
I

.f-

L_

4_

197B 

/c/

CO2 Laser Preionisation

Gary D. Spiers

Center for Applied Optics

The University of Alabala in Huntsville

Huntsville

Alabama, 35899

Final Report NASA Contract NAS8-36955

Delivery Order 70

(NASA-CR-I84424) C02 LASER

PREIONISATION Final Report, 1990

(Alabama Univ.} 61 p

N93-13797

Uncles

G3/36 0019736

\

%

%

https://ntrs.nasa.gov/search.jsp?R=19930004609 2020-03-17T10:17:16+00:00Z



Table of Contents

1 Introduction ................................................................................. 1

2 PreionisationReviev ......................................

2.1 Introduction........................................

2.2 Prelonisation requirements ..........................

2.2.1 Large electron production .....................

2.2.2 Uniform electron production ...................

2.2.3 Efficientelectronproduction ...............................

2.2.4 Contaminant free preionisation ...............................
2.3 Preioniser test methods ............................................

2.3.1_V chamber .................................................

2.3.2Photographicstudies ........................................

2.3.3Light _ission ......................................

2.3.4Microwaveinterferometry............................

2.4 List of rec_iredequipment ................................

2.4.1 _V clla_er .........................................

2.4.2 Drift field power supply .............................

2.4.3 Detectioncircuitry ..................................

2.5

,,..,,

IDIO_O

''|O',

2.4.4 Gas analysis ......................................................................

2.4.5 Tile integrated photo_aphic analysis .............................................

2.4.6 Wine resolved photographic analysis ...............................................

References ..............................................................................

3 Cavity Model .................................................................................

3.1 Introduction............................................................................

3.2 The matrixmodel ............................................................

3.3 Analysis ................................................................................

3.4 References ............................................................................

4 LP-140DischargeCharacteristics...........................................................

4.1 Introduction............................................................................

4.1.I DischargeInitiation ...........................................................

4.1.2 Energydeposition .................................................................

4.1.3 Pulse teraination ..............................................................

4.i.4 LP-140Dischargecircuit .........................................................

4.2 Experimentalneasurenents............................................................

4.2.1 Voltageand currentpulse |easure_ents...........................................

4.2.2 Dischargepulse analysis ...............

4.2.2.1EnergyDeposition .................

4.2.3 Sl_ar_ .........................

4.3 Power supply considerations............

4.3.1 Introduction.....................

4.3.2 Design Criteria ..................

4.3.3 CircuitOutline ..................

4.3.4 Pulse Transfonmr Design

4.4 References ..............................................................................

7

7

7

Ii

ii

12

12

12

12

12

12

13

13

13

15

16

17

17

17

21

22

22

5 FrequencyChirp .............................................................................. 32

5.1 int_oduction............................................................................32

5.2 Analysis ................................................................................32

5.3 Modeling ................................................................................32

ii

PRECEDING P_IGE BLA/_,!K NOT FILMED



5.4 References ..................................._..........................................32

6 Laser Linewidths ..............................................................................36

6.1 Introduction............................................................................36

6.2 LP-140,L_/AVCO and GE/STILaser Comparison ...........................................36

6.3 The MathcadDoculent ....................................................................36

7 Appendix (I) ..................................................................................40

8 Appendix (2) ..................................................................................46

9 Appendix (3) ..................................................................................51

iii



1 Introduction

Thisreportcoversworkcarriedout on NASAcontractNAS8-36955duringtheyear1990.Thereportis divided
intothe followingsections:-

PreiomisationReview:-A literaturesurveyto identifytherequiredparanetersfor effectivepreioni-
sationin TEACO= lasersandthemethodsand techniquesfor characterisingpreionisers.

CavityIMdel:-A nunericalnedelof the LP-140cavityusedto determinethe causeof thetransverse

modestabilityimprovenentobtainedwhenthe cavitywasler_ened.

LP-140Dis_ (_aracteristics:-The|easure|entof the voltageandcurrentdischargepulseson the

LP-140and theirsu_ent analysisresulti_in an explanationforthe lowefficiencyof the laser.An

assortnentof itas relatingto thedevelopnentof high-voltagepowersuppliesis alsoprovided.Theseitem
areguidelinesthatwerepreparedfor a GS_Pstudent.

Freqlm,a_ (3irp:-A programforanalysingthefrequencychirpdatafilesobtainedwiththeliPtile

andfrequencyanalyser.A progranto calculatethetheoreticalLIMPchirpisalsoincludedand a conparison
betweenexperimentandtheoryismade.

LaserLinewidths:-A progranfor calculatingtheC02 linewidthand itsdependenceon gas co_osition

and pressure.Theprogralalsocalculatesthenu_er of axialnodesunderthe _ of the linefora given
resonatorlength.A graphicalplotof the resultsis provided.

Appendix(I):-Thisis a listingof the basicprogramusedto extractthe ener_ depositionrate,
impoadanceetc.fromthe dischargevoltageandcurrentpulses.

Appendix(2):-TwoMathcadlistings,oneto calculatearbitraryTDh,. nodesup to 3,3 andtheother

to calculatethefocallengthof a thicklensgiventheradiusof curvatureof thesurfaces.The second
docunentis usefulforconvertingROC to focallengthand vice-versaforthe resonatorcodeinsection3.

_l_w.odix(3):-Thisisa copyof a jointpaperbetweenDr. Jaenischand myselfto be presentedat the
SPIEHighEner_ LasersConferencein LosAngeleson January24TM 1991.

Due to thevarietyof topicscoveredan overallconclusionis notprovidedas eachsectionisself-
contained.
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Preionisation Revi_

2.1 Intr(_uction

This review is a copy of a documentsubmitted previously, only minor formatting changes have been
undertaken. The object of the review was to provide a brief overview of the leans of obtaining quantita-
tive data o, the relative merits of various preionisation schemes.

The discharge in a Tn CO_laser can be divided into three phases, firstly preionisation, which involves
the injection of electrons into the gap in which the discharge will be foned. Secondly the application
of a high dV/dt voltage pulse to avalanche the preionisstier electrons up to an electron concertration

suitable for maintaining a stable disclmr_. The third phase co,sists of the &position of energy into
the discl_u_e. During this final stage the voltage across the electrodes collapses to a value e_

tially independent of the driving circuit. Allthough the preionisatier pulse can be co_leted prior to
the application of the avalanching pulse, it is _ore co_on to arrange the timing such that the
avalanching occurs during the peak of the preionisation pulse. This ensures that a mini|urn numberof

preionisation electrons are lost to attac_ent and also limits the degree of avalanching required to
form the discharge. The preionisation pulse usually does not continue during the third phase, except for
long pulse operation where electrons _ust be continuously injected into the discharge to _aintain its
stability. For large cross-section discharges (-lOxlO cm2) the preionisation can not be generated uni-
formly throughout the dischar_ gap and so to overcome this, a high preionisation density is created
adjacent to one of the electrodes and a weak (non-avalanching) voltage applied across the electrodes to
drift this preiomisation uniformly through the discharge volum prior to the application of the ava-

lanche voltage. The preionisation of the discharge volume is critical to the successful operation of the
discharge and is therefore a vital consideration in the design of a transversely excited gas laser.

2.2 Preionisation requirements

The main requirements of a preionisetion source are:-

2.2.1 Large electron production

Theoretical estimates of the minixum preionisation density required for at|ospberic pressure dis-

charges range between 104-106 C1-3 _2.1,m.2,2.3,2.4) and experimental verification _='s> has provided
quantitative agreement of these values. The actual discharge has an electron density of 10_=-10_4
cm-_ _=.6, =. _, 2.. _ and experimental evidenceC2.,_ has show, that initial preionisation densities

above the minimumrequired value will result in lore efficient energy extraction from the discharge
volume. Additionally with a larger initial electron density less avalanching is required to obtain a
stable discharge and a lower initial voltage can be applied to the electrodes.

2.2.2 Uniform electron production

Thepreionisationmustbe produceduniformlythroughoutthedischargeto preventregionsof high

currentdensityfromoccuring.Thisis importantas thesehighcurrentdensityregionscanreadily
degenerateintoarcs.

2.2.3 Efficient electron production

Withintherequirementsof theLAWSproject,onlya limitedpowerbudgetis availableand so the

efficiencyof the preionisationproc_ is i|portant,thereforethenu_er of electronsgenerated
perunitenergyinputto thepreionisershouldbe as highas possible.

2.2.4 Contaminant free preionisation

Thelifetimerequirementsof theLAWSprogramrequiresthatthepreionisationsourceshouldprovide

littleor no contaminationthatmay limitthelifetimeof thelaser.As an examplesparkpreionisa-
tionhasin thepastbeenprefe_edfor flowing-gaslasersas it provideslargen_rs of elec-
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trous,llovevarin a sealedlaser_2"9"='I°_thehi@ teweraturesparkresultsinalmst complete

dissociationof theC02 in thereqionof the sparkresultinqin a shorterlifetimfor the laser

thanifa diffusedischargepreionisationsourcehad beenused.Additionallythe sparkpinshavea

tendencyto sputtermterialontotheraindischargeelectrodesand thelaseroptics.

2.3 Preioniser test methods

Traditionallymostpreionisershavebeentestedby placinqthemin a laserandprovidedthe laserhas

workedthepreioniserhasbeenconsideredsatisfactory.Therehavebeenveryfewattempts(inthe open
literature)to co,are preionisersdirectly.The teclmiquesthathavebeenusedto examinethe charac-

teristicsof preionisersare:-

2.3.1 UIIV chamber

A _ chamber<2"6"2"g-2"I_chamberenablesthedirectmeasurementof electronproductionfromthe

preioniserto be undertaken.Typicallya preioniseris placedinsidea cha_er suchthatthe

electronsgeneratedarecollectedby a veryweakelectricfieldacrossa pairof electrodes.These

collectionelectrodescanbe movedto measurethepreionisationfromvariousportionsof the preio-

niser.The dependenceof thepreionisationdensityon thepreioniserdrivecircuitparameterscan

obviouslybe deter|inedusingthistechnique.Thesiqsalobtainedby thisteclmiqueforlow electron

densitiesis veryslall(-nV)andconsiderablecareis requiredin thedesiqnof the apparatus.A

dumr/electrodeisutilisedto alloya differentialsiqnatto be obtained._,dditionallysuitable

filtersare nonellyusedto eli|inateIIFnoisewhicharisesfromthe preionisationdischarge.As it

has beenshownc2"6"2"_2"_'_6"2"_thatsmellquantitiesof organiccontalinantscan cjreatly
increasethepreionisationdensityforuv basedpreionisers,to eliminatefluctuationsin measure-

mentsextremecarelustbe takento ensurethe cleanlinessof thecha_er islaintained.By repeti-
tivelypulsinqthe preioniserin thecha_er the dependenceof the preionisationdensityon

preioniseraqecouldalsobe deteninedand aftermanypulsestheqas in the cha_er couldbe

analysedto determinethe degreeof deqradationdue solelyto the preioniserundertest.However

withthe additionof lifetestingof the preionisers,a hi@ pulseratebecomesdesirableto allow

the teststo be completedin a reasonabletim. Thiswouldrequirecoolinqandqas circulation

withinthechamber.Fromthe literaturethe effectof thepreioniseron the qas mixturecan easily

be detentinedafter-100,000pulses(_orsparkpreionisers_2"9'2"_°_).If an houris allowedfor

thistest,thisprovidesfor a pulserateof 28 Hz,whichis minilal.As the preionisersare intended
to be verycleana pulserateof 50 Hz may be moresuitable.

2.3.2 Photographic studies

Bothti|e-avexaqed<_'_'-2"_°_andtimeresolved<2"_°'_'_I'_'_photoqraphicstudieshavebeen used

to studypreionisationanddischargeformtion.Thetimeaveragedstudiesalthou@ of limitedvalue
_illshowreqionsof veryhi@ currentdensity.Timeresolvedp_otoqraphyprovides_uchmoreinfor-

mationand canbe usedto followthe dischargedevelopmentand enablesflawsinthe unifomityto be

easilyseen.The techniquerequirestheuse of a streakcameraor preferablya framingcamerawitha
resolution-10-20nS.

2.3.3 Light Emission

Manyof the preionisationschemesrelyon theproductionof uv li@t whichis usedto preionisethe

dischargevolume.Measurementshavebeen_adeof the li@t productionfromthesepreionisersusinga
photodiode_='x_>,howeverthedisadvantageof thistechniqueis thatthecorrelationbetweenli@t

outputandelectrondensity,althou@probablyvalid,has notbeendemonstrated.
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2.3.4 Microwave interferometry

Earlyattemptsto measuretheelectronconcentrationsin a dischargeusedan X-bandmicrowave

interferometer(='=3_,howeverthe sensitivityof thedevicewas insufficientand thetechniquewould
appearto havebeenabandoned.

of thetechniquesoutlinedabovethe_ chamberisthemostimportantforthe quantitativecomparison

of preionisers.The timeaveragedphotographyisrelativelyeasyto accomplish,althoughideallya large
formatcamerashouldbe usedto ensureadequateresolution.The timeresolvedphotographyprovidesthe

onlymeansof studyingthedischargeformtionon thepreionisertherebyenablingtransient_hotspots_,
whichfrequentlyindicatepotentialfailurelocations,to be detected.Themicrowaveinterferometercan

be discounteddue to its limitedsensitivity.

2.4 List of required equipment

The equipmentideallyrequiredfor thecharacterisationof thepreionisersthereforeconsistsof the

followingitem. It shouldbe notedthatonlya generaldescriptionisgivenat thispoint.

2.4.1 UHV chaLber

An UHV chamberassemblyconsistingof collectionelectrodes,portsfor supplyinggasand to enable

gas sampling.Suitablefeedt]Eouc_sfortheelectricalcormectionswillbe required.A largeportto

whichthetestpreioniserassemblycan be fixedanda largetransparentwindowdirectlyopposite
thisportto enablephotoqEaphyofthe preionisationdisc3arge.Inorderto facilitatemovementof

thecollectionelectrodes,rotaryfeedthroughsmustbe providedif manualadjustmentis envisa_.

Alternativelyand possiblypreferablyif automaticdatacollectionisrequireda pairof stepping

motorsand theirassociatedelectronicdriversisrequired.If lifetestingis envisagedthengas
coolingandrecirculationfansmustalsobe supplied,

2.4.2 Drift field power supply

Thedriftvoltagerequiredobviouslydependson theelectrodespacingbut typicallya voltageof

-0.3Vcm-ltorr-I is usedgivinga driftvoltageof -2kV foran 8 cm gap at atmosphericpressure.
Thusa 0-5kV dc powersupplyshouldsuffice.

2.4.3 Detection circuitry

Thisconsistsprimarilyof a differentialac amplifierandHF filters(whichmaybe includedin some

amplifiers).Traditionallythe outputfromtheamplifierhasbeenfed to an oscilloscopeanddis-
playedso thata photographof thesignalcan be obtained.Thisobviouslylendsitselfto digitisa-
tion.

2.4.4 Gas analysis

Ifthe effectof the preioniserson thegas chemistryisto be studieda massspectrometerwillbe
required.

2.4.5 Time integrated photographic analysis

A suitablelargeformatcameraisrequired.

2.4.6 Time resolved photographic analysis

A suitablehighspeedframingcameraisrequired.



The above list only covers the equipaent required to analyse the electron production from the various

preionisers. Thus in addition to this list suitable circuitry for driving the resI_ctive preionissrs

would be required together with high voltage and hi@ current probes for their electrical analysis.
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Cavity _)del

3.1 Introduction

The transverse _de structure of the laser output pulse is important for obtaining a good far-field beam
profile. The initial beamprofile of the LP-140 laser bad considerable transverse lode instability _''_ .

A sche_tic of the LP-140 cavity is shown in figure 3.1. Jaeniscb _''*_ found that when the cavity length
was extendod by increasing the seperation between the grating and the lens, the transverse node stabil-

ity i_roved. The Dodel discussed here was developed to provide an explanation for this improvement.

CATHODES

L2

I1 c ) C ) ( ) C • _H2 '

-'e""ll"'--'u ,
VIIIIIII/,/////J//////////I//////AI

• _//_/////___////////_COMMONANODE Vz/_ •
Grating

• r////////////////////////////////A I

IV L1 ( } [ } c ) ( _ / M3

Grating

extension

Figure 3.1. The LP-140 cavity layout.

3.2 The matrix model

The nodelis basedon theworkof Sie_nn _'=_, andhas beenimplenentedas a Mathcad(''_ doctment.In

thismodeleachof the opticalelementsinthecavitycan be expressedas a 2x2matrix.By co_ining the

matricesa singlematrixfortheoverallopticalsystemcan be obtained.Fromthismatrixthe ma_ifica-
tionand Fresnelnumbersof theresonatorcanbe deterlinod.

The simplegeonetricalmagnificationof the resonatorvarieswiththecomplexcurvature,q of the input

wavefrontand for lasingactiontooccurthe Wnvefrontnustbe capableof reproducingitselfoverlany

roundtrips.Thisneansthattheconplexcurvatureof thewavefrontafteronecompleteroundtripl_t

returnto its initialvalue.Thisconditionconstrainsthe magnificationto a singlevalueand it is
thisvaluethatis calculatedby theprogram.

Ratherthanprovidea detailedtheoreticaltreatiseof the |odel,thereaderis referredto the

book(,.=)by Sieq_ whichprovidesa comprehensiveaccountof thetheory.TheMathcaddocunent
follows:-
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LP-140 CAVITY MODEL

This document uses the matrix method to model the LP-140 cavity. Each of the

cavity elements is represented by a matrix where the variables for each matrix

are :-

Output coupler radius of curvature (m)

Cavity length between output coupler and lens (m_

Radius of curvature of first surface of lens (m)

Refractive index of lens material

Thickness of lens material (m)

Radius of the second surface of the lens (m)

Spacing between the lens and grating (m)

Wavelength of laser radiation (m)

Mirror diameter (m)

Unstable resonator output coupler half width (m)

Total cavity length (m)

R1 := -5

D1 := 2.40

R2 := -14.05

N1 := 2.407

T1 := 0.00635

R3 := I000000

D2 := 0.i

:= 0.0000106

W := 0.04

a := 0.009525

LEN := D1 + D2 + TI.NI

This provides the following component matrices for one beam direction:-

output Coupler Cavity Space First surface of lens

D N1 - 1

M := M := M :--

1 2 3 R2

Lens thickness Second lens surface Grating Spacing Grating

M := M := M := M :=

4 5 R3 6 7

For the beam travelling in the opposite direction we must reverse the sign of

the curvatures on the lens surfaces to give:-

Grating side surface Cavity surface

R4 := -R3 R5 := -R2

IN1- l [lINIM := L M :=52 -R4 32 R5

The total system matrix is obtained by multiplying out the matrices:-

M := M .M .M -M .M .M .M .M .M -M .M .M

s 1 2 3 4 5 6 7 6 52 4 32 2

Giving:-

M

s

[0.5043.765] Ms I--1= O. 003 2.01]

8
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The ABCD elements of the system matrix are:-

A := M B := M C := M

s s s

D := M

S

0,0 0,i 1,0 i,i

The half trace parameter,m is given by:-

A + D

m :=

2

giving m = 1.257 (For -i < m > 1 the resonator is unstable, whilst for
-i < m < 1 the resonator is stable.)

If the resonator is unstable the magnification is given by:-

M := if[m > l,m + ,m.2 - 1,0!

M := if[m
< -1,-m -

i.e. M = 2.018(If the magnification has the value 0 this indicates the

stable resonator case.)

Now the Fresnel number is calculated for the resonator, together with the
collimated and equivalent Fresnel numbers if the resonator is unstable.

Fresnel Number 2
W

N E

f 4. LEN.

If unstable then:-

Collimated Fresnel Number

N := if

c
I ]M.a

M _ 0,--,0
B.k

and Equivalent Fresnel Number

N := if

eq

M - i] •N

c

2
2-M

,0

9



The various Fresnel numbers are:-

N = 15.003 N = 4.587 N = 1.73
f c eq

where a value of zero for the collimated and equivalent Fresnel numbers
indicates a stable resonator. These parameters together with the magnification
enable a preliminary estimation of the resonator mode stability and losses to
be obtained.
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3.3 Analysis

The modelwas runusingthe initialcavityconfigurationandthenforthe cavityas _difiedby Jae-

nisch<3"_.TheEodelwasthenrerunwiththe initialcavitylengthbutwitha modifiedprescriptionfor

thelens,LI (figure3.1).The objectof thisexercisewasto seeif the shortercavitylengthcouldbe

Raintainedwhilstalsoretainingthelegnificationand equivalentfresnelnulbersof theextendedcavity
configuration.It shouldbe notedthattheoutputcoupler,][1(figure3.1)couldalsohaveDee,|odified

to attesptthis,howeverdueto thehighcostof 1odifyingthiselelent,thisoptionwasnot undertaken.

A suture7of the resultsfro•eachof themodelsispresentedin table3.1.It wasfoundthatwhenthe

prescriptionof L1 was variedonlyone of thedesiredpropertiescouldbe latchedfora givenprescrip-
tion.Thustwo m_lelsappearinthe table,oneto |archthe equivalentfresnelnmeer and theotherto
uatch the cavity |aquification.

Cavity Cavity Lens,L2 EquivalentFresnel Magnification
Type Length(m) _ (m) _tmber,N.q M

Original 2.50 14.05 i.73 2.02

Extended 2.96 14.05 I.63 2.ii

ModelI 2.50 14.80 1.84 2.12

Model2 2.50 13.48 1.63 1.93

Table3.1.CavityModellingResults.

The existinglensis a plano-convexZnSeelemnt withthe convexsidefacingthe discharge.Onlythe
radiusof curvature(ROC)of theconvexsurfacewas varied.It canbe seenfro•the tablethata radius

of curvatureof 14.8m is requiredto latchthe |egnificationwhilsta radiusof curvatureof 13.45• is

requiredto latchtheequivalentFresnelnumber.Sieglann_3"2_hasshownthatthe optilulvalueof the
equivalentFresnelnulberforlaximmtransverselodestabilityis (n + 0.5)for a circularmirror

resonatorand (n + 0.375)fora stripresonator,wheren is an integer.In our casewitha rectangular

beamcross-section,thestripresonatorconditionapplies.Itis obviousthatincreasingthecavity

lengthi|provesthe transverselodestructureby soreleansotherthanchangingthe equivalentFresnel

ntmberas thisrelalnsapproxi|atelyconstantforboththe originaland extendedcavities.It is possi-
ble thatthe unstabletransverse_de structureis due toparasiticoscillationsfromthe electrodes.

Increasingthecavitylengthresultsin an increaseof the cavitydiffractionlossesand theelimination

of the parasiticoscillations.Whenthe l_Cof the lensis changedto matchthe extendedcavityBagnifi-

cation,thediffractionlossrequiredcanbe obtainedwitl_uttheneedto extendthe cavity.

3.4 References

3.1)Jaenisch,H.X.;"PolarisationeffectsTasks3 and 4:LPI40";FinalReportNASAContractNo. NAS8-
36955;DeliveryOrder33; (August1990)

3.2)Siege, A.E.;"Lasers";UniversityScienceBooks;Nil Valley,CA.;Ch. 14-23(1986)

3.3)NathcadSoftwarePregranVersion2.5;MathsoftInc.;CaLbridge,_
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4 LP-140 Discharge Characteristics

4.1 Introduction

The dischargecircuit is an importantcomponentof the overalllaser design as it can dramatically

effectthe efficiencyof the laser.The circuitis designedto perfornseveral functions.

4. i. 1 Discharge Initiation

In order for a stable dischargeto be for_d the initialgas voltmebetween the electrodesnust

undergoelectricalbreakdown.For this to occur ho_geneously, preionisationelectronsrest be

injectedinto the dischargegap prior to the lain voltagepulse appoaringacross the electrodes.

Mortallya preionisationsourcedriven by the dischargecircuitprovides these initialelectrons.

Followingpreionisation,the lain voltagepulse is appliedacross the nain electrodesto produce

breakdown.Breakdownoccursthroughthe rapid avalanchingof the preionisationelectronsto produce

a plasna.For this processto occur successfullythe nain voltagepulse met have a fast risetim.

The timng betweenthe peak of the preionisationelectron pulse and the initiationof the avalanch-

ing voltagepulse nust be optimisedto utiliseas _ny of the preionisationelectronsas possibleso

that a minimm nu_er are lost to electronattach_mt processes.Huch of this timing can be arranged

to occur autonaticallyby a suitabledesignof the dischargecircuit.

4.1.2 Energy deposition

once the dischargehas been forled,it shouldbe optimisedto efficientlypu_ the uppor vibrational

level of the C02 lasingtransitionand other associatedlevels (such as the N= vibrationallevels).

It has been shown that there is an optimm electricfield strengthper nolecule,known as the

reducedelectric field E/N for pu_ing the levelsof interest.Correct _atching of the discharge

circuiti_eadance to the dischargeimpeadance,togetherwith the correctchoice of voltagefor the

dischargecircuitpulse forlingnetwork (pfn)ensuresthis criteria is net.

4.1.3 Pulse termination

If the circuithas been correctlydesiguedto the above criteria,the discharge will nornally

extinguishitselfhologeneouslywhen the energy stored in the pfn has been depositedinto the

discharge.Occasionallyfor pulse forRingreasons, a tail-biterswitchingtechniquemay be used to

telminatethe dischargeprior to the co,fete dischargeof the pfn.

4.1.4 LP-140 Discharge circuit

The LP-140dischargecircuit is shown in figure4.1. The circuit is duplicatedfor each of the eight

dischargeelectrodepairs,with the exceptionof the thyratronand 880 KQ bypass resistorwhich are

commonto all the circuits.There are essentiallytwo dischargecircuits in this circuit, the first

is the lain dischargecircuitconsistingof the 0.i _F capacitorand the second comprisesthe three

22 nF capacitors.As there is an inductorin serieswith the 0.i _F capacitor,this circuitwill

have a large tine constantwith respectto the 22 nF dischargecircuit.When the thyratron is

triggered,the 22 nF circuitprovidesa low energy fast risetinevoltage pulse across the laser

head. The pulse breaks down the gap betweenthe grid and the pin electrodesto provide a preliminary

preionisingdischarge.When the slowernain dischargepulse arrives at the laser head, the nain

dischargegap is preionisedand ho_)geneousbreakdownoccurs.The snell 500 pF capacitorprevents

energy from the slowermain dischargepulse from being deposited into the preionisationdischarge.

12



_ _ p..

I
20 Mfl

This portion duplicated
for each electrode pair.

Figure4.1.The LP-140DischargeCircuit.

4.2 _xperimental measurements

The voltageandcurrentcharacteristicsof theLP-140weremeasuredto enablethe dischargeto be
characterised.

4.2.1 Voltage and current pulse measurements

ThevoltagepulsewasReasuredusinga TektronixP6015highvoltageprobeconnectedto a Leeroy9450

dual 350 _IIz digitising oscilloscope. The discharge current pulse was _easured similtaneously usi_
a pearson Electronics Model 110 induction coil. After being digitised by the oscilloscope, the
pulses were either ported to a plotter or to an IBH colpatible co_uter for analysis. Figures 4.2
and 4.3 show representative voltage and current pulses from one of the electrode pairs.

4.2.2 Discharge pulse analysis

It canbe seenfromthevoltagepulsethatthereis an initialsharpvoltagepulserisingto

-4.5kV. Thisis thepreionisationpulseand it is inediatel7followedby themaindischargepulse
whichrisesto -5.5kV.Thevoltagepulsethenproceedsto ringacrossthe dischargewithan

approxiRateaveragevalueof -4.5kV. Thisringi,g,allthoughundesirableisnot excessive.The

currentpulseriseis delayedwithrespectto thevoltagerise.Thisis to be expecJ:edas the

dischargeimpeadanceisrequiredto fallbeforea significantcurrentflowcanbe obtained.The

currentpeaksat a valueof -650h as thevoltagepulsestartsto fall.

Furtheranalysisof thedischargewascarriedout to enablethedischargeimpeadance,electron
concentration,electrondriftvelocitiesandenergydepositionto be deterlinedas a functionof
time.

The basic program ....,*,l-_vi...listed in Appendix 1. was used to obtain these characteristics from the
initial data files.

13



Voltage
(kV)

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

-1.0

h

\

0 1.0 2.0 3.0

Time (_)

4.0 5.0 6.0

Figure 4.2. The Discharge Voltage Pulse.

Discharge
current

(A)

700

600

500

400

3OO

2OO

100

0

-100

0.0

r, \

11" '

\
\

\
V

1.0 2.0 3.0 4.0

Time (_s)

5.0 6.0

Figure4.3.TheDischargeCurrentPulse.
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4.2.2.1 Enerqy Deposition

The energy deposited into the discharge is given by:-

E= ;l'xldt (4.1)

where E is the pulse energy, V and I are the voltage and current respectively and t is the tile.
This can be taken as:-

E =- _. (I/x Ix St) (4..2)
rl

where n is the nuLberof digitisation intervals over the discharge pulse and 8t is the sa_linq
period. Usinq this enables the proqra to calculate the energy deposition. The energy deposition
for the voltage and current pulses given earlier is shown in Figure 4.4.

Energy
(J)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Time(_s)

Figure 4.4. Energy Deposition in the Discharge.

It can be seen that a total of -3.4 J is deposited into the discharge. This provides a total of

27.2± 3 J depositedintoalleightpairsof electrodes.Fora noninalopticaloutputof 1 J

thisprovidesan electricalto opticalconversionefficiencyof 3.7 ± 0.2 %. Thisvalueis low

co_)aredto a potentialefficiency>i0%. Onlythe energydepositedintotheCO=(O01)andthe

N,(v=l-$)vibrationalenergylevelsis usefulfor lasingaction.Lowkeet al._''z*haveshown

thatthe optimlgexcitationof thesevibrationallevelsoccursforan E/Mof -(l-3)xlO-16Vcm=.

The value of E/M is obtainedfrom the voltage by:-

|/

E/N d xN (4.3)
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where d is the discharge electrode seperation and K is the molecular numberdensity given by:-

Px ["ol x .\,-t
.\: (4 4)

R x T

whereP is thetotalgaspressure,%1 isthedischargevolume,NA is Avogadro'sconstant,R is

themolargas constantandT is the_astemperature.Therangeof E/N valuesduringthe

dischargepulseisdividedintointervalsof IxlO-I"Vcl-"and the energydepositedintoeachof
the intervalsiscalculated(figure4.5).

1.5

1.0

Energy
(J)

0.5

0.0

-I 0 1 2 3 4 5 6 7 8 9

Reduced electricfield,E/N (x i0"16Vcm 2)

Figure 4.5. The Energy Deposition Dependence on E/M.

Itcan be seenthatmostof the energyisdepositedin the (4-6)XI0 -I" VC1-2 regionand this

accountsfor the lowelectricalto opticalconversionefficiencyobtained.To improvethe

efficiency,thedischargecircuitimpeadanceshouldbe optisisedto preventtheringingseenon

thevoltagepulse.Ideallythecircuitimpeadanceshouldhatchthatof the discharge.The

dischargeimpeadancecanbe approximatedby dividingthe voltageby the current(figure4.6).It

canbe seenthatthedischargeimpoadanceduringthe bulkof the energydepositionvaries

between5 C/and i00. Thisvariationsuggestsan optimm valueof -7 C/for the circuit

impeadance.It shouldbe notedthatthe dischargeimpeadancewillvarywithgascompositionand

optimisationof thedischargecircuitshouldbe undertakenafterthe finalgas mixturehas been
decided.

4.2.3 S_,zmaary

Voltageandcurrentpulsemeasurementsof the LP-140dischargewereobtainedand fromthesewere

derivedtheelectricalenergydepositedintothe gas,the electricalto opticalconversion
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Figure 4.6. The DischargeImpeadance.

efficiency,the inputenergy dependenceon E/N and the dischargeimpeadance.It was found that

3.4 J was depositedinto each discharge,which had an impeadanceof (5-I0) I-I A poor electricalto

optical conversion efficiency of -4 % was found to be due to ringing of the voltage pulse which

resulted in the electrical energy being deposited at too high a value of E/N for efficient excita-
tion of the relevantC02 and N2 vibrational levels.

4.3 Power supply considerations

4.3.1 Introduction

This sectionprovidesan outlineof assistanceprovided to PhilipThlstlethwaite,a GSRP studentwho

workedwith the [2-140during the later half of 1990. Illstask was to design a new high-voltage

power supplyfor the [2-140.

4.3.2 Design Criteria

The followingMathcaddocument was providedto Philip as an initialspecification requirement.A

nominaldesignpulse rate of 20 {{zwas chosen to enable the laser to be rim at high pulse rates if

required.The pulseenergy was specifiedat 200 J and voltagesup to 40 kV to enable higher gas

pressuresto be used in the laser head. This would result in shorter pulses than the (5-15)_s

pulsescurrentlyobtained,together with a largeroutput energy.As the design of high voltagepower

suppliesbecomesmore difficultwith increasingvoltage, the maximm voltage required was set at

20 kV but with the requestthat 40 kV would be desirableif he found it possible.

17



Power Supply Design Criteria

This determines some of the basic requirements of the high voltage power

supply based on the required inputs to the laser which are;-

Maximum voltage

Maximum pulse energy

Maximum pulse rate

(V) V := 20000

max-

(J) E := 2OO
max

(Hz) PRF := 20

Average power (W) P

av

P

av

:= PRF. E

max

3

= 410

Allow a 100_S period for discharge and thyratron recovery, during which the

charging unit is off, therefore the time available to pulse charge a capacitor
is given by

-4

t := i.i0 S

discharge

1

t :- t

charge PRF discharge

t = 0.0499 S

charge

Thus allow a 49mS charge time

t := 0.049 S

charge

This gives an average charging current for the chosen pulse energy of

I

av

E

max

:=

V .t

max charge

giving I = 0. 204

av

A

18



i

The capacitor will charge exponentially where the charging current will be

given by :-

I=I exp(-ct)

pk

where I is the peak charging current, c is the time constant and t is the

pk
time.

When the capacitor is fully charged the current will fall to zero, however due

to the exponential decay the point at which this occurs can be said to vary,
depending on how accurately the capacitor is to be charged. If we assume that

we require the capacitor to be fully charged to better than 0.5% then this

will give a time and time constant product of:-

ct := -in(0.005)

ct = 5.298

This gives for the time constant,c assuming the charging time t above.

charge

ct

C "--

t

charge

-i
c = 108. 129 S

We now need to calculate the peak charging current. The average current

obtained above can be regarded as the integration of the charging current over
the charging time, divided by the charging time ie

I

pk

I .t

av charge

t

I charge

0

exp(-c.t) dt

I = 1. 087

pk

A
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_e can then plot the charging cycle

t := 0,0.001 ..0.05

I(t) := I .exp(-c.t)
pk

Charging

current (A)

1.5

I(t)

0

\

0 t O.O5

Time elapsed since start of

charging cycle (S)

2O
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4.3.3 Circuit Outline

Eigure4.7showsa suggestedcircuitoutlineforthepowersupplywhichwas providedto Philip.The
inputtentinalson the left-handsideassumeadc source,Vi. whichchargesup capacitorCI.

CapacitorC2 is resonantlychargedthroughinductorL1 to a voltage2xV,,.To ensure,egligeble

rippleon C2,CI>C2.WhenC2 isfullychargedthyristor,T1 is triggeredto dischargeC2 thro_ the
high-voltagestep-_transforler,T_. _e to thelargesizeof TI, it regulresa finitetim to

turnon andsaturatinginductorSkl limitsthe currentthroughthethyristoruntilturnon hasbeen

completed,at whichpointSLI saturatesto providenegligibleresistanceto thedischargepulse.

LI el

CI "1"1

/-51 DI

•-r'R !

RZ

-----o

0

©

Figure4.7.An OutlinePSUCircuit.

Thetransformer,TRIis shownas a distributedcoretransformer.Thisenablesa largestep-upratio

to be obtainedwhilstmaintaininga low inductanceforthe transforler.It is possiblethata single

corehighvoltagetransforllercouldbe used.Afterbeingsteppedup the pulseappearson capacitor
C3.Diode,D1 preventsreversecurrentfluctuationsfromdaagingthe thyristor,whichis vulnerable

to suchpulses.By choosinga suitablevalueof C3 andchargingand dischargingC2 rapidlyan
apparentlyd.c.highvoltageis obtainedat theoutputterlinals.The resistivedivideron the

outputenablestheoutputvoltageto be ionitored.Thislonitorfeedsbeckto the thyristorswitch-

ingcircuit(notshown).For a givenload,varyingthe thyristorpulseratewillresultin a
•_ariationof the outputvoltage.
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4.3.4 Pulse Transformer I)esi_

The Mathceddoculentfollowinqthe referencesenablesa designfora singlecorelow inductance

pulsetransformerto be evaluated.Thisdocu_t waspreparedfollowinqa requestfor a transformer

designfromthe student.Thevaluesin thedocuaentare thosefora transforlerdesignedpreviously
by theauthorc4"2_.Thesevalueswereusedto testthe coffee,mess of the calculations.As no

specificationsforthe transforlerwererecievedfrolthestudenta finaldesignwasnot co,feted.

Thetheoryforthedesignof lowinductancehi_-voltagetransfor_ issol,hat co_lex and Io_
andthe readeristhereforereferredto the standardtextsby Snellinq'4"_'4"'_and the paperby

Bakerc'-5)whichprovidea completereviewof thesubject.The sunaz7 of dataat the endof the

docuRentenablestheoptimmtransforeerto be chosen.

4.4 References

4.1)Lowke,J.J.,A.V.Phelps& B.W.Irwin;"predictedelectro,transportcoefficientsand operati_
characteristicsof C02-M2-He_xtures";J. kppl.Phys.;44; 4664(1973)

4.2)Sylvan,k., G.D.Spiers,A.Johnstone& R.G.Harrison;"Co_cthighrepetitionratelagnetically
switchedtransverse,electric,atlosphericC02 laser";Rev.Sci.Instrul.;61; 1821(1990)

4.3)Snellinq,E.C.;"SoftFerrites:PropertiesandApplications";Butterwortlm(1988)

4.4)Snelling,E.C.& A.D.Giles;"Ferritesfor InductorsandTransform'; ResearchStudiesPressLtd.

(1983)

4.5)Baker,H.J.,P.A.Ells_ore& E.C.Sille,J. Phys.E: Sci.Instru|.;21; 218 (1988)

22



Pulse Transformer Design

Gary D. Spiers

Input Parameters

Peak Input Voltage

Peak Output Voltage

Voltage Ratio

VI := i000

pk

VO := 30000

pk

VO

pk
Vratio :=

Vl

pk

V

V

Pulse Width

Pulse Energy

-6

T := 8.10 s

E := 4.32 J

Assume pairs of 3C8 FX3845 ferrite E-cores

Assuming the cores are biased then the maximum

available flux swing is

Effective area of magnetic path

Effective magnetic path length

Effective magnetic volume

Available winding height

6B := 0.85 T

-6 2

A := 532.10 m

e

i

e

V

e

:= 0.147 m

-5 3

:= 7.82- l0 m

-3

Wh := ii- i0 m

If we stack m cores together and vary nl, the number of turns on the primary

between 1 and 7 then the condition to avoid saturation is given by:-

nl := 1 ..7

m

nl

VI • T

pk

:=

6B" A •nl

e

Make allowances for need to have an integral number of cores

mnl := mnl + 1 - mod[mnl ,i]

and the number of secondary turns is given by

n2 := nl. Vratio

nl
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We require an integral number of turns on the secondary

n2 := n2 - modln2 ,i 1nl nl t nl

Now calculate the primary inductance

Relative Pulse Permeability of Core

P

Permeability of Free Space

2

._ .A .m -nl

0 p e nl 6

Lp := 10 _H
nl i

e

0

:= 720

:= 4._. i0

-7

H/m

Next the leakage inductance assuming a tape wound core

Thickness of material in primary winding

Thickness of material in secondary winding

t

1

t

2

Thickness of interwinding insulation

Winding Width

The thickness of the primary winding is thus given by:-

tp := _t .nl + c.(nl + 1) 7 m

nl 1 J

and the mean length per turn on the primary is given by:-

-4

:= 3.8.10

-5

:= 2.5.10

m

m

-5

c := 2.4. i0 m

-2

w := 1.9. i0 m

-2 -2

ip := 2.74-10 .2.m + 2.10 .2 + _.tp m
nl nl nl

Similarly for the secondary the thickness of the winding is given by:-

tSnl := it2 .n2nl + c' In2nl +iII m

and the mean length per turn is:-

-2 -2

is := 2.74.10 .2.m + 2.10 .2 + 4.tp + _.ts m

nl nl nl nl
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thus providing an overall mean length per turn of:-

i
nl

nl'ip + n2 .is
nl nl nl

nl + n2
nl

and a total winding thickness, tw
nl

The leakage inductance is given by:-

3

[tPnl + tSnl]'10
mm

lit-i 2 nl 1

ii := 4._'I0 "nl "--"

nl w L

•nl + t .n2 ]
I2 nl

+ c" inl + n2nlq j
3

_H

From the pulse energy and the input voltage we can calculate the input

capacitor size
9

2.E.10

C1 := nFInput Capacitor
2

VI

pk

3

C1 = 8.64 i0 nF

If we assume the inductance of the circuit in series with the primary and

secondary coils is of the same magnitude as the leakage inductance and also

assume that the capacitor on the output side of the transformer is just

sufficient to hold the energy transfered across the transformer then we can

calculate the transfer times for the various configurations.

output Capacitor

Referred to primary

9

2.E.10 3

C2 := nF C2 = 8.64 i0 nF

2

VI

pk

Series inductance Ls := ii

nl nl
_H

Transfer Time

I
!

t := _. i rll

nl "i[ nl
CI.C2 ] -3

+ Ls ] ........ i0

nl] LcI + c2

_s
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The actual frequency is thus given by

:= rad/s and f :=
nl -6 nl -6

t .i0 2:t .i0
nl nl

and the actual flux swing in each core is given by

VI
pk

dB := T
nl nl •m •A •w

nl e nl

Hz

The energy losses in the transformer can be divided into two distinct sources
one due to the winding and the other due to the magnetic material.

Magnetic losses
There are two sources, hysteresis loss and eddy current loss.
Hysteresis Loss

Steinmetz Exponent

Proportionality Constant

Energy loss per pulse due to hysteresis

n := 2.5

-2

k := 2.154.10

n 6

Ehnl := mnl.Ve "k" FdBnl_LJ .i0 mJ

Energy loss per pulse due to eddy currents

Resistivity of core material

Filling factor for core geometry

@ := 2
f

:= 16

_m

Ee

nl

2 2

_.m .A .dB .V

nl e nl e 3

i0 mJ
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Winding Losses

Resistivity of copper winding
c

-8
:= 1.694. i0

The resistances of the primary and secondary coils are thus:-

_m

@ .nl.lp @ .n2 -is

c nl c nl nl

Rldc := _ and R2dc :=

nl t .w nl t .w

1 2

n

respectively. The peak currents in the primary and secondary can be

estimated by:-

Vl

pk

IP := A

nl -6

.rll + Ls ].i0

nl[ nl nl J

VO

pk

and

IS := A

nl -6 2

• [ii + LSnlT.10 .Vratio
nl u nl

respectively. The energy loss per pulse in the core windings due to the d.c.

resistance can then be calculated:-

[ 2 2 ] -3

Eres := |IP -Rldc + IS .R2dc I .t .i0nl L nl nl nl nl nl

mJ

In general the a.c. resistance is higher than the d.c. resistance at high

frequencies due to eddy currents in the windings. These manifest themselves as

the skin effect and the proximity effect.
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=

Skin effect

Penetration depth D

nl

Skin effect merit function for each coil is given by:-

-0.5

:= 0.0655.f m

nl

t t

1 2

M1 :- M2 :--

nl D nl D

nl nl

For these merit fuctions less than 2 the skin effect can be ignored.

Proximity Effect

For tape wound cores the energy loss per pulse is given by:-

2 2

•dB .w

nl I 3 3]3
Epe := nl.lp .t + n2 .is -t -i0

nl 24.r.@ nl 1 nl nl 2

c

mJ

The total energy loss is given by

Etot := Eh + Ee + Eres + Epe mJ
nl nl nl nl nl

The results from these calculations are tabulated and summarised in

graphical form on the following pages.
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A summary of the variables in the following tables and their respective units
are:-

nl, the number of primary turns (no units). This can be considered the primary
variable, all other variables having been derived with respect to nl. In the
following variable summary the nl subscript has been dropped to reduce the
amount of space required.
m, the number of core pairs required (no units).
n2, the number of secondary turns (no units).
Lp, the primary inductance (uH).
ii, the leakage inductance (uH).
t, the pulse transfer time (us).
dB, the calculated flux swing in the core (T).
IP, the peak current in the primary (A).
IS, the peak current in the secondary (A).
tw, the total winding thickness (mm).
MI, the skin effect merit fuction for the primary (no units).
M2, the skin effect merit function for the secondary (no units).
Eh, the energy loss due to hysteresis loss in the core (mJ).
Ee, the energy loss due to eddy current loss in the core (mJ).
Eres, the energy loss due to the d.c. resistance of the windings (mJ).
Epe, the energy loss in the windings due to the proximity effect (mJ).
Etot, the total energy loss in the transformer (mJ).

m n2
nl nl nl

1

12 9 t
i3 6 m

:514 _

7 ' 3 'i [_

Lp ll t dB IP IS tw
nl nl nl nl nl nl nl

58.9 0.08 I 2.6 0.08 5312.3 177.1 1.9

117.9 0.32 I 5.3 0.17 2584.1 86.1 3.8176.8 0.77 8.1 0.27

262

327.4

353.6

481.3

1.61 !2.68

11.7

15.1

18.1

23.1

0.35

0.45

0.6

0.66

1669.6 55.7

1159.9 38.7

897

748.2

586.4

29.9

24.9

19.5

5.7

7.5

9.4

11.3

13.2

M1

nl nl
r

i 2.567 •
2 I i 1.79

3___3r 1.439
i 4 ] i •199
5 ] i •055

_ 0.9630.853

M2

nl

i0.169

0.118

0.095

0.079

0.069

0.063

0.056

Eh

nl

0.i

Ee Eres

nl nl

ii.--_2, i 262.4

90
72 g

,_ 59
47.8

44.3

Epe Etot

nl nl

[23.6 287.3

104.2

r260.5

239.4

353

t 499.4 574.1

{868.8
1477.9

I 2075

930.4

1528.8

2123.1
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All graphs are a function of nl, the number of primary turns.

00.u_ero_ .u_ero_ ii I 1
Core Pairs m Secondary n2

nl \ Turns nl

1 1

1 nl 7 1 nl 7

Flux _ Primary

Swing dB i i i _| ! l Inductance

(T) nl __i J I i IuH)
0

1 nl 7

5o0Lp

0

1 nl 7

LeakagejInductance ll

(uH) nl i

0

1 nl 7

Transfer

Time

(us)
t [

nl _
0

1 nl 7

Primary Peak

Current

A

6000

IP

nl

0

_ , i _ _ 7

• i i _ i
I i

1 nl 7

Secondary Peak
Current

A
200 ,,"i '_

IS _\'

nl : -

o ' i

1 nl 7

Winding

Height

mm

2O

tw

nl

0

1 nl 7
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Core
Hysteresis

Loss (mJ)

2

Eh
nl

0
1 nl 7

Core Eddy

Current Loss

(mJ) Eenl

0

1 nl 7

3OO

Resistance

Loss Eres

(mJ) nl

1 nl 7

Proximity

Effect Loss

(mJ)  00OEpe

nl

0

1 nl 7

Total Energy

Loss

(mJ)

3OOO

Etot

nl

0

1 nl 7
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5 Frequency Chirp

5.1 Introduction

There are two contributionsto frequencychirp during the laser pulse, one due to the decayingelectron

density_s'1)in the dischargeand the other due to thermalchanges in the laser gascs'=_.The thermal

effect or Laser InducedMedium Perturbation(LIMP)is the main concern.

5.2 _m,nalysis

Frequencydata is collectedwithinthe laboratoryon a HP time and frequency analyserand storm on an

IBM compatiblecomputer.The data is analysedusing the first of the two Mathcmddocumentswhich follow.

The documentis self explanatory.The sample file analysed in the document is a file obtained from the

LP-140.It can be seen that the total pulse lengthis 13 _ long with a total frequencychirp of

2.7 N3z consistingof an initialdownsweepdue to the decayingelectron densityand then an upsweepdue

to the LIMP contribution.Withinthe centerof the pulsethere is a 5 _s portionwith a frequencychirp

of 230 kHz and this has been plottedin the second window.This document has been made availableto Dr.

Jaenischto enablehim to analysethe chirp resultsfrom the LP-140.

5.3 Modeling

The LIMP withinthe laser has been modeled in Mathcadusing the theoryof Willetts et el._s'2>. From the

secondMathcaddocumentwe see that for a pulse lengthof 13 Is and a pulse energy of 1 J a frequency

chirp of 2.5 []z is obtained.As the LIMP theoryis only an approximation,the degreeof agreement

betweenthe measuredchirp and the calculatedchirp is very good, with a less than 10% difference
betweenthe two values.

5.4 References

5.1) Willetts,D.V. & M.R. Harris;"APlasma Effectin Injection-ModeSelection of TEA CO2 Lasers";Appl.

Phys. B; 33; 91 (1984)

5.2) Willetts,D.V. & M.R. Harris;"ScalingLaws for the IntrapulseFrequencyStability of an Injection

Mode SelectedTEA CO= Laser"; IEEE J. Quant. Electron.;QE-19; 810 (1983)

32



H.P. DIGITISER CHIRP DATA PLOTTING AND ANALYSIS

Gary D. Spiers

The heterodyne beat frequency obtained to measure the frequency chirp in the
LP-140 is digitised by a HP digitiser and the data passed to a PC where it is
stored for later use. Each file consists of 201 data points where each point
consists of the point number, chirp frequency and time interval since the
previous measurement respectively.
This document extracts the time and frequency information from the data file

and plots two windows, the first is the total chirp over the entire pulse

whilst the second is a user defined sub-window of the first. The frequency
change and time duration of each window is also calculated.

i := 0 ..200.3 - 1 This is the index for reading in the data.

datai := READIchirPdat I

This reads the data.

j := 0 ..199 Set up index for extracting required information.

The following two statements extract the chirp and time data respectively. As

the original data has units of Hz and s respectively the data is also

converted into kHz and _s respectively.

data data

j.3+l j.3+2

chirp := time :=

j 3 j -6
i. i0 1 •i0

NOW the two windows are set up. As the digitisation period is much longer than

the pulse length, the first window is used to display the portion of relevance

and the second to highlight particular areas of interest. The variables

cstart, cend, sstart and send define the size of each of the windows, the

units being the number of points.

cstart := 22 cend := 77 sstart := 31 send := 51

The following statements set up the index range for each window and copy the

relevant data points from the original data arrays.

k := 0 ..(cend- cstart) 1 := 0 ..(send - sstart)

c := chirp e := chirp

k k+cstart 1 l+sstart

d := time f := time

k k+cstart 1 l+sstart

The following statements find the maximum and minimum frequency in each window

and calculate the total frequency chirp and time duration of each window. The

frequency is also offset to provide a minimum frequency of 0 kHz to enable
convenient plotting.

minc := min(c)

maxc := max(c)
mine := min(e)

maxe := max(e)

6chirpl := maxc - minc 6chirp2 := maxe - mine



c := c - minc e := e - mine

k k 1 1

timel := _ d time2 := _ f
k -%--_ 1

k 1

Finally plot the data and display the calculated data.

3000

/

c _
k _ "

/\

I
0 k

timel = 13

6chirpl = 2700

55

_s

kHz

3OO

e\1

0

\
\

/
, ., /Y/_'/

time2 = 5

6chirp2 = 230

20

_s

kHz
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Laser Induced Medium Perturbation

Gary Spiers

Gladstone-Dale coefficient,

Equivalent frequency of lower laser level,

41.9 THz for i0 _m band, 38.7 THz for 9 _m

Output pulse energy,(J)

Molar gas constant,

Mode spot radius,(M)

Cavity length,(M)

Specific heat capacity at constant volume,

Optical Pulse length,(_S)

Time,t (_S)

-4

K := 2.11.10

12

f0 := 41.9.10

E := 1.0

R := 8.314

-2

:= 1.25. i0

L :=2.5

Cv := 16.97

r := 13

t := 0,0.i ..r

f(t) :=

3

2.K- fO-E.R.t

4 15

3._.a .L.Cv-r.10

The factor of 10^15

accounts for the

conversion of t and r from

_S to S and Hz to kHz

Frequency

Chirp

(kHz)

3OOO

f(t)

i

0

I i

J

J

t

Time,t _S

jl

i
1

q
I
I
I /
I /

i,/

.'[

!
/ 1

./

,°/

13

Total frequency chirp, f(r) = 2545 kHz
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6 Laser Linewidtl_s

6.1 Introduction

The laser linewidthis importantin determiningthe likelihoodof obtaining singleaxial mode operation.

For pressuresabove 20 tort the C02 linewidthis a combinationof two lineshapes.The first is due to

Dopplerbroadening,_hich is the dominantmechanismat low pressure,and has a Lorentzianlineshape.The

secondand usuallymuch largercontributionarisesfrom collisionbroadeningwhich has a Gaussian

profile.The combinedprofileis known as a Voigt profile.For pressures above -50 torr howeverthe

collisionbroadeningis so much largerthan the Dopplerbroadeningthat the Dopplercan be ignoredfor

most situations.The Mathcaddocent that followscalculatesa Ganssian lineshapeto approximatethe

Voigtprofile.This enablesa comparisonbetweenthe LP-140and the lasers proposed by the LAWS contrac-

tors to be made. For the LAWS lasersthis approximationis inconseguential,howeverfor the LP-140,

whichoperatesat a much lower pressure,there will be a slight error.

6.2 LP-140, _C/AVCO and GE/STI Laser ComI_mrison

Table 6.1 lists a comparisonof the resultsobtainedfor each of the lasers.LPI40a is the LP-140with a

short pulsegas mixtureand LP-140bwith a long pulse gas mixture.

Laser Cavity P

Length (n) (tOrT)

LP-140a 2.38 45

LP-140b 2.38 45

LI{SC/AVCO 2.20 380

GE/STI 3.00 380

C02 N2

52 29

13 15

25 25

17 33

Table 6.1. LP-140,LI(SC/AVCO

Linewidth Axial Node No. modes

FWHM (MHz) Sepn. ([]z) under FWHM

343 63 5.4

291 63 4.6

2215 68 32.5

2151 50 43

and GE/STI Laser Mode Comparison

From the table it can be seen that there is a distinctdifferencebetween the LP-140 and the LAWS

lasers.This is due to the differencein operatingpressures,the LAWS laser linewidthsare dominatedby

the collisionbroadening.The number of axial modes under the FWH]Iof the linewidthindicatesthe

likelihoodof axial node hopping,the greaterthe numberthe norm likelymode hopping will occur.Thus

in principlethe LP-140should easilyhold a singleaxial mode, however due to its constructionit

exhibitsconsiderablethermaldrift which negatesthe narrow linewidthadvantage.A cavity length

increaseof 5 _ is sufficientto change the axial mode yet perspexand aluminium,the two main compo-

nents of the LP-140 constructionhave thermalexpansioncoefficientsof 85 _tuK-z and 23 [mK-z respec-

tively.For a mechanicalresonatorlengthof -I m this impliesa temperaturestabilityof -(0.25-0.06)K

is requiredto keep the resonatorstable.

6.3 Tl_e Matllcad Document

As mentionedpreviouslythis documentonly approximatesa Voigt profile, howevermodificationsare in

hand to calculatethe exact profile.
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Laser Linewidth Calculation (LP-140)

Gary D. Spiers

/his calculation normalises the gain shapes to one.

cavity length,(m) L := 2.38

Speed of light in vacuo, (m/s)

Wavelength of interest, (m)

Rotational line number

Total gas pressure, (torr)

Fractional CO2 concentration

Fractional N2 concentration

Fractional He concentration

Gas Temperature, (K)

Avogadro's number, (/mol)

Boltzmann's constant , (J/K)

Molecular mass of CO2, (Kg/mol)

No. of points calculated

c := 2.99792458.10

-6

:= 10.6-10

c

J := 20

P := 45

CO2 := .5193

N2 := 0.2909

He := 1 - CO2 - N2

T := 300

NA := 6.0221367-10

-2

k := 1.380658.10

-3

MCO2 := 44.0098-10

imax := 400

Doppler Broadening (FWHM)

18.1n(2).k.T c

6vd := !

, FMco212
[-x-j.c c,i

7

6vd = 5.289 i0 Hz

Collision Broadening (FWHM)

6vc :=

20.660.(7.520 - 0.059.J).P

8

6vc = 2.903 i0 Hz

6

(CO2 + 0.73.N2 + 0.64.He).lO
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Total broadening (FWHM)

6vc := 6vc + 6vd

8

6vc = 3.432 i0 Hz

Axial Mode Seperation

c

6vax :=

2.L

7

6vax = 6.298 I0

6vc

nax :=

6vax

Hz

Lineshape calculation i := 1,2 ..imax

v

i

:= 282813 +

c

,k :-

i v

i

_c

i

o

2

6vc

v i

2

2

+ 6vc

8

i0
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Axial mode plotting calculations

int := i - mod(i,step)

i

di := if lintl' _ inti+l,0.5,0]

j := 1 ..imax + 1

int := 0

J

imax. 6vax

step :=

v - v

imax

-6

6vc := 6vc. lO

(Conversion to MHz)

uc ,d

i i

LP-140 Linewidth

1 1 400

Frequency

Frequency, (Hz)

Wavelength, (m)

Minimum Maximum

13

v = 2.82813 i0 v = 2.82833 i0

1 imax

-5 -5

= 1.05996 i0 _ = 1.06004 i0

imax 1

Linewidth (FWHM), 6vc = 343.2 MHz

No. of axial modes under the FWHM, nax = 5.4

13

39



7 Appendix ( 1 )

PI_?_( ABLYSVI

Gary D. Spiers

Center for AppliedOptics, Universityof Alabama,

Huntsville,AI. 35899, (205) 895 6030

This programprocessesdigitisedvoltage and currentpulsesobtained

from the LeCroy 9450 350 I_z digitisingoscilloscope.The data has been

previouslysaved to disc using programI/CROY,writtenby Phil Kronis of

Boeing Co_uter Services.This progranstoresthe data in two forts, the

raw data direct from the digitiser(containedin the directoryc:\lecroy\

icrdata)and decodeddata (in the directoryc:\lecroyklcpdata).This

programuses the processeddata as input.The data in these processedfiles

is stored as follows:-

Verticalaxis gain per digitisationpoint (Voltsor A_ps)

Verticaloffset (Voltsor Alps)

Tinebase intervalbetweendigitisationpoints (s)

Tinebaseoffset with respectto the oscilloscopetriggerpulse (s)

Timebasevalue (s/div)

(A blank line which nay eventuallycontaininfo. added at storagetime)

. . . . f! It . . . . . f_

11 If 11 N W ff ff fl fl 11 11 fl

. . rf re 11 . . . . W 11 f!

let verticalvalue

final verticalvalue

end of file

The output files (exceptfor the energydependenceon E/N) are Stored in a

similarforlat:-

Time betweendigitisationpoints (s)

Time offsetfrom triggerpoint to first digitisationpoint (s)

let calculatedverticalvalue in appropriateunits

final calculatedvalue.

End of file.

The energy as a functionof EIN file consists of ii valuesof energy,one

for each E/H subdivision.

' START OF PlDGRAM

' Dimensionthe fiienanearraysand the array for the energyas a function

' of the reducedelectricfield data.
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DIH filelAS STRING* 40

DIM file2AS STRING* 40

DIM file3AS STRING* 40

DIM file4iS STEING* 40

DIM file5AS STRING* 40

DIM file6iS STRING* 40

DIMfile7iS STEING* 40
DIMfile8iS STRING* 40

DIM file9iS STRING* 40

DIM filel0iS STEING* 40

DIM filnamiS STRING* 15

DIN ebin(lTO II)ASDOOBLE

' Declarethevariablesusedin theprogram

DIN dl,d2,d3, d4,d5 iS SINGLE

DIMvgain,voffset,hstep,hoffset,timebasliS DOUBLE
DIMigain,ioffset,tstep,toffset,timebas2is DOUBLE

DIM vpoint,ipoint,efn,nrgstep,oldltrq,energy_ DODBLE
DIM impead,efnval,tempry,edrift,electronAS DOUBLE
DIN countAS INTEG_

' Assignvaluesto constants

CONSTpressure= 50

CONSTtemp= 100
CONSTR = 8.315

CONSTelecsep= 4
CONSTelecwid= 4
CONSTe = 1.6021771)-19

'Assign

filel=

file2=

file3=

file4=

file5=

file6=

file7=

'Totalgaspressurein torr

'Gastemperaturein centigrade
'Universalgas constant

'Dischargegap in c_

'Dischargewidthin o+
'Chargeon an electron

filenames for input and output of data

"c:\lecroy\Icpdata\"
"c:\lecroy\IcIMata\"

"c:\lecroy\Icpcalc\energy.dat"

"c:\lecroy\Icpcalc\inpead.dat"
"c:\lecroy\Icpcalc\efn.dat,

"c:\lecroy\Icpcalc\eCrift.dat.

"c:\lecroy\Icpcalc\electron.dat"

files: "c:\lecroy\Icpcalc\voltage.dat.
file9: "c:\lecroy\Icpcalc\current.dat.

filet0= "c:\lecroy\icpcalc\nrqven.dat.

'Clearthescreenandobtainthe namesof the digitisedvoltageand
'currentpulsesto beanalysed.

SCREEN9
CI_

INPUT"Voltagefilename";filnam

filel= LEFT$(filel,18) + filnam
INPOT"Currentfilename"; filnam

file2= LEFTS(file2,18)+ filnam

'Openup thefilesfor inputandoutputrespectively
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OPEN filel FOI Il_/T AS |I

OPEN file2 FOR llfl_ AS t2

OPEN file3 FOR _ AS #3

OPEN file4 FOR O_fP_ AS #4

OPEN file5 FOR _ AS #5

OP[] file6 FOR O{]TI_ AS t6

OPEN file7 FOR OUTPUT AS #7

OPEN file8 FOR (X]TI_ AS |8

OPEN file9 FOR _ AS #9

'Inputvoltage

'Inputcurrent

' Read in the voltagegain and offset,digitisationtim interval,pre/post

'triggerdelay intervaland oscilloscopetinebese settingfor the voltage

'pulsefollowedby five blanksto seperatethe header from the data

INleT |i, vgain, voffset,hstep,hoffset,tiubesl

I_UT #I, dl, d2, d3, d4, d5

'Repeatthe above procedurefor the currentpulse to obtain currentgain and

'offset,digitisationtine interval,pre/posttriggerdelay intervaland

'oscilloscopetinebasesettingfor the currentpulse.

INPUT #2, igain,ioffset,tstep,toffset,ti_.bas2

I]{Iq]T|I, dl, d2, d3, d4, d5

' As the two pulseswere digitisedsinultaneouslythe digitisationintervals

' and offsetsshouldbe the sale. If there is a differencethis impliesan

' error in the data or possibleincorrectpairingof the voltageand

' currentdata files. If they are not the sane then issue a warningand stop

'the program.

IF toffset <> hoffsetOR hstep <> tstep THEN

PRINT "Voltageand Current filesare incompatible!"

CLOSE

STOP

DD IF

' As all of the output files exceptthe energy depositionas a function of the

' reducedelectricfield are time dependent,write the digitisationinterval

' and trigger offsetto the top of each file (exceptEnergy as fn. of E/M).

WRITE #3, tstep

WRITE #3, toffset

WRITE #4, tstep

WRITE #4, toffset

WRITE #5, tstep

WRITE #5, toffset

WRITE #6, tstep

WRITE #6, toffset

WRITE #7, tstep

WRITE #7, toffset

WRITE #8, tstep

WRITE #8, toffset

WRITE #9, tstep

WRITE #9, toffset
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' Setup a loopwithcounterto incrementallyreadin thedatapointsand

'calculatether_red information.

count= 0

CL_

LOCATEI0,28
PRINT"Processingpointno."

DO

LOCATEi0, 49
PRINTcount

IIII_@I,vpoint

II(l_ @2, ipoint

'Firstlytakethe rawdatapointsand convertthemto unitsof voltsand amps

_n_oint---(_l)oint* vgain- voffset)

ipoint= (ipoint* ignin- ioffset)

'Thenstorethesevoltageandcurrentvaluesin theiroutputdatafilesso

'thattheymay be plotted

WRITE#8,_l_int

_ITE #9, ipoint

'Now cak_latethereducedelectricfield,E/Nandstorethevalue

efn= ((273.15+ te_) * R * _int) / (80.2553* I0 ^ 18 * pressure* elecsep)

WRITE#5,efn

'Multiplyingthe voltageby thecurrentandtimestepprovidesthe input

'energyfor eachdiscretedigitisationinterval.Thisenergyper stepis
'storedinan arrayforuse laterto evaluatetheenergyas a fn.of E/N.

'The individualpacketsof energyaresuled to providethetotalenergy

' inputintothedischargeandstoredto file.thisprovidesa recordof

'the timeevolutionof the energyintothedischarge.

nrgstp= vpoint* ipoint* tstep
IF count= 0

energy= nrgstp
ELSE

energy= oldnrg+ nrgstp
ENDIF

oldnrg= energy
WRITE#3,energy

' Thedischargeimpoadanceat eachdigitisationpointis foundby dividing

' thevoltageby the current.Howeverinthe initialand finalpartsof the

' digitisationboththe currentpulseis zeroandthedivisionresultsin

' an infiniteimpeadancewhichcreatesan overflowerror.Additionallythe
' currentfluctuatesby +/- 1 digitisationpoint(anartifactof the

' digitisationprocess)aboutthe zerolevelto providespuriousvalues

' of the impeadancewhichareartificialanddue entirelyto the digitisation.

' To eliminatethistrapsforthemagnitudeof the dischargecurrent<0.iA

' (c.f.peakvaluesof -500+A) havebeenset andwhenibisoccursthe
' impoadanceis setto 200ohmswhichis sufficientlylargewithrespectto
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' theactualimpeadanceafterbreakdownhasoccuredto be representativeof
' theactualinfinitevaluepriorto breakdown.Theresultingimpeadance

' valueis savedto file.

IF ABS(ipeint)< .1THEN

inpead= 200
ELSE

impead= vpoint/ ipoint
E_])IF

IF impead<:0 Tl_ ilpead--200

WRITE14,iwead

' Thisroutinesubdividesthe inputenergyas a functionof the E/Nvalue.

' TheE/M isdividedintoI0boxes,eachrepresentinga stepof IxlO^(-16)

'Vcl^(3)intherange(O->lO)xlO^(-16)VcB^(3)plusan eleventhbox for

' allvaluesgreaterthanlOxlO^(-16)Vcu(3).As onlythe finaltotalfor

' eachbox isrequiredno savingto fileis doneat thispoint.

efnval= ABS(efn)* I0 ^ 16
IF efnval< IOTE[]

ehin(INT(efnval+ I))= ebin(INT(efnval+ i)) + nrgstp
ELSE

ebin(ll)= ebin(ll)+ nrgstp
END IF

The followingcalculatestheelectrondriftvelocityandelectrondensity

inthe discharge.The electrondensitydependson theelectrondriftwhich

dependsina non-linearfashionon the rechlcedelectricfieldE/N.The

paper"Predictedelectrontransportcoefficientsand operating

characteristicsof CO2-M2-Helasermixtures"by J.J.Lowke,A.V.Phelpsand

B.W.IrwininJ. Appl.Phys.,44, iO,4664-4671,(1973)calculatedthis

dependenceforseveralgasmixtures.Fromtheresultspresentedwe cansee
that:-

log(driftvelocity)= b ÷ k.log(E/N)

approximately.Allthouqllcrudethisapproximationenablesan orderof

magnitudeestimateof theelectrondriftvelocityto be madesimply.This

techniquehasbeenusedwithinthisprogramwithb:17.044andk:0.658.

A trapis usedto preventa valueof zerovoltsresultingin an overflow
error.Finallythe calculateddatais savedto file.

IF vpeint

tempry=
edrift--
electron

ELSE
electron

edrift--

END IF

WRITE#6,

WRITE#7,

<>0 THEN

LOG(ABS(efn))/ LOG(IO)

IO ^ (17.044+ .658* tempry)

= (iDoint/ (elecsep* elecwid* e * edrift))

--I

1

edrift
electron
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' Incrementthe loopcounterand ifeitherof the inputdatafilesis

' emptythenleavethe loopandcloseall thefiles.

Count: col/nt+ 1

LOOPUNTILEOF(1)OR EOF(2)
CLOSE

' Finallytheoutputenerqydependenceon E/Ndatamustbe writtento file

' andthenendthe proqram.

OPEHfilelOFORO{]TPI]TAS ilO

Count= 1

DO

WRITE#I0,ebin(count)
count= count+ 1

LOOPDNTILcount= 12

CLOSE

CLS

LOCATEI0,28

PRINT"Analysissuccessfullycompleted."
DD
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8 Appendix (2)

Idealised Laser Mode Profiles

This program calculates the Rayleigh range fo_ a given Gaussian beam

together with the spot size and mode profile at any given location. The

profile calculated is the idealised rectangular mode profile of the beam at

the chosen location for values of 1 and m, the TEM indices, up to 3. Firstly
select the initial parameters:-

Minimum spot size Wavelength Refractive Index
-3 -6

w := 3"10 _ := 10.6"10 n := 1

0

Calculate the Rayleigh range at the beam waist, given by:-

2 n

Z := IT'W "-

R 0 k

Z = 2.667

R

Define the beam waist location as position z=0, then chose a position for the
calculation of the spot size and mode profile:-

z := 0 z := 5

0

Calculate the spot size at the chosen location using:-

W :=

2
W

0
I 2

Z

+ --

2
Z

R

w = 0. 006

Then calculate the radius of curvature of the beam at the chosen location

using:-

R := Z'

" 2"

Z

0

1 +

2

Z

R = 5
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Now start on the mode profile by chosing values for 1 and m, the mode

indices, and the electric field, E. The mode is calculated using a 50x50 arra_

of points.

1 := 2 m := 2 E := 1 q := 0 ..50

0 v := 0 ..50

Next calculate the relevant x and y Hermite polynomials for the chosen mode

profile:-

H (x) := if = 0,l,if = i, • • ,if = 2, • • - 2 ,if = 3, •
x

H (y) := if = 0,l,if = i, • • ,if = 2, • • - 2 ,if = 3,

Y

Finally calculate the intensity mode profile:-

w0 Ix2•y21
I(x,y) := --'H (x)'H (y) exp --

0 w x y w 2

The following variables are associated with scaling the grid size to cover the

chosen spot size, whilst M is a dummy array required by the surface plotting
routines.

q-4.w v'4-w

x :- 2"w y : 2.w M := I[xL 'Yv]Jq 50 v 50 q,v q
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The mode profile

1 = 0 m = 0

M
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The mode profile

M

Transverse mode profile indices 1 = 3 m = i
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9 Appendix ( 3 )

Modifications to the LP-140 Pulsed COo Laser

for Lidar Use

Holger M. Jaenisch and Gary D. Spiers

Center for Applied Optics

University of Alabama in Huntsville

Huntsville, Alabama 35899

ABSTRACT

The Pulse Systems Inc. Model LP-140 isa commercial

pulsed CO2 laserdesigned formarking and engraving. It

isavailablewith pulse energiesin excem of I joule and

repetitionrates up to 7 Hz, thus making ita potential

candidate forlidarapplications.We document the char-

actensticsof the LP-140 performance including power,

temporal and spatialmode stability,chirp,and long ter-

m operationalcharacteristics.The lasercan be made to

function as a coherent lidaronly ifmodified to improve

itsinherentcharacteristics.This paper addresseswork in

progress on the followingmodifications and theireffect

on performance: gas flow,opticalresonatorconfiguration

and dischargesupply modifications.

INTRODUCTION

The LP-140 is a transversely excited pulsed discharge
device based on a sympathetic discharge 1. The system

is produced and marketed commercially for applications

_uch as engraving. The LP-140 is designed and built to

t,he Pulse Systems Inc. (PSI) specifications 2 listed below.

• DIMENSIONS: 0.35 x 0.35 x 1.2m 3 (thisdimension

includesallopticalcomponents)

• ENERGY PER PULSE: 3 J. (multi-mode with no

frequency discrimination)

• GAS CONSUMPTION: 0.3 Standard Cubic Feet Per

Hour (0.14 l/min)

• GAS MIX: 20% CO2; 15% N_.; 65% He

• INPUT POWER: l15V, 50-60 Hz, (_5 amps

• MAXIMUM PULSE RATE: 8 Hz ( Higher repetition

rates available but at lower pulse energies)

• PRESSURE: 40 torr

• PULSE WIDTHS: 35/_s FWHM (I00 ns to 200/_s

availableon specialorder)

Our goal was to modify the LP-140 to meet the criteria
outlined below.

,• Minimum overallsizeand compactness

• Energy of 1 J per pulse

• Maximum pulse length of 5 #s

• Stable single mode operation

• Interpulse frequency stability of < 1 MHz

• lntrapulse frequency stability of < 0.2 MHz

• Maximum pulse length of 5 _s

• Maximum repetition rate of i0 Hz

These requirements were derived from the requirements

of the laser systems proposed for LAWS a (Laser Atmo-

spheric Wind Sounder). The LP-140 was never consid-

ered a contender for this program, however the relatively

low cost, and simple, rugged design make it an attractive

choice for small scale atmospheric studies if the laser per-

formaace can be improved. The LP-140 can also be used

as a testbed for LAWS concepts.

LASER DESCRIPTION

The laser secured for this investigation differed from

the standard commercial models on several key parame-
ters. The active volume was extended from the _,1.7 L of

the standard design to _2.2 L. The standard gas mixture

of CO2:N_:CO:He, 18:15:2:65 which produces long puls-

es was modified to produce short pulses (< 10/Js). The

new mixture was designed by PSI using a Boltzmann dis-
tribution code 4 and proprietary laser model s. The new

mixture consists of CO2:N2:CO:He, in the proportions
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[529:17.33:1.99:65.39.Thegaspressureismeasuredus-
ingaWallace& TiernanmodelFAI60gaugeandthelaser
isoperated in the 30-50 torr pressure range.

The standard LP-t40 is configured for high power
multi-mode operation. Our application requires mod-

e discrimination, therefore the optical cavity design was

_:hanged to a hybrid, positive branch half-symmetric con-

figuration using a Burleigh Instruments Model 1-1000 re-

flection grating mounted at the Littrow angle to enable

_ingle longitudinal mode operation. The grating was

also supplied with a Burleigh Instruments Model TS-

100 translation stage, Model PZL-M Micrometer moun-
t. Model PZL-015-00 15 #m PZL pusher, and a Model

PZ-150-1 Amp/Driver-150 for feedback control and cavi-

ty tuning.

As presented in reference 2, each of the two gain arms

has an effective volume of 4 x 4 x 70 cm a, comprising of

four equal discharge volumes, with an unsaturated gain
:,f 0.031 cm -_ and a saturation intensity of 0.017 J cm -2

The standard gas flow plumbing was engineered by PSI

to enhance operational lifetime. The commercial housing
was maintained, but modified to allow the addition of

the grating externally to the housing. The mechanical

resonator structurewas of a cast aluminum singlepiece
construction.

:AWC_0E$
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Figure i: Optical layout of LP-140.
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OPTICAL DESCRIPTION

Our LP-140 folded optical cavity consists of a 6.35 cm

diameter x 0.63 cm edge thickness meniscus ZnSe output
coupler with a 5m radius of curvature on both surfaces

Figure 1}. The A.R. coated convex side faces the dis-

,'barge, in the center of which a square gold mirror had

been flashed on with an area of 4 cm 2. Two rectangular
_old flat mirrors fold the optical path into the second ar-

m of the optical cavity. Each is supported by a simple
three-point mount. Finally the laser-tube cavity is sealed

with a 10 m focal length, 6.35 cm diameter x 0.63 cm edge
thickness A.R./A.R. piano-convex lens, with the convex

_ide facing the discharge. The optical cavity is complet-
ed by the grating placed ,_ 10 cm beyond the final lens

element. The optical cavity length is 238 cm. Since the

4 x 4 cm: discharge region is square all optical elements

are underfilled. The actual beam dimensions are (center
obscured) 4 x 4 cm _.

INITIAL CHARACTERIZATION

Pulse Energy

The initial pulse energy for the system was measured

as approximately I jouleper pulseat I IIz.The pulseen-

ergy stabilitywas poor and varied not only from shot to

Figure 2: Pulse energy dependence upon pulse rate and
laser temperature.

shot but decreased to below a joule after only a few min-
utes of operation. As the repetition rate was increased

the average pulse power decreased as seen in Fig. 2. Dur-
ing the test it was found that a minimum of 40 minutes

was required for the operational system to reach thermal

equilibrium and maximum stability. Also shown on the

same figure is a similar result taken after the laser had

reached thermal equilibrium. It can be seen that the out-

put energy is consistently lower than immediately after

startup.

In the cool system the power varied by 10% from shot

to shot, after the laser had warmed up this dropped to
5%.

Temporal Profile

The temporal profile was measured using a PSI fast

response pyroelectric detector, Model # UF-1 with a re-

sponsivity of 10 -_ V/W. To prevent detector damage the

beam was attenuated before being focussed onto the de-
tector.

Figure 3 is an example of the initial temporal profile

observed during the baseline characterization. It can be

seen that there is significant mode beating during the 5

#s pulse duration.
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Figure 5: Average beam diameter dependence upon grat-
ing extension.

Figure 3: Pulse temporal profile prior to modification.

Figure 4: Pulse spatial profile prior to modification.

Spatial Profile

The spatial profile was measured using a Spiricon beam
profiler and the laser transverse mode pattern was found
to be highly unstable with a large degree of beam point-
ing instability. Local hot spots in the beam distribution

_vouid vary on a shot to shot basis indicating possible
transverse mode hopping. Figure 4 shows two represen-
tative records.

Frequency Chirp

The intrapulse frequency chirp was measured by feed-
ing the laser output into the existing Marshall Lidar6.
The data was collected on the 10P20 line. Due to trans-

verse mode instabilities indicated above the frequency
chirp was considerable ( _8 MHz) and varied inconsis-
tently from shot to shot.

SYSTEM MODIFICATIONS

Gas Flow

The degradation in output energy with both increased

pulse rate and number of pulses tends to indicate insuffi-
cient gas flow through the laser. This results in pressure,

thermal, and possible dissociation mechanisms in the gas
leading to the reduced output. During operation, the nee-
dle on the pressure gauge momentarily rises by as much
as 10 torr. This is indicative of the pressure wave which

exists inside the cavity during the laser discharge.

Inspection of the laser head showed that the gas in
and out flow were limited by the orifice size of the flow

tubing. The standard LP-140 laser flows gas through the
discharge at a trickle rate of 0.5 L/rain. The gas flow
was modified by increasing the diameter of the input and
output lines and reversing the direction of flow in the laser
head. This enabled the flow rate to be increased to 2.5
L/min.

Cavity Length

The cavity was lengthened by increasing the spacing
between the grating and the lens, L1 (Fig. 1). This
enabled a more stable operation point to be obtained.
Additionally the increased path length reduces spurious
off-axis modes. The cavity was extended in 2.54 cm incre-

ments. Previously, the grating would have to be adjusted
every two to three shots to maintain a uniform laser out-

put. For an extension of 534-5 cm the distribution became

very uniform and stable. The optimum beam stability
(Fig. 5) and mode pattern points did not coincide. The

energy increased to approximately 1.25 joules (Fig. 6) for
an extension of 51 cm but there was very slight mode in-
stability characterized by the occasional appearance and
disappearance of a mode hot-spot.
At 54 cm extension the beam pointing instability was
minimized. At 56 cm the energy decreased to 1.15 joules
and the mode distribution was at its most stable point.

The output quickly became chaotic as the cavity exten-
sion decreased below 45 cm. There was also an accompa-
nying energy drop to 0.75 joules for extensions below 25

cm. As the cavity spacing was further decreased, the en-
ergy once again increased. For extensions above 58 cm the
power dropped off linearly. Mode and pointing instability
never set in for cavity extensions out to 90 cm. Although
stable, the output energy distribution collapsed to fill on-
ly a single corner of the entire possible output pattern.
This corner remained very stable in distribution but fiuc-
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Figure 6: Pulse energy dependence upon grating exten-
sion.

tuated in power. For extensions beyond 75 cm it became

impossible to fill the output pattern despite adjustment
to the grating.

During these adjustments we found that rotating the

grating by 90 ° decreased the output energy by 50-75%.
We also rotated the output coupler by 45 ° and found that

the spatial output pattern degraded severely. We feel this

is due to diffraction and polarization effects caused by the
sharp edges of the square reflector. We will address both
of these phenomena in more detail in future work.

When the lens L1 was replaced with a ftat uncoated

NaCI window the laser operated with a stable output en-

ergy and spatial distribution. The energy however de-
,:reased by 50%. We feel this is accounted for by the lack

of A.R. coatings and the marginal quality of the sub-

strate available at that time. The increased diffraction

losses resulting from the use of a flat window may prove

ro be sufficient to cause stable operation without grating
,_xtension.

Matrix Method LP-140 Model

A MathCad TM version 2.5 document is presented in
Appendix A and may be used without alteration. The

matrix technique used is taken from Siegman I°.

From this document, it can be seen that the extended

cavity has a magnification of 2.0 and an equivalent Fresnel

number of 1.7. On extending the cavity by 0.56 m and by

changing the value of D2 in the document, the magnifica-
tion is increased to 2.1 and the equivalent Fresnel number

changes to 1.6. This implies that the improved mode sta-
bility is due to combination of increased diffraction Io._s

and slightly improved Fresnei number.
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Figure 7: Pulse temporal profile after modification.

CHARACTERISTICS OF THE

MODIFIED LASER

Pulse Energy

The pulse energy was immediately observed to have

increasedslightlyand stabilized.At the most stablepoint

forpulse to pulserepeatability,the energy isequal to the

originalperformance ofI .]/pulse.When the cavitylength

isslightlymodified from thispoint by an extension of 2-5

cm, the energy increasesby I0-15%. The spatialprofile

however isnot quiteas stable.

The optimum point of operation isbetter described as

a window about 11 cm wide peaked at a cavity length

extended by 56 cm.

Temporal Profile

The temporal profile at the peak cavity length improves

substantially (Fig. 7). The pulse length not only short-

ens, but the tendency for multi-pulsing is also reduced.

At the original cavity length, inconsistent pulse lengths
up to 12 _s were not uncommon with triple spikes in

the pulse. By extending the cavity, these pulses have

been reduced to 5-8 ,s with a single well defined spike.

It is important to note that at all cavity spacings, the

gas mixture and pressure also play an important role in

defining the temporal profile.

Spatial Profile

The spatial profile at the optimal cavity spacing demon-

strates the most significant improvement (Fig. 8). Out-

side of the Ii cm window the profile is chaotic and exhibit-

s strong beam pointing instabilities. Within the window
the temporal profile fills out and the beam settles down

to a high degree of stability.

It is difficult to quantify the exact nature of the spa,-

tiai mode. The center obecuration creates a square out,.

put beam with a square hole in the center. The far-field
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Figure 8: Pulse spatial profile after modification.

diffraction pattern is non-uniform and may not be ade-
quately described as gaussian or top-hat. Both the near
and far-field patterns display large amounts of diffraction
ripple.

Frequency Chirp

The chirp data was taken for pressures of 30-50 torr
and was found to be stable and repeatable with a de-
pendence on pressure. The higher pressure range from
40-50 torr provided the best results. The frequency chirp
is shown in Figs. 9 and 10. The initial large downsweep
in frequency can be attributed to the decaying electron
density in the discharge r while the upswing is the conven-
tional t a time dependence s. It can be seen that the pulse

is approximately 13/_s long compared to the apparent 5
_s in the pulse temporal profile. This apparent difference
ts caused by the heterodyne technique which extracts the
!ong, very low energy tail of the pulse from noise. Over
this total pulse the frequency chirp is approximately 3
3IHz. In practice the latter portion of the pulse is in-
significant to the application and can be ignored. It can
be seen from Fig. 10 that there is a 5/is long portion of
the pulse with approximately 250 kHz of chirp which is
acceptable for our application. It should be possible to
eliminate the leading and tail edge of the pulse to provide

a slice which would contain 70% of the pulse energy.

Discharge Characteristics

Each of the discharges is driven by a separate cir-
cuit (Fig.ll), although they are all switched by a com-

mon EG&G HYII02 thyratron. The discharge voltage
pulse was measured using a Tektronics P6015 high volt-
age probe and the current pulse using a Pearson Elec-
tronics Model l l0 induction coil. Both were connected

to a LeCroy 9450 digitizing oscilloscope which download-
ed the signal pulses to an IBM PC compatible computer
for analysis. Typical current and voltage pulses for one

Figure 9: Frequencychirp.
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Figure 10: Frequency chirp.
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FigureIf:Sympatheticdischargecircuit.
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Figure 12: Voltage pulse.

of the electrodes are shown in Figs. 12 and 13. It can
be seen that there is considerable ringing on the voltage
pulse, which is due to a mismatch in the impedance of
the discharge circuit and the laser discharge.

The electrical energy into the discharge can be obtained
by integrating the voltage and current pulses (Fig. 14).
This shows that the energy deposited into a single dis_
harge is _3.5 J, However, only the energy deposited into
the CO2(001) and the N:(u - I - 8) vibrational energy
levets is useful for lasing action. Lowke et al. 9 have shown
hat the optimum excitation of these vibrational levels oc-

curs for a reduced electric field or E/N of_ I - 3.10 -t6
Vcm:. The value of E/N was derived from the discharge

voltage pulse form for each digitization interval together
with the energy input in that interval. This enabled the
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Figure 13: Current pulse.
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Figure14: Energyovertime.
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Figure /5: Energy input.

input energy into the discharge to be evaluated as a func-
tion of E/N for E/N intervals of 1.10 -_6 Vcm -_(Fig. 15).
It can be seen that most of the energy is deposited in the
4- 6.10 -re Vcm'-. This results in the low laser ef_ciency

of _4% compared to _12% for the laser in its original
multimode long pulse configuration. This means that the
discharge circuit requires optimizing for the new gas m_x-
ture. The evolution of the discharge impedance with time
was found by dividing the voltage by the current (Fig.
16). It can be seen that the discharge impedance during
the bulk of the energy input varies between 5 f_ and 20
fL This enables the discharge circuit to be optimized.

Figure 16: Discharge impedance.
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