@ https://ntrs.nasa.gov/search.jsp?R=19930004692 2020-03-17T10:15:41+00:00Z

NASA-CR=190C 1
~ s
ma 0
| — o~
~ 2 X
INTEGRATED MODELING TOOL FOR PERFORMANCE co 2 c
ENGINEERING OF COMPLEX COMPUTER SYSTEMS .
S
PED =] AL |
EST iz
TE
N
NAS7-995 FINAL REPORT Ser LY
DELIVERABLE 0002 SUTLST
TS
29 June 1989 —w T 22
cc 7e
$5E" 3
s co
SN 3E
QUEEDS
ZETRLE
NATIONAL AERONAUTICS -
AND SPACE ADMINISTRATION ADVANCED SYSTEM
TECHNOLOGIES, INC.

Copyright 1989, Advanced System Technologies, Inc.
S. Government under NASA Contract NAS7-995. This material may

This work was sponsored by the U
Government pursuant to the copyright license under the clause at

be reproduced by or for the U.s.
DFARS 252.227-7025 (APR 1984).

o. NAS7-995. For a period of 2 years after
’ the Government agrees to use this data for
side the Government during such period without
going use and disclosure prohibitions, such data
foresaid 2-year period, the Government has a
alf this data for Government purposes; but is
r unauthorized use of this data by third

This data is furnished with SBIR rights under NA Contra
acceptance of all items to be delivered under this Ygntr

Government purposes only, and it shall not be disclos
permission of the Contractor, except that, subject to th
may be disclosed for use by support contractors.
royalty-free license to use, and to authorize others,
relieved of all disclosure prohibitions and as
parties. This Notice shall be affixed to any r

INTEGRATED MODELING TOOL FOR PERFORMANCE
ENGINEERING OF COMPLEX COMPUTER SYSTEMS

=z —
PED EST AL

NAS7-995 FINAL REPORT
DELIVERABLE 0002

29 June 1989

Prepared by:

Gary Wright
Duane Ball

Susan Hoyt

Oscar Steele

ADVANCED SYSTEM
TECHNOLOGIES, INC.

5113 Leesburg Pike,
Suite 514
Falls Church, VA 22041
(703) 845-0040

Acknowledgements

The authors gratefully acknowledge the technical direction and support of Dr. Dan Erickson and
Mr. Blair Lewis of the Jet Propulsion Laboratory. In addition, the comments and suggestions for
prototype enhancements made by other JPL staff significantly contributed to the functionality of
the delivered prototype.

Table of Contents

1.0 ProjeCt SUMMANYcccoviimiiiiimiinie sttt st 1
2.0 BacKgGroUngdcccecmmiimcti s e 2
3.0 Project ODJECHVEScccuviriiiriniiiiiiseie et 4
4.0 ACCOMPISHMENES ...cvriiiiitirit i 5
4.1 Visual INterfaceocvveevrveeireeecerrcii st 6
4.2 TIANSIALON .ottt se et 10
4.3 SIMUIBLOT c...voniiterereterererest e sessresas e ss s et se s b enns 11
4.4 Statistics PaCkagecccovereeveeiiriiniiineressss e 11
4.5 Software Interoperabilitycccoovrmiiieieens 11
5.0 Results -- Sample PEDESTAL ModelSsccocovieeeiiniiiiiiiieiee 14
5.1 Shared Resource Task Response Time Modelcc......... 14
5.2 Telemetry Processing System ... 16
6.0 Conclusions and Recommendationsccoummrmmeieniensenenneeninennen. 21
Appendix -- PEDESTAL Preliminary User's GUIdEcoovieiiinnnnnienne. A-1

i

1.0 Project Summary

Timely responses to stimuli are critical requirements for complex, real-time computer
systems. To ensure these critical requirements are satisfied, tools and techniques capable of
predicting compliance with response time specifications are needed. Unfortunately, application
of these specialized computer performance engineering tools is either not applied or is
misapplied during system design and development. As a result, systems often fail to meet their
performance requirements and costly, timely redesign efforts are required to bring the system
into compliance. To overcome this lack or misapplication of performance engineering, tools are
needed which (1) require less specialized expertise to use and (2) can be applied throughout
the design and development phases. That is, performance engineering tools must be used by the
designers rather than by specialized performance engineering groups which are typically an
adjunct to the design effort and therefore their models are reactive rather than proactive design
aids.

There were two technical objectives for the Phase Il research and development effort.

1. Develop an evaluation version of a graphical, integrated modeling language
according to the specification resulting from the Phase | research.

2. Determine the degree to which the language meets its objectives by evaluating ease
of use, utility of two sets of performance predictions, and the power of the language
constructs.

The technical approach followed to meet these objectives was to design, develop, and test an
evaluation prototype of a graphical, performance prediction tool. The utility of the prototype
was then evaluated by applying it to a variety of test cases found in the literature and in AST
case histories. Numerous models were constructed and successfully tested; the results of two
such test cases are described in Section 5 of this report.

The major conclusion of this Phase |l SBIR research and development effort is that complex,
real-time computer systems can be specified in a non-procedural manner using combinations of
icons, windows, menus, and dialogs. Such a specification technique provides an interface that
system designers and architects find natural and easy to use. In addition, PEDESTAL's multi-
view approach provides system engineers with the capability to perform the trade-offs
necessary to produce a design that meets timing performance requirements. Sample system
designs analyzed during the development effort showed that models could be constructed in a
fraction of the time required by non-visual system design capture tools.

The potential applications of a graphical, integrated modeling tool are numerous. Architects and
designers responsible for systems whose compliance with response times is critical and whose
complexity requires analyses by modeling tools will greatly benefit from the proposed language.
The tool supports incremental specification of design detail from high-level to low-level. Not
only will the tool predict performance but it the simulator can also identify potential design
defects (e.g., deadlocks and race conditions). Because (1) the system description language
embodies a wide variety of constructs to represent software flows and (2) these constructs are
easily entered by users, the graphical, integrated modeling language will be widely used and as a
result, developed systems will more likely meet their specified performance criteria. As a
result, costly redesign efforts will be avoided and, more importantly, systems that will fail to
meet their mission requirements will not be deployed.

2.0 Background

Timely responses to stimuli are critical requirements for complex, real-time computer
systems. To ensure these critical requirements are satisfied, tools and techniques capable of
predicting compliance with response time specifications are needed. Unfortunately, application
of these specialized computer performance engineering tools is either not applied or is
misapplied during system design and development. As a result, systems often fail to meet their
performance requirements and costly, timely redesign efforts are required to bring the system
into compliance.

To overcome this lack or misapplication of performance engineering, tools are needed which (1)
require less specialized expertise to use and (2) can be applied throughout the design and
development phases. That is, performance engineering tools must be used by the designers
rather than by specialized performance engineering groups which are typically an adjunct to
the design effort and therefore their models are reactive rather than proactive design aids.

In addition to not supporting designers, traditional tools do not provide views of the system that
enable trade-offs to be easily evaluated. In particular, most tools do not provide views that
enable functional partitioning, functional allocation, data allocation, and operating system
trade-offs to be easily performed. As a result, these trade-offs that are critical in the design of
distributed systems are seldom evaluated.

Early in the design effort, many options often are evaluated and a few candidate alternatives are
identified for more detailed analysis. Developing a tool that supports high-level rapid and low-
level accurate design evaluations would provide designers with a tool that could be used during
all phases of the design.

The development of such a timing performance prediction tool was the subject of this Phase i
research and development effort. The goals of the development effort were to provide designers
with a prediction tool with the following unique features:

. Single description of a computer system that captures the data required by
both analytic and simulation modeling techniques.

. Graphical specification of hardware connectivity including dynamic and
fixed path routing.

. Hardware node constructs that facilitate the specification and display of
complex hardware topologies.

. Language constructs to fully characterize the behavior of concurrent
software processes including: control flow arrows that capture all of the
complexities involved in passing control from one module to another and
software specification which is independent of the module-to-task and
task-to-processor allocations.

. Ease in specifying resource management policies and their execution and
transmission overheads.

. Sophisticated Human-Computer Interface (HC!l) concepts that provide
icons, menus, and dialogs specifically tailored to describing computer
systems; support the operational use by system architects and designers;
and support use by both novice and experienced users.

The combination of these features in a single tool will significantly advance the capabilities of
currently available performance prediction tools and will provide tool users with the following
benefits:

. Putting performance engineering tools in designers' hands - no longer will
performance modeling be divorced from the design team. Designers will be
able to immediately assess the timing performance impact of a pending
design decision.

. Providing multiple scenarios to be analyzed prior to commitment to a final
design thus ensuring that the system will perform as desired prior to
deployment.

. Provide highly accurate performance predictions so that the complexities of
embedded, real-time systems can be adequately addressed.

. Detect logical as well as performance bottlenecks - the discrete-event
simulator can be used to detect such design flaws as deadlocks and race
conditions.

. Reduce the cost of performance engineering by providing a single tool with
the above characteristics.

3.0 Project Objectives

The overall objective of the Phase Il research and development effort is to develop an evaluation
prototype of a performance engineering tool that can be easily and effectively used to ensure that
systems will meet their specified performance requirements. Ensuring compliance with
requirements will avoid costly and lengthy redesign efforts, and, more importantly, avoid
deployment of systems that fail to perform during critical missions.

There were two technical objectives for the Phase Il research and development effort.

1. Develop an evaluation version of a graphical, integrated modeling language
according to the specification resulting from the Phase | research.

2. Determine the degree to which the language meets its objectives by evaluating ease
of use, utility of two sets of performance predictions, and the power of the language
constructs.

The technical approach followed to meet these objectives was to design, develop, and test an
evaluation prototype of a graphical, performance prediction tool. The utility of the prototype
was then evaluated by applying it to a variety of test cases found in the literature and in AST
case histories. Numerous models were constructed and successfully tested; the results of two
such test cases are described in Section 5.

4.0 Accomplishments

The major accomplishment of the Phase Ii effort was the development of an evaluation prototype
tool, called PEDESTAL, which was designed to assist system designers and architects in
performance engineering of complex, real-time systems. The etymology for PEDESTAL is
shown in Figure 4.0-1.

nalysis anguage

i
R

5 s G . }:? i
’ pd

%&% S . ,
for Embedded Systems of Time-critical applications

Figure 4.0-1: The PEDESTAL prototype is a performance engineering tool
for time-critical applications

As shown in Figure 4.0-2, the PEDESTAL prototype consists of a visual programming interface,
a translator, and a simulator. The PEDESTAL code module is approximately 428K bytes. As
reference points, Word 3.01 is 350K; EXCEL is 385K; MacDraw Il is 468K; and Pagemaker is
572K. The visual interface allows the user to describe the computer system using the mouse

User

Visual
Interface Translator ——®1 Simulator

. e e Transaction
RD ‘ HW Sequences
E o000
Task OO0

Figure 4.0-2: Three principal PEDESTAL components provide its functionality

and keyboard. This design information is stored in data structures managed by the interface
software. Once the user has completed the system description, the RUN command invokes the

translator which converts the information in the interface data structures to sequences of
operations to be performed on the transactions as they flow through the simulator.

4.1 Visual Interface - System Description Capability

Using the technology (windows, icons, menus, dialogs, etc.) offered by the Macintosh computer
and system software, the user enters the information necessary to represent those system
design features that can potentially impact timing performance (e.g., response time,
throughput, utilization). The manner in which the user enters this information is described in
detail in the PEDESTAL User's Guide which has been included as an Appendix to this report. A
top-level summary of the design information that can be captured by PEDESTAL is depicted in
Figure 4.1-1. A brief discussion of each of the design information categories follows.

System Requirements

A system is designed to satisfy a set of requirements. The timing requirements that influence
design are the workloads that the system must process while meeting specified response time
requirements.

Workload Parameters - Workload parameters are specified for each stimulus that arrives from
a source external to the system being designed as well as for internally generated stimuli.
Multiple workloads may be assigned to a single stimulus. For each workload, the key
parameters that PEDESTAL captures are arrival rate (including rate distribution), number of
workload items batched upon arrival, and workload priority. Workload arrivals may be
initiated and terminated based on the time value of the simulated clock. As workloads flow
through the simulated software, branching decisions and hardware scheduling decisions may be
based upon workload type.

Performance Requirements - PEDESTAL provides a way to instrument the model to collect
response times that correspond to those required by the system specifications. Start and stop
delimiters can be specified at module entry and exit points. Finer response time granularity
can be specified at resource demand initiation and termination points.

PEDESTAL

LANGUAGE
SYSTEM
REQUIREMENTS

WORKLOAD PERFORMANCE

PARAMETERS REQUIREMENTS
SYSTEM
DESIGN

HARDWARE SOFTWARE

ARCHITECTURE

ARCHITECTURE

DATA
ARCHITECTURE

ALLOCATIONS

TOPOLOGY DATA STORE
PARAMETERS
PERFORMANCE
PARAMETERS
STIMULUS DATA STORES
[cONTROL FLOW TO MEMORIES
MODULE TASKS TO
PARAMETERS PROCESSORS
TASK MODULES
PARAMETERS TO TASKS
OPERATING OPERATING
SYSTEM
SYSTEMS
SERVICES TO DEVICES

Figure 4.1-1: PEDESTAL language components capture all
design features that impact performance

7

System Design

The first level of the system design is decomposed into hardware, software, and data
architectures and the allocations that bind the software and data to the hardware.

Hardware Architecture - Specification of the hardware is supported by PEDESTAL's Topology
and Performance Parameters language components. As shown in Figure 4.1-2, the hardware
topology (number, type [processor, memory, bus], and physical connectivity of the hardware
devices) is specified graphically by placing icons on a hardware window and connecting them via
a series of line segments. An icon with a drop shadow depicts multiple servers (e.g., WS5-9
represents 5 workstations).

ws1 Ring1 Ring2 WS$5-9

Figure 4.1-2: PEDESTAL's hardware window graphically depicts topology

The hardware performance parameters allow for specification of characteristics (e.g.,
instruction execution and data transmission rates, memory sizes) that determine device rates
and capacities.

Software Architecture - Specification of the software architecture is supported by PEDESTAL's
Stimulus Control Flows, Module Parameters, Task Parameters, and Operating System Services.

Application software is represented in PEDESTAL by two constructs: tasks and modules. Tasks
represent the units of software concurrency and are the "dispatchable” software units. Modules
are "atomic” units of software that are activated as a unit by the control logic within a task in a
mutually exclusive manner (no two modules within a task may process concurrently).

The application software is represented as directed sequences of module executions called
Stimulus Control Flows (SCFs). An SCF specifies the time-ordered flow of control of a stimulus
from module to module. An SCF is initiated by the arrival of a stimulus and as shown in Figure
4.1-3, is constructed by placing SCF initiator, module, and terminator icons on a software
window and connecting the icons with arrows. Drawing an arrow from one module to another
represents passing control of processing the stimulus from one module to another. In most
cases, data will also be passed along with control of the stimulus.

M2 M6

—o—}@

M1 M7

M3

Figure 4.1-3: Stimulus control flow window graphically depicts
the module processing flow of the stimulus

Multiple arrows may exit or enter a module. Multiple arrows exiting a module indicate either a
split or a fork. A fork denotes a choice among the multiple paths. A split indicates all paths can
be taken: that is; there is the potential for parallel processing of the modules to which control of
the stimulus has been passed. Realization of this parallelism depends on the allocation of
modules to tasks and tasks to processors. PEDESTAL supports conditional specification for
passing control of the stimulus; these conditions can either be probabilistic or can be a function
of the state of the simulated system. When multiple arrows enter a module, the user can specify
whether an input from any of the arrows triggers invocation or whether inputs from all arrows
are required to trigger the module. PEDESTAL's drawing package enhances the icons to show the
results of design specification. For example, in Figure 4.1-3, M2 has been enhanced to show a
split, M6 shows a join, and the arrow from M3 to M7 shows an intertask flow of control.

Module parameters consist of two parts: code and run-time (instance-specific) parameters.
The module code is represented as a set of resource demand statements which include execute,
transmit, lock, unlock, allocate, deallocate, and delay. Aithough the same named module can
appear in multiple SCFs, its set of resource demand statements is essentially invariant across
all instances of the module. However, such run-time parameters as priority and repetition
count can vary by module instance. PEDESTAL supports both parameter types by allowing run-
time parameter specification and a pointer to the code specification on the module instance. The
set of resource demands can be specified either as a sequence of text commands or as parallel
resources in a graphical resource demand window.

Task parameters that may be specified in PEDESTAL include priority, reentrancy, maximum
instantiation count, and maximum buffer size.

The current version of PEDESTAL supports specification of operating system services (resource
management) by allowing device contention selection and simple specification of instruction and
data overheads caused by the operating system. The operating system specification is
distributed over the various devices.

Data Architecture - The data architecture specification is provided by PEDESTAL's data stores
which allow the user to set the size of the data store as well reflect the data store organization
by specifying the number of physical accesses various logical /O operations require.

Allocations - Once the hardware, software, and data architectures have been specified, the
design specification is completed by allocating modules to tasks (functional partitioning), tasks
to processors (functional allocation), devices to operating systems, and data stores to memory
devices.

4.2 Translator

The translator is the keystone to PEDESTAL's flexible structure as it is designed to be extended
or replaced with negligible impact on other language components. Thus, new concepts (e.g.,
reliability) or new applications (e.g., gates or circuits) require minimal changes to the
PEDESTAL language in order to be modeled.

Most of the computer system specific knowledge is encapsulated in the translator. For example,
the translator knows about tasks and generates the appropriate "get and frees" to task instances
whenever task boundaries are crossed. It also conditionally generates resource demands based
on the user specification of operating system overheads. |t reads the data structures created by
the visual interface and translates these into sequences of nodes that a transaction must visit as
it is processed by the general purpose simulator. As an example of the intelligence embedded
within the transiator, Figure 4.2-1 shows the sequence of resource demands that can be
generated from an intertask communication across multiple processors.

Module 0 Execute Get Task Execute IPC Send Execute Free
ITC Ovhd Buffer IPC Send IPC Rec Module O's
Ovhd Ovhd Task
OO
Execute Get Free Execute Module 1
Task Inst Module 1's Task Task Disp
Ovhd Task Buffer Ovhd

Figure 4.2-1: The translator contains computer system specific knowledge 1o generate
operating system resource demands

10

4.3 Simulator

The simulator is a general purpose, process-based discrete-event simulation engine. The
simulation engine is designed to permit experiments at any level of detail from gate-level to
multisystem-level. However, as discussed above, it is the translator the presents the user with
the system-level modeling constructs.

The simulator has been optimized for analysis of systems that have been specified in a top-down
manner. Systems described as a hierarchy of increasingly detailed flows are directly translated
into simulator primitives and executed. The simulator uses asynchronous timing (the most
efficient method for systems which include a stochastic component) and can operate using either
live (i.e., trace data) or theoretically generated arrival patterns. The PEDESTAL environment
supports a multiprogramming environment in which the visual interface and the simulator
share the host computer's program.

PEDESTAL's simulator data structures have been designed to support analysis using analytic
techniques. Graph algorithms can be used to walk sequences of software nodes and compute the
loads on the simulated devices.

4.4 Statistical Package

The statistical package collects, analyzes, and displays the results of model executions. The
statistical package collects a large number of statistics automatically and can also collect
statistics upon request by the user.

Automatic statistics collected include: device utilization, request queueing and service times at
the devices, the number of service epochs at each device, module completion time, delay for task
activation, and stimulus to terminator response time. In general, the statistics collected include
means, standard deviations, minimums, and maximums.

Output data from the statistics package are displayed below the appropriate icons on the active
window (under user control) and are written to disk files specified by the user. Both user-
specified time sampled data and event data can be written to disk files. Finally, detailed system
trace data can be selectively written to a PEDESTAL trace window. These detailed data provide a
means to verify the behavior of the simulated system.

4.5 Software Interoperability

To exploit the interoperability of Macintosh software, interfaces to other software packages
were designed. For example, figures from any of PEDESTAL's drawing windows can be cut or
copied from PEDESTAL and pasted into a word processor or drawing package for preparation of a
report.

To further illustrate the power of software interoperability, consider the following simple
example. Figure 4.5-1 shows the SCF being analyzed. Data arrive from an external source at
the rate of 40/second. The module ACK verifies the syntax and issues an acknowledgement to the
sender; Local processes the data and issues an output message to a local user; Remote finishes
processing the data and issues a message to a remote user. The three flags on the SCF indicate
that response times are being collected at those flow points.

11

@—oegege—%eC@

ACK Local Remote

Figure 4.5-1: Stimulus Control Flow demonstrating
multiple response time collection

The service and response time requirements of the three modules are shown below:

Service Ti R Time Requi
ACK =3 ms ACK=5ms

Local = 6 ms Local = 50 ms

Remote = 6 ms Remote = 100 ms

There is a single processor in the system. Intertask communication is via a buffer task and
requires 3 ms. The design objective is to find a task partitioning that meets response time
requirements. When relevant, ACK has highest priority followed by Local and then Remote.

Figure 4.5-2 shows the results from three different task partitionings. The three task

ACK =46ms
Local =32ms
Remote = 131 ms
Utilization = 81 %

ACK =18ms
tocal =24ms
Remote = 30 ms
Utilization = 58 %

ACK =45ms
Local =48ms
Remote = 55 ms
Utilization = 69 %

“ACK o Lél Réfﬁote

Figure 4.5-2: PEDESTAL results from three task partitionings

12

partitioning results in a high utilization due to the intertask communication overhead. Because
of the high utilization and Remote's low priority, it fails to meet the response time requirement.
Combining all modules in a single task results in a lower utilization, but because ACK response
time includes all of the task queueing time, it fails to meet the 5 ms requirement. Putting ACK
in its own task and combining Local and Remote in a second task results in all modules mesting
their requirements.

Figures 4.5-3 shows the utility of the Macintosh software interoperability as it shows a
summary graph produced by WingZ. Providing such a capability in PEDESTAL would not have
been possible within the cost and schedule constraints.

o
w

©
o

Figure 4.5-3: Summary graph from WingZ shows the utility of
the Macintosh software interoperability

13

5.0 Results -- Sample PEDESTAL Models

During the course of PEDESTAL development and test, many sample systems were modeled.
Detailed trace and statistical data were analyzed to verify and validate the prototype. Two of
those sample systems are described in this chapter. This first sample provides simulation
results to demonstrate validity; the second sample illustrates PEDESTAL's ease of specification.

5.1 Shared Resource Task Response Time Model

The following example is taken from the a paper written by Wesley Chu in the December 1988,
"Real-time System Symposium." The purpose of the article is to investigate the effects of
contention for shared resources on task response times. Figure 5.1-1 is taken from the above

M
E‘:li'
&4 . 9
& .
. 1,0
o,
M3 Module vg Proc. | Module Module
(5 - (;\;] . R | 0™ | astem | Ay
- f, f: 'rf: .
§ 1 50 Sy Pl Pl
1! M5 M6 2 10 0.6\r P R
; g o 3 1.0 0.40y Pl Pl
= . c @ ¢ 4 5.0 n n P
| M4 M7 s 50 Az P1 n
ot , ¢ 10 9.0y ¢} !
V.9, _I;\A JT,AC', 7 $.0 4& [} 7]
M8 |] 10 Ml 1 n
r._d;.’

T, . Mean Response Time for Maduie |

f.' : Veranee of Respenss Time for Medule |

Figure 5.1-1: Sample SCF and processor demands

paper and shows the stimulus control flow and the module processor resource demands. Modules
1,2,4, and 8 require buffer acquisition before they can execute on their assigned processor.
For module assignment 1, 3 buffers are allocated to P1 and 2 buffers are allocated to P2.

Figures 5.1-2 and 5.1-3 show the corresponding PEDESTAL SCF and set of resource demands
for M1, respectively. Graphical sequences of resource demands have been entered for M1, M2,
M4, and M8 as indicated by the enhanced icons for these modules. Note that these are the same
modules that contend for the shared resources.

14

0 AVO ——@H °oAavVo

M2 114

@ —0foave OAVO—O—é @

M1 18

M5

13 117

M6

Figure 5.1-2: PEDESTAL SCF for the task response time example

@ =N\ —H N —> @

Enter Allocate Execute Dealloc Exit
RDIMO Buffer Butfer RDIMO

Figure 5.1-3: Sample sequence of resource demands for M1
shows acquiring and releasing shared resource

A comparison of results produced by PEDESTAL and interpreted from the graphs presented in
Chu's paper follow. Since Chu did not present confidence intervals about the statistics, we have
not reported any for PEDESTAL's values.

Stimulus arrival rate Chu PEDESTAL

P1 Utilization 0.67 arrivals/sec 47% 49%
P2 Utilization 41% 41%
Response time (sec) 3.0 3.1

P1 Utilization 1.0 arrivals/sec 70% 72%
P2 Utilization 62% 59%
Response time (sec) 5.3 5.8

P1 Utilization 1.33 arrivals/sec 93% 94 %
P2 Utilization 82% 72%
Response time 14.3 14.9

15

There is reasonably good agreement except for P2's utilization in the last experiment. There
are many transactions in the buffer queues in this last run and as a result many transactions
have not completed processing. Since M8 runs on P2 this may explain part of the discrepancy.

5.2 Telemetry Processing System

This example is based on the NASA Space Telescope telemetry processing system which was
developed for the NASA Goddard Space Flight Center. Several modifications have been made to the
system for the purpose of illustration. Figure 5.2-1 illustrates the major hardware
components and connectivity.

TAC AP
Disk Disk
Telemetry and Applications Virtual Interface
Command Computer Processor Processor
(TAC) (AP) (VIP)

Interprocessor Communication Bus (ICB)

Figure 5.2-1: Major hardware components of the Telemetry Processing System

The system is comprised of three processors: Telemetry and Command (TAC) Computer,
Applications Processor (AP), and a Virtual Interface Processor (VIP). These computers
communicate over an Interprocessor Communication Bus (ICB). The TAC and AP computers are
supported by peripheral disk drives.

During system operation, spacecraft telemetry data are received by the TAC which reduces the
data into a form suitable for further processing. The reduced data are forwarded across the ICB
to the AP. To maintain a complete record archive of all data received from the spacecraft, the
TAC is responsible for capturing all incoming data on permanent storage media. Therefore, the
TAC writes a copy of the raw telemetry data to a file on the TAC disk. At the same time, it
prepares a backup copy which is sent across the ICB to the AP to be written to a file on the AP
disk. This backup copy is maintained to ensure availability of archived telemetry data in the
event that the primary copy on the TAC disk is corrupted.

Upon receipt of the reduced telemetry data from TAC, the AP performs some additional
application processing and then forwards the processed data across the ICB to the VIP. The VIP

16

formats the data for display at a set of terminals where telemetry analysts are responsible for
monitoring spacecraft operations. Based on the analysis of the incoming data, the telemetry
analysts may wish to alter operational settings onboard the spacecraft. To perform this action,
an analyst enters a command at a VIP terminal which is then sent by the VIP to the AP for
processing. The AP then forwards the command to TAC for transmission to the spacecratft.

The representation of the Telemetry Processing System using PEDESTAL is described below.
Figure 5.2-2 shows the PEDESTAL hardware architecture window drawn to represent the

sample system. Not shown on the diagram are devices connected to TAC which exchange data with
the spacecraft by microwave link and the terminal cluster connected to the VIP.

= ==
ég T
TAC Disk AP Dlisk

00 00

TAC Processor AP Progessorx VIP Progessor

Interprocessor Comm Bus

Figure 5.2-2: Telemetry hardware window from PEDESTAL

The flow of data and control in the system is captured by two PEDESTAL SCFs. The first SCF
shown in Figure 5.2-3 includes that sequence of system modules that are triggered by the

17

data capture

WV

Telemetry date receipt data backup

h

Oy O

deta reduction data processing data formatting

Figure 5.2-3: Telemetry data processing SCF shows potential parallel processing
and response time delimiter

arrival of spacecraft telemetry data. The initiator node for the flow corresponds to the arrival
of data to the system; each of the six modules included in the flow correspond to one of the
primary telemetry processing functions described above.

The data capture, data backup, and data reduction modules are shown on multiple arrows
departing the data receipt module. The enhanced icon denotes that the succeeding three modules
can be performed in parallel. The response time flag indicates the end delimiter for a user-
defined response time. Note that the response time does not include the data capture and data
backup modules.

The second flow shown in Figure 5.2-4 contains three primary functions triggered by the entry
of a command from a telemetry analyst. A response time requirement is also specified for this
flow.

@—o—a—@e—@—e—%—o—eé)

data formatting date processing date transmission

Figure 5.2-4: Command SCF shows task interfaces

Each module within an SCF is associated with a sequence of resource demands that are issued
upon invocation of the module. For example, the data capture module in the telemetry SCF is

18

associated with the sequence of demands shown in Figure 5.2-5. The demands for this module
include execution of 10,000 instructions and writing 20000 bytes of data to a file called "tele
data archive.”

RDM: |archive

Execute 10 K_instructions s
Insert 20000 bytes tele data archive

(

ata capture

& 4D

Figure 5.2-5: PEDESTAL sequence of resource demands for the data capture module
Some of the additional system data captured by PEDESTAL's visual interface are listed below:

. Workloads are specified in terms of data sizes and arrival rates associated
with each of the two system stimuli. Telemetry data arrive once per second
with a data size of 20000 bytes and analyst commands are entered once per
minute with a size of 1000 bytes. Modifications to data sizes can be made
by “"opening” SCF arrows. For example, the data reduction module receives
20,000 bytes of input data but only outputs 5000 bytes.

. Hardware performance characteristics such as processing speed and
transmission rates are specified for each processor, memory, and bus.

. Data stores are identified by name in the resource demand which accesses
them. The system has two data stores which hold raw telemetry data
captured for archive purposes and backup copies of that same data,
respectively.

. Operating system overheads are specified for two types of system services:
interprocessor communication and communication with memory devices.
These overheads are incurred whenever tasks on different processors
communicate and whenever the data are sent to disks.

The final steps in the specification are allocation of modules to tasks, tasks to processors, and
data stores to memory devices. In this system, each module is assigned to a separate task.

After a system has been described, the translator and simulator are invoked by issuing the RUN
command. Sample device utilizations from a 500 second simulation are shown in Figure 5.2-6.

19

g:

—
L
<

TAC Disk
UTIL = /0.06?
mRT = / 0.055

SAR=0/1418
#DP = (/945

TAC Processor

#AR = 33p7/489
#DP = 3337/1427

Interprocessor Comm Bus
UTIL= 0432
mRT = 0.397
#AR=1433
#DP = 1431

Y

<7
<
<<
<

AP Dis
UTIL = / 0.021
mRT = /0018
#AR=0/1416

#DP = (/943

00

AP Progessor
UTIL= 0|61/ ©
mRT = 0.Q04/ O
#AR=1437/1433
#DP =1437/1431

~

VIP Progessor
UTIL= o|ol/ ©
mRT = 0.Q05/ O

#AR = 936/950

#DP = 936/479

Figure 5.2-6: PEDESTAL output statistics show the bus to be the most highly utilized device

20

6.0 Conclusions and Recommendations

The major conclusion of this Phase Il SBIR research and development effort is that complex,
real-time computer systems can be specified in a non-procedural manner using combinations of
icons, windows, menus, and dialogs. Such a specification technique provides an interface that
system designers and architects find natural and easy to use. In addition, PEDESTAL's multi-
view approach provides system engineers with the capability to perform the trade-offs
necessary to produce a design that meets timing performance requirements. Sample system
designs analyzed during the development effort showed that models could be constructed in a
fraction of the time required by non-visual system design capture tools.

A second conclusion reached during the prototype development is that the Macintosh is a suitable
platform for hosting PEDESTAL. The prototype was designed for the Macintosh Il, but can
execute on the Macintosh SE and Plus models as well. Of course, the complexity of the systems
being analyzed drive the processing and memory requirements of the prototype. The prototype
runs under the Multifinder operating system so other applications can share the processor
during long simulation experiments.

Technical objective 1, which was to develop an evaluation version of a graphical, integrated
modeling language, was satisfied during this Phase Il effort.

A third significant conclusion reached during the development effort is that potential users of
PEDESTAL desire to represent more design complexity than can be analyzed by straightforward
analytic techniques. That is, users want to be able to specify such system features as

. complex branching conditions in stimulus control flows and resource
demand sequences,

. complex routing conditions on hardware diagrams,
. load dependent resource management,

. transient workload arrival rates,

. complex flow fission and fusion conditions,

. nested acquisition of passive and active resources.

Although ad hoc analytic techniques are capable of analyzing certain combinations of these
complexities (e.g., see "Task Allocation and Precedence Relations for Distributed Real-Time
Systems,” |IEEE Transactions on Computers, June 1987 and "Analysis of the Fork-Join Queue,"
IEEE Transactions on Computers, February 1989), an automated approach necessary for
translating designs into a form suitable for analysis by analytic techniques is not possible
without substantially sacrificing the accuracy of the modeling results. Rather than produce
analytic results that would soon be of little use due to their high degree of error, the
development team opted to incorporate the ability to specify the design complexities suggested
by the NASA-JPL staff and other potential users. The result is a tool that enables specification
of more complicated designs than was originally envisioned; however, no analytic techniques
suitable for analyzing these designs exist and therefore the prototype incorporates only a
discrete-event simulator.

21

It is important to review the goals of the prototype set forth in the Phase |l proposal which
stated that a common system description capability would provide a means to drive both analytic
and simulation techniques. However, to be feasible the descriptive constructs had to be fairly
simple so that analytic solutions were possible. Furthermore, a stated goal was not to extend the
state-of-the art in analytic modeling. Given that the system descriptive capabilities were
extended beyond those capable of being analyzed by analytic techniques, the logical conclusion
was to trade-off the increased power of the language with the ability to provide analytic
solutions.

Technical objective 2, which was to determine the degree to which the language meets its
objectives by evaluating ease of use, utility of two sets of performance predictions, and the
power of the language constructs, was only partially satisfied.

During the development of the PEDESTAL evaluation prototype several lessons were learned that
will prove beneficial in future tool commercialization and enhancement efforts.

ion - Developing a visual interface for complex system design
specification was more difficult than envisioned and probably explains why few such tools exist.
Certainly there are many visual CASE tools, but almost none of these specify the temporal
information that is necessary to analyze performance. [t was specification of temporal
information that was especially difficult in designing the visual interface. Multiple views,
directed arrows, and priority fields provided the means to resolve temporal conflicts.

In addition, designing an interface that minimized user interactions and could operate on the
small Macintosh SE screen was a challenge. This challenge was met by (1) providing multiple
system views which reduced complexity and thus could be displayed on a small screen, (2)
providing intelligent defaults (e.g., PEDESTAL has an automatic routing algorithm that requires
no user inputs even for complex, interconnected networks), and (3) requiring the user to input
information only once and then adding this information to pop up selection lists for future design
choices.

ion - Providing the user with the capability to
independently specify hardware, application software, data, operating system, and task
assignments was a difficult challenge to meet. The key to meeting this challenge was separating
the interface data structures from the simulator data structures and developing the translator to
convert one set to the other.

System Testing - The time and resources required to test the many paths through the prototype
software was a task which was drastically underestimated. The approach we took in developing
the prototype is one which we feel is justified in such a development effort. We attempted to
show feasibility of as many concepts as were felt possible within the time and budget
constraints. Demonstrating the capability on some limited test cases, we felt demonstrated
feasibility of the concepts. Exhaustively testing all of the software paths would have severely
limited the number of capabilities that could have been demonstrated in the evaluation
prototype. Development of a commercial tool or even an operational prototype will require
substantially more testing. It should be noted that during the later part of the test period,
almost all software defects could be corrected in less than one hour.

Software Interoperability - Early in the development effort we had plans to develop fairly
sophisticated statistical and plot software to assist the users in analyzing time-dependent data
produced by the simulator. After attempting to develop a general plot capability, we realized
that one of the advantages of the Macintosh platform is the interoperability of the software. We
therefore opted to take advantage of the many millions of dollars expended on software

22

development and simply develop the means to port PEDESTAL data to existing word processors,
drawing, statistical, and plot packages. Section 4.5 in this report demonstrates some of the
benefits obtained from this approach. Future capabilities such as code and data management and
documentation can easily be added to PEDESTAL by integrating with software products designed
specifically to perform these functions.

The overall goal of the PEDESTAL research and development effort is to develop a performance
engineering tool which can be applied to actual, complex computer system designs. The
technology developed during Phase |l should be transferred to system designers and architects so
that the likelihood developed systems meet specified timing performance requirements is
maximized. A first step towards transferring this technology to designers is additional test and
evaluation of the PEDESTAL prototype. The prototype was developed to serve as a testbed for
evaluation and enhancement of features required to support operational applications of visual
interface performance prediction technology. Additional evaluation will ensure that a variety of
application types (e.g., hard real-time, command and control, information system) and system
features (e.g., different operating system and communication protocols, large scale systems,
complex software control flows) are capable of being analyzed.

Experience with the prototype during Phase I revealed the primary enhancements required to
make the prototype operational. These enhancements are required to elevate the PEDESTAL
prototype implementation to the level of a commercial product. The recommendation of the

Phase Il effort is to pursue commercialization of the PEDESTAL prototype by performing the
following:

Enhancements
Increase Design Specification Options - The prototype demonstrated the feasibility of allowing

the user to specify (1) complex functions for determining flow branching conditions, service
times, etc., (2) resource management (operating system services and communication
protocols) policies, and (3) task interfaces. The number of options provided by PEDESTAL for
it to be a commercial tool needs to be increased. Additional functions that return the state of the
system are required. For example, functions are needed to return the remaining capacity of a
memory or bounded queue, workload type, task priority, data element size, etc. IEEE 802.3 and
IEEE 802.5 are examples of communication protocols that need to be added. Timed data buffering
and synchronous message passing are examples of task interfaces that need to be more easily
specified than the prototype currently supports.

- Additional system views are required to increase the degree of
scalability of the prototype to large, complex systems and to present a more complete diagnosis
of system performance. For example, the mapping menu provides a centralized, convenient
means to change functional and data allocations. However, to view the set of allocations each
processor and memory device needs to be examined. Although PEDESTAL supports hierarchical
views of design objects (e.g., software and hardware folders), this view needs to be extended to
display the various allocations.

The current set of performance statistics displayed on the screen provide a software view on the
SCF windows and a hardware view on the hardware windows. Statistics that support the
decomposition of the hardware utilizations into software components need to be added.
Furthermore, although intermediate response time statistics can be logged and analyzed, display
of these statistics needs to be more fully supported on the screen.

- A capability to produce a hardcopy report of the system
under study needs to be developed (other than dumping all of the screens to the printer). For

23

small systems this report is unnecessary, but for large systems such a report would seem to be
a necessity.

User Extensibility - Regardless of how many options the tool provides, some users will also
want a function (e.g., resource manager, branching condition, service time function, operating
system demand) that is not provided. To support these users, a technique for allowing users to
extend the language is required.

Undo and Cut and Paste - PEDESTAL supports some undo and cut and paste, but in developing
large models a more complete capability is needed.

Testing and Documentation

More complete testing and documentation of PEDESTAL is needed before it could be considered for
release as a commercial product.

24

APPENDIX

PEDESTAL

Preliminary User's Guide

ADVANCED SYSTEM TECHNOLOGIES, INC.

PEDESTAL™ Prototype Version 1.0

Designed & Developed by:
Duane Ball, Susan Hoyt, Oscar Steele, Gary Wright

Advanced System Technologies, Inc.
Copyright © 1989, Advanced System Technologies, Inc.

This work was sponsored by the U.S. Government under NASA Contract No. NAS7-995. This
material may be reproduced by or for the U.S. Government pursuant ot the copyright license
under the clause at DFARS 252.227-7025 (APR 1984).

This data is furnished with SBIR rights under NASA Contract No. NAS7-995. For a period of 2
years after acceptance of all items to be delivered under this contract, the Government agrees to
use this data for Government purposes only, and it shall not be disclosed outside the Government
during such period without permission of the Contractor, except that, subject to the foregoing use
and disclosure prohibitions, such data may be disclosed for use by support contractors. After the
aforesaid 2-year period, the Government has a royalty-free license to use, and to authorize
others use on its behalf, this data for Government purposes; but is relieved of all disclosure
prohibitions and assumes no liability for unauthorized use of this data by third parties.

WARNING - Prototype Software

This software is a prototype designed to predict the performance of computer systems. Although
several test cases have verified the accuracy of the performance measures, no claims are made

concerning the accuracy of this tool.

TABLE OF CONTENTS

IR 12 (1 0 7 o101+) 1 PUTRTURUUUU U O PRSPPI PPPPPPPPPTPPPPITPPITSOPTITSIIIIRILY 1
LI Y 1Y 10 1 S PP PP PPPPPPPRPPPIPPIT PSS CIEITIIITIILLY 3
2.1, APPIE MENU. ..ottt 4
3 R 1 P Y L] 10 TR PP PO PPPIPPPPPIEPTRSPPRTPEILY 5
D3, EQIt MENMU..euoeeiieiiiiiiiiierneeeeenrsesnss s sirnrrrstreees e sasasssasnssssessssansss 7
D 4. DIAW MEBNUveeeiireiirraneeeeteereerisssessmnitrraertasterassnntesanasaasenaans 9
2.5. MAP MENU ...t et 14
2.6. SEIUP MENU ...ooviiiiieiiiie it 15
2.7 RUN MENU ..veeeeeeieieieeeervreraremeerrmrasranasrsasssmee st ss s s asaasaaesenesnenies 17
3. EXPrESSIONSceeuveriinsiiiase s bbb 18
3.1. Defining EXPreSSioNSccvvvrieriiriiiiniisis et 19
3.2, FUNCHONS ... ctvrtireeereeeee s sssasesessessesre et ss e nn e naasesee s s e 21
3.2.1. User Defined FUNCLIONS.........coommiirneniin 22
3.2.2. BUit-IN FUNCUONS ...cciiiiiciiiieeein e 24
4. Pedestal MOGEISccoiireeiiiieeereiee e e e eeeeeieeireir s et e e e st s s s 64
A1, SOMWEAIE. .oeeeeeeeeeieeeeeeeieeeesssseesrnrrrrirreenaas s s aaa s e ats s aaisanaaesanasseess 69
4.1.1. Software Control FIOWS......cccc.coooviriiniiiiiiiinniienns 70
4.1.1.1. SCF & Macro Windowscceveriinenninnnnne 73
4.1.1.2. The Stimulus/Terminator Icon 75
4.1.1.3. The Module ICoN......ocoieeniiiiiiriiceeens 80
4.1.1.4. The Delay ICON.......ociiiinennniee 85
41.15. The Note ICON....coiiverinieriic e, 87
4.1.1.6. SCF/Macro Connectors......ccoeevenvieninecnenns 89
4.1.2. Resource Demand Modulescccoeeiiicniinnn. 92
4.1.2.1. RDM WINAOWScovviierninieiniieeinineenrasnann 94
4122 Text RDMS. oo v cccennaeaed 95
4.1.2.3. The Stimulator/Terminator lcon................... 96
4.1.2.4. The Allocate IcoNcooviviiiiiieieeee, o8
4.1.2.5. The Deallocate IcoN.........cccoevvieiiiiiiiiinnnnenes 100
4.1.2.6. The Execute ICON.....c.coiviiiiiiiiiiiiiieens 102
4.1.2.7. The ACCESS ICON cevniieieiiiiiiicenre e 104
4.1.2.8. The Request LOCK ICONccoiciiiinnninnn, 106
4.1.2.9. The Relinquish Lock lcon......c.c.coeeeviiinninnns 108
4.1.2.10. The Delay 1CONviiineeniccniiiien, 110
4.1.2.11. RDM Connectorsc..cceveiiiiiniiniancenienns 112
A2, TASKS oo eveeeereeeeeeeraeerasaesreenneestan e raa s e aaae e e e e a e as st 114
4.21. The Task WINAOW.......ccooveeiriiiiiininniniirciirenaanne 115
422 The TAsk ICON .c.ovrieii et s 116
W R T o ol <= FUUU OO EOPPRPP PP RTS PP T PEPRELS 118
4.3.1. The LOCK WINAOWcoovuviiiiiiiiiiiiieeiierecn i 120
4.3.2. The LOCK ICOM ... it eees 121
A.4. DAlASIONES .. .o eeeeeeeeetiiiereeriarreten s eestraasran s aereaseaa e asratanes 123
4.4.1. The Datastore WindOWc.ocoiimmeimniicciiniiniiinenen, 124
4.4.2. The Datastore ICOMN.......ccoviiiiimriiie e 125
A5, HAFAWAT ...oeeevveeee et eeeetiee e e ettt s s e ae et e st s te s s st e 127
4.5.1. The Hardware & Node Windows............ccooeeiininiinineins 128
4.5.2. HAardware DeVICESccveviereerniiiiaemmieainnieaetinnninnas 130
452.1. The Processor ICON.........ccooviiniiiiiciiiinnnnns 131
4.5.2.2. The Memory 1CONcoooiiimimineiiiiiiien, 134
4523. The BUSICON ..cooeeii i 137
4.53. The NOAE ICON ... ittt 140
4.5.4. The Boundary 1CON........cooiiiiiiiiiieecniiiiine e 142

4.5.5. Hardware CONNBCIOIS......cooviverrreeeerimimmimmntrnnsesesiees 144

4.6. Manager WINOWccoireermnnimmninss s 146

4.6.1. The Manager ICONoooiieeiiiimmimiinnre e 147

4.7. The Desktop WINAOWcoomniirniiiiiiinir e 150

4.7.1. The Task WIindow 0ON.........cooviiiiiiiimmmin 152

4.7.2. The Datastore Window ICONccooveriiiiiiiiiiiiennnees 153

4.7.3. The Lock WINdOw ICOM ..o, 154

4.7.4. The Manager Window 1CON........cccconiiiiinniininnnn: 155

4.7.5. The Software Sideview Window ICON............ccoeemennns 156

4.7.6. The Hardware Sideview Window Iconccceiiinnes 157

4.8. SiIdEVIEW WINOOWS ... e iiiiiiaessssasane s ass s e 158

5. ASSOCIALION LISES ..uvvvereiiitriieeeeiineir s e srin et 160
5.1. Association List Dialog.......cccoirriimmmmremnni e 161

E.2. MOAUIE =3 TASK ...eviieereereeiarreeiirinsennsaeaaa e n s innnernass e s na e 163

5.3. TASK > PrOCESSON . .veveeereeieiisiirrnnrsanrreseassassrnmss st 165

5.4. Datastore -> MEMOTYccceiriiiirrrieierreee s 167

5.5. DEVICe -> MANAJETevviiiieiiiiinia et 169

B. SEALISHICS. .oeeovvreeeerrereiareeeaseeeeesbaneen b e aa s e s s s s 171
6.1. ON Screen StaliStiCS......ovveerrriiieeriiniir s 172

6.1.1. 100N StAlISCS. ..ovvvrirereriiriiiiin s 173

6.1.2. Connector StatistiCSccovivverirmriniiiae e 177

5.2, File StAtiStICS. ..ecoovverieerereeeriinirrtensr e 178

6.2.1. PeriodiC StatistiCs......cccorrriiuririiini e 179

6.2.2. Event StatistiCS....ccceverrieimmmiinierereecnniiniii e 181

6.2.3. Importing File Statistics into Other Applications............ 183

6.2.3.1. EXCOI™ .o 184

6.2.3.2. EXstatics™.......cvvvreeeeminnriniieeae e eeeeiiseicanee 186

7. RUNNING @ MOGEL....c.ooiiiiiriiiiniir e 188
7.1. Mapping ReqQUINEMENTSc.ccooiiiiinmiinii e 189

7.2. Software Window RequIrements...........occveriiiiiiniinninninenin. 190

7.3. Hardware Window Requirementsccccoooviiiiinnnenes 191

1. INTRODUCTION

This document describes Pedestal™, a simulation system developed by
Advanced System Technologies, Inc.. Pedestal™ provides a graphical,
common system description language which captures all of the essential
performance data required to effectively do performance engineering analyses
of complex, real-time computer systems.

This manual assumes familiarity with the Apple Macintosh™ family of
computers and the elements of the standard Macintosh interface. The user who
is unfamiliar with the Macintosh interface should read the manual supplied with
the Macintosh or any introductory book which explains Macintosh operation.

Application of computer performance engineering (CPE) techniques
throughout the design and development of complex, real-time computer
systems is absolutely essential for ensuring that the delivered systems meet
their specified performance requirements. Unfortunately, this specialized
engineering is frequently not applied or the available performance prediction
techniques are misapplied during system development and as a result systems
fail to perform during system testing. Costly and time-consuming redesign
efforts must then be initiated to correct the systems' performance deficiencies.

The reasons for the lack and misapplication of performance techniques
are twofold: (1) the techniques require a specialized knowledge, which is in
short supply, and (2) each of the two primary techniques available for predicting
performance (analytic and discrete-event simulation) has deficiencies that can
cause the analysis to fail if not applied by an experienced performance
engineer.

Pedestal was developed to provide a tool which can help overcome
these shortfalls in applying CPE techniques. By providing an integrated tool
that can easily be used by a system designer as well as a performance
engineer, and delivering a simulation engine which was designed by experts in
discrete-event simulation and is thoroughly tested, Pedestal™ can make CPE
an easier task.

The advantages of Pedestal™ are numerous. First, Pedestal™ has been
specifically tailored to describe computer systems. This specificity is manifest in
both the user interface of the tool as well as in the fundamental design of the
simulation engine. The specialized interface provides those responsible for
designing systems with a tool which can be easily used during all phases of
design and development to assess performance impacts of various decisions.
This is not to suggest that all design decisions should necessarily be based on
performance, but at a minimum the performance impact of a decision will be
available. The performance impacts will help to steer designers away from
alternatives that may be attractive from a software engineering standpoint (e.g.,
extremely modular and highly isolated software), but can be disastrous from a
performance perspective.

CHAPTER 1: INTRODUCTION

Secondly, Pedestals' graphic design language is used to describe the
salient characteristics of system workloads, software behavior, and hardware
characteristics. This design is then translated to a form more appropriate to the
simulation engine. This approach allows easy expansion of Pedestal to include
performance evaluation techniques such as analytics. All that is required is a
new translator and an evaluation engine for the new technique (one of AST's
future goals for Pedestal is to incorporate analytics). When such an addition is
made to the capabilities of Pedestal, no changes need be made in the design
language. Additionally, previously created models will automatically be able to
use the new techniques.

2. MENUS

Those readers unfamiliar with standard operation of Macintosh™ menus
should refer to the documentation provided with their computer or to one of the
many excellent books available on this subject. Pedestal™ menus operate in
the same manner as the standard menus with selection by mouse and in some
cases by a keyboard command indicated on the menu beside the item. This
Section addresses the Pedestal™ menus in the order in which they appear left
to right when the Pedestal™ application is running.

CHAPTER 2: MENUS

2.1. ApPPLE MENU

The standard apple menu appears in all Macintosh™ applications. This
menu provides a method of accessing desk accessories (and other running
applications if Multifinder is being used). Traditionally, the first one or two menu
items in the apple menu provide information about the application. Pedestal™
adds an item called "About Pedestal™..." at the top of the apple menu. This item
will display the Pedestal™ help dialog.

CHAPTER 2: MENUS

2.2. FILE MENU

The file menu, shown in Figure 2.1, provides the standard file
manipulation commands. All of the windows, mappings, and statistics
definitions (see Chapters 4, 5 and 6) which comprise a Pedestal™ model are
kept in a single file, one for each model. The file /O items in the file menu work
with these files. The print items, however, affect only the currently active

(frontmost) window of a model.
New... XN
Open... xR0

Save... xS

Page Setup... XU
Print... xP

Quit %0

The File Menu
Figure 2.1

The "New..." item is used to create a new model file. When this item is
selected the new mode! dialog, shown in Figure 2.2, is displayed. This dialog
allows the specification of the new model's name and provides two check
boxes enabling the user to retain a copy of the software and/or the hardware of
the currently loaded model.

Modst

[J Retain current hardware.
[1Retain current software.

The New Model Dialog
Figure 2.2

The "Open..." item displays the Macintosh™ standard file dialog to allow
the user to chose the file to be opened. The "Save..." item also displays the
Macintosh™ standard file dialog, this time allowing the model file to be saved in
any folder by the user's chosen name. Next in the menu is the "Page Setup..."
item: this item calls up the standard page setup dialog to allow modification of
the way printing is performed. "Print..." will print the contents of the model
window which is currently active. All windows in Pedestal™ may be printed.
The last item in the file menu is "Quit"; this will terminate the application.

Since the new, open and quit commands could cause the loss of
information added to the model currently open, each of these commands will
check to see if the current model has been modified since the last time it was
saved. If so, the dialog in Figure 2.3 will be displayed to aliow the current model
to be saved before the menu command is executed.

CHAPTER 2: MENUS

sove model ‘'Unnamed Model’ first?

The "Save First?" Dialog
Figure 2.3

CHAPTER 2: MENUS

2.3. EpiTt MENU

The edit menu, shown in Figure 2.4, provides the following standard
editing functions with keyboard equivalents: cut, copy, paste, select all, and
duplicate.

Get Info ®ni

Cut L 4
Copy RC
Paste L i1

Select All XA
Duplicate %D

Functions XF

vFull Warnings

The Edit Menu
Figure 2.4

Pedestal™ windows (see Chapter 4) contain drawings composed of
icons and, for some windows, lines (called connectors) connecting the icons.
Often there is more than one data structure associated with one connector/icon.
The primary data structure is always accessed by double clicking on the
connector/icon. Selecting a connector/icon by clicking on it once, then selecting
the "Get Info" will access the secondary data structure associated with the
connector/icon.

The next five items in the menu are standard edit commands for most
Macintosh™ programs. The "Cut" command removes the currently selected
icons and/or connectors in the active window and makes copies of them in the
Clipboard (a sort of temporary memory) after removing the previous contents of
the Clipboard. Since connectors must have an icon on each end, cutting an
icon can cause connectors which were not selected to be deleted. These
connectors will not be put in the Clipboard. Likewise, connectors which are
selected and have one or both of the icons on its ends unselected will be
deleted but will not be put in the Clipboard. Additionally, some icons can not be
cut and will be ignored even if they are selected. The "Copy” command works
just like the "Cut" command with the exception that nothing on the active
window will be deleted.

The "Paste" command will change the cursor from the "pointer” to the
"place" version. Clicking on the window will then cause the contents of the
Clipboard to be copied into the window. If the type of window the Clipboard
contents were copied from is different from the window type you attempt to paste
it into, the paste command will not work. The "Select All* command provides a
simple way to select all the icons and connectors in the active window. The last
standard edit command is "Duplicate”. Choosing this item is the same as
choosing "Copy" and then immediately choosing "Paste”.

CHAPTER 2: MENUS

The "Functions” item of the edit menu displays the function definition
dialog explained in Chapter 3. The last item in the menu is a flag. When "Full
Warnings" is checked, all incorrect or invalid actions will cause a dialog to be
displayed which will explain the problem. If the flag is not checked, these same
actions will only cause an audible beep to sound. By default, this item is
checked.

CHAPTER 2: MENUS

2.4. DRAW MENU

The draw menu provides commands which pertain to the various
windows in Pedestal™. The draw menu is shown in Figure 2.5.

vShow Desktop
vShow Palette
Toggle Vertical/Horlzontal

Reduce To Fit

New SCF
vShow HIW

Tile p [THe Uertical
Tha Vertical
Tiis

Stack

The Draw Menu
Figure 2.5

The desktop window (see Section 4.7), contains icons for every window
defined in the current model. These windows may be accessed by double
clicking on the appropriate icon. Sometimes, if the Macintosh™ desktop is
getting too crowded, the user may not want to have the desktop window visible.
The "Show Desktop” flag on the draw menu controls the visibility of the desktop
window. If checked, the desktop window will be visible. If not checked, the
desktop window will be hidden. By default, this item is checked.

For similar reasons, the user may not want and/or need the palette (see
Chapter 4) to be displayed. The "Show Palette” flag on the draw menu allows
control of palette visibility. If checked, the palette will be displayed. If not
checked, the palette will be hidden. By default, this item is checked.

"Toggle Vertical/Horizontal" is the next item in the draw menu. Software
window connectors (see Chapter 4) are directed. That is they are drawn with
arrows on one end. Certain rules are used in determining how to draw these
connectors based on the positional relationship of the two icons the connector
connects. The rules must make an assumption as to the normal direction of flow
in order to work well. The "Toggle Vertical/Horizontal" command switches the
assumption from vertical to horizontal or vice verca. Vertical mode will produce
the best drawings if the majority of connections are made from top to bottom in
the window. Horizontal mode will produce the best drawings if the majority of
connections are made from left to right. Figure 2.6 shows two windows, the first
is an example of the vertical mode, the second is an example of the horizontal
mode. Note that changing modes only changes how the connectors are drawn,
it does not reposition any icons. If required, icons must be repositioned
manually.

CHAPTER 2: MENUS

]
i e TR Aol

Examples of the Vertical and Horizontal Drawing Modes
Figure 2.6

All drawing windows in Pedestal™ (see Chapter 4) are scrollable, thus
allowing the size of the drawing to exceed the size of its window. The scroll
bars on a window allow different parts of the diagram to be shown. However,
for very large drawings, scrolling to certain position may be tedious. The
"Reduce To Fit" command allows a more convenient method of choosing which
part of a large drawing is to be shown in the window. If the active window is a
drawing window, selecting this command will display a the entire drawing in the
window, shrinking the drawing to the necessary size. The user can then pick
the part of the drawing to be displayed and the drawing will zoom back to
normal size and scroll automatically (in one jump) to the chosen portion of the
drawing. Figure 2.7 shows a window whose drawing is larger than the window.
Figure 2.8 shows what the user will see after selecting "Reduce To Fit". The
gray box is sized such that it represents the size of the window if it was shrunk
the same amount as the drawing. The box is tied to the cursor and will move
with the cursor, though it will not move outside the window. After positioning the
box over the part of the drawing the user wishes to appear in the window,
clicking the mouse will cause the drawing to return to normal size and the
window will display the part of the drawing which was in the box. Figure 2.9
shows the window after the mouse is clicked with the box in the position shown
in Figure 2.8.

10

CHAPTER 2: MENUS

The Window Before "Reduce To Fit" is Selected
Figure 2.7

The Window After "Reduce To Fit" is Selected
Figure 2.8

Module11

. . o)
o TR T e B I i T D)

The Window After The Mouse is Clicked
Figure 2.9

The "New SCF" item in the draw menu creates a new SCF window (see

Section 4.1.1.1). This window will have a name distinct from all existing window
names in the model. There is only one (top level) hardware window (see

11

CHAPTER 2: MENUS

Section 4.5.1). The "Show HW" item will make the hardware window visible, if it
is not already, and will bring that window to the front of all other open windows.

The "Tile" item in the draw menu brings up a submenu. The items in the
submenu will cause all open windows (except the desktop window) to be
resized and moved such that no window is totally obscured. Figures 2.10, 2.11,
212 and 2.13 show examples of the effects of the "Tile Vertical", "Tile
Horizontal", "Tile" and "Stack” commands on the Macintosh™ screen.

B Tosks NN SCF1 ROMO
[~

awd

Meduled @ —o, A—

Enter Allocate
RDMO Default

Module

Vertically "Tiled" Windows
Figure 2.10

RDMO

@ —NN—0IN——0

Horizontally "Tiled" Windows
Figure 2.11

12

CHAPTER 2: MENUS

reswo @ —>D—o—\
® o petet Deteon
"Tiled" Windows
Figure 2.12
(TSN Tosks INEEERSTN

= g= =g

]
R !

O g e
0

\urg I\ -
Enter Allocate Dealleo
ROMO Default Default

"Stacked" Windows
Figure 2.13

The draw menu is also used to provide an easy way to bring any open
window to the front. The names of all open windows are appended to the draw
menu. At any time, selecting one of these window names will bring the

associated window to the front of all other windows.

13

CHAPTER 2: MENUS

2.5. MAp MENU

The map menu, shown in Figure 2.14, provides commands which allow
the various mappings to be viewed and/or edited. The Mapping concept and
the purpose of the mappings is discussed in detail in Chapter 5.

Module->Task
Task->Processor

DataStore->Memory
Device->Manager

The Map Menu
Figure 2.14

14

CHAPTER 2: MENUS

2.6. SETUP MENU

The setup menu, shown in Figure 2.15, provides the commands
necessary to control the environment of a simulation.

Controls...
Reset Seeds

Pick Runtime Stats
show Runtime Stats

Pick File Stats

The Setup Menu
Figure 2.15

The "Controls..." item displays the simulation control dialog shown in
Figure 2.16. The two radio buttons "Simulation” and "Analytics" are intended to
allow the user to specify which model evaluation method is to be used: discrete
event simulation or analytical approximation. At the present time, only
simulation is supported. The "Quit Time" field specifies the amount of time to be
simulated. The "Reset Stats” field specifies when stats collection should be
restarted. This is used so that the effect of start up transients can be removed
from the statistics reports if an estimate of the transient time is known. For low
level analysis Pedestal™ can provide trace files which trace the paths of
transaction through the simulation engine. Simulation time is recorded with
information about transaction type, task, transaction identification and
messages by which the executing portion of code can be identified. The "Start
Trace" and "Stop Trace" fields specify what portion of the simulation the trace
file will cover. Trace files are very useful for the user familiar with the internal
workings of the simulation engine. The trace is voluminous and greatly reduces
simulation speed. It is suggested that the trace only be generated if it is
needed. The trace may be viewed during the simulation by double clicking the
trace icon on the desktop window. Since a large volume of information will be
produced, the trace will be written to a file, and only the last 32K of text will be
visible in the trace window.

The "Reset Seeds" item on the Setup menu causes all random number
streams to be set to their initial values so that models can be run in identical
environments with repeatable results. The "Pick Runtime Stats” item allows
specification of which statistics will be displayed and "Show Runtime Stats" is a
menu check item that when set causes the chosen statistics to be displayed
during run time. By default, "Show Runtime Stats” is checked. More about stats
including the method of picking the stats to be displayed is presented in
Chapter 6. Pick file stats allows the user to choose stats to be written to a file.

Note that all times on the control dialog are in seconds.

15

CHAPTER 2: MENUS

Quit Time: E———__—__l

Reset Stots at: [0

Start Trace at: IEO

stop Trace at: ‘0.0

fusluate with: @ Simulation
Q Anelytics

|

J

]

|Cuncall 'ﬂ 114 '

The Simulation Control Dialog
Figure 2.16

16

CHAPTER 2: MENUS

2.7. RuN MENU

The run menu, shown in Figure 2.17, is used to control the simulation of a

model.

Simulation »| Run
stop

Analylics »

Single Step %+

Resat Simulator
Resat Statistics

The Run Menu
Figure 2.17

The first item in the run menu is "Loading", choosing this item will display
the total loading dialog shown in Figure 2.18. Hardware components have as
part of their specification physical characteristics; the sum total of the
characteristics for all devices in the model is shown here.

Total Loading
Size 0
Weight ©

Power O

cu.ft.
Ibs.

watts

The Total Loading Dialog
Figure 2.18

The "Simulation” item of the run menu provides a submenu. The "Run”
command will cause the current model to be translated and simulated. For an
explanation of the process of running a model (or producing a runnable model)
see Chapter 7. The "Stop" command will temporarily pause the simulation.
When a simulation is paused, the "Single Step" command can be used. Single
stepping will resume the simulation for the time necessary to process one event
then will again pause the simulation. When paused, the "Reset Simulator”
command can be used. Resetting the simulator cancels the simulation run
entirely. Additionally, when the simulation has paused, the "Run" command is
renamed as "Continue" and selecting this item will continue the simulation run,
taking it out of the single step mode. The remaining command "Reset Statistics”
is used to restart the collection of statistics at the current point in the simulation.

17

3. EXPRESSIONS

Pedestal™ contains many dialogs. These dialogs are used to define the
various objects in Pedestal™. A large number of fields in these dialogs are
number fields. To increase its expressive power, Pedestal™ allows any number
fields to be entered as an expression.

Expressions consist of numbers, function calls, and the standard
mathematical operators: +, -, *, /. The functions which can appear in an
expression are chosen from a list of supplied functions and user defined
functions. The arguments to these functions may also be expressions.

All expressions and all numbers within expressions are treated as real
numbers. For the few fields that require an integer value or a value within a
specific range, the value of the expression will be truncated and/or
reduced/increased as needed to transform it to proper form. Note that this will
occur after the expression is evaluated.

Some fields are evaluated when a simulation starts, others are evaluated
repeatedly as a simulation progresses. For example, the time interval between
work requests being generated by a workload is re-evaluated after each
request so that the interval is not necessarily constant. Conversely, the
execution rate of a processor is evaluated once at the start of the simulation,;
and is fixed throughout a simulation run.

Functions whose results can vary with time are called time varying
functions. Most of the built-in functions supplied by Pedestal™ are time varying.
Any user defined function which references a time varying function is also
considered to be a time varying function. Whether a field is evaluated once or
many times during a simulation determines which functions may be used in an
expression entered in the field. A field which is only evaluated once at the start
of the simulation can not have any references to a time varying function.

CHAPTER 3: EXPRESSIONS

3.1. DEFINING EXPRESSIONS

Any number field of any dialog (except the print and page setup dialogs)
can be entered as an expression. The expression may be entered by directly
typing it in the field or by using the expression editor dialog. To use the
expression editor dialog, hold down the command key (#) and double click on
the field whose value is to be entered.

Expressions can contain numbers and function invocations and a few
math symbols. The math symbols are +, -, *, and /. These symbols correspond
to addition, subtraction, multiplication, and division. Unary + and - is also
supported. Evaluation of an expression follows normal precedence rules.
Parentheses may be used to change the order of evaluation. Numbers may be
entered as integers or reals. Reals may be entered in scientific notation if
desired. Note that for real values, a digit must precede the decimal point; i.e.
.023 must be entered as 0.023.

The expression editor dialog, shown in Figure 3.1, contains a list of
functions and a field for the expression to be entered in. The list of functions will
contain all built-in and user defined functions which can be used in the field
which was clicked in to bring up the dialog. There is also a "Define New
Function" button which will display the function definition dialog (Section 3.2.1)
to allow new user functions to be defined.

Expression Editor
Functions: (Define New Function]

Clock()

List of SetTParm(iD,Value)

Functions 1 GetTParm(10)
Set6Parm(10,Velue)
GetGParm(1D)
Enponentisl(stream#,meon)
Geometric(stream# lambda)

@

xpression Exponential(GetTParm(1),4)*1.25
Entry G
Field

The Expression Editor Dialog
Figure 3.1

To enter an expression just type in the expression entry field. To include
a function, either type its name or double click on its name in the function list.
Be sure to replace the parameter names with values (or expressions).

When the "OK" button is clicked on a dialog, all number fields are
checked to ensure that the expressions are syntactically correct. An expression
entered in the expression editor dialog is also checked when you click on the
"OK" button. If there is an error, a dialog will appear which will try to give you
some idea of the problem. When you dismiss this dialog you will be shown the

19

CHAPTER 3: EXPRESSIONS

expression editor with the offending expression displayed. At this point you
should try to fix the problem, hit "OK", then hit "OK" on the original dialog again.

An example is in order. The module dialog, displayed when you double
click on a module in an SCF window, has a priority field. If we want the priority
to be taken from an exponential distribution with a mean value of 1, we can type
"Exponential(1,1)" in the priority field. If we typed the name of the function
incorrectly, say as "Expnential”, upon clicking the "OK" button a beep would
sound and an error message dialog would be displayed. After reading the
message "Error: Unknown Function: Expnential® and clicking the "OK" button of
the warning dialog, the Expression editor dialog would be displayed with the
expression "Expnential(1,1)" ready for editing. After fixing the spelling mistake
and hitting "OK" both the expression editor and the module dialogs would be
dismissed. Figure 3.2 shows this succession of dialogs.

Module Instance fMDdUlGII I Module Instance
Error: Unknown Function: Expnentiel
Toak:
Priority: -g # Repeotitions: D
O Input Fusian O output Fission /
X Use Refinement [is Macro P J Use Refinement [Is Macro
11
Mod Enpression Editor
Functlions: {Dafins Netu Function
Clock()

@@l {setrrarm(in,vaiue)

GetTParm(10)

set6Parm(1D,alue)

geteéParm(in)

Wil Exponentlai(stream#,mean)
Geometric(stream#,lambda)

Prio

Errors in Expressions
Figure 3.2

As of this writing, the expression package will detect all errors but it is not
very good at determining what the error is. Therefore, you will usually only be
told that there is a syntax error. If you can detect no problems, enter "0.0" as the
value so you can exit the dialog then check the manual to be sure you were
passing the proper number and type of arguments to invoked functions.

20

CHAPTER 3: EXPRESSIONS

3.2. FUNCTIONS

Pedestal™ expressions may contain function calls. The functions used in
expressions come from a set of predefined (Pedestal™) functions and user
defined functions. The predefined functions allow, among other things, access
to statistics concerning the various parts of a model and the ability to
inquire/change the value of global variables.

The user defined functions allow the user to enter formulas (possibly
based on other functions) in one place and then simply reference them by name
in expressions. This reduces the amount of retyping necessary and may
improve readability of expressions.

21

CHAPTER 3: EXPRESSIONS

3.2.1. USeER DEFINED FUNCTIONS

User defined functions are created in the function definition dialog. This
dialog, shown in Figure 3.3, can be reached by choosing the "Functions" item of
the edit menu or by the "Define New Function™ button on the expression editor

dialog.

Function Editor

User Functions: (Edit) Built-1n Functions:
O

NE(a,b)
Deu[mUTILI(* Window",Devid]]
Dep{uTIL " Windou:". Device')
Dau[ml]T]('wmdow'.‘neulce'
pev{sQTI(*Window","Device" k]

I X1 10ind

Kl

Scratchpad:

MyFen() =
LE(Deu[UIIl](')lll]',‘:pul]',(l)beu[UTIL]('HUJ',"cpul *,0))

Tolerance: [n,onl 41

The Function Definition Dialog
Figure 3.3

User functions may be defined/edited in the scratchpad area of this
dialog. To enter a new function you must type the function in the scratchpad in
the form:

FunctionName(ListOfParameters) = Expression

The function name can be any alphanumeric string which begins with a letter.
The ListOfParameters is a list of parameter names separated by commas.
These parameter names may be used in the expression which defines the new
function. Note that only number parameters are allowed in user defined
functions. The ListOfParameters may be empty in which case the definition will

appear as:
FunctionName() = Expression

The Expression can be any valid expression. The Expression may contain
invocations of built-in and/or user defined functions. To invoke an expression,
either type its name or double click on it in one of the function lists in the dialog.
Be sure to replace the parameters to the invoked functions with the proper

values.

To have the new definition checked for errors and entered into the list of
user functions if it is valid, click the "Save" button. If there is an error in the
definition, an error message will be displayed which will try to explain the
problem (in the current version there are only a small number of errors which
are correctly explained; usually you will only be told that there is a syntax error).

22

CHAPTER 3: EXPRESSIONS

If no errors are detected in the definition, the name of the function will be added
to the list of user functions.

The "New" button will prompt you for a new function name and will enter
the default format in the scratchpad. The "Clear" button will erase the contents
of the scratchpad.

Currently defined user functions may be deleted by selecting them in the
list of user functions and clicking on the "Delete" button. Since user functions
may reference other user functions, when one is deleted, all references to it by
other user functions are replaced by "0.0".

To edit a user function, click on the function in the list of user functions
and click on the "Edit" button. This will cause the definition of the function to be
displayed in the scratchpad. The definition may now be edited. To have any
effect, the "Save" button must be clicked after the function is edited.

Since the "New", "Clear", "Edit" and "Done" buttons will cause the
scratchpads' contents to be lost, a warning dialog will be displayed if one of
these buttons is pressed when there is something typed in the scratchpad. The
dialog will allow the button operation to be canceled.

The last item on the function definition dialog is the tolerance field. Since
some of the built-in functions require comparisons between two real numbers, a
tolerance is needed. For example, one of the parameters to the "IF" function is
evaluated and compared to zero. Since in floating point representation
((10*a)/a) - a might not exactly equal zero, this tolerance value is used to
determine how close something must be to zero for the function to consider it as
zero.

23

CHAPTER 3: EXPRESSIONS

3.2.2. BUILT-IN FUNCTIONS

The expression editor dialog and the function editor dialog contain built-
in functions as well as user defined functions. The built-in functions are
provided by Pedestal™. The definition of these functions follow. Note that the
"Time Varying" notation is followed by "(?)" on some functions. Functions with
this notation are not time varying unless time varying functions are used in the
expressions which are given as the parameters of the function.

24

CHAPTER 3: EXPRESSIONS

. o Vol
CLOCK Time Varying

Function:
This function provides a way to determine the current time of the
simulation clock.
Parameters:
| None.

Return Value:
Clock() returns the current simulation time in seconds as a real.

25

CHAPTER 3: EXPRESSIONS

ETTPARM(ID,VALUE

Function:
During the simulation of a module, transactions (Section 4.1) move
through the model. A set of 16 parameters, numbered from O to 15, are
associated with each transaction. These parameters are provided solely
for use by the user.

|

S

Time Varying(?)

The SetTParm function allows the user to change the value of any of the
parameters. When this function is evaluated, the transaction currently
being processed will be the one whose parameter is changed.
Parameters:
ID This expression will be evaluated and treated as an
integer in the range [0,15].

This number determines the parameter which will be
modified.

Value This expression will be evaluated and treated as a
real number.

This is the value which will be placed in the IDth
parameter slot of the current transaction.

[Return Value: -

SetTParm returns the value of the IDth parameter slot of the current
transaction afterit is changed, i.e. it returns the value of the Value
parameter. Value returned is a real.

26

CHAPTER 3: EXPRESSIONS

?

GETTPARM(ID Time Varying
Function:
During the simulation of a module, transactions (Section 4.1) move
through the model. A set of 16 parameters, numbered from 0 to 15, are
associated with each transaction. These parameters are provided solely

for use by the user.

The GetTParm function allows the user to determine the current value of

any of the parameters. When this function is evaluated, the specified

|___parameter of the transaction currently being processed will be returned.

Parameters:

D This expression will be evaluated and treated as an
integer in the range [0,15].

This number determines the parameter whose value
will be returned.

Return Value:
GetTParm returns the value of the IDth parameter slot of the current
transaction as a real.

27

CHAPTER 3: EXPRESSIONS

Time Varying(?)

SETGPARM(ID,VALUE

Function: _
A set of 256 global variables are maintained for use by the user. These
variables can hold a real number.

The SetGParm function allows the user to change the value of any of the

|___global variables.

Parameters: _

ID This expression will be evaluated and treated as an
integer in the range [0,255].

This number determines the variable which will be
n'lodified.

Value This expression will be evaluated and treated as a
real number.

This is the value which will be placed in the IDth
global variable.

[Return_Value:
SetGParm returns the value of the 1D global variable after it is changed,
i.e. it returns the value of the Value parameter. Value returned is a real.

28

CHAPTER 3: EXPRESSIONS

GETG PARM(ID Time Varying(?)

Function: L
A set of 256 global variables are maintained for use by the user. These
variables can hold a real number.

The GetGParm function allows the user to reference the value of any of

| ___the global variables.

Parameters:

ID This expression will be evaluated and treated as an
integer in the range [0,255].

This number determines the global variable whose
value will be returned.

Return Value:
GetGParm returns the value of the ID'" global variable as a real.

29

CHAPTER 3: EXPRESSIONS

EXPONENTIAL(STREAM#,MEAN Time Varying
Function:
Samples the exponential distribution.
Parameters: _
stream# This expression is evaluated as an integer in the

range [0,499].

The stream number determines which random
number stream is will be sampled when this function
_is evaluated.
mean The mean value of the distribution.
Return Value:
The exponential distributions PDF is:

F(x) = ﬁe’f Where: p=MTBA

(MTBA = mean value of the distribution)

The Exponential function is calculated by taking the integral of the PDF
and doing an inverse mapping with the number [0.,1.] from the random
number stream to determine the interval. Value returned is a real.

30

CHAPTER 3: EXPRESSIONS

GEOMETRIC(STREAM#,LAMBDA Time Varying

Function:
Samples the geometric distribution.
Parameters: -
stream# This expression is evaluated as an integer in the
range [0,499].
The stream number determines which random
number stream is will be sampled when this function
is evaluated.
lambda The probability of success.

Return Value: _
The geometric distributions PDF is:
F(n) = p(1-p)**
Where: p = probability of success
The Geometric function is calculated by taking the integral of the PDF

and doing an inverse mapping with the number [0.,1.] from the random
number stream to determine the interval. Value returned is a real.

31

CHAPTER 3: EXPRESSIONS

RANDOM(STREAM#

Time Varying

Function:
Samples one of the random number streams.
Parameters:
stream# This expression is evaluated as an integer in the

range [0,499].

The stream number determines which random
number stream is will be sampled when this function
is evaluated.

Return Value:
The random number streams in Pedestal™ are guaranteed not to repeat
for several million samplings.

This function will sample the designated stream and return the value as a
real in the range [0.,1.].

32

CHAPTER 3: EXPRESSIONS

Time Varying

UNIFORM(STREAM#,MIN,MAX)

Function:
Samples the uniform distribution.

|
i

[Parameters:

stream# This expression is evaluated as an integer in the
range [0,499].
The stream number determines which random
number stream is will be sampled when this function
is evaluated.

min This expression is evaluated as a real.
Min designates the low end of the range for the
distribution.

max This expression is evaluated as a real.
Max designates the high end of the range for the
distribution.

‘Return Value:
The uniform distributions PDF is:
F(x) = —1—_—formjns X £ maX
max-min

F(x)=0 otherwise
The Uniform function is calculated by taking the integral of the PDF and
doing an inverse mapping with the number [0.,1.] from the random
number stream to determine the interval. The value returned is a real.

33

CHAPTER 3: EXPRESSIONS

EQ(A,B Time Varying(?)

Function:
This function determines if two expressions are equal. Since the
expressions will be evaluated as real numbers, a tolerance must be used
to determine how close the numbers must be to be considered equal.
The tolerance value used is that entered in the function definition dialog

(Section 3.2.1).

Parameters: 3
a The first expression to be evaluated and compared.
b The second expression to be evaluated and
compared.

Return Value:

EQ returns:
1.0 if |a - b| <=tolerance
0.0 otherwise

34

CHAPTER 3: EXPRESSIONS

GE(A,B Time Varying(?)

Function:
This function determines if the first of two expressions is greater than or

equal to the second.

Parameters: _
a The first expression to be evaluated and compared.
b The second expression to be evaluated and
compared.
Return Value:
GE returns:
1.0ifa>=Db

0.0 otherwise

35

CHAPTER 3: EXPRESSIONS

—————
— —

GT(A,B Time Varying(?)
Function:
This function determines if the first of two expressions is greater than the

second.

Parameters: ﬁ
a The first expression to be evaluated and compared.

b The second expression to be evaluated and
compared.

Return Value:

GT returns:
10ifa>b

0.0 otherwise

36

CHAPTER 3: EXPRESSIONS

IF(TEST,THEN,ELSE Time Varying(?)
Function:

This function evaluates a test expression and based on its value,
evaluates one of two other expressions. The then expression will be
evaluated if the test expression evaluates to a nonzero value. Since the
text expression will be evaluated as real number, a tolerance must be
used to determine how close to zero a number must be to be considered
zero. The tolerance value entered on the define function dialog is used
(Section 3.2.1).

[Parameters: .
test The expression whose evaluation will determine if
__the then or else expression will be evaluated.
then This expression will be evaluated if the test
expression evaluates to a non-zero value.
else This expression will be evaluated if the test
expression evaluates to zero.

Return Value:

IF returns:
{then} if |test| > tolerance
{else} otherwise

37

CHAPTER 3: EXPRESSIONS

LE(A,B Time Varying(?)

Function:
This function determines if the first of two expressions if less than or

equal to the second.

Parameters: .
a The first expression to be evaluated and compared.
b The second expression to be evaluated and
compared.
Return Value:
LE returns:
10ifa<=b

0.0 otherwise

38

CHAPTER 3: EXPRESSIONS

LT(A,B Time Varying(?)
Function:
This function determines if the first of two expressions is less than the
|___second.
Parameters: _
a The first expression to be evaluated and compared.
b The second expression to be evaluated and
compared.
Return Value:
LT returns:
1i0ifa<b
0.0 otherwise

39

CHAPTER 3: EXPRESSIONS

NE(A,B Time Varying(?)

Function:
This function determines if two expressions are not equal. Since the
expressions will be evaluated as real numbers, a tolerance must be used
to determine how close two numbers must be to consider them equal.
The tolerance value entered in the define function dialog is used
(Section 3.2.1).

Parameters:

a “The first expression to be evaluated and compared.
b The second expression to be evaluated and
compared.

Return Value:
NE returns:
1.0 if |a - b| > tolerance
0.0 otherwise

40

CHAPTER 3: EXPRESSIONS

‘DEV[MUTlL]("WIDOW","CE |

Function:
This function determines the average utilization of any device on any
hardware window (or task or lock window).

Parameters:

"Window" The name of the window which contains the device.
Case in string parameters is important. Additionally,
the string must be in quotes.

"Device" The name of the device.

Case in string parameters /s important. Additionally,
the string must be in quotes.

TComponent If this value is nonzero, provide the value for the
transmission component of the specified device.

Return Value:
The current average utilization of the device will be returned.

See Chapter 6 for a definition of this statistic.

41

CHAPTER 3: EXPRESSIONS

DEV[UTIL]("WlNDOW","DEVICE",TCOMPONENT)

Time Varyin

Function:
This function determines the average utilization of any device on any
hardware window (or task or lock window) during the last interval (since
the last sample).

‘Parameters:
"Window" The name of the window which contains the device.
Case in string parameters is important. Additionally,
__the string must be in quotes.
"Device" The name of the device.

Case in string parameters is important. Additionally,
the string must be in quotes.

TComponent If this value is nonzero, provide the value for the
transmission component of the specified device.

Return Value:
The current average utilization of the device since the last sampling of
this value will be returned.

See Chapter 6 for a definition of this statistic.

42

CHAPTER 3: EXPRESSIONS

DEV[MQT]("WINDOW","DEVICE",TCOMPONENT)

Time Va

Function:
This function determines the mean queue time for all jobs on any device
on any hardware window (or task or lock window).

Parameters: -

"Window" The name of the window which contains the device.
Case in string parameters is important. Additionally,
the string must be in quotes.

"Device" The name of the device.

Case in string parameters is important. Additionally,
the string must be in quotes.

TComponent If this value is nonzero, provide the value for the
transmission component of the specified device.

Return Value:
The current mean queue time of the device will be returned.

See Chapter 6 for a definition of this statistic.

43

CHAPTER 3: EXPRESSIONS

DEV[SQTI("WINDOW","DEVICE", TCOMPONENT)
= = ___Time Varying

Function:
This function determines the standard deviation of the queue times of any
device on any hardware window (or task or lock window).

Parameters:
"Window" The name of the window which contains the device.
Case in string parameters is important. Additionally,
__the string must be in quotes.
"Device" The name of the device.

Case in string parameters is important. Additionally,
the string must be in quotes.

TComponent If this value is nonzero, provide the value for the
transmission component of the specified device.

Return Value:
The current standard deviation of the queue times of the device will be
returned.

See Chapter 6 for a definition of this statistic.

44

CHAPTER 3: EXPRESSIONS

Function:

This function determines the mean service time of any device on any
hardware window (or task or lock window).

'Parameters: .
"Window" The name of the window which contains the device.
Case in string parameters is important. Additionally,
L the string must be in quotes.
"Device" The name of the device.

Case in string parameters is important. Additionally,
the string must be in quotes.

TComponent If this value is nonzero, provide the value for the
transmission component of the specified device.

Return Value:
The current mean service time of the device will be returned.

See Chapter 6 for a definition of this statistic.

45

CHAPTER 3: EXPRESSIONS

DEV[SST]("WINDOW", DEVICE",T COMPONENT)

Tne V

Function:
This function determines the standard deviation of the service times of
any device on any hardware window (or task or lock window).

[Parameters: —

"Window" The name of the window which contains the device.
Case in string parameters is important. Additionally,
the string must be in quotes.

"Device" The name of the device.

Case in string parameters is important. Additionally,
the string must be in quotes.

TComponent If this value is nonzero, provide the value for the
transmission component of the specified device.

Return Value:
The current standard deviation of the service times of the device will be
returned.

See Chapter 6 for a definition of this statistic.

46

CHAPTER 3: EXPRESSIONS

‘DEV[MRT](

Function:

This function determines the mean response time of any device on any
hardware window (or task or lock window).

[Parameters: —
"Window" The name of the window which contains the device.
Case in string parameters is important. Additionally,
_ _the string must be in quotes.
"Device" The name of the device.

Case in string parameters is important. Additionally,
_ the string must be in quotes.
TComponent If this value is nonzero, provide the value for the
transmission component of the specified device.

Return Value:
The current mean response time of the device will be returned.

See Chapter 6 for a definition of this statistic.

47

CHAPTER 3: EXPRESSIONS

" TCOMPONENT)

‘DEV[SRT]("W""DEE
Time a

Function:
This function determines the standard deviation of the response times of
any device on any hardware window (or task or lock window).

Parameters:

"Window" The name of the window which contains the device.
Case in string parameters is important. Additionally,
the string must be in quotes.

"Device" The name of the device.

Case in string parameters is important. Additionally,
the string must be in quotes.

TComponent If this value is nonzero, provide the value for the
transmission component of the specified device.

Return Value:
The current standard deviation of the response times of the device will be

returned.

See Chapter 6 for a definition of this statistic.

48

CHAPTER 3: EXPRESSIONS

DEV[#AQ]("WINDOW","DEVICE",TCOMPONENT)

Time Varyi

Function:
This function determines the total number of queue arrivals of any device
on any hardware window (or task or lock window).

Parameters: .

"Window" The name of the window which contains the device.
Case in string parameters is important. Additionally,
the string must be in quotes.

"Device" The name of the device.

Case in string parameters /s important. Additionally,
- the string must be in quotes.
TComponent If this value is nonzero, provide the value for the
transmission component of the specified device.

Return Value:
The current total number of queue arrivals of the device will be returned.

See Chapter 6 for a definition of this statistic.

49

CHAPTER 3: EXPRESSIONS

" TCOMPONENT)

alime Varying

Function:
This function determines the size of the queue of any device on any
hardware window (or task or lock window).

Parameters:

"Window" The name of the window which contains the device.
Case in string parameters is important. Additionally,
the string must be in quotes.

"Device" The name of the device.

Case in string parameters is important. Additionally,
the string must be in quotes.

TComponent If this value is nonzero, provide the value for the
transmission component of the specified device.

Return Value:
The current size of the queue of the device will be returned.

See Chapter 6 for a definition of this statistic.

50

CHAPTER 3: EXPRESSIONS

DeEV[#DQ]("WINDOW","DEVICE",TCOMPONENT)

Time Varyin

Function:

This function determines the total number of departures from the queue
|___of any device on any hardware window (or task or lock window).
Parameters: -

"Window" The name of the window which contains the device.

Case in string parameters is important. Additionally,
the string must be in quotes.

"Device" The name of the device.

Case in string parameters is important. Additionally,
the string must be in quotes.

TComponent If this value is nonzero, provide the value for the
transmission component of the specified device.

Return Value:

The current total number of departures from the queue of the device will
be returned.

See Chapter 6 for a definition of this statistic.

51

CHAPTER 3: EXPRESSIONS

DeV[#AS]("WINDOW","DEVICE",TCOMPO

Function:
This function determines the total number of work requests which have
entered service of any device on any hardware window (or task or lock

|___window).
Parameters:
"Window" The name of the window which contains the device.
Case in string parameters is important. Additionally,
_the string must be in quotes.
"Device" The name of the device.

Case in string parameters is important. Additionally,
the string must be in quotes.

TComponent If this value is nonzero, provide the value for the
transmission component of the specified device.

Return Value:
The current total number of work requests which have entered service of
the device will be returned.

See Chapter 6 for a definition of this statistic.

52

CHAPTER 3: EXPRESSIONS

DEV[#IS]("WINDOW","DEVICE",TCOMPONENT) j
Time Varying

Function:
This function determines the number of work requests currently receiving
service of any device on any hardware window (or task or lock window).

Parameters: -

"Window" The name of the window which contains the device.
Case in string parameters is important. Additionally,
the string must be in quotes.

"Device" The name of the device.

Case in string parameters is important. Additionally,
- the string must be in guotes.
TComponent If this value is nonzero, provide the value for the
transmission component of the specified device.

Return Value:
The current work requests currently receiving service of the device will be
returned.

See Chapter 6 for a definition of this statistic.

53

CHAPTER 3: EXPRESSIONS

DEV[#DS]("WINDOW", DEVICE", TCOMPONENT)
ing

Time Varyi

Function:
This function determines the total number of work requests which have
been serviced of any device on any hardware window (or task or lock

| ___window).
Parameters:
"Window" The name of the window which contains the device.
Case in string parameters is important. Additionally,
_ the string must be in quotes.
"Device" The name of the device.

Case in string parameters is important. Additionally,
the string must be in quotes.

TComponent [T this value is nonzero, provide the value for the
transmission component of the specified device.

'Return Value:
The current total number of work requests which have been serviced by
the device will be returned.

See Chapter 6 for a definition of this statistic.

54

CHAPTER 3: EXPRESSIONS

(Moo [MAT (" WiNoow', MODULE") ___Time Vapin

Function:

This function

determines the mean response time of any module/request

on any SCF/RDM window.

Parameters:

"Window"

The name of the window which contains the
module/demand.

Case in string parameters is important. Additionally,
the string must be in guotes.

"Module"

The name of the module/demand.

Case in string parameters is important. Additionally,
the string must be in quotes.

Return Value:

The current mean response time of the module/demand will be returned.

See Chapter 6 for a definition of this statistic.

55

CHAPTER 3: EXPRESSIONS

Time Varying

"WiNpow", " MODULE"

Function:
This function determines the standard deviation of the response times of
any module/request on any SCF/RDM window.

Parameters: _

"Window" The name of the window which contains the

module/demand.

Case in string parameters is important. Additionally,
the string must be in quotes.
"Module" The name of the module/demand.

Case in string parameters is important. Additionally,
the string must be in quotes.

Return Value:
The current standard deviation of the response times time of the
module/demand will be returned.

See Chapter 6 for a definition of this statistic.

56

CHAPTER 3: EXPRESSIONS

Time Varying

"WinDow","MODULE"

Function:
This function determines the total number of transactions which have
entered any module/request on any SCF/RDM window.

Parameters:

"Window" The name of the window which contains the

module/demand.

Case in string parameters is important. Additionally,
the string must be in quotes.
"Module" The name of the module/demand.

Case in string parameters is important. Additionally,
the string must be in quotes.

Return Value:
The current total number of transactions which have entered the
module/demand will be returned.

See Chapter 6 for a definition of this statistic.

57

CHAPTER 3: EXPRESSIONS

Time Varying

Function:
This function determines the number of transactions in any
| ___module/request on any SCF/RDM window.
Parameters:
"Window" The name of the window which contains the
module/demand.

Case in string parameters is important. Additionally,
the string must be in quotes.
"Module" The name of the module/demand.

Case in string parameters is important. Additionally,
the string must be in quotes.

Return Value:
The current number of transactions in the module/demand will be
returned.

See Chapter 6 for a definition of this statistic.

58

CHAPTER 3: EXPRESSIONS

"WIiNDOW","MODULE" Time Varying

Function:
This function determines the number of transactions which have
| completed execution of any module/request on any SCF/RDM window.
Parameters: _
"Window" The name of the window which contains the
module/demand.

Case in string parameters is important. Additionally,
the string must be in quotes.
"Module" The name of the module/demand.

Case in string parameters is important. Additionally,
the string must be in quotes.

Return Value:
The current number of transactions which have completed execution of
the module/demand will be returned.

See Chapter 6 for a definition of this statistic.

59

CHAPTER 3: EXPRESSIONS

Time Varying

VINDOW","MODULE"

[Function:

This function determines the 90th percentile of the response time of the

__specified module.

Parameters: .

"Window" The name of the window which contains the
module/demand.

Case in string parameters is important. Additionally,
the string must be in quotes.
"Module" The name of the module/demand.

Case in string parameters is important. Additionally,
the string must be in quotes.

Return Value:
Returns a value such that 90% of the recorded response times for the
specified module are less than the value.

60

CHAPTER 3: EXPRESSIONS

Time Varying

Function:
This function determines the 99th percentile of the response time of the
specified module.
Parameters: _
"Window" The name of the window which contains the
module/demand.

Case in string parameters is important. Additionally,
the string must be in quotes.
"Module" The name of the module/demand.

Case in string parameters is important. Additionally,
the string must be in guotes.

Return Value:
Returns a value such that 99% of the recorded response times for the
specified module are less than the value.

61

CHAPTER 3: EXPRESSIONS

“EVENTSPERSECZE Time Varying“
Function:

This function returns a number which indicates the speed of the
simulator. It is of use for comparing the speed of different machines and
using/not using multifinder. This value can be used to determine which
| platform is best for running large simulations.

Parameters: none.

Return Value:
The current average number of events processed per second is returned

as a real.

62

CHAPTER 3: EXPRESSIONS

"MESSAGE" e vang
Function:

This function causes a dialog box to be displayed which will contain the
supplied "Message" and then puts the simulator in single step mode

(Section 2.7).

Parameters:
"Message” The string to be displayed in the message dialog box

when this pause statement is executed.

Return Value:
0.0

63

4. PEDESTAL MODELS

Model specification in Pedestal™ is done primarily in the form of
drawings. These drawings define the individual hardware and software
components of a model. Navigation among the various window can be
accomplished through the "Desktop” window which allows access to all the
diagrams which comprise a model. Relationships between software and
hardware components are determined via the mappings described in Chapter
5. This approach allows the software and hardware components of
a model to be specified independently.

A Pedestal™ Window
Figure 4.1

Most windows look similar to the one shown in Figure 4.1. The palette to
the left of the window contains icons which represent the basic descriptive units
allowed on the specific window. Drawings are created by placing icons on the
window and drawing connectors between them. To place an icon from the
palette onto the window, click on the desired palette icon. The icon in the
palette will then be highlighted. Notice that when a palette icon is selected, the
cursor assumes the "locator” form when within the windows contents.
Whenever the cursor is in the "locator" form, clicking on the window will place
something in the window. Click the mouse with the cursor positioned where
you want the icon to appear and the icon will be placed. Icons within a window
may be referred to as object icons. After placing the icon in the window, the
cursor will return to the arrow form. Figures 4.2 - 4.4 show the process of
picking an icon from the palette and placing it in the window.

If you wish to place another icon of the same type as you just placed,
hold the command key (38) and click the mouse in the window. The mouse will
be changed to the locator form and you can then click to place the icon. Also, if
the cursor is in the locator form and you do not want to place, hold the command
key (%) and click the mouse in the window. The cursor will be changed back to
the arrow and nothing will be placed.

CHAPTER 4: PEDESTAL MODELS

2]

Before Clicking on the Palette After Clicking on the Palette
Figure 4.2 Figure 4.3

L I e T >l

After Placing the Icon
Figure 4.4

To draw a connector between two icons, hold the command key (%)
down , position the cursor over one of the icons and press the mouse button .
Now, with the command key (%) still depressed, drag the cursor until it is over
the other icon. A dashed line will be drawn from the first icon to the cursor as it
is moved. When the cursor is over the other icon, release the mouse button and
the icons will be connected. Pedestal™ determines how the connectors will be
drawn depending on the relative positioning of the icons and independent of
the path over which the mouse is dragged. When either of the icons is moved,
the connector will be redrawn.

Within a window, icons and connectors may be selected individually or in
groups. Individual selection is the same as on the palette, i.e. position the
cursor over the icon and click the mouse. Multiple selection is accomplished by
positioning the cursor in one corner of a rectangular area that is to be selected.
As the cursor is dragged a broken line will be drawn which delineates the
rectangular area in which all icons and connectors will be selected. Operations
such as cut, copy, paste and delete may be performed on the entire group of
selected items by selecting the proper commands from the Edit Menu or using
the keyboard commands associated with these operations. For further
explanation of these standard Macintosh functions refer to the documentation
provided with your computer.

lcons, connectors and windows are basic building blocks in the
Pedestal™ user interface. Actions which may be performed on the differing
icons is common to all windows, with the results being context sensitive. For
example, once placed on a window any icon can be double clicked; the effect
of double clicking may be opening of another window, display of a dialog box or
some other result that depends on the icon type. This commonality of actions

Q-2

CHAPTER 4: PEDESTAL MODELS

with possibly different effects led us to implement the window system in an
object oriented way to reduce the complexity of the code while enhancing its
robustness.

The implementation of the interface is done using a set of fields and
method pointers for each window which define how that specific window acts
and is acted upon. Since only one type of connector is allowed on a particular
window, some of the fields and methods on the window also deal with the
connectors for that window. The fields for a window are shown below with a
brief description of the significance of each:

WindowType Determines the palette of icons to display when the
window is active.
ConnectorType | Determines how to connectors are drawn in the
window - may be directed or not.
CanEdit Determines if editing (cut/paste/etc) is allowed in the
- window. _
CanGetlinfo Determines if the "Get Info" item of the Edit menu (see
Section 2.3) is allowed in the window.
CanMouse Determines if the user is allowed to move icons and
_ create connectors in the window. .
CanReduce Determines if the "Reduce To Fit" item of the Draw
_ menu (see Section 2.4) is allowed in the window.
CanTile Determines if the tiling items of the Draw menu (see
Section 2.4) affect the window.

The specific settings of these fields will be explained later in this Chapter as
each type of window is discussed individually. The method pointers determine
what happens on the window in response to an action and are briefly outlined
below:

ConnectorDoubleClick | Called when the user double clicks on a
connector.

PlaceConnector Called when the user creates a new connector
in the window.

Activate Called when a window is activated.

More specific information regarding the methods will be provided in the
discussion of individual window types.

Fields and methods are not unique to windows but are also applied for
icons and connectors as they are created. The fields for a connector are:

[Flag1lcon Determines the icon (if there is one) to display in the first
flag position (see Figure 4.5).

Flag2lcon Determines the icon, if any, to display in the second flag
osition (see Figure 4.5).

HotSpoticon [Determines the icon, if any, to display in the hotspot
position (see Figure 4.5).

66

CHAPTER 4: PEDESTAL MODELS

Fiage Postion

otSpot Poshlo

4

Connector Variations
Figure 4.5

The specific settings of these fields will be explained in the rest of this Chapter
for each specific type of window. The fields for an icon are:

Genus Determines the family of the icon.

Species Determines the specific icon of the given family (genus) to
be displayed for this icon - a visual aid to specialization.
Type Determines if the icon is a block icon or a line icon - A block
icon appears on the window the same as it does in the
palette, i.e. it is of a fixed size. A line icon can have its
shape and size altered on the window.

Shadow Determines if the icon is to be drawn with a drop shadow.

The connector and icon methods are very similar and are treated together here
with the few differences noted below. The method pointers for icons and
connectors are:

Deleted Called when an object is deleted - the item is deleted
when it is selected and the user chooses "Cut” from the
Edit menu (Section 2.3) or hits the delete key on the
keyboard. Note that Pedestal™ can initiate a deletion
on its own, e.g. when the user opens a new model, the
- old model is deleted automatically.

Duplicated Called when an object is duplicated by the user
selecting the "Cut" or "Copy" command from the Edit
menu (Section 2.3) - a copy of the selection is placed in
the Clipboard. As in Deletion, Pedestal™ may initiate a
duplication while performing another operation.

Pasted Called when the user selects the "Paste” command on
the Edit menu (Section 2.3) and there is something in
the Clipboard. The contents of the Clipboard are copied
into the current window if its contents are compatible.
Again, Pedestal™ may initiate a paste operation while
performing another operation.

Gender Called for a connector after a model has been read from
a file. For an icon, this method is called whenever its

67

CHAPTER 4: PEDESTAL MODELS

species is changed, after a model has been read and
when a connector is attached or detached from the icon.

Save

Called for all objects when a model is saved by the user
choosing the "Save..." command of the file menu
(Section 2.2)

Restore

Called for_all connectors and/or icons when a model is
restored (read). To restore, the user must choose the
"Open..." command of the file menu (Section 2.2).

Connected

This method is called only for icons. It is called when
an attempt is being made to draw a connector to or from
the icon.

DoubleClick

Called for objects when the user double clicks on an
icon or connector in a window.

Getinfo

This method is called only for icons. It is called when
an icon is selected and the user choses the "Get Info”
item from the Edit menu (see Section 2.3). Note: this is
only true if the windows CanGetlinfo flag is set to TRUE.

68

CHAPTER 4: PEDESTAL MODELS

4.1. SOFTWARE

A Pedestal™ model consists of both a description of a hardware system
and a set of software processes which are intended to run on the hardware.
The software model consists of individual resource demands (execute x
instructions, read x bytes, etc.) and the flow of control between these resource
demands. A group of these demands and the control flows between them are
grouped into Resource Demand Modules (RDMs). RDMs by definition execute
as a unit, i.e. all execution demands within an RDM must execute on the same
device. This does not mean that different instances of an RDM are restricted to
a single device but only that each instance is indivisible for execution purposes.
When the software is partitioned into groups of code, each of which will execute
on a particular device, the RDM is the smallest unit which can be partitioned.
RDMs are defined in Pedestal™ either by textual specification or by drawings.
The drawing method uses a separate window for each RDM, with icons
representing the resource demands and directed connectors used to denote the
flow of control. RDMs in textual form may have no internal parallelism since
they are defined as a sequential list of resource demands. RDM windows and
textual RDMs are described in more detail below.

Moving up a level in the Pedestal™ software model we have the
Software Control Flow (SCF). An SCF is comprised of a stimulus, a set of
software modules and the data flows between them. A stimulus is a user
defined group of workloads which initiate data flows in an SCF. A software
module is an instance of an RDM; multiple modules may reference the same
RDM. The module determines the priority at which the RDM instance will be
executed and specifies the task to be used. A task is a group of modules which
will execute on the same device, sometimes referred to as a partition. Each
SCF is defined in a separate window, with its own drawing. Connectors are
used to denote the flow of data (and control) within the SCF. A special icon in
the SCF palette allows SCF windows to be nested. These nested SCFs are
referred to as macros. SCF and Macro windows are described in more detail
below.

69

CHAPTER 4: PEDESTAL MODELS

4.1.1. SOFTWARE CONTROL FLOWS

The user interface of windows, icons and connectors that is described in
the beginning of this Chapter provides the tools with which a Pedestal™ user
builds a model. A model may be thought of as a multifaceted problem that is to
be analyzed. A HOW, WHERE, WHAT and WHEN approach to the problem may
help to explain the inter-relational aspects of Pedestal™ mode!l. The Software
Control Flow may be perceived as the "WHAT" of the problem in contrast to the
"WHERE" which is specified in the hardware diagram. "HOW" is determined by
the mappings which define task composition, processor usage and file
residence. "WHEN?" is determined by the workloads in the SCFs.

During simulation workloads in the stimulus periodically create new
transactions. A transaction is an input to the system which will pass through the
SCF being processed by modules, delayed by delays and passed along data
flows until it reaches a terminator. A process can have several outgoing
dataflows. After processing a transaction, a process will send a transaction
along one of its outgoing data flows. The process may also attempt to send
copies of the transaction along one or more of the remaining outgoing data
flows. Wether the process produces one or many outgoing transactions per
incoming transaction is determined by the setting of the "Output Fission”
attribute of the process. If the fission box is checked on an icon's dialog box
then the icon will always send the transaction along one of the data flows and
will also attempt to send a copy of the transaction along each of the remaining
outgoing data flows. If the fission box is not checked, only the original
transaction will be sent, and it will be sent along only one of the data flows.

Each data flow has a set of branching probabilities associated with it.
This set contains a probability for each workload defined in the SCF stimulus.
Transactions carry information about their associated workload and whether
they are a copy or an original transaction. In the absence of fission, processing
of a transaction is followed by a decision as to which path the transaction will
follow. Each outgoing data flow's branching probability for the workload which
created the transaction will be compared to a random number between zero
and one. The first data flow whose branching probability for that workload is
greater than the random number will be used to transmit the transaction. The
probability from a failed comparison will be added to the random number used
in the next comparison. Note that it is assumed that the sum of the probabilities
pertaining to a given workload on all data flows leaving an icon is 1.

If fission is being used, a transaction is processed and then each
outgoing data flow's branching probability for the workload which created the
transaction will be compared to a random number. A new random number will
be used for each comparison. Each data flow whose branching probability for
that workload is greater than the random number will have a transaction sent
along it. The last data flow whose comparison is successful will receive the
original transaction, all other (successful) data flows will receive copies.

70

CHAPTER 4: PEDESTAL MODELS

Whether fission is used or not, the original transaction will be sent along
one data flow. If all comparisons fail, the last data flow checked will be used to
transmit the transaction. The outgoing data flows are tested in priority order
(priority is specified on the connectors dialog). Since the probabilities in the
branching list are entered as expressions (Chapter 3) it is possible to have rule
based routing as well as simple probabilistic routing.

A data flow concept linked to fission is fusion. A process downstream
from where a fission occurs may queue arriving transactions until all copies of
that transaction which can reach it are queued. Then the copies will be deleted
and the process will be activated to process the original (single) transaction.
The terminator process on an SCF window always performs fusion. Figure 4.6
and 4.7 are examples of fusion and fission use. The names of the modules and
the appearance of the icons on the SCF denote where fission and/or fusion are
performed. In Figure 4.6, two sequential fusion/fission pairs are shown.
Assuming that only one transaction can be processed at a time and all
branching probabilities are 1, the processing of a transaction would proceed as
follows:

1 A transaction 11 is generated by a workload in the stimulus and is
sent to Module Fission.

2 Module Fission processes T1.

3 Module Fission performs a fission.

A copy of T1 called T1.1 is made.
T1 is sent to Module A.
T1.1 is sent to Module B.

4 Module A processes T1 and sends it to Module "Fusion and
Fission".
5 Module "Fusion and Fission" performs a fission:
T1.1 is queued.
6 Module B processes T1.1 and sends it to module "Fusion and
Fission".
7 Module "Fusion and Fission" performs a fission:
T1 is queued.

T1.1 is deleted.
T1 is dequeued.

8 Module "Fusion and Fission" processes T1.
9 The remainder of the processing is the same as above (from step
3 on).

71

CHAPTER 4: PEDESTAL MODELS

Modules are assigned to tasks which in turn are mapped to execution
devices. |f a data flow occurs between modules in different tasks, a message
must be sent between the corresponding processing devices (assuming that the
tasks are assigned to different processors). The connector is used to determine
the priority and size of such a message. Thus, in a sense, the size of a
transaction can vary. To indicate to the user that interprocessor communication
may occur along a given data flow, the corresponding connector will be drawn
in a slightly different fashion. Figure 4.8 shows an example of such a connector
(between modules TaskA.1 and TaskB).

Fusion/Fission Example

Figure 4.6
Nested Fusion/Fission Pairs

Figure 4.7

SCF1

fiertask Communication 23

Intertask Communication Notification on Connectors
Figure 4.8

72

CHAPTER 4: PEDESTAL MODELS

4.1.1.1. SCF & MACRO WINDOWS

SCF windows provide a top level description of the software being
modeled. Macro windows are the same as SCF windows except that they are
nested within an SCF or Macro window and are associated with an icon on the
parent window. This nesting of windows allows the software architecture to be
defined in a top down hierarchical manner. Existing icons may not be grouped
into a macro; rather, the module must be declared to be a macro and the
contents of the macro subsequently defined. The icons in the SCF palette
represent a stimulus (or terminator), module (or macro) and a delay (for an
event which is not modeled). The last icon is the note icon; this icon allows the
user to attach any notes or documentation to the diagram. More specific
descriptions of the icons in the SCF windows will be given in following
Sections. Figure 4.9 shows a typical SCF window.

SCF windows are created by choosing the "New SCF" item from the
draw menu (Section 2.4). All currently defined SCF windows appear in the
software folder window and may accessed by double clicking the
corresponding icon on the desktop window. All open windows are also listed at
the bottom of the draw menu and may be brought to the front by selecting them
from that menu.

Med2 Terminaterd |f

v
]

T B e e Al] 1
An SCF Window
Figure 4.9
The object fields for the SCF window are set as follows:

Field Name Setting
WindowType SCF {or Macro}
ConnectorType HorizontalArrow {Varies}
CanEdit True
CanGetinfo True
CanMouse _True
CanReduce True
CanTile True

Connectors are also supported on the SCF window, thus some of the window
methods are used:

73

CHAPTER 4: PEDESTAL MODELS

Method Name Function

ConnectorDoubleClick Display the data flow dialog (see below).
PlaceConnector Creates a new data flow.

Activate No function.

74

CHAPTER 4: PEDESTAL MODELS

4.1.1.2. THE STIMULUS/TERMINATOR ICON

As previously mentioned, there must be one and only one each stimulus
and terminator on an SCF window. The stimulus holds the workload
descriptions and the terminator is used as the final destination of all
transactions. To save space on the palette, one icon appears there to represent
both of these icons. When the user connects to or from the generic icon, its
species is changed and it becomes a terminator or stimulus depending upon
the direction of the connection. This context sensitive gendering gives visual
reinforcement to the diagram content. Figure 4.10 shows two
stimulus/terminator icons placed in a window. Figure 4.11 shows the species of
the stimulus and terminator after the two generic icons are connected (the
stimulus is on the left). Note that connectors may only be drawn to terminators,
not from them. Similarly, connectors may only be drawn from a stimulus, not to
it.

™ - EHGE 3

-S}

L e R AR o o

e o)

K
2]

i A S

L I

Stimulus/Terminator Icons Before Stimulus/Terminator lcons After
Connecting Connecting
Figure 4.10 Figure 4.11

This icon has its object fields set to:

Field Name Setting
Genus Stim/Term_
Species Stim or Term
Type Blocklicon
Shadow False

As mentioned above, the species of this icon changes to stimulus or terminator
as soon as a connection is made to it. Shadowing is not used in SCF windows.

The methods for the stimulus/terminator icon are:

Method Name Function

Deleted Destroys the data structure associated with
the icon. The stimulus data structure is a list
of workloads. The terminator has no data
structure.

Duplicated Not allowed.

75

CHAPTER 4: PEDESTAL MODELS

Pasted

Not allowed.

Gender

When a connection is made to a
stimulus/terminator icon, the gender routine
is activated and the species is set according
to the direction of the connector. This routine
also ensures that once the icon has its
species, e.g. stimulus, that connectors are
only made to it in the correct direction. L.E.
stimulus icons may only be connected from
not to.

Save

Saves the data structure associated with the
icon to the model file.

Restore

Reads a data structure definition from the
model file and recreates the structure. This
structure will then be associated with the
proper window and icon.

Connected

Only allows connectors 1o be drawn from
stimulus icons and only allows connectors to
be drawn to terminator icons.

DoubleClick

Double clicking a stimulus will cause the
workload list dialog to be displayed (see
below). Double clicking on a terminator will
cause a simple dialog to be displayed
allowing the name of the terminator to be
changed.

Getlnfo

Same as double click (see above).

As mentioned in the method |

ist, double clicking on a stimulus will display the

workload list dialog shown in Figure 4.12. The stimulus name field allows the
user to change the name of the stimulus icon and thereby the name of the SCF
window. This name must be distinct from all other window names in the model.

The "Output Fission" checkbox

determines if fission is performed at the stimulus.

The default is that fission is performed.

stimulus:

Workloads:

Worklioad1

|

X Output Fission

BE00

The Workload List Dialog
Figure 4.12

The list of workloads in the workload list dialog displays the name(s) of

all currently defined workloads in this stimulus (read SCF). By default, there will
be one workload named "Workload0" defined. To create a new workload click

76

CHAPTER 4: PEDESTAL MODELS

on the "+" button. This will cause a dialog to be displayed with a default name
that can be edited if desired. Once the new name is entered, you are returned
to the workload list dialog and the new workload will be added to the list. To
delete a workload, select its name in the list by clicking on it once and then click
on the "-" button. To view/edit the definition of a workload, select the name of
the workload in the list by clicking on it once with the mouse, then click on the
"Edit" button. Alternatively, you may edit a workload by double clicking on the
workload name in the list. The "OK" button dismisses the workload list dialog.

When you edit a workload either by double clicking on its name in the
workload list or selecting it and clicking on the "Edit" button, the workload dialog
will be displayed as shown in Figure 4.13. The workload name may be
changed by editing the current name in the workload name field. Clicking on
the "Edit Start/Stop Conditions" button will display the start/stop time dialog
described below. A workload defines the entry of stimuli (work requests) into an
SCF. The workload interarrival time determines the time delay between stimuli
arrivals. The interarrival time is specified as a distribution. The distribution
popup lists the valid distributions. After selecting the desired distribution
(default is exponential), the parameters to the distribution will be displayed in
the parameter field. To edit these parameters, click on the parameter field and a
dialog will be displayed which lists the parameters and allows their values to be
edited. Figure 4.14 is an example of this dialog which is displayed for the
exponential distribution. The number and names of the parameters will vary
depending on the distribution currently showing in the distribution popup. The
time unit popup, determines the time scale.

Workload: |[(IHICETI] | firrival Distribution:
Edit Start/Stop Conditions Priority: E: Exponentiel
Intersrrival Time: Parameter Name Ualue
a1 1. Stroam# [C—
2. won
Batch Size: (1) (Concel) m
(concer) [o D
A Distribution Parameter Dialog

The Workload Dialog Figure 4.14

Figure 4.13

Each time a stimulus arrives, more than one transaction may be created.
The batch size of the workload determines how many transactions are created
when an arrival occurs. This value is specified, just as the interarrival time
distribution, from a popup menu. The only difference is that there is no need of
a unit scale for batch size.

As mentioned above, clicking on the "Edit Start/Stop Conditions” button
on the workload dialog displays the start/stop time dialog. Figure 4.15, shows
this dialog. The start time determines when this workload becomes active and
starts generating arrivals. The stop condition must be chosen by clicking on
one of the three radio buttons. The "End of Simulation” stop condition is self
explanatory. The "After x stimuli generated” condition, if chosen, will turn off the

77

CHAPTER 4: PEDESTAL MODELS

workload once the stated number of transactions have been generated by this
specific workload. The "At Time x" condition, if chosen, will turn off the workload
once the simulation reaches the specified time.

Stop Condition:
@ End of Simulation

QO ffter |o | stimuli Generated

O At Time{10.0

J [Tseconds |

The Start/Stop Time Dialog
Figure 4.15

The values shown in fields concerning the workload and start/stop time
dialogs are the default values of these fields.

Both the interarrival time and the batch size are defined as distributions.
The distributions which appear in the popup menus, their parameters and their

formulas are:

Distribution Parameters | Probability Density Function
{defaults}
Random Stream {1} Next random number in stream.
F(x)= —l__ formin<x<max
max-min .
Uniform Stream {1} F(x)=0 otherwise
Min {0}
Max {1}
F(x) = ey Where: p=MTBA
Exponential Stream {1} H
Mean Time
Between
Arrivals {1}
F(n) =p(1-p>!
Geometric Stream {1} Where: p = probdability of success
Probability of
Success {0.5}
Constant Value {1} F(x) = x

The actual values are calculated by taking the integral of the PDF and doing an
inverse mapping with a generated random number on [0,1.0] to determine the x

value.

78

CHAPTER 4: PEDESTAL MODELS

r = random number on [0,1.0]

givenr = I f(x)dx

What is x?

There are 500 (0 - 499) random streams available to the user of Pedestal™,
each of the which is guaranteed not to repeat in less than one million samples.

79

CHAPTER 4: PEDESTAL MODELS

4.1.1.3. THE MODULE ICON

The main components of an SCF window are software modules and the
control/data flows between them. The module icon in the SCF palette is used to
represent a software module. There are two basic types of software modules;
simple modules and macros. Simple modules represent a group of resource
demand statements referred as a Resource Demand Module (RDM) which must
be partitioned as a group. The RDM which is associated with a module may be
defined either as a textual list of resource demands where order in the list
denotes control flow, or it may be defined as an RDM window. RDMs are
explained in more detail in Section 4.1.2. The macro version of a module
represents a nested SCF diagram composed of one or more modules. The
macro is provided to allow hierarchical representation of the software
architecture of the model, thereby reducing the complexity of the SCF windows.
Modules can also affect control flow by performing input fusion and/or output
fission. The alternate iconic forms (species) denoting functional or structural
particulars of the module are shown in Figure 4.16.

S
m [K
Input Fusten Output Fissien Fustea & Flssion
sl 2 B @
Rdmn Diagram Rdm&Fusien Rdm&Fission RdméFusienbFission |4
S

Macre Maoro8Fusion MasrebFission MaorebFustendFission

l

AHHEEE

o DT TR R A R 8

The Module Species
Figure 4.16

The different species denote whether the module has a textual RDM, an
RDM diagram, or is a macro. Additionally, each of these base types has
species which denote the presence of fusion and/or fissiom. In-the following
table the leftmost column represents Figure 4.16 with the position of the icon
being described highlighted. The meaning of the species are:

lcon Macro | RDM “Fusion | Fission
D mgooa

pooo

goon No Text No No

E

pooo No Text Yes No

No Text No Yes

80

CHAPTER 4: PEDESTAL MODELS

—J
ogoo
oQoa

oo
oom

No Text Yes Yes

No Diagram | No No

—
gooljaon
oQoo

No Diagram | Yes No

|

ooa
omnQ
agoao

B

No Diagram | No Yes

a
||
o No Diagram | Yes Yes
D

soooj Yes No No No

omoD] Yes No Yes No

Yes No No Yes

goom| Yes No Yes Yes

The species of a module icon is changed automatically by Pedestal™ to match
the current definition of the module. If the user changes the definition,
Pedestal™ will automatically regender the icon and thereby change its species
to match the new definition.

One of the main factors in the performance of a multiprocessor system is
partitioning of the software to the hardware, i.e. what software executes on what
processor. In Pedestal™, simple modules (not the macro type) are the smallest
partitionable unit. Tasks are used to denote partitioning. Modules are assigned
to tasks and tasks are later assigned to processors. Tasks are discussed in
more detail in Section 4.2. Mapping is the term used for the assignments
mentioned above and is discussed in more detail in Chapter 5.

The module icon has its object fields set to:

Field Name Setting

Genus Module
Species Module {Variable}
Type Blocklcon
Shadow False

81

CHAPTER 4: PEDESTAL MODELS

As mentioned above, the species of this icon varies between several values
depending on the characteristics of the specific module. Shadowing is not used

in SCF windows.

The methods for the module icon are:

Method Name

Function

Deleted

“Destroys the module data structure

associated with the icon.

[Duplicated

Attaches a module data structure to the new
duplicate icon which is a copy of the one
associated with the icon being duplicated.
However, the name will be changed so that it
is unique from all other names in the
Clipboard.

Pasted

Ensures that the name of the module data
structure associated with the icon being
pasted is distinct from all other modules in
the window being pasted into. The name
will be changed if necessary.

Gender

After the user edits the module dialog the
icon is regendered so that its species
properly reflects the new characteristics of
the module.

Save

Saves the module data structure associated
with the icon to the model file.

Restore

Reads a module data structure definition
from the model file and recreates the
structure. This structure will then be
associated with the proper window and icon.

Connected

No restrictions are imposed.

DoubleClick

Double clicking a module icon will cause the
module dialog (see below) to be displayed.

Getinfo

A module will have either a textual RDM,
RDM diagram, or a Macro (SCF) window
associated with it. GetInfo will cause either
the textual RDM dialog (Section 4.1.2.2) or
the RDM or Macro window to be displayed
as appropriate.

As mentioned in the method list, double clicking on a module icon will display
the module dialog. Figure 4.17 shows a sample module dialog. The "Module
Instance” field allows the module name to be edited. The names of all icons on

a SCF window must be unique.

Since the same software routine may occur in multiple places on an
SCF, a module may reference any RDM, even one that other modules
reference. The body of the RDM only needs to be entered once and any
changes to the RDM will be carried to all referent modules. Region 1 in the

82

CHAPTER 4: PEDESTAL MODELS

module dialog allows a module's RDM to be specified and/or edited. The
popup menu will contain the names of all currently defined RDMs and will
display the name of the RDM currently associated with the module.
Additionally, the popup menu will have a "New..." entry, which appears prior to
the selection of an RDM. Upon chosing this first entry, a new RDM is created
with a unique name. The new RDM will then appear as the current choice in the
popup. For a given RDM name there may exist both a diagram and a textual
specification. The text version is meant o be used as a simpler version of the
diagram with the same name. Whether the current module is associated with
the text or the diagram version of the RDM named in the popup is determined by
the "Use Refinement" check box on the module dialog. If this box is checked,
the diagram is used, otherwise the textual version is used. The purpose of the
"RDM:" button in region 1 of the dialog is to display the RDM associated with the
module so that it may be viewed and/or edited. The setting of the "Use
Refinement" check box will determine whether this button displays the RDM text
dialog or the specified RDM window. See Section 4.1.2 for more information
regarding RDMs.

Madulo Instence

&

Priority: E:] # Repetitions: E:__—]

[J Input Fusion [] output Fission
X use Refinement 0O is Macro

The Module Dialog
Figure 4.17

Region 2 of the module dialog indicates the task to which the module is
assigned. The popup menu will display the name of the task currently
associated with the module. The popup will contain names of all currently
defined tasks. Additionally, the popup will have a "New..." item. Choosing this
item will cause a new task with a unique name to be created and associated
with this module. Clicking on the "Task:" button will display the task dialog for
the task associated with the module so that it may be edited/viewed. For more
information regarding tasks see Section 4.2.

The "Priority" field of the module dialog sets the priority of this module,
one criteria by which the order of processing of transactions may be
determined. The operating system (manager) of the device to which a task is
mapped determines it priority is used and if so, which type (module,task or
workload). For more information about operating systems see Section 4.6. For
more information about software to hardware mapping see Chapter 5.

"# Repetitions" determines the number of times the body (RDM) of the
module is executed for each transaction which arrives at this module. The

83

CHAPTER 4: PEDESTAL MODELS

transaction will be routed through the RDM the specified number of times before
exiting the module.

The remaining fields on the module dialog are all check boxes. The
function of the "Use Refinement" check box has already been discussed for non
macro modules. For macro modules, the box determines whether the macro is
translated as a macro or as the text version of the RDM named in the RDM
popup (in region 1) when the model is simulated. If the box is checked, the
module will be translated as a macro. The "Is Macro" check box is used to turn
the module into a macro. If checked, the module will be treated as a macro.
The "Input Fusion" and "Output Fission” check boxes, if checked, denote the
presence of the respective operation on this module.

The module dialog shown in Figure 4.17 has the default settings for a
new module icon.

84

CHAPTER 4: PEDESTAL MODELS

4.1.1.4. ATHE DELAY ICON

The delay icon is used t
events not being explicitly simu
object fields set to:

o represent delays caused in the system by
lated in Pedestal™. The delay icon has its

Field Name Setting
|Genus Delay
Species Delay
Type Blocklcon
Shadow False

There is only one species of the Delay icon. Shadowing is not used in SCF
windows.

The methods for the delay icon are:

Method Name

Function

Deleted

Destroys the delay data structure associated
with the icon.

‘Duplicated

Attaches a delay data structure to the new
duplicate icon which is a copy of the one
associated with the icon being duplicated.
However, the name will be changed so that it
is unique from all other names in the
Clipboard.

Pasted

Assures that the name of the delay data
structure associated with the icon being
pasted is distinct from all other modules in
the window being pasted into. The name
will be changed if necessary.

Gender

No Function.

Save

Saves the delay data structure associated
with the icon to the model file.

Restore

Reads a delay data structure definition from
the model file and recreates the structure.
This structure will then be associated with
the proper window and icon.

Connected

No restrictions are imposed.

DoubleClick

Double clicking a delay icon will cause the
delay dialog (see below) to be displayed.

Getlinfo

Same as DoubleClick (see above).

As mentioned in the method list, double clicking on a delay icon will display the
delay dialog. Figure 4.18 shows a sample delay dialog. The name of the delay

85

CHAPTER 4: PEDESTAL MODELS

may be edited in the "Delay Node" field. The name of the delay must be distinct
from the name of all other icons in the SCF window. The length of the delay is
determined by the "Delay Time" field. The time unit popup provides the scale of
the delay. It should be noted that the use of expressions allows the length of the
delay to change over time. The "Input Fusion" and "Output Fission" check boxes
denote the absence (if unchecked) or presence (if checked) of the associated
operations on this icon.

Delay Node:

%i

Detay Time:

O Input Fusion {3 output Fisslion

|

The Delay Dialog
Figure 4.18

The delay dialog in Figure 4.18 shows the default settings for a new
delay.

CHAPTER 4: PEDESTAL MODELS

4.1.1.5. @ THE NOTE ICON

The note icon appears on all windows in Pedestal™ except for the

desktop and hardware and s

oftware folder windows. This icon allows the user

to attach notes and/or documentation to Pedestal™ diagrams. This icon has its

object fields set to:

Field Name Setting
Genus Note
Species Note
Type Blocklcon
Shadow False

The methods for the note icon are:

Method Name Function

Deleted Delete the text associated with the icon.

Duplicated Not allowed.

Pasted Not allowed.

Gender No function.

Save Saves the text associated with the icon to the

. model file.

Restore Reads a text from the model file and
associates it with the proper window and
icon.

Connected _Not allowed.

DoubleClick Double clicking this icon will cause the note
dialog to be displayed (see below).

Getlnfo No function.

This fisld may be used for any notes or documentation O
that the user desires to entar. The tent will be saved
and moy be viewed and/or edited at any time.

<

The Note Dialog

Figure 4.19

87

CHAPTER 4: PEDESTAL MODELS

As mentioned in the method list, double clicking on a note icon will display the
note dialog shown in Figure 4.19. This dialog contains a scrollable text field.
The user may type in this field and the information will be saved for subsequent
viewing and editing.

88

CHAPTER 4: PEDESTAL MODELS

4.1.1.6. SCF/MACRO CONNECTORS

The connectors on an SCF window are used to denote existence and
direction of data flow paths. These connectors determine the flow of work
throughout the SCF. The note icon has nothing to do with the simulation of
software and therefore can not have data flows to or from it. The stimulus icon
can only have connectors drawn from it and the terminator can only have
incoming connectors. The module and delay icons can have connectors both to
and from them. In order to be part of a running model, a module or delay must
have both an incoming and outgoing connector.

The HotSpoticon area of SCF connectors is used to denote inter-task
boundaries. Another use of the connectors on SCF windows is in statistics
collection. The user is allowed to define up to 4 statistics to be collected for
each data flow. These statistics will be collected each time a transaction is
about to be sent along the given data flow. A small flag icon will be attached to
the start and/or end of a connector to denote the presence of statistics
collection. Figure 4.20 shows an example of these modified connectors.

T R B R e L) TR

/" Collect »” Coliect Collect
Before After 4
i Transmission Transmission

Statistics Collection Notification on Connectors
Figure 4.20

SCF connectors always appear as directed arrows and as mentioned
above, have various appearances. The object field settings for connectors are:

Field Name Setting
Flagilcon {Nons,Fla
Flag2icon None,Flag}
HotSpotlcon {None,ITC}

The flags are used to denote presence of statistics collection on connectors and
the ITC symbol is used to denote the presence of intertask communications.
The method routines for a connector are:

Method Name Function
Deleted Destroys the branching list and statistics
information associated with the connector.

89

CHAPTER 4: PEDESTAL MODELS

Duplicated Attaches a branching list and set of statistics
to the new duplicate connector. The
statistics will be the same as the original
connector. The branching list will be
recreated (with possibly different
probabilities) since the connector may be
pasted to an SCF window with different
| workloads.

Pasted If the icons on both ends of the connector are
also pasted then the connector is pasted and
the branching probabilities are changed so
that the workloads match this window.
Gender Determines if statistics are defined for this
connector before or after transmission and if
the icons on each end of it are in different
tasks. Based on this, the connector is drawn
with the proper modifications.

Save Saves the branching list and statistics
information associated with the connector to
_the model file.

Restore Reads a branching list and statistics
information from the model file and recreates
the structure. This structure will then be
associated with the proper connector.
DoubleClick Double clicking a connector will display the
data flow dialog (see below).

As mentioned in the method list, double clicking on a connector will display the
data flow dialog. This dialog, shown in Figure 4.21 allows the information
associated with the connector to be viewed/edited. The size field and popup
menu determine the amount of data to be sent as a transaction passes along
the connector. The priority field determines the transmission priority of the
transaction. The "Collect Stats" button displays the connector statistics dialog
(explained below) for the statistics to be collected before transmission of a
transaction along this data flow. Finally the "Edit Branching Probabilities" button
will display the branching probability dialog (explained below) to allow the
probabilities for this connector to be edited.

The branching probability dialog, shown in Figure 4.22, contains a
scrolling list of workload name/probability pairs. An entry will appear in this list
for every workload defined in the stimulus of the SCF window in which the
connector is drawn. To change a probability, double click on the number and a
simple dialog will be displayed which will prompt you for the new probability
and update the list.

The connector statistics dialog, shown in Figure 4.23, allows four
statistics to be defined. The label field allows the user to specify the name of the
statistic to be calculated. The expression field allows the user to enter an
expression which defines the statistic. The show box, if clicked, will enable the

90

CHAPTER 4: PEDESTAL MODELS

statistic to be shown on the screen during a simulation run if the Show SCF
Stats is selected on the. Finally, the log box, if clicked will cause the statistic to
be written out to the event log file each time it is evaluated during a simulation
run. The event log file is specified on the collect file statistics dialog explained

in Chapter 6.

Data Fiow Edit Branching Probabiiities
size | Workload | Probability :
0 oadd
Priority [2_:_] orklond !
(Edit Branching ProbabHities | z
The Data Flow Dialog
Figure 4.21
The Branching Probability Dialog
Figure 4.22
Label Expression Show Log
statl Qevimuchw- cpu] @ ®
[(] m}
[] O O
0 a O
(Hewp) Cancel | u oK I

The Connector Statistics Dialog
Figure 4.23

91

CHAPTER 4: PEDESTAL MODELS

4.1.2. RESOURCE DEMAND MODULES

Resource Demand Modules (RDMs) are a group of resource demands
and the flow of control between those demands. Every module in an SCF
window (previous Section) is associated with an RDM and that RDM defines the
processing which occurs when that module is executed. In essence, an RDM is
Pedestal™s version of program code.

P e — L]
e [0\

|
(o O L L T B

a1 13 D o]

An RDM Window
Figure 4.24

Figure 4.24 shows a simple RDM window which preforms three parallel
execution requests. There are several icons in the palette of an RDM window.
Each icon, except the first and last on the palette, represents a different type of
resource demand:

Ilcon Name Purpose
AN

Allocate Increase the size of a data store
by allocating more space on the
data store’s memory device.

% Deallocate Decrease the size of a data store
by deallocating some of its space
on its memory device.

O Execute Execute instructions on a
processor device.

@f'j Access Access a data store. Accesses
supported are random read,
sequential read, insert, update,
and reorganize.

o Request Lock Enter a protected region of code.
e= Relinquish Lock Exit a protected region of code.
A Delay Delay for some time period.

92

CHAPTER 4: PEDESTAL MODELS

The allocate, deallocate and access icons concern data stores. For now,
think of data stores as files. The files reside on a memory device (disk).
Allocate and deallocate change the size of the file by claiming more/less space
on the disk the file resides on. The access icon allows the file contents to be
modified. For more information regarding data stores and memory devices see
Sections 4.4 and 4.5.2.2 respectively. In the RDM only the type of request and
the data store is specified. Relating the data stores to a specific device is done
via the mappings (Chapter 5).

The execute request causes a specified number of instructions to be
executed. The actual device used, and thereby the time delay involved, is
dependant on the task of the module invoking the RDM and the processor to
which that task is mapped. For information about processors and mappings
refer to Section 4.5.2.1 and Chapter 5 respectively.

The lock request and relinquish icons are used to bound special
Sections of code. Refer to Section 4.3 for a complete description of locks.

The delay icon in an RDM is the same as a delay in an SCF. ltis usedto
represent a delay caused by something not being modeled explicitly. Note that
this delay occurs within a task; there can be no task boundaries within an RDM
since the RDM is the smallest unit of partitioning.

Since the association of processors used for execution and the files used
for data stores are determined by the mappings (Chapter 5) and not by the
RDM diagram, the RDM can be drawn independent of the hardware in
the model. The mappings allow these assignments to be changed easily and
rapidly between simulations.

Input fusion and output fission can occur on all icons in the RDM window.
The effect of fusion and fission is the same as that described for SCF windows
(Section 4.1.1). One difference between RDM and SCF windows is that
connectors in RDM windows only denote flow of control. Therefors, unlike in
SCFs, transactions do not change size as they cross connectors within an RDM
diagram. Also, there are no branching tables which give probabilities/rules for
branching based on the workload which created the transaction. In RDMs, each
connector has only one probability/rule, and the creator of the transaction plays
no role in branching.

93

CHAPTER 4: PEDESTAL MODELS

4.1.2.1. RDM WINDOWS

The object fields for an RDM window are set as follows:

Field Name Setting
WindowType RDM

ConnectorType _HorizontalArrow {Varies}
CankEdit True

CanGetinfo _True

CanMouse True

CanReduce True

CanTile True

Connectors are also supported on the RDM window and the direction of the
drawing can be changed with the "Toggle Vertical/Horizontal" item of the draw
menu just like SCF windows. The method routines for an RDM window are:

Method Name Function

ConnectorDoubleClick Display the branching dialog (see below).
PlaceConnector Creates a new control flow.

Activate No function.

94

CHAPTER 4: PEDESTAL MODELS

4.1.2.2. TEXT RDMs

An alternate to the window representation of the RDM is the textual form.
A textual RDM is specified with the RDM Text dialog shown in Figure 4.25. The
order of statements in the list determines the order of execution. Note that no
parallelism is possible in textual RDMs.

aom: [T AN
Rliocate 1.0 bytes Default v
Execute 1.0 instructions
Delay 1.0 seconds @
Dealloc 1.0 bytes Default

o=

=

o ' 0K B

The RDM Text Dialog
Figure 4.25

Clicking icons on the right side of the dialog will add a statement to the
list. The statement will be appended to the end of the list if no statements in the
list are highlighted when the icon is clicked. If a statement is highlighted when
the icon is clicked, the new statement will be inserted in the list immediately
before the highlighted statement. Double clicking one of the statements in the
list will cause the dialog associated with that statement to be displayed, thus
allowing the statement to be edited. See the following Sections concerning the
individual icons for the content of these dialogs. Clicking on the "Delete” button
while a statement is highlighted will cause that statement to be deleted.

Associated with each statement is a sentence dialog that is displayed in
response to double clicking the statement. The sentence is of the general form:
verb, amount, preposition, object. The preposition is a button that provides
access to the definition of the object. This general concept will be particularized
in the discussion of each icon an its related statement.

95

CHAPTER 4: PEDESTAL MODELS

O

4.1.2.3. THE STIMULATOR/TERMINATOR ICON

There must be one stimulus and one terminator on each RDM window.
When a transaction arrives at a module it will be sent through the module's
RDM starting at the stimulus. When the transaction reaches the terminator it will
exit the module. To save space on the palette, one icon represents a generic
form of these icons. When the user connects to/from the icon its species is
changed to terminator/stimulus respectively. Figure 4.26 shows two generic
icons placed in a window. Figure 4.27 shows the species of the stimulus and
terminator after the icons are connected (the stimulus is on the left). Note that
connectors may only be drawn to terminators, not from them. Similarly,
connectors may only be drawn from a stimulus, not to it.

E.}L'

:.Jr_:—:,m»»m‘j =

i
¥
19

)

W] IR 0 e S ST e s e B

Generic Icons Before Connecting Stimulus/Terminator Icons After
Figure 4.26 Connecting
Figure 4.27

This icon has its object fields set to:

Field Name Setting
[Genus Stim/Term
Species Stim or Term
Type Blocklcon
Shadow False

As mentioned above, the species of this icon changes to stimulus or terminator
as soon as a connection is made to it. Shadowing is not used in RDM windows.

The methods for the stimulus/terminator icon are:

Method Name Function

Deleted Destroys the data structure associated with

- the icon.

Duplicated Not allowed.

Pasted Not allowed.

Gender When a connection is made to a
stimulus/terminator icon, the gender routine
is activated and the species is set according

96

CHAPTER 4: PEDESTAL MODELS

to the direction of the connector. This routine
also ensures that once the icon has its
species, say stimulus, that connectors are
only made to it in the right direction. |.E.
stimulus icons may only be connected from

not to.

Save Saves the data structure associated with the
icon to the modei file.

Restore Reads a data structure definition from the

model file and recreates the structure. This
structure will then be associated with the
proper window and icon.

Connected Only allows connectors to be drawn from
stimulus icons and only allows connectors to
be drawn to terminator icons.

DoubleClick Double clicking a stimulus will cause the
stimulus dialog be displayed (see below).
Double clicking on a terminator is not
allowed.

Getlnfo Same as double click (see above).

As mentioned in the method list, double clicking on a stimulus will display the
stimulus dialog shown in Figure 4.28. The only thing to change on an RDM
stimulus is wether or not output fission occurs. If the "Output Fission” check box
is checked fission will occur. The default is for fission not to occur.

ROM4

] output Fission

@))

The Stimulus Dialog
Figure 4.28

97

CHAPTER 4: PEDESTAL MODELS

4.1.2.4. THE ALLOCATE ICON

An allocate request is a request to increase the size of a data store. This
is equivalent to increasing the number of sectors on a disk which are allocated
for a file, or to increasing the size of the memory set aside for a dynamic data
structure. For a discussion of data stores and the process of mapping data
stores to memory devices see Sections 4.4 and 5.4 respectively.

The allocate icon has its object fields set to:

Field Name Setting
Genus Allocate
Species _Allocate
Type _Blocklcon
Shadow False

Shadowing is not used in RDM windows. The methods for the allocate

icon are:

Method Name Function

Deleted Destroys the demand data structure

| associated with the icon.

Duplicated Attaches a demand data structure to the new
duplicate icon which is a copy of the one

| associated with the icon being duplicated.

Pasted Copies the demand in the Clipboard into the
current window.

Gender No function.

Save Saves the request data structure associated

| with the icon to the model file.

Restore Reads a request data structure definition
from the model file and recreates the
structure. This structure will then be
associated with the proper window and icon.

|Connected No restrictions are imposed.

DoubleClick Double clicking an allocate icon will cause
the allocation request dialog (see below) to
be displayed.

Getinfo Same as DoubleClick (see above).

As mentioned in the method list, double clicking on an allocate icon will display
the allocation request dialog. Figure 4.29 shows a sample allocation request

dialog.

98

CHAPTER 4: PEDESTAL MODELS

The highlighted editable text field is where you specify the amount of the
memory device to be allocated. This amount is specified as a number and a
unit of memory. The "from" button will display the data store dialog (Section 4.4)
for the data store displayed in the adjacent popup menu. That popup will
contain the names of all currently defined data stores. Additionally, there is a
"New..." entry which, if selected, will cause a new data store with a unique name
to be created and picked as the data store for this request. The "Input Fusion”
and "Output Fission" check boxes determine if fusion and/or fission are
associated with this statement(action occurs if box is checked).

\

The request dialog shown in Figure 4.29 shows the default settings for a
new allocate icon.

fAllocate

PaN 3 Input Fusion
[Gutput Fission [Cancel] l 0K |

Allocation Request Dialog
Figure 4.29

99

CHAPTER 4: PEDESTAL MODELS

NS

4.1.2.5. THE DEALLOCATE ICON

A deallocate request is a request to decrease the size of a data store.
This is equivalent to freeing some of the sectors on a disk which are allocated
for a file, or to freeing some of the memory set aside for a dynamic data
structure. For a discussion of data stores and the process of mapping data
stores to memory devices see Sections 4.4 and 5.4 respectively.

The deallocate icon has its object fields set to:

Field Name Setting
Genus Deallocate
Species Deallocate
Type Blocklcon
Shadow False

Shadowing is not used in RDM windows. The methods for the deallocate
icon are:

Method Name Function

Deleted Destroys the demand data structure
associated with the icon.

Duplicated Attaches a demand data structure to the new

duplicate icon which is a copy of the one
associated with the icon being duplicated.

Pasted “Copies the demand in the Clipboard into the
current window.

Gender No function.

Save Saves the request data structure associated
with the icon to the model file.

Restore Reads a request data structure definition

from the model file and recreates the
structure. This structure will then be
associated with the proper window and icon.

Connected “No restrictions are imposed.

DoubleClick Double clicking a deallocate icon will cause
the deallocate request dialog (see below) to
be displayed.

Getinfo Same as DoubleClick (see above).

As mentioned in the method list, double clicking on a deallocate icon will
display the deallocate request dialog. Figure 4.30 shows a sample deallocate
request dialog.

100

CHAPTER 4: PEDESTAL MODELS

The initially selected field is where you specify the amount of the memory
device to be freed. This amount is specified as a number and a memory unit.
The "of" button will display the data store dialog (Section 4.4) for the data store
displayed in the adjacent popup menu. That popup will contain the names of all
currently defined data stores. Additionally, there is a "New..." entry which, if
selected, will cause a new data store with a unique name to be created and
picked as the data store for this request. The "Input Fusion" and "Output
Fission" check boxes determine if fusion and/or fission occur at this icon (action
occurs if box is checked). '

Dealloc [bits] (or)[Cese]
<7 Gouputriuson (canc) (00

Deallocate Request Dialog
Figure 4.30

The request dialog shown in Figure 4.30 shows the default settings for a
new deallocate icon.

101

CHAPTER 4: PEDESTAL MODELS

O
4.1.2.6. THE EXECUTE ICON

An execute request is a request to have some instructions executed by a
processor. The processor used will depend on the mapping of the task
associated with the module which references the RDM. The object field
therefore is not visible here as it is for the other types of demand. For a
discussion of tasks, processors and the process of mapping tasks to processor
devices see Sections 4.2, 4.5.2.1 and 5.3 respectively.

The execute icon has its object fields set to:

Field Name Setting
Genus “Execute_
Species Execute
Type Blocklcon
Shadow False

Shadowing is not used in RDM windows. The methods for the Execute

icon are:

Method Name Function

Deleted Destroys the demand data structure

| associated with the icon.

Duplicated Attaches a demand data structure to the new
duplicate icon which is a copy of the one

| associated with the icon being duplicated.

Pasted Copies the demand in the Clipboard into the
current window.

Gender No function.

Save Saves the request data structure associated
with the icon to the model file.

Restore Reads a request data structure definition
from the model file and recreates the
structure. This structure will then be
associated with the proper window and icon.

Connected No restrictions are imposed.

DoubleClick Double clicking an execute icon will cause
the execute request dialog (see below) to be
displayed.

Getlnfo Same as DoubleClick (see above).

As mentioned in the method list, double clicking on an execute icon will display
the execute request dialog. Figure 4.31 shows a sample execute request

dialog.

102

CHAPTER 4: PEDESTAL MODELS

The highlighted field is where you specify the number of instructions to
be executed. This amount is specified as a number and a unit (powers of 10).
The "Input Fusion" and "Output Fission" check boxes determine if fusion and/or
fission ar associated with this statement(action occurs if box is checked).

Ewecuts

O tnput Fusion

]-O [Output Fission
{cancet) [ox]

Allocation Request Dialog
Figure 4.31

The request dialog shown in Figure 4.31 shows the default settings for a
new execute icon.

103

CHAPTER 4: PEDESTAL MODELS

(%)
4.1.2.7. THE ACCESS ICON

An access request is a request to access a data store. This will cause
messages to be sent between the processor the transaction is executing on and
the memory device the data store resides on. The types of access supported
are: random read, sequential read, insert, update, and reorganize. These are
easily understood as file transactions, but apply just as well to memory
management. For a discussion of hardware and mappings see Section 4.5 and
Chapter 5 respectively.

The access icon has its object fields set to:

Field Name Setting
Genus Access
Species Access
Type Blocklcon
Shadow False

Shadowing is not used in RDM windows. The methods for the access
icon are:

Method Name Function

Deleted Destroys the demand data structure
B associated with the icon.

Duplicated Attaches a demand data structure to the new

duplicate icon which is a copy of the one
associated with the icon being duplicated.

[Pasted Copies the demand in the Clipboard into the
current window.

Gender No function.

Save Saves the request data structure associated
with the icon to the model file.

Restore Reads a request data structure definition

from the model file and recreates the
structure. This structure will then be
associated with the proper window and icon.

Connected No restrictions are imposed.

DoubleClick Double clicking an access icon will cause
the access request dialog (see below) to be
displayed.

Getlnfo Same as DoubleClick (see above).

As mentioned in the method list, double clicking on an access icon will display
the access request dialog. Figure 4.32 shows a sample access request dialog.

104

CHAPTER 4: PEDESTAL MODELS

At the top left of the dialog is a popup (currently showing "Read"), this
popup is used to specify the type of access being performed. The amount of
data involved is specified by the next two fields. This amount is specified as a
number and a scale (memory units). The "using" button will display the data
store dialog (Section 4.4) for the data store displayed in the adjacent popup
menu. That popup will contain the names of all currently defined data stores.
Additionally, there is a "New..." entry which, if selected, will cause a new data
store with a unique name to be created and picked as the data store for this
request. The "Input Fusion" and "Output Fission” check boxes determine if
fusion and/or fission occur at this icon (action occurs if box is checked).

[Reed bits] (using)
' S:JT::L::“M |Cancel|| 114 .

Access Request Dialog
Figure 4.32

The request dialog shown in Figure 4.32 shows the default settings for a
new access icon.

105

CHAPTER 4: PEDESTAL MODELS

O==
4.1.2.8. THE REQUEST LOCK ICON

A lock request is a request to enter a controlled Section of code. For a
discussion of locks (locked regions of code) see Section 4.3.

The request lock icon has its object fields set to:

Field Name Setting
Genus RequestlLock
Species RequestLock
Type Blockicon
Shadow False

Shadowing is not used in RDM windows. The methods for the request
lock icon are:

Method Name Function

Deleted Destroys the demand data structure
associated with the icon.

Duplicated Attaches a demand data structure to the new

duplicate icon which is a copy of the one
associated with the icon being duplicated.

[Pasted Copies the demand in the Clipboard into the

B current window.

Gender No function.

Save Saves the request data structure associated
with the icon to the model file.

Restore Reads a request data structure definition

from the model file and recreates the
structure. This structure will then be
associated with the proper window and icon.

(Connected No restrictions are imposed.

DoubleClick Double clicking a request lock icon will
cause the lock request dialog (see below) to
be displayed.

Getlnfo Same as DoubleClick (see above).

As mentioned in the method list, double clicking on a request lock icon will
display the lock request dialog. Figure 4.33 shows a sample lock request
dialog.

"Exclusive" is a check box which determines if this entry to the protected
region of code is exclusive (if checked it is exclusive). The "on" button will
display the lock dialog (Section 4.3) for the lock displayed in the adjacent
popup menu. That popup will contain the names of all currently defined locks.

106

CHAPTER 4: PEDESTAL MODELS

Additionally, there is a "New..." entry which, if selected, will cause a new lock

with a unique name to be created and

picked as the lock for this request. The

"Input Fusion" and "Output Fission” check boxes determine if fusion and/or
fission occur at this icon (action occurs if box is checked).

[J Exnciusive Placelock

{d Input Fusion
[J Output Fission

| Concel l I oK l

Allocation Request Dialog
Figure 4.33

The request dialog shown in Figure 4.33 shows the default settings for a

new request lock icon.

107

CHAPTER 4: PEDESTAL MODELS

@:b
4.1.2.9. THE RELINQUISH LOCK ICON

A relinquish lock request is a notification that the protected Section of
code is being exited. For a discussion of locks see Section 4.3.

The allocate icon has its object fields set to:

Field Name Setting
Genus "RelinquishLock
Species RelinquishLock
(Type Blocklcon
Shadow False

Shadowing is not used in RDM windows. The methods for the relinquish
lock icon are:

Method Name Function

Deleted “Destroys the demand data structure
associated with the icon.

Duplicated Attaches a demand data structure to the new

duplicate icon which is a copy of the one
associated with the icon being duplicated.

Pasted Copies the demand in the Clipboard into the
current window.

Gender No function.

Save Saves the request data structure associated
with the icon to the model file.

Restore Reads a request data structure definition

from the model file and recreates the
structure. This structure will then be
associated with the proper window and icon.
Connected _No restrictions are imposed.

DoubleClick Double clicking a relinquish lock icon will
cause the relinquish lock request dialog (see
below) to be displayed.

Getlnfo Same as DoubleClick (see above).

As mentioned in the method list, double clicking on a relinquish lock icon will
display the relinquish lock request dialog. Figure 4.34 shows a sample
relinquish lock request dialog.

The "from" button will display the lock dialog (Section 4.3) for the lock
displayed in the adjacent popup menu. That popup will contain the names of all
currently defined locks. Additionally, there is a "New..." entry which, if selected,
will cause a new lock with a unique name to be created and picked as the lock

108

CHAPTER 4: PEDESTAL MODELS

for this request. The "Input Fusion" and "Output Fission" check boxes determine
if fusion and/or fission occur at this icon (action occurs if box is checked).

R Lock (from)
o= Dlnputrusloln m m

O output Fi

Allocation Request Dialog
Figure 4.34

The request dialog shown in Figure 4.34 shows the default settings for a
new relinquish lock icon.

109

CHAPTER 4: PEDESTAL MODELS

4.1.2.10. ATHE DELAY ICON

The delay icon is used to represent delays caused in the system by
events not being explicitly simulated in Pedestal™. The delay icon has its
object fields set to:

Field Name Setting
Genus Delay
Species Delay
Type Blocklcon
Shadow False

There is only one species of the Delay icon. Shadowing is not used in
RDM windows. The methods for the delay icon are:

Method Name Function

Deleted Destroys the demand data structure
associated with the icon.

Duplicated Attaches a demand data structure to the new

duplicate icon which is a copy of the one
associated with the icon being duplicated.

Pasted Copies the demand in the Clipboard into the
current window.

(Gender No function.

Save Saves the request data structure associated
with the icon to the model file.

Restore Reads a request data structure definition

from the model file and recreates the
structure. This structure will then be
associated with the proper window and icon.

[Connected No restrictions are imposed.

DoubleClick Double clicking a delay icon will cause the
delay request dialog (see below) to be
displayed.

Getinfo Same as DoubleClick {see above).

As mentioned in the method list, double clicking on a delay icon will display the
delay request dialog. Figure 4.35 shows a sample delay request dialog.

The length of the delay is determined by the "Delay” field. The time unit
popup provides the scale of the delay. It should be noted that the use of
expressions allows the length of the delay to change over time. The "Input
Fusion" and "Output Fission" check boxes denote the absence (if unchecked) or
presence (if checked) of the associated operations on this icon.

110

CHAPTER 4: PEDESTAL MODELS

Delay microseconds

[Input Fusion
[0 output Fission

(cancet) [ok §

Delay Request Dialog
Figure 4.35

The request dialog shown in Figure 4.35 shows the default settings for a
new delay icon.

111

CHAPTER 4: PEDESTAL MODELS

4.1.2.11. RDM CONNECTORS

The connectors on an RDM window are used to denote existence and
direction of control flow paths. These connectors determine the execution of
resource demands throughout the RDM. The note icon has nothing to do with
the simulation of software and therefore can not have data flows to or from it.
The stimulus icon can only have connectors drawn from it and the terminator
can only have connectors drawn to them. All the request icons can (and must)
have connectors both to and from them.

The HotSpotlcon, Flag1lcon and Flag2icon areas of RDM connectors are
not used. RDM connectors always appear as directed lines. The object field

settings for connectors are:

Field Name Setting
Flaglcon None
Flag2icon None
HotSpoticon None

The method routines for a connector are:

Method Name Function

Deleted Destroys the branching probability

| associated with the connector.

Duplicated Attaches a branching probability to the new
duplicate connector. The probability will be
the same as the original connector.

Pasted If the icons on both ends of the connector are
also pasted then the connector is pasted.

Gender No function.

Save Saves the branching probability associated
with the connector to the model file.

Restore Reads a branching probability from the
model file and recreates the structure. This
structure will then be associated with the

- roper connector.

DoubleClick Double clicking a connector will display the
branching dialog (see below).

Branching Probability E

The Branching Dialog

Figure 4.36

112

CHAPTER 4: PEDESTAL MODELS

As mentioned in the method list, double clicking on a connector will display the
branching dialog. This dialog, shown in Figure 4.36 allows the branching
probability associated with the connector 1o be viewed/edited. The default
probability is 1. It should be noted that with the use of expressions, branching
may be rule based instead of strictly probabilistic.

113

CHAPTER 4: PEDESTAL MODELS

4.2. TASKS

One of the major factors which determines the performance of software
on a multiprocessor time critical system is the way in which the software
modules are grouped and assigned to processors. Pedestal™ calls these
groups of modules tasks. Software modules are assigned to tasks either from
the module to task mapping (see Section 5.2) or from the module dialog (see
Section 4.1.1.3). Tasks are then assigned to processors through the task to
processor mapping (see Section 5.3). Tasks have several characteristics which
may be modified to determine the behavior of the task.

Figure 4.37 shows a sample SCF with two modules. The modules are in
separate tasks as indicated by the ITC modifier (Section 4.1.1) to the connector
between the modules. The function of tasks will be demonstrated by explaining
what happens when a transaction finishes processing in Module0 and is sent to
Modulei. Assume that ModuleO is in TaskO and Module1 is in Taskl. Before
the transaction can be passed to Module1, Task1 must be able to accept
another transaction. A task has a fixed number of instantiations which it can
handle. This number can be thought of as the maximum number of transactions
which can be in the task at any given time. If the current number of
instantiations of Task1 is less than its maximum, the transaction will exit Task0,
be sent to the Task1 processor, enter Task1 and be processed by Module1. If
the current number of instantiations of Task1 equals its maximum, the buffer
must be checked. A task has a buffer which stores entry requests. If the current
size of the Task1 buffer is less than its max, the transaction will exit Task0, be
sent to the Task1 processor and be queued in the entry request buffer of Task1.
If the Task1 buffer is full, then the transaction can not yet leave Task0 and must
be queued until a transaction is removed from the Task1 buffer.

A Simple SCF
Figure 4.37

114

CHAPTER 4: PEDESTAL MODELS

4.2.1. THE TASK WINDOW

The task window, shown in Figure 4.38, has an icon for every task which
is currently defined and provides a convenient method to edit and/or create
tasks. The task window palette also provides the note icon.

ey L
i oim

]
4 i [

L]

G I e A YL

The Task Window
Figure 4.38

The object fields for the task window are set as follows:

Field Name Setting
WindowType Task
ConnectorType _NoConnector
CanEdit True
CanGetinfo True
CanMouse True
CanReduce True

CanTile True

The NoConnector connector type denotes that connectors are not used on the
task window. The task window methods are:

Method Name Function
ConnectorDoubleClick Not allowed.
PlaceConnector Not allowed.
Activate No function.

115

CHAPTER 4: PEDESTAL MODELS

v

4.2.2. THE TASK ICON

The task icon allows the user to add and/or edit tasks. This icon has its
object fields set to:

Field Name Setting
Genus Task

Species Task

Type Blocklcon
Shadow False {Variable}

The shadow field is set to true if the number of instantiations of the task is
greater than one. The methods for the task icon are:

Method Name Function

Deleted Delete the task associated with the icon and
remove all references to this task by
modules.

Duplicated Create a new task and associate it with the

new duplicate icon. The characteristics of
the new task will be the same as the task
being duplicated, only the name will change.
The task names must be distinct.

Pasted Places a previously duplicated or cut task
icon on the window.

Gender No function.

Save Saves the task information associated with
the icon to the model file.

Restore Reads a task definition from the model file
and associates it with the proper window
and icon.

Connected Not allowed.

DoubleClick Double clicking this icon will cause the task
dialog to be displayed (see below).

Getinfo Same as double click.

As mentioned in the method list, double clicking on a task icon will
display the task dialog shown in Figure 4.39. This dialog may also be reached
by clicking on the "Task" button on the module dialog (see Section 4.1.1.3). The
first field on the task dialog allows the name of the task to be changed. All
modules which reference the task will still reference it after the name is
changed. The maximum number of instantiations determines the number of
modules in the task which can be executing at the same time. The priority is the
priority of the task and may affect the order in which resource requests made by
modules within the task are processed. The Buffer Size determines the number

116

CHAPTER 4: PEDESTAL MODELS

of messages (requests for the activation of a module in the task) which can be
queued. If the number of instantiations is greater than one then the reentrant
flag determines if an activation of the task when the task is currently active will
suffer a task initialization delay.

The default value for instantiations, priority, buffer size and reentrant are
shown below in Figure 4.39.

Man # instentiations: {1

Priarity: 0

Buffer Size:
[J Reentrant

(o<)

The Task Dialog
Figure 4.39

117

CHAPTER 4: PEDESTAL MODELS

4.3. LOCKS

The flow of transactions may be controlled by placing restrictions on the
number of transactions currently executing a portion of code. The concept is
similar to that of task instantiation presented in Section 4.2; locks, however, may
span task boundaries. Pedestal™ supports this concept with the placement of a
place lock request at the beginning of the restricted code segment and a
remove lock request at the point where the restriction is removed. The request
will specify the logical name of the lock so that regions of code in different RDMs
may use the same lock.

A request for a lock may be either exclusive or non-exclusive. Since the
request and not the lock itself determines how many transactions may be within
a restricted segment, delay may be introduced while an exclusive request is
waiting for transactions to free a lock as well as while the exclusive hold is in
effect. When an exclusive request arrives at a lock there may be several non-
exclusive requests currently being service. The exclusive request is queued
until there are no transactions currently using the lock; it then seizes the lock
and blocks all other transactions from entering the lock until it issues its remove
lock request. Non exclusive requests and remove requests are counted without
association with a particular transaction. The exclusive request must however
remain associated with the transaction since only the transaction holding the
lock may release it.

Figures 4.40, 4.41 and 4.42 show a simple SCF with two modules and
the RDMs associated with each module. Module0 uses RDMO and Module1
uses RDM1. Assume that there is a data structure called UserList1 which is not
being modeled in Pedestal™. That is, the process of accessing the data and
modeling the memory device in which it would reside are not important enough
to model explicitly. ModuleO references UserList1 and does some processing
and a data access (to something else) based on the reference, then does some
more processing. Module1 wants to update Userlist1. To keep transactions
from entering the part of ModuleO that references UserList1 while UserList1 is
being updated in Module1, a lock must be used. RDMO shows the resource
demands for request and relinquish lock requests using a lock named
"UserListi Reference". The request in this RDM is nonexclusive since UserList1
is only referenced, not changed. RDM1 also has the proper resource requests
surrounded by a lock request and relinquish for the UserList1 lock. This request
is exclusive. The effect of this is that when a transaction arrives at the lock
request in RDM1, the transaction will be queued. The lock request in RDMO will
now queue any transactions that arrive, thus not letting them past the lock
request. As soon as the last transaction that was in the protected region of
RDMO reaches the lock relinquish in RDMO, the transaction waiting at the lock
request in RDM1 will be dequeued and allowed to execute. Until this
transaction arrives at the lock relinquish in RDM1, no transaction will be allowed
past the lock requests in either RDMO or RDM1.

118

CHAPTER 4: PEDESTAL MODELS

K]
%

HC

@@

Meduled Maodule!

e P

g

2

[
&

SN P A O

A Simple SCF
®
C—J—Q}O—HP

Figure 4.40
Placelosk Exeoute Remevelock

[I

g

UserList! Requast Userlist! Request r‘]
X
ST R b)

Q]
) Ol - Bl U AESE

The RDM for Module1
The RDM for ModuleO Figure 4.42
Figure 4.41

119

CHAPTER 4: PEDESTAL MODELS

4.3.1. THE LOCK WINDOW

The lock window, shown in Figure 4.43, has an icon for every logical lock
which is currently defined and provides a convenient method to edit and/or
create new locks. The lock window palette also supplies the note icon. See
Section 4.1.1.5 for a complete description of the note icon.

'l‘ - -Locl(0b -ecls .=

L2

Look0 Lookl Leok2 Leax3

o]

[e

R A] o

The Lock Window
Figure 4.43

The object fields for the lock window are set as follows:

Field Name Setting
WindowType Lock
ConnectorType _NoConnector
CanEdit True
CanGetinfo True
CanMouse True
CanReduce True

CanTile True

The lock window methods are:

Method Name Function
'ConnectorDoubleClick Not allowed.
PlaceConnector Not allowed.
Activate No function.

120

CHAPTER 4: PEDESTAL MODELS

LIIEI(SI
4.3.2. THE LOCK ICON

The lock icon allows the user to add and/or edit locks. This icon has its

object fields set to:

Field Name Setting
Genus Lock
Species Lock
Type Blocklcon
Shadow False

The methods for the lock icon are:

Method Name Function

Deleted Delete the lock associated with the icon and
remove all references to this lock by request

| and relinquish lock requests.

Duplicated Create a new lock and associate it with the
new duplicate icon. The characteristics of
the new lock will be the same as the lock
being duplicated, only the name will change.
The lock names must be distinct.

Pasted Places a previously duplicated or cut lock
icon on the window.

Gender No function.

Save Saves the lock information associated with

_the icon to the model file.

Restore Reads a lock definition from the model file
and associates it with the proper window
and icon.

Qonnected Not allowed.

DoubleClick Double clicking this icon will cause the lock
dialog to be displayed (see below).

Getlnfo Same as double click.

As mentioned in the method list, double clicking on a lock icon will
display the lock dialog shown in Figure 4.44. This dialog may also be reached
by clicking on the "on" button on the place and remove lock dialogs (see
Sections 4.1.2.8 and 4.1.2.9). The exclusive/nonexclusive aspect of a lock is
denoted on the place lock request. The lock name may be changed, but all lock
names must be distinct. The "Lock Manager" button will display the lock
manager of the operating system associated with this lock. This operating
system will be displayed in the adjacent popup menu. This menu will contain

the names of all currently defined

operating systems. Additionally, there will be

a "New..." entry, clicking on this entry will cause a new operating system to be

121

CHAPTER 4: PEDESTAL MODELS

created with a unique name and will associate the new operating system to this
lock. For more information about operating systems and managers refer to

Section 4.6.

| Lock Monngerl New...]

(Cencel] l 0K l

The Lock Dialog
Figure 4.44

The lock dialog shown in Figure 4.44 displays the default contents of the
dialog for a newly created lock.

122

CHAPTER 4: PEDESTAL MODELS

4.4. DATASTORES

The purpose of a program is to process data. Data may be organized in
various ways such as data structures in memory or files, etc.. Pedestal™ uses
datastores to represent groupings of data. Requests to access a datastore in
the software are made in the RDM (Section 4.1.2). The requests specify the
type of access (read, update, etc.), the amount of data involved (fixed record
size within a datastore is not assumed), and the name of the datastore to
access. The characteristics of the datastore determine the speed of the various
access types, thereby simulating the structure of the data. The datastore to
memory mapping (Section 5.4) is used to choose the device on which a
datastore resides.

Memory devices (used for all types of storage devices, Section 4.5.2.2)
can be accessed either sequentially or randomly. The rate at which a particular
memory device can be accessed in the two modes determines the type of "real"
storage device being simulated. A datastore represents the structure of a data
set by defining the number of random and sequential accesses necessary for
each type of data access.

123

CHAPTER 4: PEDESTAL MODELS

4.4.1. THE DATASTORE WINDOW

The datastore window, shown in Figure 4.45, has an icon for every
datastore which is currently defined and provides a convenient method to edit
and/or create new locks. The lock window palette also supplies the note icon
which is described in Section 4.1.1.5.

[EOEESEE DotaStores

| oo o @
DO DSt D82 a
&

S

[

The Datastore Window
Figure 4.45

The object fields for the datastore window are set as follows:

Field Name Setting
WindowType Datastore
ConnectorType NoConnector
CanEdit True
CanGetlinfo True
CanMouse True
CanReduce _True
CanTile True
The datastore window methods are:

Method Name Function

ConnectorDoubleClick Not allowed.

PlaceConnector Not allowed.

Activate No function.

124

CHAPTER 4: PEDESTAL MODELS

4.4.2. THE DATASTORE ICON

The datastore icon allows the user to add and/or edit datastores. This
icon has its object fields set to:

Field Name Setting _
Genus Datastore
Species _Datastore
Type Blocklcon
Shadow False

The methods for the datastore icon are:

Method Name Function

Deleted Delete the datastore associated with the icon
and remove all references to this datastore
by data access, allocate and deallocate
requests.

Duplicated Create a new datastore and associate it with
the new duplicate icon. The characteristics
of the new datastore will be the same as the
lock being duplicated, only the name will
change. The datastore names must be

| distinct.

Pasted Places a previously duplicated or cut
datastore icon on the window.

Gender No function.

Save Saves the datastore information associated
with the icon to the model file.

Restore Reads a datastore definition from the model
file and associates it with the proper window
and icon.

Qonnected Not allowed.

DoubleClick Double clicking this icon will cause the
datastore dialog to be displayed (see

L below).

Getinfo Same as double click.

As mentioned in the method list, double clicking on a datastore icon will
display the datastore dialog shown in Figure 4.46. This dialog may also be
reached by clicking on the "from" button on the data access, allocate and
deallocate request dialogs (see Section 4.1.2). The datastore name may be
changed in the "Datastore” field. However, all datastore names must be distinct.
The size of the datastore, when a simulation begins, is defined as a number and
a unit (provided by the popup menu). The array of number fields are used to

125

CHAPTER 4: PEDESTAL MODELS

specify the number of sequential and nonsequential accesses which must be
made to the memory device the datastore resides on 10 perform each type of

data access.

size: | 1 |[-ﬁ?lj_lfs-j

Rccesses
required to
perform a:

(Sequential) (Random)

Read._Seq:

Insert:

Update:

Reorganize:

The Datastore Dialog
Figure 4.46

The datastore dialog shown in Figure 4.46 displays the default contents

of a newly created datastore.

126

CHAPTER 4: PEDESTAL MODELS

4.5. HARDWARE

In Pedestal™, hardware is defined as a hierarchical group of nodes.
Each node is composed of processor devices, memory devices, bus devices,
and communication links between the devices. The topmost node in the
hierarchy is the hardware window called "HW". Each processor, memory or bus
has parameters which define its speed of operation and capacity. Additionally,
every device may have an operating system associated with it. The operating
system determines how the queues are managed for a device and what the
overhead costs are. Operating systems can be associated with devices either
directly from the device dialogs or from the device to manager mapping. See
Section 4.6 and Chapter 5 for discussions of operating systems and the device
to manager mapping.

Communication paths between devices are represented by connectors
on hardware windows. Since there may be more than one communication path
between any two devices, a routing scheme is necessary. The scheme adopted
by Pedestal™ is to put a routing set on each connector. The routing set
contains a routing list for each icon attached to the connector. The list contains
devices reachable from the associated device and the probability that this
communication path will be used to send messages from the device to the listed
device. Note that the use of expressions (Chapter 3) allows for the routing to be
more sophisticated than simple probabilistic routing. Processor and memory
devices appear in routing lists along with the name of all hardware windows
except the window containing the specific device; buses are not a valid
destination for a message.

Messages are generated primarily for data accesses, allocations and
deallocations (Section 4.1.2). Messages are also generated when a
transaction crosses a task boundary and the two tasks involved reside on
different processors (Section 4.2). For example, if a process wishes to update a
datastore, a message must be sent from the processor the task is executing on
to the memory the datastore resides in. The message will be sent from the
processor to the memory device by walking the connectors based on the routing
list entries for the memory device.

In the example just used, if the devices (the processor and the memory)
reside in different windows in the hardware hierarchy, the message will first be
routed based on the name of the node (window) the memory device is in. The
message will be sent from the processor to a boundary or node icon in the
same window as the memory. Next, the message will be routed from the
boundary/node icon to the memory device. Since the message is now in the
proper window, routing proceeds as dictated by the routing list entries for the
memory device.

127

CHAPTER 4: PEDESTAL MODELS

4.5.1. THE HARDWARE & NODE WINDOWS

The hardware window, shown in Figure 4.47, is where the hardware
architecture of the system being modeled is defined. The first three icons in the
hardware window palette correspond to the primitive hardware devices which
Pedestal™ supplies. These icons represent processors, memories and
communication buses.

The next icon in the palette, called a node icon, is a hook to another
hardware window, thus allowing the architecture to be defined hierarchically in
a top down fashion. Figure 4.48 shows the window associated with the node
icon in the top level hardware window shown in Figure 4.47 (the icons in this
Figure labeled workstations are an alternate form of the processor icon). The
window associated with the node icon will have a boundary icon (not in the
palette) placed on it for each connector drawn into the node. The name of the
boundary icon will provide the window and icon name of the icon on the other
end of that specific connector to the node icon.

The last icon in the palette is the note icon which allows user
documentation to be added to the drawing. Refer to Section 4.1.1.5 for a
description of the note icon. More specific descriptions of the icons in the
hardware windows will be given in the proper Sections below.

Werkstation 3

o A B 0 0 L R

&

S O il B - - LAY

A Hardware Window

Figure 4.47 A Hardware Window With a Boundary
lcon
Figure 4.48

The object fields for the hardware window are set as follows:

Field Name Setting
WindowType Hardware
ConnectorType _NoArrow
CankEdit True
CanGetlinfo True
CanMouse True
CanReduce True
CanTile True

128

CHAPTER 4: PEDESTAL MODELS

The NoArrow connector type specifies that connectors are supported, but they
are undirected and thus are drawn as a line with no arrow on the end.
Connectors are also supported on the hardware window, thus some of the

window methods are used:

Method Name Function

ConnectorDoubleClick Display the first level routing dialog (see
below).

PlaceConnector Add proper device names to the new
connectors routing table (see below).

Activate none

129

CHAPTER 4: PEDESTAL MODELS

4.5.2. HARDWARE DEVICES

A device icon represents a pool of devices. The definition of the icon
consists of the following information: performance information, a manager which
handles its queue and overhead information, and the number of devices in the
pool. The performance information includes things such as the execution rate
of a processor, the size and access speeds of a memory, etc.. This specific
information is defined in device type dialogs.

There is a set of device types for each device class supported by
Pedestal™: processors, memories and busses. These "types" contain the
performance information part of a device definition. The types can be shared by
icons of the proper device class; ,i.e., multiple processor icons can reference the
same processor "type".

A device manager determines how queues are managed and defines the
operating system overheads associated with that class of device. These
managers can also be shared by icons of the proper class; multiple processor
icons can reference the same processor manager, regardless of the "type" of
the icons. For more information concerning managers see Section 4.6.

The user is allowed to change the icon used to represent a processor or
memory icon by clicking on the icon shown in the device dialog, which is
accessed by double clicking on the window icon. Since a memory device may
be simulating a memory or a tape or a disk, depending on the performance
characteristics, the specific icon can be changed to one which depicts the type
of device the user intends to simulate. Similarly, icon species are provided for
processors to represent a processor, workstation and a network bridge.

130

CHAPTER 4: PEDESTAL MODELS

4.5.2.1. 'D% THE PROCESSOR ICON

The processor icon on the Hardware window allows the user to define a
processor pool. A processor pool is a group of one or more processors with the
same characteristics which share a common task queue. This icon has its
object fields set to:

Field Name Setting

Genus _Processor

Species Processor {Variable
Type Blocklcon

Shadow False {Variable}

The shadow field is initially false on a processor icon since the default number
of processing elements in the pool is 1. If the number of processing elements is
changed to more than one, the shadow field is set to true and the icon will be
drawn with a shadow. The species, and thus the on screen representation, of
the processor pool can be changed by the user from the device dialog that is
shown when the window icon is double clicked.

The methods for the processor icon are:

Method Name Function

[Deleted Destroys the device data structure
associated with the icon.

Duplicated Attaches a device data structure to the new

duplicate icon which is a copy of the one
associated with the icon being duplicated.
However, the name will be changed so that it
is unique from all other names in the
B window.

Pasted Assures that the name of the device data
structure associated with the icon being
pasted is distinct from all other devices in the
window being pasted into. The name will be
| changed if necessary.

Gender Ensures that the name of the icon's device
data structure is on the window's routing
tables if there are any connectors to the icon.

Save Saves the device data structure associated
with the icon to the model file.
Restore Reads a device data structure definition from

the model file and recreates the structure.
This structure will then be associated with
the proper window and icon.

131

CHAPTER 4: PEDESTAL MODELS

Connected Allows connectors to be drawn to and from
the icon.
DoubleClick Double clicking this icon will cause the

device data structure to be created for this
icon if it does not yet exist. Additionally, the
device dialog will be displayed for the
structure (see below).

Getlnfo Selecting this icon and choosing the "Get
Info" item of the Edit menu will cause the
device data structure to be created for this
icon if it does not yet exist. Additionally, the
devices type dialog will be displayed for the
structure (see below).

As mentioned in the method list, double clicking on a processor icon will
display the processor pool dialog shown in Figure 4.49. This dialog contains
the information which defines the processor pool. The name (field 1), in this
case "cpu2", is the name the icon will be given. This name must be distinct from
all other device names in the same window. The processor type popup menu
(field 3) will contain a list of all defined processor types with the processor type
of this pool showing. A processors type defines the execution characteristics of
the pool. Clicking on the "Type" button (field 2) will display the processor type
dialog explained below. The popup menu next to the "Device Manager” button
(field 5) will contain a list of all defined device managers with the manager of
this pool showing. Clicking on the "Device Manager" button (field 4) will display
the device manager dialog. Managers are explained in Section 4.6. The
number field (field 6) shows the number of processors in this pool. Finally, field
7 is a button. Clicking on this button will display a dialog, shown in Figure 4.50,
which allows the species (icon used to represent this pool) of the processor icon
to be changed. Just click on the preferred icon and the change will be made.
The intended use of the species are processor, workstation and network bridge.

P — el
@““‘““““‘“‘“‘"‘[Tglpe] [New... | neneananr {3 m

D~ Device Manager | [NewW...] o] 83

@frsenumber: T] The Processor Species Dialog
O el Figure 4.50

The Processor Pool Dialog
Figure 4.49

The processor type dialog shown in Figure 4.51 is accessed by clicking
on the "Type" button of the processor pool dialog or by selecting a processor
icon and selecting the "Get Info" item of the Edit menu. A processor type
determines the execution rate of a processor. A given type may be used by any
number of processor pools. That is, each processor icon represents a unigue
named processor pool, but these pools may be of the same type. The

132

CHAPTER 4: PEDESTAL MODELS

processor type name (field 1) must be distinct from all other processor types.
The base execution rate is defined by fields 2, 3 & 4.

R

Prégessar: F’rocessnﬂ

|

Dot rinslructlons) per [second) st}
Physical
o-p

The Processor Type Dialog
Figure 4.51

The last field on the processor type dialog is the physical characteristics
button (field 5). Clicking this button will display the physical characteristics
dialog, shown in Figure 4.52, for this processor type. This is provided solely for
use as documentation of the system being modeled. The "Loading" item of the
run menu (Section 2.7) provides the totals of these values for all devices in a

model.

Physical Cheracteristics

Size
Weight
Power

MTBF

cu.ft.

Ibs.
watts

hours

L

MTIR hours

(Cconcet) [ox }

The Physical Characteristics Dialog
Figure 4.52

133

CHAPTER 4: PEDESTAL MODELS

4.5.2.2. %THE MEMORY ICON

The memory icon on the Hardware window allows the user to define a
memory pool. A memory pool is a group of one or more memories with the
same characteristics which share a common memory request queue. As
implied by the memory icon, a memory in Pedestal™ is a data storage device.
This storage device may be a memory, disk or tape. The characteristics
determine which physical device type is actually being simulated. The memory
icon has its object fields set to:

Field Name Setting
Genus Memory
Species Disk {Variable}
Type Blocklcon
Shadow False {Variable}

The shadow field is initially false on a memory icon since the default number of
memory devices in the pool is 1. If the number of memory devices is changed to
more than one, the shadow field is set to true and the icon will be drawn with a
shadow. The species of the memory icon can be changed also, allowing the
icon which is drawn on the window to appear as either a disk, tape or memory.
The appearance (species) of the icon is only for notational purposes, it does not
mean that the characteristics of the pool actually define such a device. Making
the characteristics match the drawn icon is the user's job.

The methods for the memory icon are:

Method Name Function

Deleted Destroys the device data structure
associated with the icon.

Duplicated Attaches a device data structure to the new

duplicate icon which is a copy of the one
associated with the icon being duplicated.
However, the name will be changed so that it
is unique from all other names in the
window.

Pasted Ensures that the name of the device data
structure associated with the icon being
pasted is distinct from all other devices in the
destination window. The name will be
changed if necessary.

Gender Ensures that the name of the icon's device
data structure is on the window's routing
tables if there are any connectors to the icon.

134

CHAPTER 4: PEDESTAL MODELS

[Save Saves the device data structure associated
with the icon to the model file.
Restore Reads a device data structure definition from

the model file and recreates the structure.
This structure will then be associated with
the proper window and icon.

Connected Allows connectors to be drawn to and from
the icon.
DoubleClick Double clicking this icon will cause the

device data structure to be created for this
icon if it does not yet exist. Additionally, the
device dialog will be displayed for the
structure (see below).

GetInfo Selecting this icon and choosing the "Get
Info" item of the Edit menu will cause the
device data structure to be created for this
icon if it does not yet exist. Additionally, the
device type dialog will be displayed for the
structure (see below).

As mentioned in the method list, double clicking on a memory icon will
display the memory device pool shown in Figure 4.53. This dialog contains the
information which defines the memory pool. The name (field 1), in this case
"Disk1", is the name the icon will be given. This name must be distinct from all
other device names in the same window. The memory type popup menu (field
3) will contain a list of all defined memory types with the memory type of this
pool showing. A memory pool type defines the transmission and storage
characteristics. Clicking on the "Type" button (field 2) will display the memory
type dialog explained below. The popup menu next to the "Device Manager”
button (field 5) will contain a list of all defined device managers with the
manager of this pool showing. Clicking on the "Device Manager" button (field 4)
will display the device manager dialog. Managers are explained in Section 4.6.
The number field (field 6) shows the number of memory elements in this pool.
Finally, the icon (field 7) allows the iconic representation of the pool to be
changed. Clicking on the icon will display the memory icon dialog shown in
Figure 4.54. The user picks the iconic representation by clicking on one of the
icons in the memory icon dialog.

N] §@_

@il (Typa) [DI8EType 1] @i
{&~1p~{ Device Manager] [(New...] ssisnnns)

B umber : : I
@mjggb , The Memory Icon Dialog
Figure 4.54

The Memory Pool Dialog
Figure 4.53

135

CHAPTER 4: PEDESTAL MODELS

The memory type dialog shown in Figure 4.55 is accessed by clicking on
the "Type" button of the memory pool dialog or by selecting a memory icon and
choosing the "Get Info" item of the Edit menu. A memory type determines the
size, access time and transmission rate of a memory pool. A given type may be
used by any number of memory pools. That is, each memory icon represents a
unique named memory pool, but these pools may be of the same type. The
memory name (field 1) must be distinct from all other memories. Memory
element capacity is determined by the size and unit popup menu (fields 2 & 3).
The transfer rate is defined by fields 4, 5 & 6. Fields 5 & 6 are popup menus.
Fields 8 & 9 define the time required to make one access to the memory
depending on the access type. The time unit menu (field 7) applies both to the
random and sequential access time (fields 8 & 9). Lastly, the "Physical
Characteristics” button (field 10) is clicked to display the physical characteristic
dialog for this type of memory . The physical characteristics dialog operates the
same as the one described in Section 4.5.2.1 concerning the processor icon.

{-mit-e-Memory Type: [Disk Type 1]
- e«

Transfer Rate:

-0
g:::: ﬁnobng per [Tocond et}
Access Times: {a [microsecands))

». Random: |0

> § tiak: (0

q

Physicel
o (onretme)) 50

The Memory Type Dialog
Figure 4.55

136

CHAPTER 4: PEDESTAL MODELS

THE BUS ICON

The bus icon on the Hardware window allows the user to define a pool of
communications buses . The pool is a group of communication channels with
the same transmission characteristics who share a common transmission
request queue. This icon has its object fields set to:

4.5.2.3.

Field Name Setting
Genus Bus
Species Bus

Type Linelcon
Shadow False

This icon is a line icon which means that while it appears in the palette as an
icon, it behaves somewhat like a line on the window. By clicking on the ends of
the bus and dragging, a bus icon can be resized and reshaped. Figure 4.56
shows several bus line icons, demonstrating the versatility of the window
representation of a bus.

D B B B

The Bus "Line lcon"
Figure 4.56

The methods for the bus icon are:

Method Name Function

Deleted Destroys the device data structure
associated with the icon.

Duplicated Attaches a device data structure to the new

duplicate icon which is a copy of the one
associated with the icon being duplicated.
However, the name will be changed so that it
is unique from all other names in the
window.

Pasted Ensures that the name of the device data
structure associated with the icon being
pasted is distinct from all other devices in the

137

CHAPTER 4: PEDESTAL MODELS

destination window. The name will be
changed if necessary.

Gender Ensures that the name of the icon's device
data structure is on the window's routing
tables if there are any connectors to the icon.

Save Saves the device data structure associated
with the icon to the model file.
Restore Reads a device data structure definition from

the model file and recreates the structure.
This structure will then be associated with
the proper window and icon.

Connected Allows connectors to be drawn to and from
the icon.
DoubleClick Double clicking this icon will cause the

device data structure to be created for this
icon if it does not yet exist. Additionally, the
device dialog will be displayed for the
structure (see below).

Getlnfo Selecting this icon and choosing the "Get
Info" item of the Edit menu will cause the
device data structure to be created for this
icon if it does not yet exist. Additionally, the
device type dialog will be displayed for the
structure (see below).

As mentioned in the method list, double clicking on a bus will display the
bus dialog shown in Figure 4.57. This dialog contains the information which
defines the bus. The name (field 1), in this case "Networki”, is the name the
icon will be given. This name must be distinct from all other device names in
the same window. The bus type popup menu (field 3) will contain a list of all
defined bus types with the type of this bus being shown. A bus type defines the
transmission characteristics of the bus. Clicking on the "Type" button (field 2)
will display the bus type dialog explained below. The popup menu next to the
"Device Manager" button (field 5) will contain a list of all defined device
managers with the manager of this bus showing. Clicking on the "Device
Manager" button (field 4) will display the device manager dialog. Managers are
explained in Section 4.6. Finally, the number field (field 6) shows the number of
channels on this bus.

Dl instonce: [T TR
£yotmmte (Type) R e)]
@ -6
-

""{ Device Manager | | Neul...| Voo

The Bus Dialog
Figure 4.57

138

CHAPTER 4: PEDESTAL MODELS

The bus type dialog shown in Figure 4.58 is accessed by clicking on the "Type"
button of the bus pool dialog or by selecting a bus icon and choosing the "Get Info"
item in the Edit menu. A bus type determines the transmission rate of the bus. A given
type may be used by any number of bus pools. That is, each bus icon represents a
unique named bus pool, but these pools may be of the same type. The bus type name
must be distinct from all other bus types. The transmission rate of the bus type is
expressed as an amount , a quantity unit and a time unit. Both unit fields are popup
menus.

Bus Specification

Type: Bus0

Rate: [to) | [megebits] per [second —

(cgncnll l oK '

The Bus Type Dialog
Figure 4.58

139

CHAPTER 4: PEDESTAL MODELS

4.5.3. %ETHE NODE ICON

The node icon on the Hardware window allows the user to attach another
hardware window to an existing hardware window. This icon allows the
hardware architecture of the model to be defined as a hierarchy of hardware
windows. This icon has its object fields set to:

Field Name Setting

Genus Node

Species Node

Type Blocklcon

Shadow False
The methods for the node icon are:

Method Name Function

Deleted Destroys the hardware window associated
with the node and all its contents.

Duplicated Currently not allowed.

Pasted Currently not allowed.

Gender No function

Save Saves the information necessary to link this
icon with its window in the model file.

Restore Reads the information saved (see above)
and reattaches this icon to its window. The
model save/restore mechanism will ensure
that the window being attached has already
been restored.

Connected Allows connectors to be drawn to and from
the icon.

DoubleClick Double clicking this icon will cause a new
hardware window with a unique name to be
created and attached to this icon.

Getinfo Selecting this icon and choosing the "Get
Info" item of the Edit menu will cause a
dialog to be displayed which allows the
associated window name to be changed.
The new name must be distinct from all other
window names in the model.

Figure 4.59 shows a hardware window which contains a bus and three
node icons. This diagram represents a simple network with two local (and
similar) nodes, and a remote node. Figures 4.60 and 4.61 show the hardware
windows associated with the "Node1" and "Node2" icons in the "HW" window.
Note that icon names must be unique within a window, but not across windows.

140

CHAPTER 4: PEDESTAL MODELS

This is demonstrated by the contents of "Node1" and "Node2” which do not
differ internally. Figure 4.62 shows the window associated with the "Remote
Site" icon in the "HW" window and Figure 4.63 shows the "Local Server"
window which is nested in the "Remote Site". This series of windows
demonstrates the hierarchical nesting of hardware windows. Figure 4.64 gives
a hierarchical view of the relationships between these windows. Note that there
is no limit on the number of hardware windows or the depth of nesting.

. . T TR
Hardware Window With Nodes dmiiiititibt ind Ll

Figure 4.59 A Nested Hardware Window
Figure 4.60

0
B Netwerk o E%

Lecal Server
Network A A
() ()
TG (S feims)

Werkstation! Yerkstation2 Werkstationd

i

0]
(0}

Ko TR RN O R R]

A Nested Hardware Window A Nested Hardware Window
Figure 4.61 Figure 4.62

:.] 04 Server
1

RS T o
A Nested Hardware Window A Sample Hardware Window
Figure 4.63 Hierarchy
Figure 4.64

141

CHAPTER 4: PEDESTAL MODELS

O

4.5.4. THE BOUNDARY ICON

The boundary icon does not appear on the hardware window palette.
This icon appears on all hardware windows except the topmost in the hardware
hierarchy. One boundary icon is added to each nested window for each
connector made to the node icon associated with this window. Since there may
be several boundary icons in a window, each of which provides a mechanism to
connect to a different device in the parent window (the one with the node icon),
the names of the boundary icons must correspond to the icon from which the
boundary connects (by way of the node icon). Figure 4.65 shows a hardware
window with one node icon with many icons connected to it. Figure 4.66 shows
the window associated with the node icon. By examining these two Figures it
should be obvious that the name of the boundary created by making a
connector to a node icon denotes the icon on the other end of the connector.
Part of the name also denotes the window in which this other icon resides.

o L
vioed Device2 | }'

H

i
R I s iRt A

. A Hardware Window With Multiple
A Har@ware Window Boundary lcons
Figure4.65 Figure 4.66

The boundary icon has its object fields set to:

Field Name Setting
Genus NodeBoundary
Species NodeBoundary
Type Blocklcon
Shadow False

The methods for the boundary icon are:

Method Name Function
Deleted Not allowed.
Duplicated Not allowed.
Pasted Not allowed.
Gender No function.

142

CHAPTER 4: PEDESTAL MODELS

Save Saves the required information to allow the
icon and all connectors to it to be restored to
the model file.

Restore Recreates the boundary icon and all
connectors to it.

Connected Allows connectors to be drawn to and from

[the icon.

DoubleClick Not allowed.

Getinfo Not allowed.

The boundary icon's only function is to provide a way to extend
connectors drawn to a node icon into the node's associated window. Thus, this
icon is created by Pedestal™ automatically, and the user is only allowed to
reposition it and draw connectors to/from it.

143

CHAPTER 4: PEDESTAL MODELS

4.5.5. HARDWARE CONNECTORS

Hardware connectors always appear as undirected lines, thus the object
field settings for connectors are:

Field Name Setting
[Flag1icon Not used.
Flag2icon Not used.
HotSpotlicon Not used.

The method routines for a connector are:

Method Name Function

Deleted Destroys the routing list associated with the
connector.

Duplicated Attaches a routing list to the new duplicate

connector. Since the names of the icons it
connects may be changed (due to conflict
with existing devices) the routing table may
not be an exact copy of the one in the
| connector being duplicated.

Pasted Creates and updates the routing list
associated with the connector so that it
contains the proper names.

Gender Not used.

Save Saves the routing list associated with the
connector to the model file.

Restore Reads a routing list definition from the model

file and recreates the structure. This
structure will then be associated with the
proper connector.

DoubleClick Double clicking a connector will cause a
routing list to be created for this connector if
it does not yet exist. Additionally, the first
routing dialog will be displayed (see below).

As mentioned in the method list, double clicking on a connector will
display the first routing dialog. The dialog shown in Figure 4.67 corresponds to
the connector between the disk icon and the bus on the hardware window
shown previously in Figure 4.47. Since connectors are bidirectional and
routing may be different based on which way the message is being sent, there
are two buttons on the dialog. Each button corresponds to a different routing
list. The two buttons labeled "Network1" and "Disk1", if clicked, will show the
routing list dialog for messages being sent from the bus and disk respectively.
Note that the names on the buttons on this dialog will be different for every
connector.

144

CHAPTER 4: PEDESTAL MODELS

If we click on the button labeled "Network1" in the first routing dialog, we
will be shown the routing list dialog presented in Figure 4.68. This dialog lists
all the valid destinations for a message currently on the "Network1” bus, along
with the probability that the communication path associated with this connector
will be taken for messages being sent to that destination. For example, the
routing list shown in the dialog says that all messages on the "Network1" bus
with a destination device of "Device1" will take this path with probability 1, while
messages on "Network1" heading for "cpul1” or "HW.1" (a window) will take this
path with probability O.

Routing From Edit Routing Functions
(Network!] [Disk1) Device | Probability :
cpul 0
(cANCEL) ox) ::uullcol ;.

The First Routing Dialog
Figure 4.67

The Routing List Dialog
Figure 4.68

By default, the probabilities in the routing lists will be one for devices on
the connector and zero for all others. To change a probability in a routing list,
double click on the probability you wish to change. A simple dialog will be
displayed which will allow the value to be changed. Note that expressions
(Chapter 3) may be used to implement more complex routing.

145

CHAPTER 4: PEDESTAL MODELS

4.6. MANAGER WINDOW

The manager window shown in Figure 4.69 has an icon for every
manager which is currently defined and provides a convenient method for
creating or modifying managers. New managers are created here by selecting
the manager icon from the palette and placing it in the window , just as icons
are placed in any other window that has a palette. When a manager is created
from another window, an icon is automatically placed here for that manager.
The note icon allows the user to append a textual description; refer to Section
4.1.1.5 for a complete description of the note icon.

o] A T i

The Manager Window
Figure 4.69

The object fields for the manager window are set as follows:

Field Name Setting
WindowType Task
ConnectorType NoConnector
CankEdit True
CanGetlinfo True
CanMouse True
CanReduce True

CanfTile True

The connector type denotes that connectors are not used on the manager
window. The manager window methods are:

Method Name Function
ConnectorDoubleClick | Not allowed.
PlaceConnector Not allowed.
Activate No function.

146

CHAPTER 4: PEDESTAL MODELS

nens‘
4.6.1. ! THE MANAGER ICON

The manager icon allows the user to create and/or modify tasks. This
icon has its object fields set to:

Field Name Setting
Genus Manager
Species Manager
Type Blocklcon
Shadow False {Variable}

The shadow field is not used in the manager window. The methods for the
manager icon are:

Method Name Function

Deleted Delete the manager associated with the icon
and remove all references to this manager
| by hardware devices.

Duplicated Create a new manager and associate it with
the new duplicate icon. The characteristics
of the new manager will be the same as the
manager being duplicated, only the name
will change. The manager names must be

distinct.

Pasted Places a previously duplicated or cut
manager icon on the window.

Gender No function.

Save Saves the manager information associated
with the icon to the model file.

Restore Reads a manager definition from the model
file and associates it with the proper window
and icon.

Connected Not allowed.

DoubleClick Double clicking this icon will cause the
manager dialog to be displayed (see below).

Getlnfo Same as double click.

As mentioned in the method list, double clicking on a manager icon will
display the manager dialog shown in Figure 4.70. This dialog may also be
reached by clicking on the "Manager" button on the device dialogs (see Section
4.5.2).

The first field on the manager dialog allows the name of the manager to

be changed. All devices which reference the manager will still reference it after
the name is changed. The four buttons on the dialog box provide access to the

147

CHAPTER 4: PEDESTAL MODELS

attributes of the manager specific to the type of device named on the button.
Figure 4.71 below shows the four dialogs. Each dialog except for Lock
Parameters may be accessed through the individual hardware devices (on the
Hardware Window) as well as from the manager window; the lock overheads
may be accessed from the lock request/relinquish dialogs (see Sections 41.2.8
and 4.1.2.9).

Monager Imm—l
Parameters: (Procassor] (Memory)
(TLocx) lTrnmmlsslonl
{Cancel) { oK]

The Manager Dialog

Figure 4.70
Manager0 Processor Parometers Manager0 Memory Parameters
use Highest (ERWaelont] processor scheau! Use Wighest
Priority K_instructions Pr l:"olrg";s Memory Scheduler
preemption: (CNN R atocetion: [CEREENN Ces)
X initiate Task: 0 O preemptich X Deellocation: 0
& InterTask Comm: [Non-Destructive [start 1/0: 0
Priority by:

B4 Task Dispatch: (1] BJEnd 1/0: 0

[Tosk |
B interproc. Send: |p —
X Interproc. Rev: {0 (cancet) e)

Porameters:

g ockJ m'smlnlon

Cancel | | 0K
Managerd Lock Parameters Manager0 Protocol Perameters
[megabytes]
use wighast [megebytes]
Priority Lock Scheduler Max Packet Length
Riock | (BN
Neader Size 0
X unlock |0
lncces: Prolocol' [_Dedicated) k
(cancet]) [ok } (cancet) I 0K l

Manager Parameters
Figure 4.71

For the processor, memory, and lock parameters a popup menus appears at the
top of the editable text field to specify the units in which the overheads are expressed.

148

CHAPTER 4: PEDESTAL MODELS

Each of these three types of device has a scheduler associated with its management
which has a default of First Come First Served (FCFS). In Figure 4.71 the processor
manager dialog shows the additional fields that are display when priority scheduling is
chosen. Preemption is chosen by checking the checkbox and a popup allows further
declaration of destructive or non-destructive preemption. The bottom popup allows
selection of priority by task, workload, or module. The checkboxes that appear to the
left of the parameter names indicates whether the execution of overhead takes
precedence over other jobs. By default these overheads are handled at the highest

priority.

An access protocol is associated with the transmission parameters; all
available protocols appear in a popup menu with the selected protocol visible.
Currently, the only protocol implemented is Dedicated. By clicking on the Access
Protocol button, the user may view and edit the parameters of the selected protocol
function. Figure 4.72 is the dialog in which the Dedicated protocol may be edited.

Protocol:
Dedicated
Parameter Name value
1. Prop Delay (sec) 0.0
Cuncel' ' (1] 4 '
Protocol Dialog
Figure 4.72

149

CHAPTER 4: PEDESTAL MODELS

4.7. THE DEskTOP WINDOW

The desktop window, shown in Figure 4.73, is supplied by Pedestal™ for
navigational purposes and is similar in concept to the desktop on the
Macintosh. By double clicking on the icons in the desktop, the user may view
any window in the currently loaded model.

mﬁ
BB 2B ok

Tasks DataStores Lock Objects Managers SY Folder !

a

HY Folder

The Desktop Window
Figure 4.73

Unlike most window types in Pedestal™, there is only one Desktop
window and the permitted actions are few. Also unlike other Pedestal™
windows, the Desktop window has no palette. The icons on this window are
produced by Pedestal™ and the user may not add or remove any of them.
Additionally, there are no connectors on the Desktop window.

The object fields for the desktop window are set as follows:

Field Name Setting
WindowType Desktop
ConnectorType none
CanEdit False
CanGetinfo False
CanMouse _True
CanReduce False
CanTile False

These settings only allow the user to double click, select and reposition icons.
The methods for the Desktop window are:

Method Name Function
‘ConnectorDoubleClick none
PlaceConnector none
Activate none

150

CHAPTER 4: PEDESTAL MODELS

None of the window method routines have a function since there are no
connectors and the window requires no special activation.

Since there are no connectors on the Desktop window there is no need
to examine the connector object fields or methods.

151

CHAPTER 4: PEDESTAL MODELS

Tl\EKS\

Tasks

4.7.1. THE TASK WINDOW ICON

The task window icon on the Desktop window allows the user to display
the Task window (see Section 4.2). Since the user is only allowed to double
click or move icons on the Desktop window, the field settings for this icon can
not change. This icon has its object fields set to:

Field Name Setting
Genus TaskWindow
[Species TaskWindow
Type Blocklcon
Shadow False

The methods for the task window icon are:

Method Name Function

Deleted Not allowed.

Duplicated Not allowed.

Pasted Not allowed.

Gender Not allowed.

Save Not allowed. The Desktop window and its
icons are created as a by-product of the
creation of the other windows in a model.
Therefore it does not need a save or restore
method since the act of restoring the rest of
the model will automatically restore the
Desktop window and its icons.

Restore Not allowed. See above.

Connected Not allowed.

DoubleClick Double clicking this icon will cause the Task
window (see Section 4.2) to be displayed
and selected.

Getlnfo Not allowed.

152

CHAPTER 4: PEDESTAL MODELS

DataStores

4.7.2. THE DATASTORE WINDOW ICON

The datastore window icon on the Desktop window allows the user to

display the Datastore window (
to double click or move icons on

see Section 4.4). Since the user is only allowed
the Desktop window, the field settings for this

icon can not change. This icon has its object fields set to:

Field Name Setting
Genus DatastoreWindow
Species DatastoreWindow
Type “Blocklcon
Shadow False

The methods for the datastore window icon are:

Method Name Function

Deleted Not allowed.

Duplicated Not allowed.

Pasted Not allowed.

Gender Not allowed.

Save Not allowed. The Desktop window and its
icons are created as a by-product of the
creation of the other windows in a model.
Therefore it does not need a save or restore
method since the act of restoring the rest of
the mode! will automatically restore the
Desktop window and its icons.

Restore Not allowed. See above.

|Connected Not allowed.

DoubleClick Double clicking this icon will cause the
Datastore window (see Section 4.4) to be
displayed and selected.

Getinfo Not allowed.

153

CHAPTER 4: PEDESTAL MODELS

LI:I[K!\

Lock Objects

4.7.3. THE LOCK WINDOW ICON

The lock window icon on the Desktop window allows the user to display
the Lock window (see Section 4.3). Since the user is only aliowed to double
click or move icons on the Desktop window, the field settings for this icon can
not change. This icon has its object fields set to:

Field Name Setting
Genus LockWindow
Species LockWindow
Type Blocklcon
Shadow False

The methods for the lock window icon are:

Method Name Function

Deleted Not allowed.

Duplicated Not allowed.

Pasted Not allowed.

Gender Not allowed. _

Save Not allowed. The Desktop window and its
icons are created as a by-product of the
creation of the other windows in a model.
Therefore it does not need a save or restore
method since the act of restoring the rest of
the model will automatically restore the
Desktop window and its icons.

Restore Not allowed. See above.

Connected _Not allowed.

DoubleClick Double clicking this icon will cause the Lock
window (see Section 4.3) to be displayed
and selected.

Getinfo Not allowed.

154

CHAPTER 4: PEDESTAL MODELS

HGRSI

M
4.7.4. |12M9erS e MANAGER WINDOW ICON

The manager window i
display the Manager window (
to double click or move icons on

con on the Desktop window allows the user to
see Section 4.6). Since the user is only allowed
the Desktop window, the field settings for this

icon can not change. This icon has its object fields set to:

Field Name Setting
Genus ManagerWindow
Species ManagerWindow
Type Blockicon
Shadow False

The methods for the manager window icon are:

Method Name Function

Deleted Not allowed.

Duplicated Not allowed.

Pasted Not allowed.

Gender Not allowed.

Save Not allowed. The Desktop window and its
icons are created as a by-product of the
creation of the other windows in a model.
Therefore it does not need a save or restore
method since the act of restoring the rest of
the model will automatically restore the
Desktop window and its icons.

Restore Not allowed. See above.

Connected Not allowed.

DoubleClick Double clicking this icon will cause the
Manager window (see Section 4.6) to be
displayed and selected.

Getlnfo Not allowed.

165

CHAPTER 4: PEDESTAL MODELS

-

SY Folder

THE SOFTWARE SIDEVIEW WINDOW ICON

The software sideview window icon on the Desktop window allows the

user to display the So
user is only allowed to
field settings for this icon can no

ftware Sideview window (see Section 4.8). Since the
double click or move icons on the Desktop window, the
t change. This icon has its object fields set to:

Field Name Setting

[Genus SWSideviewWindow
Species SWSideviewWindow
Type Blocklcon

Shadow False

The methods for the software sideview window icon are:

Method Name Function

Deleted Not allowed.

Duplicated Not allowed.

Pasted Not allowed.

Gender Not allowed.

Save Not allowed. The Desktop window and its
icons are created as a by-product of the
creation of the other windows in a model.
Therefore it does not need a save or restore
method since the act of restoring the rest of
the model will automatically restore the
Desktop window and its icons.

Restore Not allowed. See above.

Connected _Not allowed.

DoubleClick Double clicking this icon will cause the
Software Sideview window (see Section
4.8) to be displayed and selected.

Getlnfo Not allowed.

156

CHAPTER 4: PEDESTAL MODELS

HY Folder

4.7.6. THE HARDWARE SIDEVIEW WINDOW ICON

The hardware sideview window icon on the Desktop window allows the
user to display the Hardware Sideview window (see Section 4.8). Since the
user is only allowed to double click or move icons on the Desktop window, the

field settings for this icon can not ¢

hange. This icon has its object fields set to:

Field Name Setting

Genus HWSideviewWindow
Species HWSideviewWindow
Type Biockicon

Shadow False

The methods for the hardware sideview window icon are:

Method Name Function

Deleted Not allowed.

Duplicated Not allowed.

Pasted Not allowed.

Gender Not allowed.

Save Not allowed. The Desktop window and its
icons are created as a by-product of the
creation of the other windows in a model.
Therefore it does not need a save or restore
method since the act of restoring the rest of
the model will automatically restore the
Desktop window and its icons.

Restore Not allowed. See above.

Connected Not allowed.

DoubleClick Double clicking this icon will cause the
Hardware Sideview window (see Section
4.8) to be displayed and selected.

Getinfo Not allowed.

167

CHAPTER 4: PEDESTAL MODELS

4.8. SIDEVIEW WINDOWS

The hardware and software folder icons on the desktop window (see
Section 4.7) display sideview windows when double clicked. These sideview
windows show the hierarchical arrangement of the software and hardware
windows respectively (see Sections 4.1.1 and 4.1.2). Figures 4.74 and 4.75
show sample software and hardware sideviews. The icons in these windows
correspond to actual windows. If double clicked, Pedestal™ will display the
appropriate window. No operations other than double clicking icons and
scrolling are allowed on sideview windows.

DR KW Folder HNESENEESEN

Nede !
Terminal Cluster 1
HY Remote Node
Mass Storage

Node2 K
) O WSS

[eataaas S Folder

it

o
()

K A R e

A Hardware Sideview Window

AS Sideview Wi
oftware Sideview Window Figure 4.75

Figure 4.74

The object fields for the sideview windows are set as follows:

Field Name Setting
WindowType Sideview
ConnectorType HorizontalArrow
CanEdit False
CanGetlnfo False
CanMouse True
CanReduce True

CanTile True

The methods for sideview windows are:

Method Name Function
ConnectorDoubleClick Not allowed.
PlaceConnector Not allowed.
Activate No function.

The object fields for all the icons on a sideview window are:

158

CHAPTER 4: PEDESTAL MODELS

Field Name Setting
Genus Sideviewlcon
Species Sideviewlcon
Type ‘Blocklcon
Shadow False

The methods for the icons on a sideview window are:

Method Name Function
_[Leleted Not allowed.
Duplicated Not allowed.
Pasted Not allowed.
Gender Not allowed.
Save Not allowed. A sideview window and its

icons are created as a by-product of the
creation of the other windows in a model.
Therefore it does not need a save or restore
method since the act of restoring the rest of
the model will automatically restore the
sideview windows and their icons.

Restore Not allowed. See above.

Connected Not allowed.

DoubleClick Double clicking this icon will cause the the
associated window to be displayed and
selected.

Getlinfo Not allowed.

159

5. ASSOCIATION LISTS

One of the major features of Pedestal™ is the ability to define the
software and hardware parts of a model independently. This keeps changes in
hardware from requiring changes in the software. However, 10 run a simulation
of the model the software and hardware must be related. On which memory
device does the "named data store" datastore reside? What processor do
execution requests in the modules of "task0" use? The association list (or
mapping) utility provides an easy way 1o make these assignments.

The association list utility is also used to allow a simple way to modify the
module to task and device to manager mappings which deal solely with
software and hardware concepts respectively. These settings may be changed
at the individual icons, but for large models it may be cumbersome to page
through the diagrams to find the right icons to double click, especially if a large
number of these assignments are to be changed. Using the association list to
make these kinds of changes is usually simpler.

The mechanics of the association list dialog and the particular function
with respect to the different mappings is discussed in the following Sections.

CHAPTER 5: ASSOCIATION LISTS

5.1. ASSOCIATION LIST DIALOG

The association list dialog is used to perform mappings. Figure 5.1
shows the association list dialog for the module to task mapping. Note that the
dialog works the same for all mappings, only the names of the fields change. At
the top of the dialog is a name which identifies the specific association being
made; in this case "Module -> Task Allocation". The list and popup menu on the
left are concerned with the things being assigned; we will call these objects.
The ones on the right concern the things being assigned to; we will call these
classes. A mapping is made by assigning all objects to classes.

Module -> Task Rllocation
4% SCF1 G| Task® IO
4t SCF2 Task1
| flssign I Yask2
l\lnossign
IS ' Done '

The Module to Task Mapping Dialog
Figure 5.1

The set of objects for a given mapping may be hierarchical. In the
mapping of Figure 5.1, the objects are hierarchical. The topmost level of the
hierarchy consists of the names of all defined SCF windows. The next level
contains the names of all defined modules. Double clicking on one of the SCF
names will cause that windows name to be added to the object popup menu as
the selected item and the object list will then display the names of all modules
within that window. Since the modules are the bottom of this particular
hierarchy, no icon is displayed next to their names and they can not be double
clicked. To move back up the hierarchy, select "SCF's" in the object popup
menu and the names of the SCF windows will replace the names of the
modules of the previously selected SCF window. The previously selected
windows name will be removed from the popup menu.

Note that the dialog places no limit on the number of levels of the
hierarchy and the icon to the left of an object name is used to denote that object
has children. Every time you double click on an object and step further down
the hierarchy, the item clicked on is added to the object popup menu. This
allows you to step out to any higher level in one step by choosing the name of
the object at the level you want to step out to.

161

CHAPTER 5: ASSOCIATION LISTS

Objects in the object list will be shown in italics if they are currently
assigned to a class. If a nonleaf object (one with an icon to the left) is in italics,
then all its children objects (and their children) are currently assigned.

The class list may also be hierarchical. The class list also uses an icon to
the left of a name to indicate that a class has children. Assignments may only
be made to simple classes (no children). Navigation through the class list
works in the same manner as that for the object list with one exception. A
simple class may be double clicked to display the names of the objects currently
assigned to that class. Note that only the names of objects without children
appear, since they are the only objects which can actually be mapped (higher
level objects are really only classifiers not objects).

To perform an assignment, click on an object in the object list and on a
simple class in the class list to select the object and the class to which it is to be
assigned. Next, click on the "Assign” button. This will cause the specific object
to be assigned to the selected class. If the object has children, they will all be
assigned to the specified class. If the object, or any of its children, were
previously assigned, they will be reassigned to the specified class.

To remove an assignment, select the object to be unassigned and click
on the "Unassign” button. If the object selected has children, all of the children
will also be unassigned.

162

CHAPTER 5: ASSOCIATION LISTS

5.2. MODULE -> TASK

All modules must be grouped into tasks before a model can be
simulated. This grouping is done via the module to task mapping. The module
to task mapping can be performed directly from the module dialog (Section
4.1.1.3) or from the "Module -> Task" item of the map menu (Section 2.5). Refer
to Sections 4.1.1.3 and 4.2 for discussions of modules and tasks.

Selecting the "Module -> Task" item of the map menu will display the
module to task mapping dialog shown in Figure 5.2. Initially, the left hand list
will display the names of all SCFs defined in the current model and the right
hand list will display the names of all defined tasks. If all of the modules in a
window are currently mapped to tasks, the window name will appear in italics.

Module -» Task fAllocation
& SCF1 Ko Task® O]
4L SCF2 Taskl
l flssign l Task2
‘llnosxign
I Done “ 5]

The Module to Task Mapping Dialog
Figure 5.2

The mapping may be made at this level if desired. To do so, select one
or more window names in the left hand list and select one task in the right hand
list and then click on the "Assign" button. This will cause all modules in the
selected windows to be assigned to the selected task. Any modules which were
previously assigned to a different task will be reassigned to the current task.

Removing mappings may also be done at the window level. Select one
or more windows in the window list and then click on the "Unassign" button. All
modules in the selected windows will no longer be mapped to any task.

This mapping may also be done on a module by module basis. Double
clicking on a window name in the left hand list will cause that windows name to
be added to the left hand popup menu and the left hand list will now display the
names of all modules in that SCF. Modules which are already assigned to a
task will be shown in italics. Select the modules in the left hand list you wish to
map to a common task, select the task in the right hand list, and click the
"Assign" button to map at this level. All selected modules will now be assigned
to the selected task even if they were previously assigned to a different task.
Removing an assignment is done by selecting the modules in the left hand list

163

CHAPTER 5: ASSOCIATION LISTS

which are to be unassigned and clicking the "Unassign" button. Figure 5.3
shows the module to task allocation dialog from Figure 5.2 after "SCF1" was
double clicked. Note that "Module0" and "Module1™ are currently mapped to
tasks.

To map the modules from another SCF you must select the "SCF's" item
in the left hand popup menu. Then the left hand list will once again show the
window names. Now you can double click on a different SCF to map its
modules individually.

At any time, double clicking on a task in the right hand list will cause the
name of the task clicked on to be added to the right hand popup menu.
Additionally, the right hand list will now display the names of all modules
currently mapped to the selected task. By selecting the "Tasks" item in the right
hand popup menu you can get back to the list of tasks.

Module -> Task Rllocation Moduie -» Task Allocation
e
Modwie8 [5] Task® 1O 4% SCF1 Module!
ot B | TR | M & 2 (Reman) | Vogueo
'llnassign |llnasslgn
l Done h g I Done h
Viewing the Modules in an SCF Viewing the Modules Assigned to a
Figure 5.3 Task
Figure 5.4

164

CHAPTER 5: ASSOCIATION LISTS

5.3. TASK -> PROCESSOR

All tasks must be assigned to a processor. Defining which tasks use
which processors is done via the task to processor mapping. The task to
processor mapping can only be performed from the "Task -> Processor" item of
the map menu (Section 2.5). Refer to Sections 4.2 and 4.5.2.1 for discussions
of tasks and processors. Note that more than one task may be assigned to one
processor.

Selecting the "Task -> Processor" item of the map menu will display the
task to processor mapping dialog shown in Figure 5.5. Initially, the left hand list
will display the names of all currently defined tasks, and the right hand list will
display the name of the top level hardware window "HW". Tasks which are
already assigned to a processor will be shown in italics.

Task -> Processor
Task2] 4L NI
Taskl
f
Tasko (LAssion)
lllnusign
—' Done 'i 5

The Task to Processor Mapping Dialog
Figure 5.5

The right hand list is hierarchical and reflects the hardware hierarchy.
Double clicking on "HW" will cause "HW" to be added to the right hand popup
menu and the names of all the processors and nodes in the "HW" window will
appear in the list. Nodes in the right hand window are denoted by a small icon
to the left of the name. Double clicking on a node in the right hand list will have
a similar effect, displaying the processors and nodes within that node. Double
clicking on a processor's name in the right hand list will cause the names of all
tasks currently assigned to that processor to be displayed. To move back to a
higher level in the hierarchy, use the right hand popup menu. The menu will list
all the nodes in the path down to the currently displayed node or processor.
Choosing a name will cause the chosen node's contents to be displayed in the
right hand list. Figure 5.6 shows the contents of the right hand list after "HW" is
double clicked. Figure 5.7 shows the contents of the right hand list after one of
the processors in the "HW" window is double clicked.

Assignment is done by selecting one or more tasks in the left hand list,

selecting a processor in the right hand list, and clicking on the "Assign” button.
Note that the "Assign” button will be dimmed (disabled) if a node is selected in

165

CHAPTER 5: ASSOCIATION LISTS

the right hand list. All tasks which were selected will be assigned to the
selected processor even if some of the tasks were previously assigned.
Selecting one or more tasks and clicking the "Unassign" button will cause the
selected tasks to be disassociated from any processor.

Task -> Procassor Task -> Procassor
—)
Task2 O cpud IO Task2 o Task0 Kol
o (9n) | & woder o (Bosion)
cpu2
Unassign lllnussign
_I Done Im o ' Done n I
Viewing the Contents of "HW" Viewing the Tasks Assigned to a
Figure 5.6 Processor
Figure 5.7

166

CHAPTER 5: ASSOCIATION LISTS

5.4. DATASTORE -> MEMORY

All datastores must be assigned to a memory device. Defining which
datastores use which memories is done via the datastore to memory mapping.
The datastore to memory mapping can only be performed from the "Datastore ->
Memory" item of the map menu (Section 2.5). Refer to Sections 4.4 and 4.5.2.2
for discussions of datastores and memories. Note that more than one datastore
may be assigned to one memory.

Selecting the "Datastore -> Memory" item of the map menu will display
the datastore to memory mapping dialog shown in Figure 5.8. Initially, the left
hand list will display the names of all currently defined datastores, and the right
hand list will display the name of the top level hardware window "HW".
Datastores which are already assigned to a memory will be shown in italics.

Data Store -> Memory
Master File [&, ne 1O
»se
BS1 | Aesign
|Unossign
—‘l Done !

The Datastore to Memory Mapping Dialog
Figure 5.8

The right hand list is hierarchical and reflects the hardware hierarchy.
Double clicking on "HW" will cause "HW" to be added to the right hand popup
menu and the names of all the memories and nodes in the "HW" window will
appear in the list. Nodes in the right hand window are denoted by a small icon
to the left of the name. Double clicking on a node in the right hand list will have
a similar effect, displaying the memories and nodes within that node. Double
clicking on a memory's name in the right hand list will cause the names of all
datastores currently assigned to that memory to be displayed. To move back to
a higher level in the hierarchy, use the right hand popup menu. The menu will
list all the nodes in the path down to the currently displayed node or memory.
Choosing a name will cause the chosen node's contents to be displayed in the
right hand list. Figure 5.9 shows the contents of the right hand list after "HW" is
double clicked. Figure 5.10 shows the contents of the right hand list after one of
the memories in the "HW" window is double clicked.

Assignment is done by selecting one or more datastores in the left hand

list, selecting a memory in the right hand list, and clicking on the "Assign" button.
Note that the "Assign" button will be dimmed (disabled) if a node is selected in

167

CHAPTER 5: ASSOCIATION LISTS

the right hand list. All datastores which were selected will be assigned to the
selected memory even if some of the datastores were previously assigned.

Selecting one or more datastores and clicking the "Unassign" button will cause
the selected datastores to be disassociated from any memory.

Data Store -> Memory Data Store -> Memory
Data Stores w_) Dato Stores
Master Fils [O] Dowiced 1] [Master File [[T o]
y 17 4 4% mode 1 uso [:
3
ps1 msln memory ps1 Assion
Piskpack 1
[llnusign
>_l Done ' o —l Done n gy

Viewing the Contents of "HW"

Viewing the Datastores Assigned to
Figure 5.9

a Memory
Figure 5.10

168

CHAPTER 5: ASSOCIATION LISTS

5.5. DEVICE -> MANAGER

Devices may use and share managers. Defining which devices use
which managers is done via the device to manager mapping. The device to
manager mapping can be performed directly from the device dialog (Section
4.5.2) or from the "Device -> Manager” item of the map menu (Section 2.5).
Refer to Section 4.5.2 and Chapter 5 for discussions of devices and managers.
Note that devices need not be assigned to any manager.

Selecting the "Device -> Manager" item of the map menu will display the
device to manager mapping dialog shown in Figure 5.11. Initially, the left hand
list will display the names of the top level hardware window, "HW", of the current
model and the right hand list will display the names of all defined managers. |If
all devices are currently mapped to managers, the window name will appear in
italics.

Deuvice -> Manager Rilocation

T 0 Managerd [0
Manager!
L"ﬁ"‘_"_] Mamager2

Manager3

|Unassign Meonager4

() o

The Device to Manager Mapping Dialog
Figure 5.11

If you wish to map all devices to one manager, select "HW", select the
desired manager, and click on the "Assign" button. All devices will now be
mapped to the selected manager, even if they were previously mapped to a
different manager. |f you select "HW" and click on the "Unassign" button, all
devices will be dissassociated from managers.

The left hand list is hierarchical and reflects the hardware hierarchy.
Double clicking on "HW" will cause "HW" to be added to the left hand popup
menu and the names of all the devices and nodes in the "HW" window will
appear in the list. All devices which are currently assigned to a manager will
appear in italics. If all devices in a node are assigned, the node will appear in
italics (note: all devices in nodes within the node must also be assigned.).
Assignment may be done at this level by selecting node and/or device names
and a manager and clicking on the "Assign” button. Unassignment is done by
selecting the proper devices and/or nodes and clicking on the "Unassign”
button. Nodes in the left hand window are denoted by a small icon to the left of
the name. Any node may be double clicked to have its contents displayed. To

169

CHAPTER 5: ASSOCIATION LISTS

move back to a higher level in the hierarchy, use the left hand side popup
menu. The menu will list all the nodes in the path down to the currently
displayed node. Choosing a name will cause the chosen nodes contents to be
displayed in the left hand list. Figure 5.12 shows the contents of the left hand
list after "HW" is double clicked.

At any time, double clicking on a manager in the right hand list will cause
the name of that manager to be added to the right hand popup menu.
Additionally, the right hand list will now display the names of all devices
currently mapped to the selected manager. By selecting the "Managers” item in
the right hand popup menu you can get back to the list of managers.

Device -> Managar Allocation Device -> Manager Rllocation
T — T —
cpul Managerd [O cpul cpu2 IO
2 - M 1 2 mein mamory
:,:Il -lelan9 [-;_M_Tq_n_] M::::::z :’:I..e.lr @ Network!
Netwerk1 Manager3 Nelwerk/!
:ﬁ% ::::; [llnassignl Managerd ﬁ ::::", lllnasslgn
diskpack diskpack
—' Done n gt 6' Done ' 5
Viewing the Contents of "HW" Viewing the Devices Assigned to a
Figure 5.12 Manager
Figure 5.13

170

6. STATISTICS

Of what use is a simulator if it does not produce statistics? Pedestal™
collects and calculates a number of statistics for all parts of a model and allows
the user to define new statistics to be collected. To reduce the run time
overhead of calculating statistics, the user may choose the specific statistics to
be calculated during the stimulation of the model.

The major categories of statistics available from Pedestal™ are response
, service , and queue times. All categories are not applicable in all situations;
e.g., utilization of locks (as they implemented in Pedestal™) has no meaning.
There are exclusive and non exclusive requests for a lock (see Sections 4.1.2.8
and 4.1.2.9) which is, in effect, a device with dynamically changing capacity.
Mean response times, which represent the sum of the mean queue and mean
service times, are reported for hardware devices but max and min response
times are not available. This is because queue and service statistics are
tabulated independently and the max or min time that any one transaction spent
from the start of queue to the end of service is not collected.

Statistics may be viewed on the screen during the running of the
simulation and/or written to a file. The various statistics with definitions, and
collection and display methods, are described in this Chapter.

CHAPTER 6: STATISTICS

6.1. ON SCREEN STATISTICS

Pedestal™ displays statistics for software and hardware components
during the simulation by placing textual annotation beneath the icons on the
diagram windows. As the values change, the annotation is updated on the
diagram windows. Figure 6.1 shows an SCF window with statistics displayed
while a simulation is running. Some statistics are available on almost every
window in Pedestal™. The statistics under each icon refer to that icon and are
calculated each time a transaction arrives at or departs from the icon. The
statistics on connectors are user defined statistics that are calculated before a
transaction crosses the connector. The display may be turned off from the
Setup Menu; the "Show Runtime Statistics” menu item is a toggle that is initially
checked. If this menu item is checked, statistics will be shown when the model
while run: otherwise, the diagram statistics will be collected and calculated but
not displayed. The decision whether to display statistics or not may be made
during the simulation run by selecting the menu item.

SCF1

@Q Tl e

1—] ”
sopy T RANANY o Terminater
poRTa D mRT = 1824 mRT = 1,824
“Ar=g Y =3
wpes wpe3z wPa3

SRIn I ET R nnhan EBE

On Screen Statistics During Model Simulation
Figure 6.1

Due to the rapid rate at which the diagram statistics can change, there is
a large overhead associated with displaying these statistics. The simulation will
proceed considerably faster with the screen display off. The display may be
used as a temporary diagnostic tool by viewing the statistics during a portion of
the simulation to ascertain which hardware or software areas may be
problematic, running the simulation to completion without the display, and then
studying the problem areas from an output file. The simulation time is displayed
in the upper right of the screen and can be used in conjunction with the display
statistics to zero in on the simulation time at which a problem occurs. Queues
can be seen building and response times seen degenerating. The detection of
the where and when aspects of performance problems is greatly enhanced by
the dynamic reporting of statistics in Pedestal™.

172

CHAPTER 6: STATISTICS

6.1.1. ICON STATISTICS

The "Pick Runtime Stats" item of the Setup Menu (Section 2.6) is used to
specify the statistics, which if appropriate, will be displayed for the icons on the
windows. Selecting this menu item will display the pick diagram statistics
dialog shown in Figure 6.2.

select stats to be shown on diegrems.

X vtilization
(8 :::D:ﬂ“ R Mean Time [JstdDey [Max Time [JMin Time
5 “":'I“ DO#*Ia = # Entering [# Leaving

(cancet) f ox]

The Pick Diagram Statistics Dialog
Figure 6.2

Twenty two statistics can be specified from this dialog. The seven
statistics shown in the middle of the dialog can be collected for response,
queue, and service. The radio button currently selected determines which of
the three groups of statistics is being set. You can think of the three groups of
seven statistics check boxes as being on a polyhedron and the radio buttons
determine which face of the polyhedron is visible in the dialog. This is
demonstrated in Figure 6.3. The twenty second statistic is utilization.

Select stats to be shown on diagrams.
e B B B L B0 e B i Mm% [

2T BT Meon Time [JSid Dew [TMan Time [JMin Time T

iy 07 # In [T * Entaring X * Lesving

g::l:l::::o.n I Mean Time ([]Std Der O Mau Time [X) Min Time ;
® lueue a#in O # Entering [X # Lesving i
QO Service

B TiMeanTene TS Qew T Girne. Tivin e
AY \n TA® totening R # Leaving

Tn%ﬂfé T T

Statistics "Polyhedron”
Figure 6.3

All icons process transactions and can be thought of as consisting of a
queue of transactions awaiting processing within the icon, and the actual
processing of the transactions. Statistics may be obtained concerning the
queue and/or processing part of the icon. Statistics may also be reported from
end to end, i.e. covering both the queue and processing. These three
"processing regions" are called the queue, service, and response regions. The
three radio buttons on the pick diagram statistics dialog allow the seven
statistics to be specified for collection for each region. Figure 6.4 shows the
decomposition of an icon and the processing regions.

173

CHAPTER 6: STATISTICS

A Dlagram lcon

Queue for Processing

fee QUG e

- Response «&

Processing Zones

Figure 6.4

The statistics available on the dialog, their on screen abbreviation and
their definitions are listed below. Note that all statistics are not available for all
icons. For those statistics not implemented, <ni> will appear in the annotation

beneath the icon.

Statistic

Abbrev.

Definition

Utilization

UTIL

Average Utilization of the icon =
Sum(busy time)/(elapsed time *
number of servers). The busy
time is the amount of time for
which a transaction was within
the service region of the icon.
The number of servers is one for
all icons except device pool
icons (Section 4.5.2). For these
icons, the number of servers is
the number of servers in the
device pool.

Response time is the time a transaction spends in the response region of an

icon.

Statistic Abbrev. | Definition

Mean Response Time mRT Average of the response times.

SD Response Time sRT Standard deviation of the

- - . response times.

Maximum Response Time [xRT Maximum response time
recorded.

Minimum Response Time [nRT Minimum response time
recorded.

174

CHAPTER 6: STATISTICS

#In Response

#IN

Number of transactions currently
in the response region of the
icon.

#Entering Response

#AR

Total number of transactions
which have arrived at the icon.

#Leaving Response

#DP

Total number of transactions
which have left the icon.

Queue time is the time a transaction spends in the queue region of an icon.

Statistic Abbrev. | Definition

Mean Queue Time mQT Average of the queue times.

SD Queue Time sQT Standard deviation of the queue
times.

Maximum Queue Time xQT Maximum queue time recorded.

Minimum Queue Time nQT Minimum queue time recorded.

#In Queue #QT Number of transactions currently

____in the queue of the icon.

#Entering Queue #aQT Total number of transactions
which have arrived at the icon.

#Leaving Queue #dQT Total number of transactions
which have left the icon.

Service time is the time a transaction spends in the service region of an icon.

Statistic Abbrev. | Definition

[Mean Service Time mQT Average of the service times.

SD Service Time sQT Standard deviation of the service
times.

Maximum Service Time xQT Maximum service time recorded.

Minimum Service Time nQT Minimum service time recorded.

#In Service #QT Number of transactions currently

[in the service region of the icon.

#Entering Service #aQT Total number of transactions

_ which have arrived at the icon.

#Leaving Service #dQT Total number of transactions

which have left the icon.

The SCF and RDM windows only display the response time statistics

since none of the icons in these windows have an explicit queue component.
The lock window displays all statistics except utilization, maximum response
time and minimum response time which are not currently defined for locks.
Statistics on the task window have two values separated by a slash ("/"). The
value given before the slash corresponds to the task activations, the number
after the slash to the queueing (buffer) for the task.

On hardware windows, the processor and memory icons have two
aspects. The first aspect is the respective device, memory or processor. The

175

CHAPTER 6: STATISTICS

second aspect is the part of the device which performs transmissions. Thus, the
icon statistics for these two icons have two numbers separated by a slash. The
first number corresponds to the processor or memory, the second number
corresponds to the associated transmission device.

176

CHAPTER 6: STATISTICS

6.1.2. CONNECTOR STATISTICS

User defined statistics may be displayed on screen for connectors on
SCF windows. The connector statistics collection dialog, Figure 6.5 can be
accessed by double clicking on a connector in an SCF window (Section
4.1.1.6). This dialog allows the user to name a statistic and define an
expression which calculates that statistic. Additionally, if the show checkbox is
checked for a defined statistic, that statistic will be displayed on screen during
simulation run.

Labet Expression show Log
Statl [EevtmitiChw-repu | @ ®

] a O

0 a O

0 O)
concel) o)

The Connector Statistics Dialog
Figure 6.5

These statistics will be calculated by evaluating the related expressions
when a transaction crosses the associated connector. The values will be
updated on the screen each time they are calculated. Note that use of the
GetTParm and SetTParm functions in these expressions allows calculation of
response times.

177

CHAPTER 6: STATISTICS

6.2. FILE STATISTICS

To make use of the high interoperability of the programs on the
Macintosh™, Pedestal™ can write all statistics it collects to files in a format
which many applications can read. These statistics can then be read by
database, spreadsheet, and/or statistical analysis packages for analysis and

graphing.

Two statistics files are generated. One contains all of the statistics
calculated on connectors (Section 4.1.1.6) which are marked as "log” statistics.
Since these statistics are generated in an undefined order and on unknown
intervals, they are called event statistics. The other file contains periodic
statistics. The periodic statistics are a set of statistics which are evaluated on a
fixed time interval.

178

CHAPTER 6: STATISTICS

6.2.1. PERIODIC STATISTICS

Most often, statistics gathered on fixed time intervals throughout a
simulation run are wanted. These statistics can be compared more readily
since they are all defined for the same set of time values. The pick file stats
dialog, shown in Figure 6.6, is used to define the set of periodic statistics to be
gathered. This dialog is displayed by choosing the "Pick File Stats" command
from the Setup Menu (Section 2.6).

Periodic Statistics File: StatFile0
Event Statistics File: Statfilel

IS

kel

Collect Every: _]
Betwsen [|nnd| 100 [second)

(nadstat) (melete stet) (hep) [pone]}

The Pick File Stats Dialog
Figure 6.6

The "Periodic Statistics File" and "Event Statistics File" fields are used to
specify the names of the files to be used to record the periodic and event
statistics. These names must be distinct. Note that preexisting files with these
names will be destroyed.

The "Collect Every: <number> <timeunit>" fields are used to set the
collection interval for all periodic statistics. The popup menu is used for scaling.
Likewise, the "Between <number> and <number> <timeunit>" fields are used to
specify the part of the simulation during which periodic statistics are to be
collected.

The list in the middle of the dialog is used to display all currently defined
periodic statistics. To add a statistic to the list, click on the "Add Stat" button. A
dialog will then ask for the name of the statistic as shown in Figure 6.7. This
name is used as the column name in the periodic statistics file. After entering a
name and clicking the "Done" button, the expression editor dialog is shown, as
in Figure 6.8. For a discussion of the expression editor dialog see Section 3.1.
Enter an expression which defines how the statistic is to be calculated and click
on the "OK" button of the expression editor dialog. Now, as shown in Figure 6.9,
the new statistic will appear in the statistic list of the pick file stats dialog.

179

CHAPTER 6: STATISTICS

Perfodic Statistics File: |StatFileD Expression Editor
Event Statistics File: StatFlie! Functions: (Define New Function)
If(test,then,else)
-] LE(a,b)
u LT(a,b)
Statistic Nome: |MyStat | NE(a,b)
DevImUTIL]("Window","Device®,0fTComponent)
Done DevlUTILI("Window"," Device" ,afTComponent)
— pev{maTi(*Window","Device”,0fTComponent)
L DeulUTILICRW®,-Deviced",§)
Collect Every: rl] [Csecond }
Between [I Jnnd[lllo J [second]

(ndastat] (Delote stat] (neip) [pome }§

The Statistic Name Dialog

: The Expression Editor Dialog
Figure 6.7 Figure 6.8

Perlodic Statistics File: |StatFile0

Event Statistics File: StatFilel

MuSla(;Deu[U"Ll('HIU'."DBIJiceO'.O) Q

Collect Every:

Between 1 und! 100 [[second

(Ada'stat] (Delete stat) ((wew) [oone]}

New Statistic in the Statistic List
Figure 6.9

To edit an existing statistic, double click on its definition in the list. You
will be taken through the same steps as when you defined it. First you will be
allowed to change the name, then the expression, then the edited entry will be

placed in the statistics list. To delete an existing statistic, click on the definition
once to select it and click on the "Delete Stat" button.

180

CHAPTER 6: STATISTICS

6.2.2. EVENT STATISTICS

User defined statistics may be calculated and written to file whenever a
transaction crosses a connector on an SCF window. The connector statistics
collection dialog, Figure 6.10, can be accessed by double clicking on a
connector in an SCF window (Section 4.1.1.6). This dialog allows the user to
name a statistic and define an expression which calculates that statistic.
Additionally, if the log checkbox is checked for a defined statistic, that statistic
will be logged to a file each time it is calculated during a simulation run.

Label Enpression Show Log
Stat! [evturiCww-repuf] @ R

0 g 0O

0 a m|

0 a O
(" concet) u oK u

The Connector Statistics Dialog
Figure 6.10

These statistics will be calculated by evaluating the related expressions
when a transaction crosses the associated connector. The values will be
logged to the file each time they are calculated. Note that use of the GetTParm
and SetTParm functions in these expressions allows evaluation of response
times.

All logged connector statistics will be written to one file. The name of the
file is determined by the "Event Statistics File" field of the pick file statistics
dialog shown in Figure 6.11. This dialog is reached by selecting the "Pick File
Stats” item of the report menu. A full discussion of this dialog appears in
Section 6.2.1.

Periodic Statistics File: StotFite0
Event Statistics File: StatFilet

I}

Collect Every: E____—:]
Between F—]nndmmd—]

(Rdastat) (veletestat) [Heip) { Done J

The Pick File Statistics Dialog
Figure 6.11

181

CHAPTER 6: STATISTICS

The format of this log file is:

[Time | WindowName | FromiconName [TolconName | Label [Value |

The time field contains the simulation time at which the statistic was calculated.
The window name, from icon name and to icon name are provided so that
calculations of a statistic with the same name on different connectors can be
differentiated if desired. The label gives the users name of the statistic from the
connector statistics dialog. The value is the calculated value of the statistic. A
tab separates each field since this is a form which most packages can impont.

Since event statistics are calculated in an unknown order and on an
unknown and irregular time interval, the file will require sorting to get all the
values related to a specific label together. Also, the FromlconName and
TolconName are supplied since Label names are not necessarily unique. This
information, while cumbersome, allows exact identification of the statistic which
was calculated.

182

CHAPTER 6: STATISTICS

6.2.3. IMPORTING FILE STATISTICS INTO OTHER APPLICATIONS

Any data manipulation package which can import tab delimited text files
can import the statistics files generated by Pedestal™. The periodic statistics
defined in the pick file statistics dialog (Section 6.2.1) will be written to a file.
The values will be in columns, and the first row will contain the statistics names.
The first column will contain the simulation time at which each row was

calculated.

The connector statistics which are logged will appear in one file.
Because these statistics are not calculated at fixed intervals and not necessarily
all at the same time, the file may require some sorting once imported into a
package to get the data in the proper form for your analysis. This file will
contain all information necessary to sort the information in any manner you
wish.

Refer to the manual for the package(s) you wish to use to determine the
method of importing data files. The following Sections detail the steps required
to import Pedestal™ statistics files into Excell™ and Exstatics™.

183

CHAPTER 6: STATISTICS

6.2,3.1. EXCELL™

Microsoft Excell™ is a popular spreadsheet package on the Macintosh™.
The following is an example of how to import a Pedestal™ statistics file into
Excell™ and make a chart. Note that for charting of "event" statistics (from
statistics defined on connectors) Excell™ is not recommended since it does not
support uneven intervals along the X (category) axis. Excell™ does provide a
powerful and simple sorting mechanism which is well suited to reordering the
data in the event statistics file.

The numbers in this example were generated by a short simulation of a
simple model which had two processors. Figure 6.12 shows the pick file
statistics dialog with the definition of the statistics which were used.

Perlodic Statlistics File: StatFite0
Event Statistics Flle: StatFilel

[

UtillcpuD]=Dev[UTIL)("KiU","Deviced")
Willcputl=DevlUTILI("HIW*,"Deuvicet ")

Collect Every:
Between ||]andllnn || second]

(Radstet] (Deletestat] [Help) { oone)

Figure 6.12.

Once you have run the simulation and produced your statistics file, exit
Pedestal™ and launch Excell™. Choose the "Open" command from the
Excell™ file menu. This will display the standard Macintosh™ open file dialog;
use this dialog to get to the folder which contains the statistics file and openit. A
new worksheet will be created with the same name as the statistics file. Figure
6.13 shows such a worksheet.

RO $totFileD
A B C [E F
WtitfepuD] Tutieputl !
1 700623 0
15[0.860015] 01353349
4 2| 0.850011] 0350011 o
S 25 . 9]~ 0.480009 l

[3 . 2 4
3 35 .904414] 0. 91‘
e 916362 ! F
: a5 _;l e
5 "0.933089 753089
§5[_0.90 11 57354]
6; 8 3 5;

6351 0.769231] 0.7692311 |
4 7 .75;_?9_% 714286]
8| 0.770408 666667

€ [] 0.75 £59758! !
[705882 6797 gl
9| 0.665667 666667
95 0631579, 631579
10 0.6 0.6

KT R R R T 0 o i I

Figure 6.13.

184

CHAPTER 6: STATISTICS

Note that the data series are in columns with titles in the first row. Also,
the first column contains the X axis values (categories). This worksheet may be
manipulated like any other in Excell™. To chart the data, select the data and
choose "Copy" from the edit menu. Next, create a new chart. Now, select
"Paste Special" from the edit menu. This will display the paste special dialog;
edit this dialog such that its contents match that of the dialog in Figure 6.14.
Click OK.

Paste Speclal m

ralues In t

O Rows 0.9 4 ot

@ Columns 2 08 |
5] series Names in First Row 1074

[X Categories In First Column 1

1 g: - Util[cpuo)
: D“ © Utillepul]
Figure 6.14. {os
s 02
0.1
D Ittt ———t k
1152253354455556657758859 9510
Time (sec.)
o
Figure 6.15.

The data will now be charted. You can use the Excell™ commands to
change the graph type, add legends, etc.. Figure 6.15 shows a sample chart
produced by Excell™.

185

CHAPTER 6: STATISTICS

6.2.3.2. EXSTATICS™

Exstatics™ is a statistical analysis package for the Macintosh™. The
following is an example of how to import a Pedestal™ statistics file into
Exstatics™. Unlike Excell™, Exstatics™ does support uneven intervals along
the X axis. However, sorting is limited.

The numbers in this example were generated by a short simulation of a
simple model which had two processors. Figure 6.16 shows the pick file
statistics dialog with the definition of the statistics which were used.

Perlodic Statistics File: StatFite0
Event Statistics File: StatFilel

utilfcpuol=DenlUTIL}("KID*,"Deviced")
Utillcpu]=Dev{UTIL](*HW*,"Devicel ")

=

Collect Every:
Between || lund‘loo [Csecond]

(hddstat) (Detetestat) [Heip) ([pone)

Figure 6.16.

Once you have run the simulation and produced your statistics file, exit
Pedestal™ and launch Exstatics™. Chose the "Open" command from
Exstatics™s file menu. This will display the standard Macintosh™ open file
dialog, use this dialog to get to the folder which contains the statistics file and
open it. A dialog will be displayed to allow you to tell Exstatics™ how to read
the file. For periodic file statistics set the dialog buttons as shown in Figure
6.17.

DI Stotfilc0 NN
Here Is the Tirst line of data In the TEHT document: O =0 = ela] New
Time Utilicput] Utiilcpul] Time | Otiilcpud] | Utiticpull | Varlabie
1 1] 0700023 :
2 151 Q800015
@® These are the names of the variables 3 2. 0850011
Q This is the first line of deta; 4 25 9006179
ask for names for each variable =} 3’5 : ggggﬁ4f
O This is the first line of dals; El VIR I E
give the variables default names 45 0925655
9 Si Q933089
[0K J(Concel J [1] S53: 0909091 ;
1 P 0833333
12 0.9 Q769231
13 70754009 :
. 14 7.5 0770408 :
Figure 6.17 15 8- 075, :
16 85 ._0.7058082; 0.679772_
19 cosas [Qj l gﬂ
Figure 6.18

186

CHAPTER 6: STATISTICS

For event statistics, click either the second or third radio button.
Exstatics™ will read the file and create a new data set window. Figure 6.18 is
an example of this window.

The data may now be analyzed and/or charted. Figures 6.19 and 6.20
show a few simple reports generated by Exstatics™ relating to the example data
set.

Statistics
Tondoy, May 22, 1989 5:50:31 P StatFlied

Susaary statistics for all rumeric variabies:

$tondard $tandard
Hean Deviation Error Ninisun
Case Number 10.0000 5.6273 1.2910 1.0000
Tina 5.5000 2.9137 0.6455 1.0000
UtillepuOl 0.7987 0. 1046 0.0240 0.6000
Utillcpull 0.3881 0.2114 0.0485 0.0000

D
yl

Monday, Moy 22, 1989 5:58:40 PH StatF|le0
Table of correlations: N
Case Mumber Time Utit [cpul] Utili{cpull &&
Case Nuwber 1,000 1.000 -0.82% 0.644 H
Tine 1.000 1.000 -0.823 0.644 B
UtlHlepuOl -0.625 -0.623 1.000 0. 157
Utillepull 0.644 0.644 0.157 1.000 [
19 activa cases Included. LR

Figure 6.20

187

7. RUNNING A MODEL

Several requirements must be satisfied before simulation of a Pedestal™
may begin. Most of these requirements involve the specification of software
grouping and assignment to hardware. The grouping may be done by
specifying tasks on the module definitions or by selection the Module->Task
item from the Map Menu. Since the hardware and software designs are
independent, the mappings which relate the software and hardware must be
done by menu selection. Other requirements pertain to how the diagrams
which describe the software and hardware are drawn. These requirements
ensure that the diagrams are syntactically correct.

CHAPTER 7: RUNNING A MODEL

7.1. MAPPING REQUIREMENTS

The mechanics of mapping are explained in Chapter 5 and it is important
to understand that all modules must be assigned to task, all tasks must be
assigned to processors, and all datastores must be mapped to memory devices.
Upon selection from the menu of a particular mapping, the association list
(Chapter 5) specific to that mapping appears. Pedestal™ aids the user by
displaying only those items appropriate to that type of mapping.

In the event that the mappings are incomplete at the time the run
command is issued, the dialog shown in Figure 7.1 appears. Upon dismissal of
the dialog, the deficient mapping dialog, shown in Figure 7.2, comes up
automatically for completion. Selection of the Cancel button will retract the
command to run. This would be necessary in cases where there were elements
lacking that are necessary for completion of mapping; e.g., if module to task
mapping were incomplete and there were no tasks currently defined, the user
would not be able to rectify the error from the association list. Cancellation of
the run command puts the user back into the model definition mode where tasks
may be defined from either module icons or from the task window.

‘Moduls -> Task' Mepping must be complsted before
runningt

Figure 7.1
Incomplete Mapping Dialog
Module -> Task Allecetion
&b SCF1 0] O]

4t scF2 ' Aysign l
'Unu‘sbgn
6' Done ' 1o
Figure 7.2

Attempt to Map with No Classes

The example cited above is for module->task mapping. Parallel
situations may arise for the other mappings. New devices, processors or
memories, are created in the HW or Control windows; managers are not part of
the mandatory mapping but they may be created in the manager window,
accessible from the Desktop window.

189

CHAPTER 7: RUNNING A MODEL

7.2. SOFTWARE WINDOW REQUIREMENTS

In order to achieve a successful simulation there must be complete flows
in the SCF, Macro, and RDM windows. Each window must have one and only
one each stimulus and terminator. All flows originate in the stimulus and
terminate in the terminator. The branching creates parallel or exclusive
alternate flows but all icons with the exception of the stimulus and terminator
must have an incoming arrow and an outgoing arrow in order for the model to
be complete.

190

CHAPTER 7: RUNNING A MODEL

7.3. HARDWARE WINDOW REQUIREMENTS

The hardware and node window requirements differ from the software
windows in that connections are not required. It is possible to have a valid
Pedestal™ model in which all hardware devices are free standing. Routing
accesses must be explicitly expressed by connecting components. For
example a processor that is in close proximity to a bus will not use that bus
unless it is connected to it in the diagram.

191

GLOSSARY

accessory: See desk accessory,
peripheral device.

active window: The frontmost window
on the desktop; the window where the next
action will take place. An active window's
title bar is highlighted. (M)

alert: A warning or report of an error in
the form of an alert box, a sound from the
computer's speaker, or both. (M)

alert box: A box that appears on the
screen to give a warning or o report an
error message during use of an application.
(M)

algorithm: A step-by-step procedure for
solving a problem or accomplishing a task.

American Standard Code for
Information Interchange: See ASCII.

ANSI: Acronym for American National
Standards Institute, which sets standards for
many technical fields and is the most common
standard for computer terminals.

Apple key: A key marked with an outlined
Apple symbol; on older Apple Il machines,
it's called Open Apple. On some keyboards,
the Apple key also acts as the Command key
and carries both the Apple symbol and the
propeller-shaped Command symbol.

Apple menu: The menu farthest to the left
in the menu bar, indicated by an Apple
symbol, from which you choose desk
accessories. (M)

application program: A program
written for some specific purpose, such as
word processing, data base management,
graphics, or telecommunication. Compare
system program.

application software: A collective term
for application programs.

arithmetic expression: A combination
of numbers and arithmetic operators (such
as 3 + 5) that indicates some operation to be
carried out.

arithmetic operation: One of the five
actions computers can perform with
numbers: addition, subtraction,
multiplication, division, and exponentiation.

arithmetic operator: An operator, such
as +, that combines numeric values to
produce a numeric result. Compare logical
operator, relational operator.

array: An ordered collection of
information of a given, defined type. Each
element of the array can be referred to by a
numerical subscript.

ASCII: Acronym for American Standard
Code for Information Interchange, pronounced
“ASK-ee.” A code in which the numbers from
0 to 127 stand for text characters. ASCII code
is used for representing text inside a
computer and for transmitting text between
computers or between a computer and a
peripheral device. Compare EBCDIC.

Backspace key: A key that backspaces
over and erases the previously typed
character or the current selection.

back up: (v) To make a spare copy of a
disk or of a file on a disk. Backing up your
files and disks ensures that you won't lose
information if the original is lost or damaged.

backup: (n) A copy of a disk or of a file on
a disk. It's a good idea to make backups of all
your important disks and to use the copies for
everyday work, keeping the originals in a
safe place. (Some program or startup disks
cannot be copied.)

bit: A contraction of binary digit. The
smallest unit of information that a computer
can hold. The value of a bit (1 or 0)
represents a simple two-way choice, such as
yes or no, on or off, positive or negative,
something or nothing. See also binary
system.

bit rate: The speed at which bits are
transmitted, usually expressed as bits per
second, or bps. Compare baud.

bits per second: See bit rate.
bps (bits per second): See bit rate.

Glossary - 1

buffer: A “holding area” of the
computer's memory where information can
be stored by one program or device and then
read at a different rate by another; for
example, a print buffer. In editing functions,
an area in memory where deleted (cut) or
copied data is held. In some applications, this
area is called the Clipboard. See also type-
ahead buffer.

button: A pushbutton-like image in dialog
boxes where you click to designate, confirm,
or cancel an action. See also mouse button.

byte: A unit of information consisting of a
fixed number of bits. On Apple Il systems,
one byte consists of a series of eight bits, and
a byte can represent any value between 0 and
255. The sequence represents an instruction,
letter, number, punctuation mark, or other
character. See also kilobyte, megabyte.

Cancel button: A button that appears in a
dialog box. Clicking it cancels the command.

Caps Lock key: A key that, when engaged,
causes subsequently typed letters to appear
in uppercase; its effect is like that of the
Shift key except that it doesn't affect
numbers and other non-letter symbols.

carriage return: An ASCIl character
(decimal 13) that ordinarily causes a
printer

or display device to place the next character
on the left margin.

case sensitive: (adj) Able to distinguish
between uppercase characters and lowercase
characters. Programming languages are case
sensitive if they require all-uppercase
letters, all-lowercase letters, or proper use
of uppercase and lowercase. For example,
Applesoft BASIC recognizes only uppercase.
Instant Pascal, on the other hand, is not case
sensitive; you can use any combination of
uppercase and lowercase letters you like.

character keys: Keys on a computer
keyboard—such as letters, numbers,
symbols, punctuation marks—used to
generate text or to format text; any key
except Shift, Caps Lock, Command, Option,
Open Apple, Solid Apple, Control, and Escape.
Character keys repeat when you press and
hold them down.

check box: A small box or circle
associated with an option in a dialog box.
When you click the check box, you may
change the option or affect related options.

choose: To pick a command by dragging
through a menu. You often choose a command
after you've selected something for the
program to act on. (M)

click: To position the pointer on
something, and then to press and quickly
release the mouse button. (M)

Clipboard: The holding place for what you
last cut or copied; a buffer area in memory.
Information on the Clipboard can be inserted
(pasted) into documents.

close: To turn a window back into the icon
that represents it. (M)

close box: The small white box on the
left side of the title bar of an active window.
Clicking it closes the window.

command: An instruction that causes the
computer to perform some action. A command
can be typed from a keyboard, selected from a
menu with a hand-held device (such as a
mouse), or embedded in a program.

command code: One or more characters
whose function is to change the way a
program or device acts (as opposed to text,
which is simply printed).

Command key: A key that, when held
down while another key is pressed, causes a
command to take effect. When held down in
combination with dragging the mouse, the
Command key lets you drag a window to a new
location without activating it. The Command
key is marked with a propeller-shaped
symbol. On some machines, the Command key
has both the propeller symbol and the Apple
symbol on it. (M)

Glossary - 2

conditional branch: A branch whose
execution depends on the truth of a condition
or the value of an expression. Compare
unconditional branch.

context sensitive: (adj) Able to
perceive the situation in which an event
occurs. For example, an application program
might present help information specific to
the particular task you're performing,
rather than a general list of commands; such
help would be context sensitive.

control key: A general term for a key
that controls the operation of other keys; for
example, Caps Lock, Command, Control, Open
Apple, Option, and Shift. When you hold down
or engage a control key while pressing
another key, the combination makes that
other key behave differently. Also called a
modifier key.

cursor: A symbol displayed on the screen
marking where the user’s next action will
take effect or where the next character typed
from the keyboard will appear. (ll)

cut: To remove something by selecting it
and choosing Cut from a menu. What you cut
is placed on the Clipboard. (M) In other
editing applications, delete serves the same
function. See also buffer.

data: Information, especially information
used or operated on by a program. The
smallest unit of information a computer can
understand is a bit.

data bits: The bits in a communication
transfer that contain information. Compare
start bit, stop bit.

default: A preset response to a question or
prompt. The default is automatically used by
the computer if you don’t supply a different
response. Default values prevent a program
from stalling or crashing if no value is
supplied by the user.

delete: To remove something, such as a
character or word from a file, or a file from
a disk. Keys such as the Backspace key and the
Delete key can remove one character at a time
by moving to the left. In the Macintosh

family, the Cut command removes selected
text and places it on the Clipboard; the Clear
command and the Backspace key remove
selected text without placing it on the
Clipboard.

Delete key: A key on the upper-right
corner of the Apple lle and lic keyboards that
erases the character immediately preceding
(to the left of) the cursor. Similar to the
Macintosh Backspace key.

delimiter: A character that is used for
punctuation to mark the beginning or end of a
sequence of characters, and which therefore
is not considered part of the sequence itself.
For example, Applesoft BASIC uses the double
quotation mark (") as a delimiter for string
constants: the string "DoG" consists of the
three characters D, O, and G, and does not
include the quotation marks.

desktop: In Macintosh applications, the
computer's working environment—the menu
bar and the gray area on the screen. You can
have a number of documents on the desktop at
the same time. In AppleWorks, the Desktop
is an area of memory where you can keep
several files at a time. Once files are on the
Desktop, you can switch back and forth
between files without having to get files from
the data disk.

dialog box: A box that contains a message
requesting more information from you.
Sometimes the message warns you that you're
asking your computer to do something it can’t
do or that you're about to destroy some of
your information. In these cases the message
is often accompanied by a beep. (M)

double-click: To position the pointer
where you want an action to take place, and
then press and release the mouse button twice
in quick succession without moving the
mouse. (M)

Glossary - 3

drag: To position the pointer on
something, press and hold the mouse button,
move the mouse, and release the mouse
button. When you release the mouse button,
you either confirm a selection or move an
object to a new location. (M)

edit: To change or modify. For example, to
insert, remove, replace, or move text in a
document.

Enter key: A key that confirms or
terminates an entry or sometimes a
command.

error condition: The state of the
hardware or program after it has detected a
fault in one or more commands sent to it.

error message: A message displayed or
printed to tell you of an error or problem in
the execution of a program or in your
communication with the system; an error
message is often accompanied by a beep.

expression: A formula in a program that
defines a calculation to be performed.

file: Any named, ordered collection of
information stored on a disk. Application
programs and operating systems on disks are
examples of files. You make a file when you
create text or graphics, give the material a
name, and save it to disk; in this sense,
synonymous with document.

file management: A general term for
copying files, deleting files, and other chores
involving the contents of disks.

filename: The name that identifies a file.
The maximum character length of a filename
and the rules for naming a file vary under
different operating systems. Compare
pathname. (1)

Finder: An application that’'s always
available on the desktop. You use it to
manage documents and applications, and to get
information to and from disks. (M)

fixed-point notation: A method of
representing numbers inside the computer in
which the decimal point (more correctly, the
binary point) is considered to occur at a fixed
position within the number. Typically, the
point is considered to lie at the right end of
the number so that the number is interpreted
as an integer. Compare floating-point
notation.

flag: A variable whose value (usually 1 or
0, standing for true or false) indicates
whether some condition holds or whether
some event has occurred. A flag is used to
control the program’s actions at some later
time.

floating-point notation: A method of
representing numbers inside the computer in
which the decimal point (more correctly, the
binary point) is permitted to “float” to
different positions within the number. Some
of the bits within the number itself are used
to keep track of the point’s position. Compare
fixed-point notation.

folder: A holder of documents and
applications on the desktop. Folders, like
subdirectories, allow you to organize
information in any way you want. (M)

function: A preprogrammed calculation
that can be carried out on request from any
point in a program. Because a function takes
in one or more arguments and returns a
single value, it can be embedded in an
expression.

graph: A pictorial representation of data.

graphics: (1) Information presented in
the form of pictures or images. (2) The
display of pictures or images on a computer’s
display screen. Compare text.

hard copy: Information printed on paper,
as opposed to being stored on disk.

icon: An image that graphically represents
an object, a concept, or a message. For
example, an unopened MacWrite document
looks like a sheet of paper with lines like
writing on it; an unopened MacPaint
document looks like a sheet of paper with a
paint brush painting a line.

Glossary - 4

input: (n) Information transferred into a
computer from some external source, such as
the keyboard, a disk drive, or a modem.
Compare output.

input/output (1/0): The process by
which information is transferred between the
computer's memory and its keyboard or
peripheral devices.

insertion point: The place in a document
where something will be added; it is selected
by clicking and is represented by a blinking

vertical bar.

installation: The process of adding
information to the System file of a disk. For
example, the Printer Installer on the
LaserWriter Installation Disk installs the
LaserWriter and new ImageWriter software.

interactive: (adj) Operating by means of
a dialog between the computer system and a
human user.

interface: (1) The point at which
independent systems or diverse groups
interact. The devices, rules, or conventions
by which one component of a system
communicates with another. Also, the point of
communication between a person and a
computer. (2) The part of a program that
defines constants, variables, and data
structures, rather than procedures.

interrupt: A temporary suspension in the
execution of a program that allows the
computer to perform some other task,
typically in response to a signal from a
peripheral device or other source external to
the computer.

/0 device: Input/output device. A device
that transfers information into or out of a
computer. See input, output, peripheral
device.

K: See kilobyte.

kilobyte (K): A unit of measurement
consisting of 1024 (210) bytes. In this
usage, kilo (from the Greek, meaning a
thousand) stands for 1024. Thus, 64K
memory equals 65,536 bytes. See also
megabyte.

leading zero: A zero occurring at the
beginning of a decimal number; deleted by
most computing programs.

Macintosh: A family of Apple computers;
for example, the Macintosh 512K and the
Macintosh Plus. Macintosh computers have
high-resolution screens and use mouse
devices for choosing commands and for
drawing pictures.

megabyte (Mb): A unit of measurement
equal to 1024 kilobytes, or 1,048,576
bytes. See kilobyte.

menu: A list of choices presented by a
program, from which you can select an
action. In Macintosh, menus appear when you
point to and press menu titles in the menu
bar. Dragging through the menu and
releasing the mouse button while a command
is highlighted chooses that command.

menu bar: The horizontal strip at the top
of the screen that contains menu titles. (M)

menu title: A word, phrase, or icon in
the menu bar that designates one menu.
Pressing on the menu title causes the title to
be highlighted and its menu to appear below
it. (M)

microsecond (ms): One millionth of a
second.

millisecond (ms): One thousandth of a
second.

mouse: A small device you move around on
a flat surface next to your computer. The
mouse controls a pointer on the screen whose
movements correspond to those of the mouse.
You use the pointer to select operations, to
move data, and to draw with in graphics
programs.

mouse button: The button on the top of
the mouse. In general, pressing the mouse
button initiates some action on whatever is
under the pointer, and releasing the button
confirms the action.

multitasking: A process that allows a
computer to perform two or more tasks
during a given period of time; it is
accomplished by alternating the actions of the
computer between tasks.

Glossary - 5

nanosecond (ns): One billionth of a
second.

network: A collection of interconnected,
individually controlled computers, together
with the hardware and software used to
connect them. A network allows users to
share data and peripheral devices such as
printers and storage media, to exchange
electronic mail, and so on.

open: To make available. You open files or
documents in order to work with them. In
Macintosh, when you double-click an icon or
select it and choose the Open command, you
cause a window with the contents of that icon
to come into view. You may then perform
further actions in the window, if it's an
active window.

Option key: A modifier key that gives a
different meaning or action to another key

you type or mouse actions you perform. You
use it to type foreign characters or special
symbols contained in the optional character
set. (M)

output: (n) Information transferred from
a computer to some external destination, such
as the display screen, a disk drive, a printer,
or a modem. Compare input.

paste: To place the contents of the
Clipboard—whatever was last cut or copied—
at the insertion point.

peripheral: (adj) At or outside the
boundaries of the computer itself, either
physically (as a peripheral device) or
logically (as a peripheral card). (n) Short
for peripheral device.

pipelining: A feature of a processor that
enables it to begin fetching the next
instruction before it has finished executing
the current instruction. All else being equal,
a processor with this feature runs faster
than one without it.

precedence: The order in which
operators are applied in evaluating an
expression. Precedence varies from language
to language, but usually resembles the
precedence rules of algebra.

press: (1) To position the pointer on
something and then hold down the mouse
button without moving the mouse. (2) To
strike a key and then release it; you hold a
key down only if you want to repeat a
character (or you are using a control key
with another key).

prompt: A message on the screen that tells
you of some need for response or action. A
prompt usually takes the form of a symbol, a
message, a dialog box, or a menu of choices.

(1

prompt character: A text character
displayed on the screen, usually just to the
left of a cursor, where your next action is
expected. The prompt character often
identifies the program or component of the
system that's prompting you. For example,
Applesoft BASIC uses a square bracket
prompt character (1); Integer BASIC, an
angle bracket (>); and the system Monitor
program, an asterisk (*). (Il)

protocol: A formal set of rules for
sending and receiving data on a
communication line. For example, binary
synchronous communications (BSC) is a
protocol.

pseudo-random numbers: A sequence
of numbers, determined by some defined
arithmetic process, that is satisfactorily
close to a true random sequence for a given
purpose. Microcomputers can generate
pseudo-random numbers, and thus can
simulate games of chance, such as dice-based
games and card games.

queue: A list in which entries are added at
one end and removed at the other, causing
entries to be removed in first-in, first-out
(FIFQ) order. Compare stack.

read: To transfer information into the
computer's memory from a source outside
the computer (such as a disk drive or
modem) or into the computer’s processor
from a source external to the processor
(such as the keyboard or main memory).

Glossary - 6

real number: In computer usage, a
number that may include a fractional part;
represented inside the computer in floating
point notation. Because a real number is of
infinite precision, this representation is
usually approximate. Compare integer.

Return key: A key that causes the cursor
or insertion point to move to the beginning of
the next line. It's also used in some cases to
confirm a command.

run: (1) To execute a program. When a
program runs, the computer performs the
instructions. (2) To load a program into
main memory from a peripheral storage
medium, such as a disk, and execute it.

save: To store information by
transferring the information from main
memory to a disk. Work not saved disappears
when you turn off the computer or when the
power is interrupted.

scientific notation: A method of
expressing numbers in terms of powers of
ten, useful for expressing very small or very
large numbers.

For example, 6.02E23, means 6.02 times
ten

to the 23rd power. (The letter £ stands for
exponent.) The number is easier 1o
understand in this form than in the form
602000000000000000000000. Applesoft
BASIC

uses this method to display real (floating-
point) numbers with more than nine digits.

scroll arrow: An arrow at either end of a
scroll bar. Clicking a scroll arrow moves a
document or directory one line. Pressing a
scroll arrow moves a document continuously.
(M)

scroll bar: A rectangular bar that may be
along the right or bottom of a window.
Clicking or dragging in the scroll bar causes
your view of the document to change. (M)

scroll box: The white box in a scroll bar.
The position of the scroll box in the scroll
bar indicates the position of what's in the
window relative to the entire document. (M)

seed: A value used to begin a repeatable
sequence of pseudo-random numbers.

select: To designate where the next action
will take place. To select using a mouse, you
click an icon or drag across information. You
can also select menu items by typing a letter
or number at a prompt, by using a
combination keypress, or by using arrow
keys.

selection: The information or items that
will be affected by the next command. The
selection is usually highlighted.

Shift-click: A technique that allows you
to extend or shorten a selection by
positioning the pointer at the end of what you
want to select and holding down the Shift key
while clicking the mouse button.

Shift-drag: A technique that aliows you
to select multiple objects by holding down the
Shift key while you drag diagonally to enclose
the objects in a rectangle.

Shift key A key that, when pressed,
causes the subsequent letter you type to
appear in uppercase, or the top symbol on a
two-character key to be produced.

simulation: A computerized
representation of some process in action—for
example, a flight simulation.

size box: A box on the bottom-right
corner of some active windows. Dragging the
size box resizes the window.

stack: A list in which entries are added
(pushed) or removed (popped) at one end
only (the top of the stack), causing them to
be removed in last-in, first-out (LIFO)
order. Compare queue.

Standard Apple Numeric Environment
(SANE): The set of methods that provides
the basis for floating-point calculations in
Apple computers. SANE meets all
requirements for extended-precision,
floating-point arithmetic as prescribed by
IEEE Standard 754 and ensures that all
floating-point operations are performed
consistently and return the most accurate
results possible.

Glossary - 7

start up: To get the system running.
Starting up is the process of first reading an
operating system program from the disk, and
then running an application program.

subdirectory: A directory within a
directory; a file containing the names and
locations of other files.

syntax: (1) The rules governing the
structure of statements or instructions in a
programming language. (2) A representation
of a command that specifies all the possible
forms the command can take.

system: A coordinated collection of
interrelated and interacting parts organized
to perform some function or achieve some
purpose—for example, a computer system
comprising a processor, keyboard, monitor,
and disk drive.

system software: The component of a
computer system that supports application
programs by managing system resources
such as memory and I/O devices.

time sharing: Sharing a computer
between two or more users, usually through
multitasking.

title bar: The horizontal bar at the top of
a window that shows the name of the window’s
contents. You can move the window by
dragging the title bar. (M)

token: An abbreviation of a string of
characters. For example, Applesoft BASIC
stores commands internally as single-
character tokens.

unconditional branch: A branch that
does not depend on the truth of any condition.
Compare conditional branch.

user: A person operating or controlling a
computer system.

user interface: The rules and
conventions by which a computer system
communicates with the person operating it.

value: An item of information that can be
stored in a variable, such as a number or a
string.

variable: (1) A location in the
computer's memory where a value can be
stored. (2) The symbol used in a program to
represent such a location.

window: (1) The area that displays
information on a desktop; you view a
document through a window. You can open or
close a window, move it around on the
desktop, and sometimes change its size, scroll
through it, and edit its contents. (M) (2)
The portion of a collection of information
(such as a document, picture, or worksheet)
that is visible in a viewport on the display
screen. Compare viewport.

write: To transfer information from the
computer to a destination external to the
computer (such as a disk drive, printer, or
modem) or from the computer’s processor to
a destination external to the processor (such
as main memory).

zoom box: A small box with a smaller box
enclosed in it found on the right side of the
title bar of some windows. Clicking the
zoom box expands the window to its maximum
size; clicking it again returns the window to
its original size.

Glossary - 8

NNASAN Report Documentation Page

&mwt.mm
1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
5. Report Date

4. Title and Subtitle

Final Report 29 June 89

6. Pertorming Orgenization Code

8. Performing Orgenization Report No.

7. Authorls)
Deliverable 0002
10. Work Unit No.
9. Perf, ing O i N
Advan ystt;"m' fé‘bﬁf‘t‘b?ggies, Inc. 1 Contector Grami No
12200 E. Briarwood Ave. ' '
Suite 260 NAS7-995
Englewood, CO 80112 13. Type of Report and Period Covered
Final Report

12, Sponsoring Agency Name and Address
3/87-6/29/89

National Aeronautics and Space Administration
Washington, DC 20546-0001 14. Sponsoring Agency Code
NASA Resident Office - Jet Propulsion Laboratory

15. Supplementary Notes

16. Abstract
This report summarizes Advanced System Technologies'

accomplishments on the Phase II SBIR contract NAS7-995.
Project summary, objectives, work carried out, and results

obtained are presented.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
SBIR, Status Unclassified - Unlimited
19. Security Classif. (of this report) 20. Security Classif. {of this page) 21, No. of pages 22. Price

232

Unclassified Unclassified

