth and minimize losses, In addition this allows the most
flexibility in tuning if an error is made in design or fabrication. 1In
designing this filter, coaxial impedances were constrained to be between
20Q and 60Q to avoid excessively difficult construction. The LO
waveguide impedance was allowed to vary down to 15092, and in fact ended
up at near this minimum. This filter was then incorporated into the

model and its effect verified.

After two iterations a filter was designed which met the objectives
fairly closely. The circles of impedance as the LO backshort is tuned
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pass near the optimum impedance, with fairly mimimal frequency
sensitivity. In addition, the open circuit backshort position falls
reasonably close to the optimum so that backshort tuning should not be

too critical.

The final part of the model was a three section filter in the IF port to
prevent leakage of LO power, and to present a short circuit termination
at this port so that the LO impedance at the diode would be better
defined.

The construction of the model and mixer is shown in Figure 3.2-3. Both
filters use variations in the diameters of both the inner and outer
conductors to achieve the largest impedance ratio. In addition, only
the first section of each filter is designed to be cut off to higher
modes at the highest operating frequency. This allows the following
sections to be larger for greater strength and ease of fabrication.
Note that the first sector of the center conductor of the filter
consists entirely of the diode chip, which is cut into a roughly

circular shape.

3.2.2 Experimental Results

The receiver was tested initially with two GaAs Gunn oscillators of
different construction. Tune-up of the mixer proved to be tricky
because of excessive noise, apparently from the LO source, which can be
partially rejected only by a combination of tunings of the output
tripler backshort and the harmonic mixer LO backshort. With a
signal-to-noise ratio meter this tune-up is fairly quick, but would not

be possible otherwise.

Since InP oscillators were available, we tried one and found that the LO
noise was much less, so much so that tune-up was very smooth and seemed
a lot less critical. As a practical matter this made system operation
much smoother, although the ultimate system performance was only about
10% lower 1in noise. Due to the much easier tune-up and the lower power

consumption, InP Gunns were used in all further tests.
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Only one mixer diode and contact whisker were used in these tests, thus
these results may only be regarded as a sample of one. A variety of InP
oscillators were used with two triplers to explore the tuning range of
the harmonic mixer. These results are summarized in Figure 3.2-4.
Typical bias current was 0.20 mA at all points with bias voltage varying
from 0.5 to 0.65 V. LO power was unknown point by point but was
probably 2 mW minimum at the tripler output. The tripler and mixer were
connected by a 1.5 inch length of WR-3 waveguide with an insertion loss
of 1.5 to 2 dB. While these units could have been connected together
directly with more LO reaching the mixer, better results were obtained
with the 1.5 inch piece of ﬁaveguide. The reason for this is that the
guide plus the mismatches at both ends form a cavity which favors the
coupling of LO power to the mixer while suppressing the conversion of
input power by fundamental mixing. This resonance also acts to filter
the noise from the LO source. However, this type of filter is not very
tunable and may not have the correct resonant frequency for an arbitrary
LO. Evidence for such an effect is seen as the mixer is tuned. Certain
frequencies work significantly better than those only about 1 GHz away.
On the average, the tuning is quite flat and shows no systematic

variation over the range sampled.

Subsequently, a lower loss wavegu%de was specially made to connect the
two devices, consisting of a WR-3 to WR-4 taper and then back to WR-3 in
a single electroformed waveguide. This taper had a loss of only 0.7 dB,
but gave no better performance than the higher 1loss straight guide.
However, enough variables are present in this system to mask any small
improvement in one area. In part this 1is because the mixer is not
really short of LO power, as is discussed later, and a small change

should not be very noticeable.

In order to investigate the agreement with theory the noise temperature
of the mixer was plotted vs LO backshort position and is shown in Figure
3.2-5, This curve shows a very smooth variation with a very broad

optimum as predicted by the theory. A sharp spike near the null in
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performance is not explained well, but is an observed characteristic at
most frequencies. In fact, at some frequencies this is the best
operating point. This corresponds to an impedance very close to the
perimeter of the Smith chart, and it is rather surprising to see such an
effect. The receiver total power output was constant to within 1 dB
over this backshort tuning so that the noise temperature and conversion

loss are fairly well correlated.

Using the model, a measurement was made of impedance vs backshort
position, and this is plotted as well on the Smith chart in Figure
3.2-1. MWhile detailed agreement is poor, in a general way the behavior
is similar, given the uncertainties in translating the model to the
actual unit at nearly 100 times higher frequency. The backshort motion
does cause the impedance to pass near the optimum operating region
predicted by theory, but the theory does not predict a double peak in
the behavior. The interaction of the tripler and mixer can perturb
these impedance circles significantly and may be part of the
discrepancy. These curves predict that for a harmonic mixer of this
construction, LO backshort tuning should be quite non-critical, and that

is what is observed.

Since LO power is relatively difficult to obtain even for a harmonic
mixer, we also measured the behavior of the noise temperature and
conversion loss vs LO power into the tripler (and indirectly its output
power). These results are summerized in Figure 3.2-6. As can be seen
the conversion loss is fairly strongly saturated even with a tripler
input of 35 mW, and so there is no real need for a high power pump
source, particularly since the tripler's output power saturates quickly

for more than 30 mW input.

IF matching for the mixer is made difficult because of the inherently
high IF impedance of a harmonic mixer, and because of the length of the
choke structure which prevents attaching a matching circuit as close to
the diode as is desirable. To aid in matching the impedance of the

macor support section was made at 502 , which was as high as practical,
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and its length kept to a minimum. In actual use the IF impedance was
measured to be 35002, and a VSWR < 1.6:1 match was made over the range
1.2 to 1.75 GHz wusing a lumped inductor plus a short circuited
quarter-wave stub in microstrip on €=10.2 Duriod circuit board. This
matching circuit incorporated a DC block and bias T to minimize external

components.

Using a FET IF amplifier nominally centered at 1.5 GHz, the receiver
noise was measured over the IF band using a 50 MHz BW tunable filter.
The noise temperature increased less than 10% at the edges of the 1.2 to
1.7 GHz band. However the system incorporates a 450 MHz BW filter
centered at 1525 MHz which provides a practical limitation on useful
bandwidth (although this filter could be removed).

The minimum conversion loss measured was 13 dB, about 3 dB higher than
predicted by the mixer program. This difference is possibly consistent
with the 1input waveguide loss, but seems about 1 dB too high. The
measured diode effective temperature is 240 K, exactly as predicted by
the program. Thus, we find reasonable overall agreement between theory

and experiment, but a number of small details which don't match.
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3.3 GUNN DIODE OSCILLATOR DEVELOPMENT

This section deals with the development of Indium Phosphide (InP) Gunn
diode oscillators as the fundamental source or driver for the multiplied
source. The technical requirements and objectives for the oscillator
are stated in Section 3.3.1. Following these, the technical approaches
for realizing the oscillator are described in Section 3.3.2. The
details of experimental work conducted during the course of this
development are presented next. This includes the results from
measurements of the electrical characteristics of the oscillator, and
considerations for its phase locking to the reference. Conclusions for

future work are summarized at the end in Section 3.3.5.

3.3.1 Objectives for the Development of InP Gunn Oscillators

The Gunn oscillator development work for this program was prompted by a
number of technical considerations and system related issues. Due to
the recent availability of high performance Indium Phosphide Gunn
diodes, it is now possible to reliably produce a significant amount of
power at the millimeter frequencies in the W-band. There are many other

advantages associated with these InP devices, such as:

1. Low DC power consumption

2. High efficiency

3. High fundamental frequency of operation
4. High power output

5. Lower noise

The low DC power consumption stems from the high DC to RF conversion
efficiency of the newly developed InP Gunn devices. Due to the current
limiting contact, it is possible to obtain desired operating points
while maintaining a reasonable junction temperature. The low DC power
consumption 1is highly attractive from the viewpoint of space'
applications. Typical operating points for InP devices range from 1.2

Watts to 3.5 Watts.
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The efficiencies typically observed in InP devices are superior to their
Gallium Arsenide counterparts by a factor in the range of 2 to 4. 1In
the W-band, efficiency ranges from 3% to 5% for high power operation,
while in the Ka-band (26.5 to 40 GHz), efficiencies greater than 10% are

readily achieved.

The InP devices are capable of operating fundamentally at frequencies
beyond 100 GHz in contrast to the 70 GHz limit for Gallium Arsenide
devices. Hence, it is possible to produce both fundamental and second
harmonic power at W-band using InP devices of suitable type. In the
present work, it was decided to study the system characteristics under

fundamental and second-harmonic operation of the pump source.

The AM noise of the InP devices is reported to be lower than the
corresponding GaAs device. This was investigated for the present
application by comparing the system performance with both GaAs and InP

Gunn oscillators driving the multiplier.
With this background, the objectives of the development are:

(1) To conduct a comparative study of system performance with GaAs and

InP Gunn devices.

(2) To design and evaluate both fundamental and second-harmonic InP

device oscillators for the multiplier-driver application.

(3) To examine performance characteristics and operating behavior of
various types of InP devices with a view to establish their

suitability for the present application.

(4) To design and optimize Gunn oscillators for phase-locked operation

using a space efficient scheme.

These and other incidental issues were the primary motivation for the

Gunn oscillator development.
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3.3.2 Technical Requirements

The Gunn oscillators provide the fundamental drive power for the
multiplier (tripler) at 92.6 GHz. In order to achieve the required RF
power output from the multiplier, the following performance

characteristics and specifications were originally indicated:

Center frequency: 92.6 GHz
Power output: 60 mW

Mechanical tuning: +200 MHz
Electrical (bias) tuning: +250 MHz
Power output variation with bias tuning: +1.5 dB

Monotonic bias tuning characteristics

Thermal coefficient of frequency: < 4 MHz/°C
Thermal coefficient of power output: < 0.035 dB/°C
Power through the sample port: 1 mW typical
External quality factor Qext: > 250

Other mechanical requirements were:

(1) A second sampled output power port for the purpose of phase locking

directly.
(2) Outline and configuration to match the system mechanical layout.

In addition to the basic requirements, some system-related technical

goals were also established, i.e.:

* power consumption less than 2.5 Watts.
° Bias tuning rate of > 300 MHz/Volt.

3.3.3 Design Approaches and Development Plan

As indicated earlier, two distinctly different electrical designs are
applicable to the W-band source using InP devices: fundamental source,

and second-harmonic extraction.
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Fundamental driver source: Several InP devices are available for

fundamental use at frequencies in the neighborhood of 94 GHz. These can

be classified as fo]lowsi

(1) High power devices, (VA9122513) which typically provide 60
milliwatts of power at 94 GHz at nominally 10 Volts bias.

(2) Medium power devices, (VA9122S10) which provide 30 milliwatts of

power at lower bias voltages.

These devices, however, have drastically different behavior in terms of
their mechanical tuning characteristics, external Q, and bias
characteristics when wused 1in traditional oscillators. The RF
performance of these will be described later. The first fundamental
oscillator design utilizes a resonant disk 1in conjunction with a
cylindrical coupling post to produce power over a design frequency
range. Figure 3.3-1 shows the details of this type of oscillator. A
backshort is utilized to optimize the performance. The frequency of
operation is primarily determined by the dimensions of the disk, which
is selected to be one half guide wavelength at the operating frequency.
A dielectric rod can be introduced under the disk to tune the freguency.
The basic oscillator design was studied in considerable detail since it
appeared most promising as far as the required power level for the

multiplier was concerned.

The second fundamental design is structurally very similar to the first
one, except that the backshort 1location plays a dominant role in
determining the output frequency. The nominal distance between the Gunn
device (coupling post) and the backshort position is approximately a
multiple of a half guide wavelength. The coupling post and disk
dimensions control the output power and exert a second order influence
on the output frequency. There are other mechanical features of the
cavity that have an effect on the performance of the Gunn diode
oscillator. These were examined in depth, and the results are presented

in Section 3.3.4. Fundamental mode design requires the use of a Gunn
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FIGURE 3.3-1 - RESONANT DISK-TYPE FUNDAMENTAL GUNN OSCILLATOR
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device which has an active layer dimension that can provide sufficient
gain at the W-band frequency of interest.

Second Harmonic Design: This design utilizes the second-harmonic

extraction of a fundamental frequency oscillation in a suitable cavity
configuration. Power at the fundamental frequency is produced by means
of a disk and post resonator circuit, in combination with the Gunn
device itself. The fundamental frequency is below the cutoff frequency
of the output waveguide and therefore cannot propagate through it. The
disk itself is capable of supporting the second-harmonic frequency in
the form of a radial transmission 1line. Thus, an efficient transfer of
second-harmonic power can be achieved. The backshort location plays a
relatively insignificant role in determining the resonant frequency.
However, it is primarily used for optimizing the power output to the
main output port. Since the fundamental frequency is established by the
disk, and is uncoupled to the output port (due to the waveguide cutoff),
this type of oscillator is relatively uninfluenced by the output load
variation, etc. A dielectric rod under the disk can be used to vary the
operating frequency, while the backshort location is used to optimize
the power output. Obviously, this design utilizes devices which operate
at approximately half of the desired W-band output frequency.

One more design feature needs some discussion. This pertains to the
frequency sampling technique for phase locking purposes. A small amount
of power is extracted from the "back port" of the Gunn oscillator by
means of an 1iris or a leaky backshort structure. The back coupling
arrangement must not significantly influence the basic operation of the
oscillator. The results of this implementation will be reported in the

text following this section.

The developmental work for this program was divided into the following

major tasks:

(1) Device evaluation for fundamental and second harmonic operation
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{(2) Design, fabrication, and evaluation of at least one fundamental and

one second-harmonic oscillator
(3) Study of phase-locking and "backport™ sampling characteristics

(4) Delivery of final product(s)

3.3.4 Fabricational Details and Experimental Results

The Gunn oscillators for the program were constructed using a universal
WR-10 cavity for both fundamental and second-harmonic operation. The
mechanical configuration of the oscillator 1is shown in Figure 3.3-2.
The design 1is capable of accommodating a sapphire rod side tuner"
drive, as well as a backshort drive (or an optional port with waveguide
mounting flange). The diode mount was designed to permit convenient
replacement of diodes, and to allow their rotation and wvertical
relocation. This makes it possible to study the influence of diode
mounting parameters on the performance of the oscillator. The choke and
resonator were universal as well, to allow interchangeability of various
different types of resonators. Chokes with systematically varying
parameters were fabricated. Backshorts, both contacting and
non-contacting types, were constructed in addition to iris-type
backwalls. Several housings were used 1in the investigation to allow
simultaneous evaluation of performance, and to establish the

repeatability of results.

Two distinctly different oscillator designs were implemented for the
fundamental operation. The first utilized the medium power device
(VS9122510), the bias characteristics of which are as follows:

Vop = 4.8 volts,

Iop = 225 mA,

Test frequency = 94 GHz,

Typical power output = 35 milliwatts.
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FIGURE 3.3-2 - W-BAND GUNN OSCILLATOR

AN

/— CHOKE P\N
/ ResonanT Disk,

SAPPHIRE RO D
/— ( REF)

. —
LOCKING QULTPLT

ML

__—— DIoBE HowmeR

- o aromon -

. W, WA W

\-\—

Use or disclosure of data contained on this sheet is subject to the
restriction on the title page of this final report. ‘

-

-56-



‘,m¢~¢§35”

ﬁw T e

In order for this device to operate at 92 GHz, the Gunn device flange
had to be raised 0.010 inches above the waveguide floor. The coupling
post diameter of 0.040 inches was optimal. The device typica1iy
produced 25 to 35 milliwatts of power in the frequency range of
interest. However, this oscillator suffered from several drawbacks,

which are:

(1) The power level of 30 to 35 milliwatts was considered marginal for

meeting the requirements of the frequency multiplier.

(2) The oscillator was predominately backshort tunable, which presented
some problems in the extraction of power from the "backport". 1In
addition, there was a strong load dependence on operating frequency
and characteristics. In fact, over load and environmental ranges,
the oscillator was prone to changing modes, as demonstrated by
abrupt frequency and power changes. It necessitated the use of an

isolator, which further reduced the output power.

(3) The bias tuning characteristics were not optimal for phase locking
purposes. The bias-tuning curve was not monotonic over the entire

tuning range.

In view of these observations, it was decided to discontinue any further
investigation of this design or device for this program. Further work

was conducted using the high power fundamental device.

The second design employed the InP device VS9122S13, the typical

characteristics of which are:

Vop = 10 Volts,

Iop = 180 milliamps,
Fnom = 94 GHz,

Phom = 65 milliwatts.

This device was investigated in considerable detail. It was tested with

a number of similar diodes and optimized each time for the 92.6 GHz
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nominal frequency. The summary of performance of the final unit is
given below, while Table 3.3-1 is the recorded data for the unit.

Frequency range (mechanically tuned) = 91.5 to 93.5 GHz;
Minimum power at frequency of interest = 60 milliwatts;
Bias tuning range (3 dB point) = 245 MHz;

Backshort pulling (total) = +125 MHz;

Power output through the backport < 1 milliwatt
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TABLE 3.3-1
BIAS TUNABLE InP GUNN DIODE OSCILLATOR DATA

Model No. GDM-10 Serial No. 118
Job No. A-125 Date: 5/8/86

Operating Conditions

Operating bias voltage 10 Volt Threshold voltage N/A
Operating bias current 218 mA Threshold current N/A

Bias Tuning Characteristics
(Diode No. 1) VSB 9122813 S/N 226B-05

Bias Voltage Frequency Power
Vg (Volts) (GHz) (miW)
10.0 92.876 60
9.9 92.850 52
9.7 92.820 49
9.5 92.793 46
9.3 92.762 42
9.1 92.732 40
8.9 92.698 36
8.7 92.666 33
8.5 92.631 30
8.3 92.600 27
8.1 92.560 24
7.9 92.527 21
7.7 92.497 18
7.5 92.463 15
(Diode No. 2) VSB 9122S13 S/N 227B-106
10.8 92.760 65
10.5 92.970 60
10.0 92.600 57

Thermal drift characteristics of the prototype unit were recorded by
temperature cycling the unit, A best-fit curve was derived by
processing the data numerically. This data 1is presented in Figure
3.3-3. An average drift coefficient of‘-3.3 MHz/°C was observed.
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FIGURE 3.3-3 - THERMAL DRIFT DATA
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This unit was integrated with the multiplier and rigorously tested. The
results of their combined performance are discussed in a later section.

Second Harmonic Design: This design used a 44 GHz InP device, Varian

VSQ9119S3, the bias characteristics of which are:

12 Volts,
Iop = 200 mA,
From = 44 GHz,
Pnom = 250 mW,
Efficiency = 10%

The cavity and resonator dimensions are shown in Figure 3.3-4. This
design is very similar to a corresponding GaAs oscillator for these

'frequencies. The summary of final data on this unit is given below:

Frequency range (mechanical tuning) = 91.4 to 94 GHz.
Power output at 92.6 GHz = 45 milliwatts.

Typical thermal coefficient of frequency = -4 MHz/°C.
Bias tuning range (3 dB point) = 350 MHz.

Backshort frequency pulling = +70 MHz.

The fundamental-to-second harmonic content ratio for this oscillator is
45/250 or -7.6 dB, which is considered excellent on the basis of a large

data base.

This unit exhibited much 1less 1load pulling of its operating
characteristics than was the case with the high power fundamental mode
oscillators. It was tested together with the multiplier for their
combined features, which will be presented in the appropriate section.
The oscillator conformed rather closely with the theoretical design of
the second-harmonic oscillator. Even though the power output was lower
than the fundamental mode unit's by 1.5 dB, the drive level was found to

be adequate, and resulted in a trouble-free operation.

A leaky backshort was dintroduced instead of a standard non-contacting

short at the same general location. The amount of output through this
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FIGURE 3.3-4 - SECOND-HARMONIC InP GUNN OSCILLATOR DETAILS
RESONANT DISK DIMENSION = 0.078"
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sample port is controlled by the dimensions of the short. The operating
frequency and the power output through the main port is not appreciably
perturbed by this arrangement. Similar results were obtained by using

an appropriate iris at the location of the short.

The oscillator bias tuning characteristics were used to achieve phase
Jocking over a small range around the nominal center frequency. The
thermal drift of the oscillator was sufficiently small to allow
compensation by bias tuning for realizing the phase lock. The frequency
sampling port was connected to a harmonic mixer/diplexer. The details
of the phase locking scheme and its performance are presented in Section
4.0.

3.3.5 Recommendations for Further Work

This investigation has established the appropriateness and distinct
advantages of InP Gunn devices for high-frequency frequency multiplier
driver applications. However, some additional work may be necessary to
extend the results to other applications, particularly at higher

frequencies. Our key recommendations are:

(a) A program to realize useful power at higher frequencies, well
beyond 140 GHz. Higher power output will thus extend the
capability of multpliers well beyond what was achievable using GaAs

diodes.

(b) Development effort to realize wide-band mechanically and
electrically tunable sources for instruments and tunable radiometer

applications.
(c) Additional work in third-harmonic operation of Gunn devices.

(d) Mechanical and electrical integration of Gunn oscillators and

frequency multipliers.
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3.4 CIRCULATORS

3.4.1 Introduction

Research was carried out on ferrite turnstyle circulators to develop a
94 GHz isolator of moderate bandwidth. Reproducibility and economy of

fabrication were key issues.

The basic turnstyle design is shown in Figure 3.4-1. The transformer
matches the higher waveguide impedance to the relatively low ferrite
impedance. The ferrite resonator may be either a triangular or a
circular geometry. The triangular resonator has the potential for
broader bandwidth(l), but is much more expensive due to the precise
machining tolerances required. For this reason a cylindrical geometry

was chosen, since reasonable fabrication cost was important.

The frequency of operation for the cylindrical resonator may be
determined from the modes allowed to propagate in this structure. The
basic modes are shown in Figure 3.4-2; a vertical mode, 8, and two

counterrotating modes B+ and g8-.

Non-reciprocal propagation occurs in the ferrite when an axial DC
magnetic field is applied as shown in Figure 3.4-3. The magnetic field

causes the ferrite permeability tensor to become asymmetric:

|
B = JHyx HUyy 0 ’
0 0 My,

with the off-diagonal elements pyyx = -Hxy. In the zero field case pyy =

0 and uxx = Myy = Hzz-

These off-diagonal elements cause the counterrotating modes g+ and ﬂf to
experience different propagation wvelocities. If the proper ferrite

dimensions and DC magnetic bias are selected then the modes, launched by
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a signal incident at port 1, will add constructively at port 2, and
cancel at port 3. Thus circulation is said to occur from port 1 to port
2, while port 3 is isolated from port 1. Similarly circulation takes

place from ports 2 to 3, and 3 to 1.

A circulator becomes an isolator when one port is terminated in a
matched load, as shown in Figure 3.4-4. Isolation takes place due to the
fact that although signals may propagate from port 1 to port 2, any
reflected or incident signals at port 2 are absorbed by the load at port

3. Port 1 is said to be "isolated" from port 2.

3.4.2 Research
Research was carried out in three basic areas:

(1) the optimal dimensions of a ferrite cylinder for circulation at 94

GHz when a saturating DC axial magnetic field is applied

(2) the correct transformer dimensions for a good match between the

waveguide the ferrite

(3) a good load to terminate one of the circulator ports to create an

isolator

A saturating DC axial magnetic field is assumed in the selection of the
ferrite dimensions, since a saturated state is easy to maintain over
temperature. If the ferrite was magnetized at a level below saturation
the off diagonal elements pyy and pyy would change with temperature due
to their dependence on the ferrite's saturation magnetization, a
temperature sensitive quantity. This would lead to changes in the
propagation constants of the counterrotating modes, which determine the

circulation properties of the device.

To obtain an estimate of the ferrite diameter required we refer to the

relation given by Den1inger(2):
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1 Bdiff = 2 .
2 Bave 3(2n-1)

where

Bdiff = the phase difference between the two counterrotating modes.

the average phase shift of the two counterrotating modes.

Bave
n =1,2,3..., the mode number.

One would 1ike to use n = 1, since this results a large Bdiff/Bave ratio
(i.e. broadest bandwidth). Unfortunately, at 94 GHz the low saturation
magnetization of the ferrite (5250 Gauss) does not permit a solution for

n = 1. The lowest order mode with a solution is n = 2.

For n = 2: 1 _Bpdiff = 0.22
2 Bave

Referring to Denlinger it is then found that Dg/Ao, = 0.219 for n = 2,
where Dg is the ferrite diameter. From Ay = 0.126 in. at 94 GHz we get
D ~0.0276 1in. Estimating that fringing increases the effective
diameter by 1.075(2) the actual diameter required is: Dg/1.075 = 0.026

in.

Denlinger gives the following phase relation that may be solved for Lg,

the ferrite length, once n is known:

2 5oLF (ﬂave ) = (2n - 1) n.
Bo

Using this results in Lg ~ 0.068 in.

This is too long to fit in a WR-10 waveguide (0.050 in. high). For this
reason it was decided to try various lengths of ferrite (of 0.026 in.
diameter) that could physically fit into the height allowed - even
though theory recommended a longer length.

Before proceeding with the ferrite 1length study, the transformer

research should be discussed, since this element was required for the
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ferrite tests. As discussed earlier the transformer matches the higher
waveguide impedance (i.e. 475Q2) to the lower impedance ferrite (i,e. <
1009). Figure 3.4-5 shows the physical Jayout of the
transformer/ferrite combination. At 94 GHz Ag/4 ~ 0.040 in. Combining
this with Dg = 0.026 in. gives Dyeff = 0.106 in. Once again, the
effective diameter is reduced by 1.075 to account for fringing effects.
This results in Dy = DTeff/1.075 = 0.099 in. Given that the exact
ferrite impedance was unknown, since the length was a variable, the
transformer height was scaled from known circulators operating at 35
GHz. This resulted in Ht ~ 0.017 in. Later measurements indicated that

this was a good value.

Using this transformer the ferrite length study was conducted. Results

are shown in Table 3.4-1.
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TABLE 3.4-1

Circulator performance as a function of ferrite length, Lf.

Lg(inches) f{GHz) Insertion Loss (dB) Isolation(dB)
0.031 98 1.0 30
0.032 95 1.0 30
0.033 94 1.0 30
0.034 92.8 1.0 30

*The ferrite is saturated by the external DC axial magnetic field, Df =
0.26 in.

It is observed that for Lg = 0.033 both good insertion loss and
isolation are possible at 94 GHz. The insertion loss and isolation were
further improved by using small ceramic "tweeking" rods, glued into the
waveguide, to optimize the relative phase shifts between the
waveguide/transformer/ ferrite assembly. MWith these rods an insertion
loss less than 0.8 dB and an isolation greater than 15 dB were obtained

over a 3 GHz bandwdith. Typical results are shown in Figure 3.4-6.
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"The final area of investigation was the load required to terminate one

of the circulator ports to create an iJsolator. A wedge of
Emmerson-Cummings MF-117 absorber was formed, as-shown in Figure 3.4-7.
The typical return loss was greater than 20 dB over 92 to 96 GHz making
this a good load for the 94 GHz circulator. The results in Figure 3.4-6

were obtained using this load.

3.4.3 Conclusions

A cylindrical junction ferrite device was developed at 94 GHz. Previous
theoretical work in the field provided good estimates of the transformer
and ferrite dimensions, except for the ferrite length. An emperical
study of circulator performance versus ferrite length produced a device
that gave good performance over 3 GHz bandwidth. This suggests that

there are other solutions not predicted by theory.
A well-matched load was also developed to convert the circulator into an
isolator for use in a system application,
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3.5 ENVIRONMENTAL TESTS

One of the stated goals for this project was the development of
components that are space qualifiable. Due to time constraints,
Millitech chose to generically test the most important components used

in the system.
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3.5.1 MWhisker-Contacted Components

Four representative whisker-contacted devices (2 multipliers and 2
mixers) were taken to National Technical Systems for random vibration

testing.

Vibration: If the radiometer was launched on the shuttle, the failure
mode of a whisker-contacted component would most likely be due to a
resonance allowing the whisker contact to be disrupted. A copy of the
NTS report may be found in Appendix 3. The components subjected to the
following vibration testing showed no change in the DC characteristics

(a good indicator of the whisker contact condition) measured before

testing.
20 Hz to 50 Hz @ 9 dB/octave
50 Hz to 300 Hz @ 0.15 g2/Hz
300 Hz to 2 KHz @ -3 dB/octave
3 minutes for 3 axes
Temperature: Whisker-contacted components are often cooled to 20

degrees Kelvin for use in radio astronomy, and survive such temperature
excursions without difficulty. A1l Millitech whisker-contacted
components are thermally tested by soaking 8 hours at +50°C, followed by
three temperature excursions from -30°C to +50°C. The chamber takes 15
minutes to change from -30°C to +50°C with the components spending an
additional 15 minutes at 50°C before starting on the next 30 minute
temperature cycle. The DC characteristics are recorded before the
temperature cycling and then again at the completion of the test. A
total change in the DC characteristics of more than 4% (the measurement
error is ~2%) would be considered a failure. The device would then be
recontacted and tested again. One in seven contacts will fail during
temperature cycling. Contacts surviving this type of temperature
testing have a history of remaining stable while in use or in storage,
so no further temperature testing on the radiometer whisker-contacted

components was considered necessary.
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Shock/Impact: Several whisker contacted components in lab use have

survived shock due to impact (i.e. being dropped from lab bench height
to a 1linoleum covered concrete floor, ~35 inches). The ability of
whisker-contacted components to survive such abuse without degradation
of performance or disruption of the contact is probably due to

Millitech's fabrication techniques for coolable components.

3.5.2 Low Noise Cryogenic FET Amplifiers

This particular amplifier design has been used for a number of years for
cooled radiometer applications. These amplifiers are very reliable for
use at 20 K. Best noise performance is at 20 K. Any increase in
physical temperature will result in an increase in the amplifier noise
figure. It was not known whether elevated temperatures would lead to
gain instabilities (which would result in poor baselines when the system
was used for spectroscopy), so the amplifier was subjected to further
temperature testing. The amplifier gain was monitored from 0°C to
+40°C. The results are shown in Figure 3.5-1. The gain increases as
the temperature decreases, but most importantly, the amplifier shows no
sign of instability as a function of temperature. It should be noted,
however, that each measurement was taken only after the amplifier

reached thermal equilibrium at each test point.
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FIGURE 3.5-1
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4.0 SYSTEM SUPPORT ELECTRONICS

The design objective of this system is to provide a compact, low power;
frequency agile local oscillator for a submillimeter radiometer. Toward

this end, the following 1ist of specifications are listed:

° 92.6 GHz output center frequency
° 4200 MHz tuning range
° Minimum step size or resolution < 16 KHz

® Locking reliability
° Low power consumption

° Small physical size

These objectives were accomplished with a combination of techniques used

in standard phase-locked loop systems.

Several types of phase-locked loops can be used to meet the requirements

as shown in Figures 4.1-1, 4.1-2, and 4.1-3.

Although several phase locking techniques were initially evaluated and
found to meet the requirements, a translation or offset second order
type of loop was finally chosen because of the wide frequency tracking
reduirements and more easily obtainable lock indications available with

this type of loop.

4.1 PHASE-LOCKED LOCAL OSCILLATOR

The type of loop chosen for this application is an analog translation
loop with a digital phase detector, or that shown in Figure 4.1-3. A

brief description of each 1oop element follows.

VCO: The VCO must be selected to have a monotonic change in its tuning
curve and have a high enough tuning sensitivity to relieve the loop
amplifier gain requirements. In this case, an Indium Phosphide Gunn
effect oscillator 1is used with bias wvoltage tuning. This type of
oscililator was also developed to provide frequency sampling through a

low power back port in order to avoid the need for a coupler.
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FIGURE 4.1-1 - ZERO IF TYPE LOOP
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Phase Locked Local Oscillator
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Mixer: The mixer must have a flat enough response so that large signal
amplitude variations don't occur. In this case, a harmonic mixer was
chosen so that the multiplication of the reference signal would be

simplified.

Multiplier: The multiplier used in this case 1is actually another
phase-locked loop that has a wide enough RF tracking capability to
follow the reference excursions and enough RF power to drive the
harmonic mixer. Since this 1is another phase-locked 1loop with a
relatively high power fundamental mode oscillator (100 mW), one other
criteria is to avoid interference with the IF chain of the receiver.
This was accomplished by choosing the internal high power oscillator's
frequency to be just slightly higher than the signal chain's first IF
amplifier response, This keeps any spurious response from the
muitiplier out of the IF pass-band filter. 1In addition, since most of
the high power oscillator response is above the IF amplifier's
sensitivity, it tends not to saturate the IF amplifier with out-of-band

signals.

Phase Detector: The type of phase detector used is important to the

locking characteristics of this type of loop for several reasons. An
analog type of phase detector or balanced mixer can only detect phase
from +n/2 to -n/2 radians difference between the two dinput signals
before 1its transfer function repeats. This results in the phase
detector having the ability to lock at any point where the IF frequency
is equal to the reference frequency. 1In the case of Figure 4.1-3, the
upper and Tlower sidebands generated by the coherent downconversion
create two possible lock points for this type of phase detector. The
two possible lock points create an inconsistency which usually requires
extra circuitry to distinguish and correct for. The digital phase
detector is chosen for its ability to detect a full +2mn radians of phase
information between the two inputs and therefore the ability to also
distinguish frequency. This allows the phase detector to also become a

frequency detector and aid in the locking characteristics of the loop.
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Low-Pass Filter and DC Amplifier: These items turn out to be simple

op-amp circuits that can provide a wide enough bandwidth to give the
loop good frequency response. A DC amplifier turns these changes into

bias current variations so that the oscillator tracks the reference.

Several ancillary circuits such as a lock detector and locking aids are

also included in this block.

Reference: In this case, a synthesizer provides the reference for the
phase-locked multiplier, and the synthesizer's reference (10 MHz), is

also the system reference, thereby providing coherency.

4.1.1 Loop Filter Calculations

Loop calculations consist of setting an optimum loop bandwidth to both
match the response of the VCO tuning sensitivity and provide a stable

control system.

Ky = VCO gain in radians/Volt
K¢ = Phase detector gain in Volts/radian

N = Multiplication ratio = Fgoyt divided by Fpes
T1 = Filter time constant 1 in seconds

To = Filter time constant 2 in seconds

Ry = Filter input resistor in Ohms

Ry = Filter feedback resistor in Ohms

C = Filter capacitor in Farads

wn = Natural loop frequency in radians/second

¢ = Damping constant

T1 = R4C Ty = RoC
wp = && (=Ig Wn
NTl 2

The requirements of this filter are that it have about 20 kHz bandwidth

and a damping factor somewhere around 0.5 and 1, but these figures have
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to be determined empirically because of VCO non-linearities, etc. as the
loop is tested. The loop damping constant is affected by the delay
factor introduced by the divide by 2 counter, and usually is higher than

expected to provide ample phase margin and a stable loop.

Given K¢ = 1.59 Volts/radian
Ky = (2m) 130 MHz/Volt
N 9260

In this loop filter, the final optimum filter values of Ry, Ry, and C

were found to be:

Ry = R = 6.11 k& C = 1000 pF
Therefore, w,/2rn = 26 kHz as is reflected in the spectra of the loop IF.
The damping constant or { for these values is = 0.4.

Additional filtering is provided by another passive lowpass filter,
directly after the active one, This filter bandwidth is set to be
narrower than the previous active filter to steepén the roll-off of the
overall response. It also allows for a somewhat independent adjustment

of ihe damping constant.

For the passive case:

wy =/ kgkv =5 [Tz + _N }
"V N(TyHT2) 2 vy

The values for this filter are again found empirically and result in the

following numbers:
Ry = 845Q Rp = 2.79 C = 2.2uF

These result in the following w, and (:

.
N ——- )

wy/2m = 1.383 kHz ¢ = 0.0568
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4.1.2 Loop Operation

Referring to the detailed block diagram of the loop (Figure 4.1-4), the
VCO of this phase-lock system is the bias tuned Gunn diode osciliator.
This oscillator has dual ports: one high power port to drive the
multiplier and a lower power port for frequency sampling. The frequency
sampling port 1is connected through an isolator to the phase-lock 1loop
harmonic mixer. Since this is an offset type of loop, an IF frequency
is generated by a predetermined difference of VCO and multiplied up
reference frequency. This loop uses 20 MHz as the IF frequency which is
derived in the harmonic mixer. This mixer 1is designed to
subharmonically downconvert the 92.6 GHz Gunn output to 20 MHz when
driven by a 9.258 GHz source of sufficient power. The 9.258 GHz source
is actually phase-locked to the 10 MHz reference of the synthesizer and
acts as a simple x92 multiplier in this application. In order to
multiply the 9.258 GHz up to the 92.58 GHz necessary to generate a 20
MHz IF, the 10th harmonic is used.

The 20 MHz IF signal is at a relatively low power level (-37 dBm) and
first must be amplified to a level (-13 dBm) by the IF strip amplifiers
where it can be converted to a square wave (limited) and divided by two.
The resultant 10 MHz is then compared to the reference 10 MHz and an
appropriate phase error 1is generated that is then filtered by the
abovementioned low-pass filters. The 1low-pass filters provide a DC
voltage proportional both to phase error (when in phase 1lock) and
frequency error (when out of phase lock). The DC voltage generated then
is used to control a high power FET transistor which controls bias

voltage for the Gunn oscillator.

Lock sensing and indication is provided for by an auxillary digital
phase detector. This phase detector can only track the phase difference
of the two signals over +rn/2 range but gives a positive indication of
phase lock because of its digital nature. One disadvantage to this type
of detector is that in order to be at midrange, it must have a n/2

offset between the two input signals. The main phase detector has the
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FIGURE 4.1-4 - DETAILED LOOP BLOCK DIAGRAM
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ability to track phase error over twice that range and at midrange
requires zero phase difference. This difference required some
compromise in order to show the correct state of the loop. Since the
main phase detector can tolerate more phase error than the auxiliary
detector, a 90° phase offset was introduced into the loop and the loop
gain was increased until with maximum frequency offset, less than #n/2
radians of error was produced. This allows both phase detectors to
operate as desired and produce the correct indication of loop state. In
an out-of-lock state, however, the main phase detector still provides
frequency information in order to steer the loop towards lock-up. For
an in-depth description of how both of these phase detectors operate,

see Reference 1.

In addition to the lock detection circuitry, two additional circuits
help to steer the loop towards lock. Since the IF frequency is at 20
MHz, the opposite sideband is located only 40 MHz away and could cause
the loop to hang up in an out-of-lock condition if the main phase
detector detects that it 1is above 20 MHz on the wrong sideband. This
state is avoided by detecting it and providing an offset voltage to
steer the loop to the correct sideband. The other circuit ensures that
the Gunn oscillator is on and providing an IF signal somewhere within
the band-pass of the IF strip. If this circuit detects that the Gunn
oscillator is not in the proper predetermined operating range, it steers
the loop offset back towards lock. As long as these conditions are met

the main phase detector provides all steering information to the loop.
4.1.3 Loop Specifications
Gunn oscillator center frequency 92.6 GHz

Tuning range +250 MHz

Maximum hold in range +325 MHz

{Limited to Gunn electrical tuning)
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Minimum step size or resolution; 9.2 kHz
DC power consumption 8.85 to 9.45 Watts

Size Lock box 13 by 7.5 by 7.5 cm

- Multiplier 10 by 4 by 3.5 cm
VCO, harmonic mixer

combination =6 by 6 by 4 cm

REFERENCES
1. Best, Roland €E. Phase-Locked  Loops-Theory, Design and
Applications, McGraw Hi1l Co., New York
2. Gardner, Floyd M. Phaselock Techniques, John Wiley and Sons, New
York.
o- 3. Motorola, MECL Device Data, Motorola Part #DL122R1.

4, Motorola CMOS/NMOS Special Function Data, Motorola Part #DL130.
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4.2 CHOPPER

To tune up a radiometer for maximum performance (lowest noise), you must
be able to switch between two temperature loads. A large AT is
preferred for ease of measurement, so usually a room temp load (~295K)
and a load in liquid nitrogen is chosen (77 K). One may, by comparing
first one 1oad.then the other, come up with a value for the system
temperature (Tgys). It can be quite tedious to hold each load in the
beam, then calculate Tsys to see if any improvement has been made by
tuning up, so a chopper was built (to be used with a signal-to-noise
meter [see Section 4.3]) to facilitate this process. This particular
chopper was designed to have a blade size not much bigger than the beam
for compactness. The blade size is 4.25 in. in diameter with clearance
of 1 5/8 in. The motor speed is 400 RPM.

4.3 SIGNAL-TO-NOISE RATIO METER

The Millitech Signal/Noise ratio meter (block diagram, Figure 4.3-1) is
an instrument capable of giving the user information about the noise
performance of a sensitive microwave or millimeter wave receiver. The
instrument's intended purpose is to allow dynamic tuneup and
optimization of a receiver by providing real time display of the
receivers Y factor on the front panel. .

4.3.1 General Description of Operation

The instrument consists of a very sensitive front end amplifier, a
synchronous demodulator, gain adjustment stage and an analog divider.
It will perform Y factor calculations based on an input voltage which is
proportional to the power oufput of a receiver when the input of the
receiver is being switched between a relatively hot source (ambiént
temperature) and a relatively cold source {liquid nitrogen). The input

switching is performed by a chopper wheel (beam interrupter) rotating at
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FIGURE 4.3-1 - SIGNAL/NOISE RATIO METER BLOCK DIAGRAM
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a fixed speed between the RF input of the receiver under test and the
cold source. Attached to the chopper wheel is a microwave absorber at
room temperature (hot source). The chopper wheel must provide \‘a
bistate TTL output indicating which input source {(i.e., hot/cold) the
receiver "sees". This output is connected to the signal/noise ratio
meter and informs the meter which source the receiver is presently

viewing.

The detected signal is amplified and synchronously demodulated using the
chopper sync signal. The respective signals are then integrated and

differenced. An analog divider performs the following calculation:
where a = gain constant.

The output of this calculation is then displayed on the front panel
meter when 1in the SWITCHED/TOTAL mode. The gain constant a, is
dependent on the front panel RANGE that is selected. Since the front
panel meter is calibrated from zero to 100 microamps, we can treat this

as a scale from 0.00 to 1.00. Y then becomes:
Y = 1 + [meter reading in pamps x 106 : range]

An optional phase shifter can be installed so that blanking of the
chopper edges can be accomplished. This circuit provides as much
blanking of leading and following edges of the input signal as the user

desires.
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4.4 BIAS SUPPLY

4.4.1 BMX - Mixer Bias Box

The mixer bias supply (BMX) incorporated into the 550 GHz radiometer is
a modified version of the standard Millitech BMX. The BMX is designed
to provide a constant DC current source to bias the 550 GHz harmonic
mixer. It also provides analog meter (0 to 1 V) indication of mixer
bias wvoltage. A buffered voltage monitor point (BNC port) is also

provided to measure mixer bias voltage with greater accuracy.

The BMX circuit consists of a low power op-amp with a positive feedback
network. An externally adjustable potentiometer enables the user to
vary the bias current (80uA to 500uA) in order to optimize mixer
performance. The output is limited by back-to-back zener diodes to
prevent overvoltage damage.to the mixer. A short/operate switch is

provided to prevent static discharge into the mixer.

For further dinformation refer to Millitech drawing number B-800122,

Mixer Bias Supply Schematic in Appendix 4.
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5.0 CONCLUSIONS

The high sensitivity, compactness, and low power consumption of the
solid-state submillimeter radiometer, designed and fabricated by
Millitech under Phase II of the NASA SBIR program, represents a major
breakthrough in the development of practical submillimeter systems. As
a result of dits outstanding performance, a variety of research and
industrial applications are suggested, although cost is still a

significant issue. Some of these uses are discussed below.

A major potential use is radioastronomical observations of spectral
lines in the submillimeter region. At certain frequencies ("windows")
in the submillimeter spectrum, ground-based observations are possible,
but not at the 557 GHz frequency of the present system due to
atmospheric signal absorption. As such, possible users are research
institutions including the National Radio Astronomy Observatory. The
study of trace molecules in the Earth's atmosphere is also possible with
this instrument, an application which may be of dinterest to
organizations such as NCAR and NASA as well as other groups studying
time variability and place-to-place variation in the concentration of

particular gasses.

Industrial use of the submillimeter wavelength region has not been
highly developed; one reason 1is the 1lack of turnkey, easy to use
systems. The present radiometer changes this situation appreciably. We
anticipate a variety of applications in production process control of
such materials as plastic films, Submillimeter systems are presently
used for quality control 1in the production of high voltage cable
insulator material. There are undoubtedly many other future industrial
applications to be opened up when the cost of such systems is reduced by

further development of low cost, high frequency devices.
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SUMMARY

This report is concerned with certain key elements in the development of a
space-qualified submillimeter radiometer. - This study is not intended to be
all-encompassing but rather deals with aspects which are poorly developed
at present. In this study we assume that the mixer itself will be a
Schottky diode.

. &z
An optimized mixer can be expected to require 1 mW or more of local

oscillator power at 290 K. Since probably the greatest difficulty to the
realization of a receiver i1s in providing this much power at a frequency of
550 GHz, we have analyzed the problem of varactor frequency multipliers
operating as doublers or triplers. Optimum embedding impedances are found
using a computer program which solves the problem for a wide range of power
levels. Impedances at harmonics above that of the output are non-critical
as long as rather narrow resonances are avoided. A model of a millimeter
wave tripler was constructed and embedding impedances were measured. At
the first and second harmonics, the model's impedances are nearly optimum,
but the third harmonic is nonoptimum. A means of achieving a better match
is proposed. An actual tripler at 100 GHz built according to this model
operated at only 40X of the expected efficiency, while a doubler in a simi-
lar circuit operated at > 60% of theoretical.

Most of this work is directed at 100 GHz output devices, but is readily
generalized to higher frequencies, and a 600 GHz output doubler is
discussed in some detail, both theoretically and experimentally. An output
power of .3 mW seems presently achievable at 600 GHz througp a multiplier
chain. Improved varactor diodes or a more powerful pump source will be
needed to produce the additional power that a mixer will need. As an
alternative, the option of a second harmonic mixer appears attractive
because an actual mixer shows excellent performance at 560 GHz with a pump

power which appears to be achievable with available sources.

Optical elements are essential for many functions in the submillimeter.
This report discusses the effect of misalignments in optical paths, and
shows where tolerances are most critical. A particularly convenient form

of Fabry-Perot interferometer is studied, in which the multiple reflections



occur at normal incidence and thus avoid walk-off losses. A more sophisti-
cated filter is described with a flat passband and good stopband which
would make an excellent sideband filter for a mixer. For a mixer or
multiplier application a simple high effidiency feed horn is needed, and we

describe a corrector lens for a simple conical horn to create equal E and H

plane patterns.

All aspects of° this work should be useful in the realization of a space-
qualified radismeter for 550 GHz. The most feasible approach at present
would be a 70 GHz Gunn oscillator followed by two doublers in cascade
pumping a second harmonic mixer. The lens—corrected conical feed horn and
optical filter elements described here would be needed on the input of this
mixer. However, the frequency multipliers are much more generally useful
as test sources or local oscillators for receivers throughout the milli-
meter and submillimeter range. At present no practical alternatives are
available above 100 GHz. The optical techniques proposed are also
generally applicable to any receivers operating above 100 GHz and should

result in more compact and lower loss filter elements.
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MILLIMETER AND SUBMILLIMETER
FREQUENCY MULTIPLIERS

Frequency multipliers are useful for a vafiety of test source and local
oscillator applications. At frequencies above ~100 GHz they are the only
compact and practical means to generate the LO needed for a Schottky diode
mixer. This g?rk deals with multipliers using Schottky varactor (variable
capaciténce) &iodes with characteristics similar to diodes actually
available. These diodes can generate harmonics with high efficiency and
with little added noise. A series of optimized multipliers in cascade can,
in principle, allow the generation of ~l mW of power up to at least 600
GHz, although present devices fall well short of this ideal. The goal of
this work is to provide a meang to design optimized multipliers by

understanding the needed circuit impedances and the means to realize them

in an actual circuit.
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INTRODUCTION

Penfield and Rafuse (Varactor Applications, MIT Press, Cambridge, 1962)

have described in some detail the application of varactor diodes to fre-
quency multipliers, and this analysis serves as a useful guide. It pre-
dicts efficiency, optimum drive level, and resistive components of the
input and output impedances. However, it assumes optimum drive level, per-
fect impedancefmapches at all active harmonics, and short circufts at all
others. It does not predict the optimum reactive components of fnput and
output impedances nor does it deal with the more generally encountered

cases of:
1) “Overdriven” multipliers (power input greater than optimum).

2) Mismatched loads and their effect on efficiency and input

impedance.

3) Mismatched second harmonic idler in the case of the tripler, and

the range of optimal values.
4) Arbitrary loads on higher harmonics.

The Millitech analysis uses a computer program (P. H. Seigel,
Topics in the Optimization of Millimeter Wave-Mixers, Ph.D. Thesis,

Columbia University, 1983) to solve the complete non-linear problem of a
variable capacitance diode in the reverse direction, in addition to the
forward bias condition of variable capacitance and resistance. The analy-
sis can include up to six harmonics and any set of complex impedances on
all harmonics. Inputs are pump power, bias voltage, diode properties; and
all impedances. Outputs are .optimum input impedance, output power, bias
current (if any), absorbed power, and the range of voltages encountered in
the diode waveform. This is not an optimization program and will not pre-
dict optima in load or idler impedances; they must be solved for by suc-
cessive estimates. In principle, an optimization routine could be
included; but the program is fairly slow to run, and this would raise the
costs prohibitively. In general, an educated appraisal plus a few sub-
sequent iterations will get very close to the optimum. However, all
results reported are based only upon such estimations and may'differ

slightly from true optimum conditions.
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CHOICE OF DIODE

For purposes of this analysis, the diode chosen is an idealization of an
available type from the University of Virginia which has been used in a
number of doublers and triplers at 100 GHz with good results. This diode
has a DC series resistance of 8 &, Cj(0) = 35 fF and Vg = 22 V. Typically,
the true series resistance is actually larger than the measured DC value
due to heating effects; therefore 10 @ was chosen for this analysis. We
will assume an abrupt junction C(V) characteristic following theory up to
Vg. Through this analysis, we will find the useful range of application of
this diode and predict what modifications might be needed for better per—

formance in certain applications.

DOUBLER ANALYSIS

For the first part of this analysis, a 100 GHz output doubler was studied.
The input power was varied, and the output power and input and output impe-—
dances were computed. Initially, all higher harmonic terminations were set
to 0; but subsequently a resonance was discovered in the third harmonic
termination, leading to a large reduction in efficiency. Therefore, in

later runs, the third harmonic load was set well away from this resonance.

Figure 1 shows the variation in optimum conditions as the power is varied.
Note the peak in efficiency near 40 mW input. At lower power, the effi-
ciency drops due to insufficient voltage modulation of the junction capaci-
tance. At optimum, this modulation swings between forward conduction and
reverse breakdown. Either reverse breakdown or forward conduction must
occur at higher power. Because breakdown may be destructive to the diode,
the bias voltage was lowered to maintain a peak voltage at the breakdown
limit, while substantial forward conduction occurred as a by-product. This
forward conduction dissipates power in the external bias supply and leads
to a sharp reduction in efficfency. If the externally dissipated power is

subtracted from the input, the conversion of the remaining power occurs at

nearly constant efficiency.
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HIGHER HARMONIC TERMINATIONS

An interesting effect was observed in the. effect of the third harmonic ter-

mination upon the efficiency. If this termination is set to an inductive -
reactance of one—third the input reactance, a great reduction in efficlency

occurs. This resonance is plotted in Figure 2 for 40 mW and 80 mW input.

Note that for Jlow power a short circuit load is only slightly worse than

the best reactive load; while for 80 mW, large inductive loads seem pre-

ferred.. Including a resistance in series with the load had no effect well -
outside this resonance. Therefore it is likely that this curve encompasses

the most interesting region in the range of third harmonic impedances, and

all others are nearly optimum.

MISMATCHED OUTPUT

In mﬁst real circuits covering a reasonable bandwidth, it is difficult to
maintain well-matched conditions due to the inductance needed for the load.
While the real component of the load may remain near optimum, the reactive
part will certainly vary. Table 1 shows the effect of a few reactive

mismatches, compared to a well-matched load.
TABLE 1
Fin = 50 GHz Pin = 40 oW

Rg Cy Bias V Bias 1 Z;(q) Z(Q) Z3(R) EFFZ

10@ 35fF 9.0V 0 mA 40 + 2454 50 + 1254 O+ 2001 59.0 )
10 35 8.5 .66 30+2101 50+ 504 O+ 20041 39.0 -

10 35 8.5 46 30+ 2201 80+ 504 O+ 2001 45.3
10 35 7.0 .53 26 + 2451 80 + 1901+ O+ 2001 45.0

From these results, we see that quite a range of reactive output loads may
be acceptable; and if the real part of the load is increased from the most
optimum value of 50 Q to 80 2 , the impact of a reactive mismatch is
lessened. Note that a mismatched output also changes the input impedance so

that, in general, the input resistance should be set lower than the most

optimum value to allow for such mismatches.

-
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Unfortunately, the number of variables involved does not permit this same

analysis at other power levels. However, it is likely to be qualitatively

similar.

OPTIMUM CHOICE OF DIODE

The diode propérties chosen lead to excellent efficiency at an intermediate
input power. For low power ( <20 mW input) the capacitance is too large;
and a smaller device should be chosen. A lower reverse breakdown would
allow somewhat higher efficiency at low power through the lower Rg
possible. The ef ficiency/power curve scales in power as C; for a constant
RgCjy product so the optimum parameters may be readily chosen. The Penfield

and Rafuse analysis is a good guide to the behavior versus frequency and

will not be discussed here.

For the overdriven case, a larger area diode having a similar RgCjy product

but higher capacitance is desirable. A higher Vg is, of course, also
desirable.

Table 2 gshows the effect of increased capacitance with fixed Vg,

Increasing the capacitance at fixed Rg has little benefit and lowers the
input impedance substantially, making input matching more difficult.
However, by maintaining a constant RC product, the efficiency increases

greatly and more than compensates for the lowered impedance level.
TABLE 2

Fin = 50 Gz P{n = 120 mW

Rg CJ Bias V Bias I z23(Q) Z7(Q) z3(Q) EFFZ
109 35 fF 6.3 V . 7.0mA 80+ 18041 60+ 9041 O+ 2001 34.6
10 70 7.1 1.1 25 + 1004 30+ S04 O+ 1001 34.9

5 70 7.2 ' 2.2 25 + 1004 30+5041 O+ 100141 50.9

SUBMILLIMETER DOUBLER

As an extension of these techniques, a submillimeter doubler was studied

using similar diode parameters to a device actually constructed. The pump
Al-8
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frequency in this case is 300 GHz, with Rg = 10 2, Cj = 3 fF. Because
these diodes show little C(V) variation at reverse bias and a rather low
breakdown voltage, the reverse voltage was limited to ~2,5V. This doubler
shows a theoretical efficiency of 19% at 5 mW input and would make an ideal
LO source when pumped by a doubler or tripler. The highest pump power to
be expected at this frequency 1s ~10 mW, leading to a somewhat lower effi-
ciency, 17%, since the diode is already overdriven at 5 aW input. The
input and output impedances seem high enough to be easily matched. The
model actually constructed worked very well, showing 7% efficiency at

15 oW input but significantly reduced efficiency at lower input power,
contrary to these predictions. However, this behavior is probably due to a
reactive impedance mismatch which becomes more severe at reduced power, as

the optimum reactance increases.

This device could be studied in more detail; but for the calculations to be
meaningful, the actual C(V) behavior and reverse breakdown voltage are
needed. These are not known in detail, although they certainly are

measureable. Results of a few calculations are shown in Table 3.
TABLE 3

fin-BOOGHz CJ"3fF RS-IOQ VB-Z.SV

Pin Bias V Bias 1 z;(0) 22(R) z3(?)  EFF(X)
5 oW 0.1V 2.6mA 70 + 1251 100 + 661 1501  19.4
10 -0.1 6.0 70+ 804 100+ 5041 1501  16.6
15 -0.2 - 8.8 70+ 5041 100+ 301 15041  15.3

TRIPLER ANALYSIS

Penfield and Rafuse shéwed that a frequency tripler using abrupt junction
varactors cannot work without “"idler” currents at the second harmonic.
Thus a tripler requires a minimum of three tuned circuits; and higher har-
monics must be considered as well. The larger number of free parameters

makes a tripler more difficult to analyze.
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SECOND HARMONIC IDLER

In this program, we first studied the impoftance of the idler termination
at a low input power and its effect on efficiency and imput impedance.
This study is shown in Figure 3 where the input resistance and efficiency
are indicated for varying idler impedance. We find the optimum idler is
inductivé and ;} a reactance half that of the optimum input reactance.
This curve is fairly broad; therefore, this termination should not be too
difficult to achieve in practice over a reasonable tunable bandwidth. The
resonance is sharper in the optimum input resistance, indicating that any
practical tripler should have lower than optimum input resistance to
accomodate an idler mismatch. Resistance in series with the idler ter—
mination can produce a large reduction in efficiency and is discussed by

Penfield and Rafuse. The cases studied here agreed fairly well with their

analysis.

For all further studies, it was assumed that the idler impedance was opti-

mized and lossless in order to limit the number of free parameters.

HIGHER HARMONICS

As in the case of the doublef, a resonance is observed in the next higher
harmonic (the fourth), causing a substantial reduction in output as shown
in Pigure 4. This behaves much like the third harmonic in the case of the
doubler but has an even larger effect; and we will assume all terminations

are comparable outside the vicinity of this resonance.

Harmonics higher than the fourth were not investigated in detail. A weak
resonance is seen in the fifth harmonic similar to that in the fourth, but
its effect is only ~10%, and it is rather narrow. Outside this, all ter—

minations seem comparable.

TRIPLER OPERATION VERSUS INPUT POWER

Assuming optimized second and fourth harmonic terminations, a study was
made of efficiency versus pump power for the same diode parameters and out-

put frequency as for the doubler. The results are plotted 1n4Figure 5(a).
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Note that the optimum input power {s less than for the doubler. This is
largely due to the lower input frequency which produces larger voltage
swings for fixed capacitance. The saturation behavior is very gimilar, and

it is noteworthy that the peak efficiency 1is only ~10% lower than that for

the doubler,
=&
Figure 5(b) shows the optimum input and output impedances over the same

range of input powers. The second and third harmonic reactances are not

shown, but are one-half and one-third the input reactance, respectively.

OPTIMUM CHOICE OF DIODE

The diode properties chosen lead to excellent low power performance.
However, if very low power inputs were involved, the reverse breakdown
could be reduced (which would reduce Rg) or the capacitance could be
reduced for a fixed Vg. For high power operation, more capacitance or Vg
is needed. To demonstrate the effect of capacitance, an alternate diode
having the same Rg and Vg but twice the capacitance was considered. Note
that this diode has half the cutoff frequency. For the fairly overdriven
case of 80 mW input, this diode has higher efficiency than the low capaci-
tance version by 16X. If the series resistance 18 halved to maintain the
same cutoff frequency, the efficiency increases by 48Z. The results are
shown in Table 4. A secondary consideration is the effect on input impe-
dance. As the capacitance increases, Z] decreases and eventually becomes
too low for convenient matching. However, for 70 fF diodes, this 1is still
conveniently high. Another consideration is increased sensitivity to idler
losses, because a fixed idler resistance will cause more loss for a lower
Rg diode. Two cases were compared here with an idler resistance of 511 ,

and the higher capacitance diode remained superior.

A higher breakdown voltage would be better, but this is limited by semicon-
ductor properties and is more difficult to increase than simply making a

larger area diode.
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TABLE 4

VB"ZZV Fin'33 GHz Pin-BOmw

Rg Cj Bias V Bias I z1@) 22(9) Z23(Q) Z4(Q) EFF(X)
10 @ 35¢F 5.5V 7.0mA 200 + 280 4 140 1 70 + 8514 200 i 23.9
10 70 6.7 . 2.1 60 + 164 1 80 1 35+ 504 2001 27.7
70 6.4 3.9 70 + 152 1 70 1 35 + 4014 200 1 35.3
70 6.3 3.6 70 + 15214 S+ 704 35+ 404 2001 31.0
10 35 6.9 5.6 200 + 2801 S5 + 1404 70 + 8541 2001 21.1

BIAS CONDITIONS

Throughout this analysis, the peak reverse voltage was maintained at 22 v
to avoid operation in the reverse breakdown region. Exceeding breakdown
may lead to immediate diode failure or reduced lifetime. However, in a
real device, chere-is no way to monitor the actual diode voltage, but there
is a way to estimate the actual voltage through a combination of bias
voltage and current. Figure 6 shows a plot of calculated data points
obtained at a limiting voltage of n~22 V for doublers and triplers. While
these points have a lot of scatter, a trend is clear; and a conservative
choice would be to bias below any points. However, this approach leads to
lowered efficiency since these points are all at optimum bias. Experience
indicates that much higher bias voltage 18 possible in actual operation.

In an actual series of triplers built for 90 - 110 GHz using a diode
believed very similar to the model diode, bias conditions in operation have
fallen on a line shown at the top of Figure 6. This load line appears to
be safe since no failures have occurred as a result of this operation.
However, this does not mean that reverse breakdown 1is not exceeded, only
that for this diode it {is nondestructive. Note also that points for the
tripler lie below most doubler points, due probably to the lower pump fre-

quency for triplers.

TRIPLER MODELING

In an effort to better understand the embedding structure of practical

multipliers, and to compare theory with practice, a large size scale model
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of a successful 100 GHz tripler design was built. A cross—-section of this
tripler 18 shown in Figure 7. This model was made in a way which allowed

a coaxial line to reach the effective diode terminal plane in the tripler
by passing down the inside of the coaxial choke. In this way, the diode
embedding impedances could be measured and compared to the computer predic-
tions., No actual tripler operation of this model was attempted.

The actual tripler has an input in reduced height K, waveguide, which
couples to a coaxial line. The coaxial line has a bias filter on one side
of the waveguide and a low pass filter on the other side to allow pump
power to reach the diode, which is mounted in the output waveguide. This
filter has a stop band which includes the second and third harmonics. To
provide the proper inductance at the input a coaxial resonator is included
in series with the contact whisker, which is A /6 long at the input. This
line appears as an inductance at the pump but is A /2 long at the output and
thus has no effect there. The output waveguide is reduced height, with the
width chosen to prevent propagation of the second harmonic over the full
band. Both waveguides are provided with tuning backshorts.

The available signal generator covered 2 - 8.5 GHz, and to cover three har-
monics, fixed the scale factor at 13.5. Both input and output waveguides
were equipped with contacting backshorts and their other ends terminated

in absorbing foam. The DC bias choke was eliminated in the model for
simplicity and replaced by a short to the waveguide wall, since this choke

i8 known to approximate a short.

Embedding impedances were measured with an HP network analyzer over the
range of backshort tuning, and circles were fitted to the data on Smith
Chart plots.

Impedances were measured in the three harmonic bands corresponding to 90 -
110 GHz output. These are 2.2 - 2.7 GHz (first harmonic), 4.4 - 5.4 GHz
(second harmonic) and 6.6 - 8.1 GHz (third harmonic). Peak efficiency
occurs at 97 GHz (scaled harmonic frequencies of 2.4/4.8/7.2 GHz). The
input impedance varies somewhat over the band due to the coaxial resonator,
but the mean value is close to optimum. The data show an fmput impedance

of 50 + 330 1Q is achievable at 2.4 GHz, which is very close to the low
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power optimum. At the second harmonic the impedance varies considerably,
but is inductive over nearly the full band of interest, reaching the opti-
mum inductance near mid-band. At the uppér end of the band the inductance
becomes too large, but may be reduced by bringing the backshort close to
the diode plane. The result is that only a single maximum is found in the
output backshort tuning at frequencies much above that where the efficiency
peaks. This bghavior has been observed in the actual triplers. An idler
impedance of 90 {1 hto 140 { Qis possible at 4.8 GHz depending on the output
backshort setting. The higher value is close to the optimum of 170 1 @ and
is attainable by avoiding the closest tuning peak. The output impedance is
very weakly dependent on the frequency since the coaxial resonator is on
resonance. This impedance is found to be quite non-optimum. An output
impedance range of 10 + 110 { Qto 50 + 160 1 qgis attainable depending on
backshort tuning. This does not permit a simultaneous match to the real
and imaginary components of the optimum load of 40 + 1201 8 and reduces
the output coupling to 80X of optimum. An analysis of the data shows
that a nearly optimum impedance could be achieved with comparable whisker
inductance but half the waveguide impedance (waveguide reduced to L4
height). While this is easily done at 100 GHz, it becomes progressively
more difficult at higher frequencies; so another approach 1is needed in sub-
millimeter applications. This alternative may be less whisker inductance,

but of course this affects the input and 1dler impedances and requires a

complete re-analysis.

If these results are compared to the theoretical efficiency predictions, we
find that 402 efficiency is expected, while the measured value is 16X at
best. The discrepancy seems rather large, but it is important to recognize
that circuit losses are not considered, and there is also the possibility
that the real circuit impedances do not exactly equal those predicted. In
order to test the predictions it 18 necessary to estimate circuit losses
and while this is rather uncertain, they are likely to exceed 2 dB. The
efficiency will also be lowered if the varactor shows a capacitance
variation which is less than the abrupt junction behavior. It is fairly

clear that real multipliers can be expected to show considerably lower

efficiency than idealized predictions.
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It 18 perhaps a better test of the model to compare the predicted frequency
response to what is observed, and here the agreement is better. The input
match variation does not produce a gubstantial effect over the 90 - 110 GHz
band, but the idler impedance varies sufficiently to produce a factor of 2
reduction in efficiency at the edges of the band, and this is just what is

observed. The output impedance variation is too slight to have any signi-

ficant effect.

COMPARISON OF PRACTICAL DOUBLERS AND TRIPLERS

While no similar scale model of a doubler has been made, an actual doubler
at 100 GHz has operated with an efficiency of 25 - 30X at an input power of
80 mW, using a design very similar to the tripler previously described.
This compares to the 42% efficiency predicted for this power input. Thus
the doubler operates closer to the predicted efficiency, and in the absence

of embedding impedance data we can not say whether even better performance

is possible.

Since input and output circuit losses should be similar for both devices
the greater discrepancy in the case of the tripler is likely to be due to
idler circuit loss. This result does not mean that a doubler is preferred

for every application, since it requires a higher pump frequency where less

power is available.

While no higher frequency doublers have been built, triplers have been
consructed using this design up to 300 GHz. One unit at 285 GHz produced ~
2 wW output with 20 mW input. This result was obtained with a diode having
Rg = 1002, C4 (0) = 20 fF and Vg = 20 V. This device has a predicted
efficiency of 28% at 20 mW input, which becomes 232 if we correct for the

expected output mismatch.

The ratio of actual to predicted output of 0.45 shows that whatever the
mechanism of loss may be, it does not increase significantly with fre-
quency. Probably the limiting frequency for triplers is determined by the

complexity of the required circuit, and not actual circuit losses.

A meaningful comparison between triplers and doublers 1is best made by com-—

paring outputs producible at a given frequency, with available sources. To
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use the example of 285 GHz, with a Gunn oscillator pump source, a doubler
approach would require 2 units in cascade. The pump would then be at 71
GHz where Gunn oscillators produce ~ 50 mﬁ. If the first doubler operates
at 302 efficiency, and the second at 20Z, the net output is 3 mW. This is
somewhat better than the tripler, but perhaps not enough so to make up the
extra complexity. The exact comparison in this case depends on the details
which need expérimental confirmation. It also depends on the power versus
frequency curve f;r Gunn devices, so that at much higher frequencies the

cascaded doublers are preferred while at lower frequencies the triplers and

doublers are about the same.

Three mW at 285 GHz should be sufficient to be doubled again to 0.3 mW at
570 GHz, if we assume that a real doubler at this frequency will operate at
half of the theoretical efficiency. This is probably not quite sufficient
to optimally operate a cooled mixer at this frequency. However, with
better varactor diodes, efficiencies at all frequencies may be increased by

a factor of ~1.2, raising the output to 0.5 mW, which is almost certain to

be enough.

A tripler is probably not practical for this frequency because of the
greater circuit complexity. The very small size would almost certainly

prevent the realization of a proper idler termination and result in very

low efficiency.

HARMONIC MIXER

As an alternative to a fundamental mixer, and the attendant problems of

obtaining sufficient LO power, a harmonic mixer presents certain simplifi-

cations.

A direct comparison has been made with the same mixer operated in both fun-
damental mode and harmonic mode at 557 GHz. This is possible because a
harmonic mixer may be used as a fundamental mixer by LO pumping through the
signal port and simply ignoring the usual pump waveguide.

This mixer operated with a receiver noise temperature of 5500 K SSB at room

temperature in fundamental mode, and at 8000 K SSB in a second harmonic
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mode. In both cases, a 40 K IF amplifier at 1.4 GHz was used. In harmonic
mode, the pump power was only 3 oW which was provided in this case by a
tripler of the type discussed in this report, with an 80 mW klystron pump.
The rather small difference in performance in the two modes plus the much
greater simplicity of the harmonic mode makes it a very attractive alter—
native for applications where reliability is important. The much smaller
size may allow a cancellation of the system noise disadvantage through a
second receiver in the opposite polarization, which provides redundancy

should one channel fail.

This particular option bears further study to determine the limitations of
harmonic operation. It may in fact be possible to achieve even better per-

formance with an optimized mixer.
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FIGURE CAPTIONS

Fig.1(a) Efficiency and output power versus input power for a doubler
pumped at 50 GHz. Diode parameters: Cj(0) = 35 fF, Rg = 10 2, Vg = 22 V.
(b) Input resistance and reactance for the same doubler, and output

resistance. Output reactance is one—half the input reactance.

&
Fig.2 Efficiency versus third harmonic reactance for a doubler at 40 and
80 mW input. Input frequency 50 GHz, CJ(O) = 35 fF, Rg = 10 2, Vg = 22 V,
R3 - 0.

Fig.3 Efficiency and input resistance for a tripler versus second harmonic

reactance. Input power 10 oW, Cj(0) = 35 fF, Rg = 10 @, Vg = 22 V, Ry = 0.

Fig.4 Efficiency versus fourth harmonic reactance for a tripler at 20 mW
input. . Input frequency 33 Giz, Cj(0) = 35 fF, Rg = 10 q, Vp = 22 V,
R, = 0.

Fig.5(a) Efficiency and output power for a tripler pumped at 33 GHz. Diode
parameters Cj(0) = 35 fF, Rg = 10 ?, Vg = 22 V.
(b) Input resistance and reactance and output resistance for the same

tripler. Second harmonic reactance is one—half X, output reactance is one-

third X;.

Fig.6 Bias voltage and current for multipliers operated at the breakdown
limit. Circles are for doublers, triangles are for triplers. Solid line

is the operating line for an actual tripler.

Fig.7 Cross-section of a millimeter wave tripler as modeled in this study.
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EFFECTS OF MISALIGNMENT
IN GAUSSIAN OPTICS SYSTEMS

INTRODUCTION

An important question for any quasioptical system is its sensitivity to

misalignments, whether these be i{ntroduced by thermal or mechanical means.
While a comprehensive analysis of this problem involves rigorous diffrac-
tion theory, first order Gaussian beam theory can give us an indication of

the tolerances that are required. We can identify four types of misalign-

ments that may occur:

a. Angular offsets (tilts)

b. Lateral offsets

c. Axial displacements

d. Tilts of focusing elements

Types a through c are shown schematically in Figure 8. While this is not a
complete catalog, it would appear to be a good starting point.

The first three misalignments can be analyzed in terms of the mismatch bet-
ween two Gaussian beams. The two beams are assumed to be perfectly matched
in the absence of any misalignment so that there is 100% power coupling
between them. The beams are characterized by a beam waist radius w, and

wavelength A, The electric field distribution at the beam waist perpen—

dicular to the axis of propagation is given by .

E(r) o exp - [(r/wg)?] . (D
E(o) B

See Goldsmith (Infrared and Millimeter Waves Vol. 6, 1982) for further

discussion of Gaussian beams. Misaligned Gaussian beams have been analyzed
by Kogelnik (Polytechnic Institute Brooklyn Symposium on Quasi-Optics,
1964). We will consider the fraction of power lost due to each of the

effects analyzed to be small.
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ANGULAR OFFSETS (OR TILTS)

The fraction of power coupled from the misaligned incident beam to the ori-

ginal exit beam is

Keaze = 1 - ((EDeql? . (2)

In this formula, w is the beam radius where the overlap occurs (assumed to

be the same for both beams). The beam radifus is related to the beam waist

radius by

2
v, [1+[AE\]Y2 (3 .
‘Nwoz -

where z is the distance from the waist along the axis of propagation.

(1) Tilts at beam waist

We can understand in a straightforward way the case of tilts occuring at

the beam waist. We use the definition of the far-field beam growth angle

8w, = A/MWo, to write (4)
BT 2 . (5) -
Kegge = 1 =[—
Ow, .

Kii1¢ approaches unity only if the angular misalignment is small compared
to the characteristic growth angle of the beam.

(11) Tilts far from the beam waist

Far from the beam waist, w -} Az , so that

w
o
2@,1.)2 (5a)

Kegge = 1 "(

A tilt due to a misplacement or motion of optical element by distance d

produces &1 ~ d/z so that
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.

2d\? (5b)
Kegge © 1 "("‘)

As an example, consider a system at a wavelength of A= 0.1 cm having a
waist radius w, = 0.5 cm, with a tilt occuring at the waist. This could be
produced, for example, by incorrect alignment of focusing optics. We find
Ow," 0.064 radians, or 3.7°. For a tilt of 0.5°, Keyje = 0.93, already a
significant loss. In assembly and alignment of Gaussian optics systems,
there 1s generally provision for adjustment of angles to minimize system
loss. This is a reflection of the high sensitivity to angular misalign-
ments of well collimated beams. Once alignment is completed, the system
must be evaluated in terms of possible changes of angles due to thermal or

mechanical effects.

LATERAL OFFSETS

For lateral offsets

Kjae = 1 '(-x—°-)2 ©

where x, 1s the lateral offset (see Fig. 8) and w, is the beam waist
radius. This expression is independent of where in the beam the offset
occurs. We see that the sensitivity to this form of offset 1s reduced for
larger diameter beams; just the opposite from the case of angular offsets.
For the same beam parameters as before, we find that Kja¢ =1 = 4x°2, and
for a lateral offset of .l cm, Kjar = 0.96. This relatively high number
indicates that in practice, lateral offsets are less of a problem than
angular ones. Note, however, that rotation of a lens or mirror to minimize

angular misalignment can produce a lateral offset.

AXIAL DISPLACEMENTS

Axial displacements can be considered as a separation along the axis of
propagation between waists of the entering and exiting beaums, which nor-

mally are coincident. The fraction of power coupled is given by

ax :
Y (7)
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where jpz 1s the distance between the waists. This is more easily

understood when expressed in terms of the confocal distance _

- " wg? (8

X

Zc

which 18 the distance from the waist in which the beam radius w increases

by a factor of /2 relative to Wy. We can then write

1 (9

For a system with A= 0.1 cm and w, = 0.5 cm, 2z, = 7.9 cm so that

Kax =0.1 - & x 10’3,A32° This factor is still 0.995 for Az = 1 cm and is T

evidently not a significant problem in plausible Gaussian optics systems.

LENS TILTS

A related problem is the tilt of a lens with respect to the beam. We can
first consider whether the focal position of an off-axis beam is off axis
by an angle equal to that of the incident radiation, i.e. in Figure 9,

whether O = 65 This is expressed in antenna parlance in terms of the

beam deviation factor given by

. (10)

BDF =
BF . N

Lo (IRE Trans. Ant. Prop., AP-18, 1960) calculates that

1 +k(__D_Y -
N4 (11).
1 +f/ D\2
(%) ~
where k is a factor between 0.3 and 0.6. For a lens with D -'=2 cm and
f = 2 cm, BDF = L+ .0625k/1.0625 = 0.97. The effect of BDF not being

BDF =

Al-27



equal to unity is indicated in the lower portion of Figure 9. We see that
since BDF = 1 would p;oduce no wmotion of the focal spot (waist), the.change
in angle of the beam heading towards the feedhorn is 40=0g (BDF~1 -1),
where g is now the angle by which the lens is tilted. 1f a 2 cm diameter
lens moves by a distance of .0l cm at one edge, g = .0l so that 40 = ,0003
(.018°). Thisxcan be analyzed in terms of effect due to angular offset and
lateral offset when coupling to the equivalent waist of the feedhorn or
other beam waist. In practical situations the coupling loss due to this
effect will be very small.

CONICAL FEEDHORNS
FOR SUBMILLIMETER FEEDS

INTRODUCTION

Conical feedhorns have been well developed for use at microwave frequen-
cies. Calculations and measurements by King (Proc. IRE, 38, 249, 1950) and
Schorr and Beck (J. Appl. Phys., 21, 795, 1950) indicated that the
radiation patterns for moderate flare—angle conical horns are characterized
by low sidelobe levels over reasonable bandwidths. Conical feedhorns
appear particularly attractive for the submillimeter wavelength region
because of the relative ease with which they can be fabricated. Although
less perfectly behaved than scalar feedhorms, the lack of a mode launching
section or grooves to support the propagation of hybid modes are decided
advantages when )/4 is on the order of 1/100 inch. Below, we will con-

sider the operation of conical feedhorns in terms of Gaussian beam propaga-

tion and quasioptical’systems.

GAUSSIAN BEAM ANALYSIS

A conical feedhorn is characterized by its flare angle, ©o, defined as
half the opening angle of the cone, and its aperture diameter, usually
measured in wavelengths. Values of ©Go for which patterns have been

measured and calculated are in the range 5° to 45° and aperture diameters

between 1.3 and 41X .
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The radiation patterns of conical feedhorns are quite highly Gaussian,
especially in the magqetié (4) plane. In a Gausslan analysis, we assuhe
that the electric field distribution transverse to the axis in the plane
containing the phase center is given by the Gaussian distribution of
equation (1). If there were no truncation of the beam, the far field pat-
tern would be a Gaussian with 1/e half angle © y = )/rwo (equation (4)).
We can use the measured values of FWHM beamwidths given by King

Opuny (E plane) = 1.2 - (12)
dl'll

Opumy (H plane) = 1.05 =
dm

where d, is the aperture diameter, and assuming a Gaussian distribution,

the equivalent Ow, = 0.849 Bpyyy so

oug(E) = 1,022 ' (13)
dm

O  (H) = 0.89 A . (14)
dm

We can then determine the equivalent waist radius W, from wy = A/ wWo
as

wo(E) = 0.31 dy
and wo(H) = 0.36 dp, -

These values are quite close to those found for scalar feedhorns, but the

asymmetry is a significant problem.

One approach to correcting this (as suggested by King) is to deform the
horn aperture into an elliptical shape with about 1.15:1 ratio of major to
minor axes. This approach is probably feasible for small feedhorns in the
submillimeter range, bﬁt the reproducibility is questionable. A preferable
solution would be to compensate for the beam pattern asymmetry in the

quasioptical syséem with which such a feedhorn is to be used.

Compensating for the unequal beam waist values to produce a symmetric beam

is possible by aaaing an asymmetric focusing element to the quasioptical
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system as indicated in Figure 10. 1In this case, we wish to produce a ratio
wo(H)/Wwo(E) = 1.15. From Gaussian beam theory, it is known that if we con-
sider two orthogonal axes, both perpendicﬁlar to the direction of propaga-
tion of the beam, the beam growth 1is independent and can be separately
controlled. Thus, a focusing element such as a cylindrical lens can affect
the beam along %ne axis, leaving the axis along which there is no lens cur~
vature unaffected. Focusing mirrors can also be designed which have dif-
ferent effective focal lengths for the two axes. For clarity, we will use

the example of cylindrical lenses in the following discussion.

We assume that the phase centers of the feedhorn for the electric and
magnetic planes are the same distance behind the horn aperture. This
simplifies the analysis slightly but, as will be seen, does not limit the
applicability of the compensation technique. Then, as indicated in Fig-
ure 10, we are seeking to have the H-plane beam waist increased in size by
a factor 1.15 compared to the E-plane beams waist; but its location should
be at the same position aloﬁg the axis of propagation. We define the

demagnification ratio

M= Yol .15 (15)
wo(E)
and the confocal distance
zo(B) = mwo2(E)/ X (16)

We can solve the Gaussian beam propagation equations and determine that the

required cylinder lens focal length 1is

£ M2 + 1)z, (E) (17a)
eyl = M(WZ -1
and that it is to be located a distance

d = Mz.(E) (17v)

from the feedhorn phase center (which is the desired location of both beam

walists).
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As a design example, {f we want a beam with 10° FWHM pattern at 500 GHz,

(A = 0.6 mm), we require that

ov, = 0,148 radians and

wo(E) = 0,13 cm.

&
The feedhorn apér:ure diameter is then 0.47 cm. The E-plane confocal

distance is
z.(E) = 0.89 cm,

the cylinder lens focal length is feyl = 7.37 cm, and it is to be located a

distance v
d = 1.02 cm

from the feedhorn phase center. In the curved plane, the radius of cur-
vature is approximately equal to the lens focal length assuming it is made
of quartz. The lens size should be approximately 4 times the beam radius,

w which 1is given by

Twg

In the present situation, w = 0.2 cm 80 Djeng = 0.8 cm. The maximum lens
thickness is 0.011 cm. The absorption losses in such a lens will be negli-

gible; and by suitable anti-reflection coating, the overall loss should

be very low.

This approach thus appears very promising as a way of obtaining sub-
millimeter feedhorns with highly symmetric patterns in addition to having
the valuable attributes of economical and straightforward fabrication.

SINGLE SIDEBAND FILTERS

Most spectral line astronomy with heterodyne systems can benefit from the
use of a single stdeband filter as this generally (l) improves the

calibration accuracy of the system and (2) reduces confusion from unwanted

lines in the image sideband. .
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The major exception occurs in certain applications when it is desired to
observe lines simultaneously in opposite sidebands. At the present time,
the most reasonable approach would appear‘to be the evaluation of different
types of SSB filters so that the most promising alternatives can be further

developed specifically for use at submillimeter wavelengths.

The type of ssﬁ filter that is desired depends to some extent on the
overall system coﬁfiguration requirements. For spaceborne applications,
the "sky” is the coldest termination easily achievable. If the major pur-
pose of the SSB filter is to improve calibration accuracy, the image beam
can profitably be directed into empty space, thus adding the minimum to the
system temperature. The danger in this approach is pickup of an unwanted
signal in the image band as could be produced by an extended emission
source. If empty space is not judged suitable for terminating the image, a

matched load at low temperature must be provided.

The type of SSB filter most widely used at millimeter wavelengths is the
polarization-rotating Michelson, or Martin-Puplett interferometer (see
Goldsmith 1982 and original references given therein). This type of device
offers low loss. However, its transmission function is strictly sinusoidal so
that there is a problem obtaining the large IF bandwidths necessary for
submillimter spectroscopy (Af = 1 GHz 1s a reasonable minimum) unless the

IF frequency is appropriately increased. Goldsmith (1982) gives the

expression

(18)

fir

L

for the SSB transmission bandwidth having loss less than Lnear resonance
when the filter is operated in lowest order. For (= 0.9, we obtain

Af = .24 fip so that to obtain af = 1 GHz, frf =4 GHz. This is certainly
not impossible but may be an undesirable restriction on mixer design.

Thus, other devices deserve investigation.

An alternative form of SSB filter is the multiple beam or Fabry-Perot
interferometer. The choice of mirror reflectivity gives additional freedom
in defining the transmission function, but the multiple passes through the
device result in greater problems with beam growth due to diffraction and

-
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lateral motion or "walkoff” if the mirrors are at non-normal incidence.
This problem has been analyzed in detail by Arnaud, Saleh, and Ruscio 1974
(1IEEE Trans. Microwave Theory Techniques,-MTT-ZZ, p. 486). The results for
a free-space Fabry Perot interferometer (FPI) can be summarized by the

fraction of power transmitted in original incident Gaussian mode, (assumed

to be close to'yniCy) given by

Keo = 1 - (G2 + D2)

p = 2\d cos 94 (19)
: ﬂwoz T
c = 2/2dsinby

Wwo T

where D is the diffraction loss and G the walkoff loss, with d being the
mirror spacing, ©4 the angle of incidence, w, the beam waist radius, and T
the power transmission of a single mirror. Note that the walkoff loss is
zero at normal incidence, and that it decreases only as wb‘l rather than as
wo‘z for the geometrical loss, and that it isiindependent of wavelength.
For practical reasomns, ©j ~10° is convenient, and taking T = 0.25 and

d = AIF =ifcm

8

as required to get good rejection of the image, we find

It is readily apparent that the diffraction loss at A = 0.5 cm can be made
quite reasonable for a waist radius of a few millimeters, but that the
walkoff loss is a major problem unless the beam waist radius is several
centimeters. Since the beam diameter is 3 - 4 w, minimum, this is a major
inconvenience, aud we see that geometrical walkoff is a major obstacle.
Fabry-Perot interferometers which avoid problems of walkoff have also been
developed by Gustincic 1976 (Proc. Soc. Phot-Opt. Instrum. Eng. 105, p.

40) and by Watanabe and Nakajima 1978, (Electronics Letters, 14, p. 81).
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These devices have significant promise for use in compact systems. The
Gustincic ring resonator has recently been_analyzed in detail by Pickett
and Chiou 1982 (IEEE Trans. Microwave Theory Techniques, MTT - 31, p. 373).
It can have very low loss, and is readily tunable, but suffers from the

limitation of having the usual Fabry-Perot response.

hl 2. 1 (20)
. i 2
1+ _ 4 gin f:i
(1 - rR)2 2

-

where R = 1-T is the mirror power reflectivity and 60 is the round trip
phase delay. What is really desired is a device with a broader bandwidth
transmission response. The poiarization—rotating device described by
Watanabe and Nakajima.would'appear to have significant potential in this

area. A schematic diagram is shown in Figure 1l1.

Operation as a single sideband filter is as follows. If we have an input
signal vertically polarized, it passes through the wire grid and is con-
verted to circular polarization by a quarter-wave plate (QWP A). If it 1is
in the transmission bandpass of the FPI, it is transmitted, and then is
converted back to linear polarization by QWP B. If it is reflected by the
FPI, it is reconverted to linear polarization by QWP A; but due to the
reversal of ﬂandednesa of circular polarization on reflection from the FPI,
it 1s horizontally polarized after passing through the QWP and hence is
reflected by the wire grid. In practice we probably would have the mixer

at the input port. Note that if we use the device to transmit the unwanted
sideband, QWP B can be omitted without any sacrifice. It can be omitted as
well if we want to leave the system sensitive to circular polarization. In
this device, the FPI is operating at normal incidence so that only diffrac-
tion losses are present{ if w, = 0.5 cm so that the beam diameter = 2 cm,

these are already negligible. The wire grid has nearly perfect performance
in the 500 ym range, with the result that the major sources of loss are the

quarter wave plates (QWP) and the FPI mirrors.

For a QWP made of an anisotropic material, the thickness 1is given by

d = )/4 n, where An is the difference in the indices of refraction. For
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sapphire, 4n & 0.35 so that d = 0.7 2. The transmission through a
dielectric QWP is given by

h I 2 = exp [~ ad] (21)

where a = _2.%!-1- :tan 6.

tan§ being the loss tangent. We see that this reduces to

7’|1|2 = exp [- 10 tan §] (22)
2An

For sapphire, tan § ~ .002 at 900 GHz (Lowenstein, Smith, and Morgan, 1973,
Appl. Opt., 12, 398) and we find that |4 2'= 0.97. It 1s also promising

to note that values of tan § for sapphire and other dielectrics decrease

considerably upon cooling.

The FPI mirrors can be constructed of free-standing metal mesh. In the
submillimeter region, the losses should not exceed a few percent for useful
reflectivities. The possibility exists of making the FPI with more than
two mirrors. In this case, the reflection and transmission functions can
be tailored to have more desirable broadband characteristics. Having the
FPI at normal incidence 1is critical for this, otherwise the walkoff losses
would be prohibitive. -Another method of achieving this is to use a series
of dielectric slabs for the FPI. Very desirable transmission function
characteristics can be’achieved. As an example, Figure 12 shows the
response of a 2-slab FPI with each slab having n = 3.5 and thickness 0.125
cm; the slabs are separated by a distance of 0.5 cm. A very flat passband
approximately 4 GHz wide is obtained; this filter was designed for an IF of
S GHz so that the minimum response occurs for £ =560 GHz, 10 GHz higher
than the signal band ;round 550 GHz. The major drawback of the dielectric
FPI is the absorptive loss. This is highly sensitive to the material used,

and detailed comparative measurements must be made to determine the optimum
design.
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FIGURE CAPTIONS

Fig. 8: Gaussian beam with no misalignmeht (top) as compared to beams
having three types of misalignment: angular offset, lateral offset, and

axial displacement.

Fig. 9: The lens is tilted with respect to the incident radiation in both
1llustrations. Top: the feedhorn is aligned with the beam and the beam
deviation factor (BFD) equals unity. Bottom: the position of the feedhorn
1s shown for the beam deviation factor equal to l and for BFD < 1.

Fig. 10: Technique for changing beam waist radius in one plane by addition

of asymmetric focussing element.

FPig. 11: Polarization rotating device for use as a single sideband filter.

Fig. 12: Response of a two-slab FPIL. Each slab has n = 3.5; thickness =
0.125 cm. The slab separation is 0.5 cm.
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APPENDIX 2

|

Gaussian Beam Transformation with Cylindrical Lenses

. PAUL F. GOLDSMITH, SENIOR MEMBER, IEEE
Abstract—We develop formulas for Gaussian beam transformation
with fixed total distance betweea beamwaists, and cousider the use of
qnmm«-muwmmwm-uumnm
sbout the axis of propagation. For sntenna feeds, it is necessary that the
beam walsts for both plames perpeadiculsr to the axis of propagation be
colacidest. This requirement is anslyzed, and appropriste transformation
lmmmmmmoumrmmaw
lens combination operating at a frequency of 94 GHz have been measured
snd found (o be in quite good agreement with the elliptical patterus
predicted by the transformation formulas.

1. INTRODUCTION
Fundamental mode Gaussian beams are used ‘in‘ open resonators
(1], beam waveguides, and a wide variety of quasi-pptical components
[2].11mesymmgenenﬂyemployabcam3hichis:ymmeuic
about the axis of propagation. However, since the beam parameters in
the two coordinates perpendicular to the axis of propagation are
independent, we do have the possibility of creating asymmetric

beams, which are useful for illumination of special types of anteanas

as well as in imaging applications. In Section I we derive expressions
for Gaussian beam transformation which may be employed in a wide
variety of situations. We consider explicitly the case with fixed total
separation between the beamwaists, and obtain relations for the case
of producing a beam with waists for both axes perpendicular to the
direction of propagation located at the same position along the
propagation axis. In Section [II we discuss the use of cylindrical

Manuscript received July 14, 1985; revised November 1, 1985.

The author is with the Millitech Corporation, P.O. Box 109. South
Deerfield, MA 01373, and with the Department of Physics and Astronomy.
University of Massachusetts, Amherst, MA 01033

1EEE Log Number 8407363 -

lenses for the production of asymmetric beams. A scalar feed horn is
a high efficiency Gaussian beam launcher, and can be used together
with a cylindrical lens to produce an asymmetric beam waist. In

Section IV the measurements of the radiation pattern of such a ’

combination are presented and compared with theory, and the use of ~
cylindrical optics to symmetrize the patterns of asymmetric feed
horns is discussed.

. TRANSFORMATION OF GAUSSIAN BEAMS BY THIN LENSES

A. General Formulas

The effect of a thin lens on a Gaussian beam is assumed to be &
change in the radius of curvature of the beam without any effect on
the beam size. From this assurptivon-it is possible to derive basic
Gaussian beam transformation formulas {3], [4], which relate the
inpmmdomputmim:nddisum(slbwninl’ig. 1) produced by a
lens of focal length f operating ‘at wavelength. By convention, we
consider a beam traveling from left to right. The input distance d, is
dcﬁnedtobepositiveifdncinpuiwnistisloutedwmeleﬁofme
lens, whﬂednwtpuldimmeiideﬁnedwbeposiﬁvewheud\c
outputwaistisloatedtotheﬁgluofﬂ:elens.lnmyca_sx.wehavc
two beamwaists having givea waist radii which we wish to match to
each other. In this situation, the basic imaging equations can be recast
into the following expressions [3] for the input and output distances:

d, =It(%)lf‘-ﬁl‘” (12)
dz-ft(;ﬁ)(ﬁ-j}]m (1b)
Jo= T wg wa/\ (1¢)

where it is assumed that | f] 3 fo, and the same sign is to be used for
calculation of both of the distances. The two possible solutions are 2
mﬂeaimof!hcimcpaxdmeeofdanmwﬁstsiuofabam
mfmnedbylfowshgelarmond\esignomcqlmuity d/f - L.

Equations (1) still do not determine the input and output distances
as f remains a free parameter. '
B. Fixed Waist Separation

The value of the focal length can be essentially determined if the
total distance between the waists is specified, a situation that is often
of practical importance. We define

d= d| + dz Q)

as the total distance between the input and output waists, and define
the system magnification

M = wa/ wo, 3

Q01N 926X 'ROO300-0603801.00 < 1986 IEEE
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Fig. 1. Gaussian beam transformation by a focusing clement. The waist
radius is the distance, measured perpeadicular to the axis of propagation in
the plane where the beam has its minimum size, at which the electric field
strength has fallen (o 1/¢ of its on-axis value.

The expression for the total waist separation then becomes
d=2f+(M+ /M -fY'72, @

again with | f| 3 fo. Forany | f]| > fo we have a pair of solutions for
d given a particular M. For f > f, both members of tie pair have d
L > Oorelsconchasd > Oand theotherd < 0. Inthe case f < 0,
‘both solutions have d < 0 or else they have opposite signs.
Equation (4) can be solved for the required focal length as a
function of the total waist separation, yielding

(M= 1/M)¥a+dYVYM+1/M)-2d

S= (M=1/M) (52)
for M # 1, and
d fo
f';*'g (5b)

for M = |. Equation (Sa) is shown in graphical form in Fig. 2. The
expressions relating the input and output d:smw in the case of fixed
total waist scparation are

d-f(1-M?) Md+f(-M)
Q=M BT UM )
and the ratio of these distances is given by
dy Mid+f(1-MY) (6b)

d, d-f(I-M)

Equation (5a) gives two values of f for a particular fo, M, and d. The
pair always have opposite signs, and always satisfy the condition | /]
2 Jo. Substituting 1/M for M has no effect on the value of f
required, but can be seen 1o interchange d, and d; in (6).

C. Zero Waist Separation
The condition d = 0 results in (5a) taking the form

7
(M +I)j (Ta)

j=:(M!—l) 0
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Fig. 2. Values of lens focal length /, expressed xnunusoff.(lc), asa
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with
d=tfy d=%F/f, (7b)

Both signs produce valid solutions, but only for the solutions with f
> Ofor M > 1 and f < 0 for M < | do we have access to the input
waist, as would be necessary in order w0 have a {eed horn located
there, for example. The other solutions have an input waist with
negative distance, which can be used in conjunction with a beam
waveguide.

III. CYLINDRICAL LENS USE

A cylindrical lens is curved only in a single plane; consequently, it
affects the Gaussian beam parameters oaly in that plane and has no
effect on the beam radius or radius of curvature in the perpendicular
plane. The reflective analog, the cylindrical mirror, has been used in
2 number of beam waveguide systems [S}-[7), but generally with
mirrors in pairs acting to maintain a symmetric field distribution. Use
of a cylindrical lens in & Gaussian beam system will in general result
in the production of an asymmetric ficld distribution, but the locations
of the waists for the plane unaffected by the lens and for the plane in
which the beam has been transformed will be different. Their
separation can be calculated, for example, using (4).

One application of an asymmetric Gaussian beam such as that
produced by a cylindrical lens or mirror is the illumination of an
elliptical antenna. The waists for both planes should have the same
location, and, if the incident beam is symmetric, the value of M
required will be the ratio of major to minor diimeters, assuming that
the input beam is designed to properly illuminate a hypothetical
symmetric antenna having diameter equal to the major diameter of the
elliptical antenna. If the input beam has the larger waist radius
appropriate for illuminating a smalier antenna of diameter equal to
the minor diameter of the elliptical antenna, the required value of M
will be the inverse of that given above and hence will be less than
unity.

Consider the situation in which we wish to use a cylindrical lens to
modify the output of a feedhorn having a symmetric radiation pattern
(and hence equal waist radii) to illuminate an elliptical antenna. We
can, as described above, use the lens with M greater than or less than
one. depending on whether the feed horn patiern matches the small or
large dimension of the antenna. In cither case, as indicated by (7b),
the input distance is equal 10 fy.



L 2N

LN

LEEL | IANIAL LIUNSD WY AN EINAD At FRUL AN [YI* AN

Equation (7) defines the element focal length and the input and
output distances required to obtain a given magnification. If we are
iterested in the performance of a given cylindrical lens with a
particular input waist, we can express fo in terms of the parameters of
the input waist alone as

1
f.-u(";“)-ma ®)

and we see that

M(M*+1)
f-—(_b_{‘-_l)— Za-

This is shown graphically in Fig. 3; the inverse equation giving M as
s function of f is not particularly illuminating and results can be
obtained graphically or numerically.

IV. MEASUREMENTS

We have carried out a serics of measurements at a frequency of 94
GHz (A = 0.319 cm) to study Gaussian beam transformation with a
cylindrical lens. The input beam was provided by a scalar feed homn;
the hom, lens, and beams are shown schematically in Fig. 4. As
shown by many measurements and analyzed specifically in terms of
Gaussian modes [8], these devices produce highly symmetric beams
with approximately 98 percent of the radiated power in the lowest
Gaussian mode. The radiation pattern of the feed horn used is shown
in Pig. 5(a); the waist radius is 0.51 cm. A fused silica planoconvex
cylindrical lens having a focal length of 10 cm was used to produce an

_asymmetric beamwaist. The lens was antireflection coated using
quarter wavelength thick dielectric layers on both surfaces. We see
from Fig. 3 or (9) and (7) that there are two values of input distance
for which d is equal to 0, each having a certain magnification: d; =
3.8 cm produces M = 1.5 and d, = 8.2 cm produces M = 3.2.
Patterns for these input distances are shown in Figs. 5(b) and 5(c).
respectively. The patterns were obtained by rotating the horn lens
combination about the expected waist location; the receiving hom
was at a distance of 1.5 m, approximately six times the confocal
distance for the larger beamwaist, given by M?z,.

The ratio of major to minor widths of the pattern in Fig. 5(b) is
within a few percent of the expected value of L.5; it is also apparemt
that the larger angular size is esseatially unchanged from that of the
feed horn. The pattern produced by the lens at a distance of 8.2 cm
from the input waist (Fig. 5(c)) is less perfectly Gaussian and has an
ellipticity of approximately 3.0. The difference between this value
and that of 3.2 expected, as well as the slight reduction in the large
angular extent of the patiern, may be a result of the truncation of the
beam by the cylindrical lens (cf. [9]). At a distance of 8.2 cm from
the feed homn beamwaist, the clear diameter of the lens produces a

)

truncation at the — 11 dB level. Mecasurements to verify the location

of the beamwaist have not been carried out.

A second use of cylindrical optics is to correct the asymmetry
present in the patterns of certain types of feed horns. For example,
smooth-walled conical feed horns offer reasonably good perform-
ance, and are relatively inexpensive. However, the asymmetry of the
TE,, mode defining the aperture illumination results in a paticrn with
E-plane beamwidth typically 25 percent narrower than that of the H-
plane [10]-[12). The main lobe of the pattcrn of a small aperture
phase error conical horn can be modeled in terms of a Guassian beam
having H-plane waist radius equal to 0.31 times the aperture
diameter, and E-planc waist 1.25 times larger. A cylindrical
corrector is thus designed with a magnification of 1.25, in order t0
produce a symmetric heam. The difference in the location of the £-
and H-plane phasc centers for the conical feed [13] is not a
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Fig. 4. Schematic view of scalar feed horn and cylindrical lens used in zero
waist separation configurstion. The feed hom beamwaist is located behind
. the horn aperture as discussed by Wylde [8).

fundamental problem for pattern correction since only the H-plane
beam is being modified. For optimum resulls as a point feed the
cylindrical corrector would not be designed for d exactly zero, bat
having the small valuc required to bring the phase centers for the two
principal plancs into coincidence. Using a cylindrical lens-conical
horn combination, we have verificd that good pattcrn symmetry is
obtained to a level 12 dB below the peak. The cylindrical lens leaves
the sidelobes present in the £-plane pattern largely unchanged.

V. CONCLUSION

We have demonstrated the ability of cylindrical lenses to produce
asymmetric Gaussian beams. The standard Gaussun béam imaging
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formulas have been extended to allow calculation of lens parameters
for fixed distance between input and output waists. The situation of
having the waists located at the same distance along the axis of
propagation leads to particularly simple expressians which are
convenient for using a cylindrical lens to modify the pattern of a feed
horn used to illuminate an clliptical antenna.

Gaussian beam imaging calculations can also be used to design
correctors for feed horns having asymmetric but reasonably Gaussian
pancrns, such as smooth-walled conical fecd horns. Other uses

_include relatively cfficient illumination of a lincar array of antennas.
The approuch studicd here can be efnployed with reflective cylindn-
cul optics as well as with lenses, in a varicty of situations.
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Multilayer Approximation for Plane Wave Propagation
: in a Layered Medium

KOHEI HONGO, SENIOR MEMBER, IEEE, AND YASUAKI UEHARA

Abstract—Lisear profile multlayer spproximstion for computing
reflection or tramsmission coefficients of plane wave by s layered
medium, which is formsal extension of standard staircase stratification
method, is studicd theoretically and numerically. The problem is reduced
to evaluste 2 x 2 matrix product whose elements include the Bessel
fusctions of order +1/3 and £ 2/3. The polysomial spproximation for
the Bessel function is coastructed by applying modified Chebyshev
method (o facilitate the aumerical calculstion.

I. INTRODUCTION

Wave propagation in inhomogeneous media has attracted a great
deal of attention because it is applicable to several branches of
physical science, especially to acoustics, electromagnetics, and
optics. Many of these problems can be analyzed in terms of a scalar
wave equation, but an exact solution of this wave equation is
restricted to few special profiles so that we must rely on approximate
techniques. An excellent review of the approximatc analytical
methods has been given in [1]. A detiled discussion of the
application of the so-called staircase stratification method to planar
structures has been given in {2], aad an application to circular
waveguide was proposed in [3]. Recently [4], a method for which the
solution corresponding to the actual index profile of the guide is
approximated by means of a combination of analytically solvable
solutions was proposed.

In this communication, we study a numerical procedure of lincar

Manuscript received October 4, 1985, revised November 16, 1985.
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profile approximation (LPA) in which the dielectric p.roﬁle or
equivalent diclectric profile in cach subsection is approximated by
linear profile. To facilitate the numerical calculation using this
method, the polynomial approximation for the Bessel function of
order +1/3 and 1 2/3 is constructed by using modified Chebyshev
approximation. The method is applied to0 a few simple problems
having a planar structure, and the results are compared with those
obtained by other methods. Though the application of the present
method is limited to planar structures, computing time can be reduced
considerably compared to conventional staircase  stratification
method.

1. LINEAR PROFILE APPROXIMATION

Consider a layered medium whose permittivity varies along the 2-
coordinate in the region 0 < Z < Z, and is otherwise constant, as
shown in Fig. 1. The problem is to determine reflected and
(ransmitted wave when a plane wave is incident from the bottom side.
For simplicity the incident wave is assumed to have no variation
along the y-coordinate; hence, the problem is two-dimensional. In *
this case there exist two independent plane wave solutions, which are
specified from E, (transverse electric (TE) wave) and H, (transverse
magnetic (TM) wave), respectively. E, and H, are obtained from the
solutions of second-order differential equation

t]

d*F
Zot ke F =0 )

where
(a) TE wave;, F=E,, en=€(2)—sin? 0

() TM wave; F=Ve(z) H, )

‘ Mi1e@ 4@\
€= €(2) — sin? 01+"o2{i (z) 3 (T(z_)) } @

where ko = weau is the wavenumber in free space. In a subsection
L < 2 < Yqty €en(2) is approximated by the lincar profile

eld)=aiz+ b )

where a; and b, are coefficients. Firstly, e.(2) is approximated by a
parabolic curve ¢,(2) passing through three points ¢; = et (), €m =
en(lz + 2/41)72) and &, ;. The coefficient a; is assumed to be a; =
(€¢er — e,)/(z;.. - l[) and b[ is determined such that the intcgnted
values of the integrals with integrands ¢,(2) and ¢ (2) in the
subsection (2;, 7 1) become equal. Then ¢.4(2) is given by

€e1— 2 1
‘eﬂ(Z)=;:":__:’Z(Z-zl)+§ emt g later). )

For TE wave, if «(z) is parabolic profile, en(z) also becomes
parabolic. A numerical computation was conducted to verify that
such choice a, and b, as in (5), was effective.

Substituting (4) into (1), F can be expressed in terms of Bessel
functions of order +1/3. Following the same procedure as in
staircase approximation [2], the relation between the tangential
companents of clectromagnetic fields at z = 2, (E;,, H)and at z =
2re1e (Er vy Hioo). are expressed as

Eh 1 Al JBI El

=M} . 6
[Hlu] ‘[.ICI D, H, ©)
where A, ~ D, and M, arc given as follows.
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ADMINISTRATIVE DATA

1.0 PURPOSE OF TEST: To subject the test items to random
vibration testing

2.0 MANUFACTURER: Millitech Corporation

3.0 MANUFACTURER'S TYPE OR MODEL NO.: Four millimeter wave components:
One (1) P/N MUW-10F S/N 39;

One (1) P/N Pl;

One (1) MU2W20 S/N 5;

One (1) Tripler

4,0 DRAWING, SPECIFICATION OR EXHIBIT: Customer specification

5.0 QUANTITY OF ITEMS TESTED: One each of the above

6.0 SECURITY CLASSIFICATION OF ITEMS: Unclassified

7.0 DATE TEST COMPLETED: 11 June 1985
8.0 TEST CONDUCTED BY: C. Forbes
9.0 DISPOSITION OF SPECIMENS: Returned to Millitech Corporation

10.0 ABSTRACT: The test items successfully completed testing. For
specified data, refer to results herein,

Report No. 20749-860

Pége No. i
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1.0 RANDOM VIBRATION TESTING

1.1 Requirements

The test items shall be subjected to random vibration
testing in accordance with Millitech Corporation Purchase

Order No. 3683,

1.2 Procedures

The test items were mounted on a six-inch fixture plate,
provided by Millitech, that was secured to the moveable table
of the Ling A300 vibration system. |

The test items were vibrated in each of three mutually
perpendicular axes at the following levels:

20 Hz - 50 Hz @ 9 dB/octave

50 Hz - 300 Hz @ .15 g2/Hz

300 Hz - 2 KHz @ -3 dB/octave
3 minutes per axis

Visicorder data was retained by Millitech representative,

Mr. David Fein.

Report No. 20749-860
Page No. 1-1
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1.0 RANDOM VIBRATION TESTING (continued)

1.2 Procedures (continued)
Test 1
Z axis (vertical)
Random
3 minutes
Operating
Test 2
X axis
Random
3 minutes
Operating
Test 3
Y axis
Random
3 minutes
Operating
1.3 Results
The test items successfully completed random vibration

testing. There was no evidence of physical damage or

deterioration to the test items as a result of testing.

Report No. 20749-860D

Page No. 1-2
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2.0 TEST EQUIPMENT LIST

Report No. 20749-860
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APPENDIX 5 - OPERATING INSTRUCTIONS
FOR SNM-02

1.0 METER OPERATION INSTRUCTIONS

The Millitech signal-to-noise ratio meter requires that a suitable
chopper with TTL output be connected to the front panel BNC jack, and
set such that the chopper blade indicates the correct input to the
receiver or device under test. A rear panel 5§ Volt DC BNC jack is

provided to power the chopper's optical switch.

The phase of the TTL output is unimportant as long as it indicates the
correct position. For example, when the blade fully dinterrupts the
receiver beam, the TTL output should be at the halfway point.

Now, switching the mode switch to the total power position and hand
rotating the chopper wheel, the meter should indicate some two different
levels as the chopper passes through the receiver beam. In addition,
the LED above the phase switch should change as the chopper is rotated.

Turning on the chopper and switching the mode switch to SWITCHED should
yield a positive indication on the front panel meter. If the meter is
pegged in the negative direction, simply reverse the position of the
PHASE switch,

Switching to the SWITCHED/TOTAL position, a positive 3/4 full scale
meter reading should be obtained. If the meter reading is too low or
too high, adjust the RANGE either upwards or downwards respectively
until the desired reading is obtained. The Y factor can now be computed
via the above formula or maximized by tuning the receiver parameters and

peaking the meter.

Use or disclosure of data contained on this sheet is subject to the
restriction on the title page of this final report.
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1.1 METER CALIBRATION

Meter calibration is performed with the detector normally used, a

sensitive DC voltmeter and the chopper.

Input Offset Adjustment Trim: While the meter is on and connected to
the detector, short the input to the detector and measure the voltage at

Ul pin 9. Adjust R1 until the meter reads zero volts.

Range Input and Output Offset Adjustment Trim: While the meter is on
and connected to the shorted detector, turn on the chopper. Measuring
the voltage at U3 Pin 9, and setting RANGE switch to 40, adjust R2
{input offset) for zero Volts. Next set the RANGE switch to 1 and
adjust R3 (output offset) for zero Volts. Repeat these adjustments
alternately until changing the RANGE switch produces little or no output

change.

2.0 LOOP ADJUSTMENT AND TROUBLESHOOTING

Loop adjustment is fairly straightforward. The lock box contains four
adjustments, two of which it should not be necessary to change unless
the Gunn oscillator is replaced or retuned mechanically, and a third
that requires adjustment only for lock detection malfunctions. The
fourth is the loop DC offset adjustment which requires only a meter or

preferably an oscilloscope to set providing the loop is locked properly.
Instruments required for adjustment or repair:

1. 0.01 to 1 GHz spectrum analyzer
2. 100 MHz bandwith oscilloscope
3. 100 MHz frequency counter

Some familiarity with phase-lock loop operation is extremely helpful if
not required before attempting to replace or repair major components of

the loop.

«

-

Use or disclosure of data contained on this sheet is subject to the
restriction on the title page of this final report. '
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Offset Adjustment: The loop DC offset adjustment can be made by first

removing the lock box cover and locating R18 on the phase lock filter
board. This is a 100 KR potentiometer located near U3. NithA the
frequency of the loop tuned for 92.6 GHz (center), there should be about
+3.5 Volts DC here. This point is adjusted so that a ninety degree
phase offset occurs at the lock indicator or quadrature phase detector.
This state can be discerned by slowly rotating the pot in either
direction until the lock indicator is extinguished. Now turning the pot
in the opposite direction, count how many turns in the opposite
direction it takes before the lamp extinguishes again. Divide the
number of turns by two and return the pot that number of turns back in
the first direction. Proper loop operation should be verified by
attaching a spectrum analyser to the IF minitor port and comparing the

spectrum found there to that in Figure 1, and Figure 2.

VCO Turn-on Threshold: Since the VCO has a minimum turn-on voltage and

for proper loop operation the IF must always be within certain frequency
limits, a threshold adjustment or minimum VCO output voltage adjustment
is provided. This consists of a comparator whose input is the Gunn
voltage and whose output drives the offset of the loop filter amplifier.
If the Gunn voltage drops below a preset level, the comparator drives
the loop offset such that the loop is steered back towards lock. This
offset adjustment is provided for by R26, a 100 KQ potentiometer,

located on the phase lock filter board.

First the lowest loop voltage must be measured. This is done by setting
the loop frequency to its lowest point. Now measure and record the
voltage at pin 6 of U4. After first removing the lock box cover, locate
R26. This is a potentiometer located near U4. While measuring the
voltage at pin 5 of U4, set the voltage to just below the previously
measured voltage at pin 6 of U4 by about 0.5 Volts. With the original
VCO installed, this voltage is approximately 6.6 VDC. Proper loop
operation should be verified by attaching a spectrum analyzer to the IF

monitor port and comparing the spectrum found there to that in Figure 1.

Use or disclosure of data contained on this sheet is subject to the
restriction on the title page of this final report.
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Caution: Over-reduction of this adjustment may cause the Joop to

oscillate.

Sideband Kick-in Threshold: 1If the loop detects that it is on the far

side of the opposite sideband (>20 MHz beyond opposite sideband),
another circuit provides a slight offset adjustment through Ul that
steers the loop back towards the proper sideband. This adjustment is

made through R19, a 100 KQ potentiometer locatéd on the phase lock

filter board.

After first removing the lock box cover, locate R19 near U4. Set the
voltage at pin 12 of Ul by adjusting R19 to approximately +7.7 Volts DC.
Test for proper operation by switching the reference input from the
synthesizer on and off. The loop should lock up and the lock indicator
light should be on. 1If not, check the IF monitor port with a spectrum
analyzer to verify that the 20 MHz IF signal is present. A slight
adjustment of R19 while examining fhe loop IF with the spectrum analyzer
should bring the loop back into lock. Proper loop operation should be
verified by attaching a spectrum analyzer to the IF monitor port and

comparing the spectrum found there to that in Figure 1.

Caution: Over-reduction of this adjustment wWill cause the loop to

oscillate.

Lock Indicator Threshold Adjust: This adjustment is preset and should

not need further adjustment. If needed, it is performed by locating R15
on the Phase Detector/Divider board, Millitech drawing number #800086.
This board is mounted in the lock box on the opposite side of the phase
lock filter board. This adjustment consists of setting the voltage U7
pin 2 equal to +3.5 to +3.6 VDC. After this adjustment the 1lock
indicator should respond correctly to the state of the loop. Proper
loop operation should be verified by attaching a spectrum analyzer to
the IF monitor port and comparing the spectrum found there to that in
Figure 1. This adjustment is preset and should not need further

adjustment. .

Use or disclosure of data containéd on this sheet is subject to the
restriction on the title page of this final report.
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FIGURE 1
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FIGURE 2
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