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constraints. In the coldspot model, high-standing topography could

also be created by convective shear tractions on the base of the

lithosphere, leading to imbricatimb--the stacking of lithospheric
thrust sheets, This process requires that new iithosphedc surface

area be created somewhere on Venus (e.g., lithospheric spreading);

so far, this has not been observed. Addition of mass is usually

required for compressional strain, and the botapot model is actually

attractive because new mass is provided vertically from the mantle

by part/al melting, and it is not necessary to obta/n it horizontally

from the lithosphere. Major strain associated with crustal plateaus

might arise from crustal thickness instabilities [6,7] and from

detachment [8] arising from eclogite formation in plateau roots.

Coronae: Coronae are large circular surface structures, which

are observed in Magellan images to range up to 2600 km in diameter

[9]; they are associated with both volcanism and tectonism. While
it is generally agreed that coronae form in response to buoyantly

rising material [9,10], there is no convergence of opinion on the

nature of the diaper. Three endmember models are (l) thermal

plumes from the mantle (which may then undergo pressure release

partial melting), (2) compositional plumes that arise perhaps from

melting induced by broader-scale thermal plumes, and (3) instabili-

ties arising in regions that are partially molten or at the solidus

[11,12]. In the last mechanism, the instability is triggered by an

upward velocity perturbation, and on Venus such perturbations

could arise from extensional strain events in the lithosphere associ-

ated with both upwelling and downwelling mantle flow. The coin-

cidenee of coronae with extensional features [9] provides evidence

for this process.

Trenches and Subduction: On rite basis of Venera 15-16

data, it has been proposed [13] that lithospheric convergence and

underthrusting has occurred on the northern bounda_ of Ishtar

Terra. The steep front and trench on the western side of Maxwell

Montes also supports this idea. More recently, it has been suggested

that trenches associated with the boundaries of certain large coronae

mark the sites of "rollback" or retrograde subduction [14; see also

15]. In this hypothesis, the lithosphere associated with a corona

extends outward and material is replaced by upward mantle flow (in

analogy to terrestrial back-arc spreading). The expanding corona

"consumes" lithosphere on its boundary (i.e., the surrounding

lithosphere is subducted beneath the corona). The hypothesis for

retrograde subduction is based on topographic and flexural analogy

to terrestrial subduction trenches [14,15,16]. While evidence for

outward migration of coronae is seen in the radar images, continuity

of slrucatres across proposed plate boundaries (i.e., trenches)

argues against the subduction hypothesis [17].

Lithospheric subduction on Venus would require an active

driving mechanism. No indication of spreading ridges is observed

in the Magellan data, so "ridge push" can probably be discounted.

Direct convective coupling from the underlying mantle may provide

sufficient force, however [ 1]. The proposed retrograde subduction

requires the lithosphere to be negatively buoyant. This may only be

possible if garnet granulite or eclogite can form in the lower crust.

The notion that the temperature gradient on Venus may be as low as

10°/km (or less) in places _161 has implications for a relatively Sick

crust [18,19,20] and for the existence of such high-density phases

encountered at depth in the lower crust before solidus temperatures

are reached. However, the proposal that coronae mark the sites of

mantle upwelling argues against such a low temperature gradient.
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"PROBLEM" FOOTPRINTS IN MAGELLAN ALTIMETRY

DATA. JeffreyJ.Plaut.JetPropulsionLaboratory.MS 230-225,

4800 Oak Grove Drive,Pasadena CA 91109. USA.

Introduction: The intensity, time-delay, and fi'equcncy con-

tent ofradar echoes from the Magellan ahimelry system are reduced

to several parameters that are of great use in addressing many

geological issues of the surface of Venus. These parameters include

planetary radius, power reflection coefficient (refleetivity, both

uncorrected and corrected for diffuse scattering), rm5 slope, and

scattering functions (the behavior of baekscatter as a function of

incidence angle) [1,2]. Because the surface of Venus often reflects

radio energy in unpredictable ways, models of radar scattering and

their associated algorithms occasionally fail to accurately solve for

the above surface parameters. This paper presents methods for

identifying possible "problem" altimetry data footprints, and tech-

niques for resolving some key ambiguities.

Data Acquisition and Reduction: For each footprint,

Magellan's nadir-pointing altimeter transmits 1.1-las bursts con-

taining 17 pulses coded with a "chip" duration of 0.442 Its. These

constraints, combined with the delay response and the highly

elliptical orbit, yield an effective along-track resolution of 8 to 20

kin, and a cross-track resolution of 13 to 31 km [1]. The t'mest

resolu6on is obtained near the periapsis latitude of lO°N, and the

coarsest resolution is obtained at high latitudes. Processing in the

frequency domain ensures that the along-track footprint dimension

accurately reflects the sources of echo power. In the cross-track

dimension, however, strong reflections from outside the footprint

can contribute to the echo, leading to ambiguities in reduction to

surface parameters [P. Ford, personal communication].

The primary standard data product generated from altimetry data

is the Altimetry and Radiometry Composite Data Record (ARCDR)

[3]. For each Magellan orbit, a separate fide is produced for altimetry

and radiometry data. For each footprint within the altimetry files,
echo profiles, in range-sharpened and range-unsharl_ened formats,

are included, along with the derived parameters such as radius, rms

slope, and reflectivity, and best-fitting model echo "templates"

from which the surface parameters are estimated. The radius

estimate is from the template fit to the range-sharpened profile,

while the rms slope and reflectivity estimates are from the template

fit to the range-unsharpened profile. Examination of the echo

profiles, and comparison to the templates selected to match the

https://ntrs.nasa.gov/search.jsp?R=19930005174 2020-03-17T08:44:13+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42810261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


LPI Contribution No. 789 91

profiles, provide useful information for resolving issues associated

with "problem" footprints.

Case Studies: Sapas Motts. At a regional level, Magellan

altimetry and SAR image data provide a consistent picture of Sapas
Mons: a 400-kin-diameter shield volcano that rises approximately

1.5 km above the surrounding elevated plain in western Atla Regio,

to a maximum elevation of 6055.7 km radius. In the summit region,

however, an apparent diseregeney is encountered between the

morphology of structures seen in the SAR images and the radius
measurements derived from the altimetery data. In particular,

altimetry orbit 1467 passes directly across two scalloped dome

structures at the volcano summit While the SAR data dearly

suggest these are positive in relief, eight altimetry footprints in orbit

1467 (11-13 and 16--20) have ARCDR radius values far below the

typical summit region values of-6055 krn. Footprints 11-13, for
example, have radius values more than 2 krn below the preceding

and following footprints (10 and 14, respectively). The combination

of large fluctuations in radius values and apparent discrepencies

between SAR and altimetry morphology provides an obvio_ "flag"

that the derived altimetry data may contain spurious values.

Examination of the range-sharpened prot'des and best-fit tem-

plates for the questionable footprints helps illuminate the possible

source of the diserepencies. Figure 1 shows the profile and template

used to determine the radius for footprint 20 of orbit 1467. The

template echo, shown in a dashed line, is associated with a peak in

the echo that appears to follow by 43 bins the leading edge of the

measured echo. This delay of 43 0.21-1as bins corresponds to a

round-trip travel time of 9.03 las, giving an elevation difference of

1.35 kin. Correcting the radius value of footprint 20 by this amount

results in a value of 6055.2 kin, consistent with surrounding

footprints. Why should this echo contain two strong peaks, one of
which produces a spuriously low radius value? Footprint 20 lies

along the southwest flank of the southern summit dome feature.This
suggests that echoes from the top of the dome may have "leaked"

into the footprint, giving a spurious value for the area actually under

consideration. For a given spacecraft altitude and time delay of a

suspect echo peak, a family of combinations of feature height and
feature offset from nadir can be calculated to understand the source

of a secondary peak. Figure 2 shows a plot of such a family of

geometries that could explain the secondary peak in footprint 20.
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Fig. 1. Echo power vs. time delay, range-sharpened (rspro0, for orbit 1467,

footprint 20 (Sapas Mons stnnmit area). Also plotted is the best-fiuing

template from which the radius value was determined.
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Possible geometries to account for the secondary peak in the footprint
20 echo. A strong reflector at any combination of height and offset from nadir

on the ploued curve will produce a secondary echo peak at the time delay seen
in Fig. 1.

SAR data indicate that the dome sits within 25-30 km of the nadir,

consistent with a dome height <0.5 krn. The possibility that late

echoes from outside the footprint can lead to spuriously low radius

values increases toward periapsis, as the radius of curvature of the
transmitted wavefront becomes much smaller than that of the

planet. This phenomenon may be responsible for the occasional

topographic "holes" seen in low- to mid-latitude areas of rapidly

varying relief.
Kuan Tao-sheng impact crater parabola. In the high southern

latitudes southwest of Imdr Regio, several impact-related "pa-

rabola" features display highly anomalous scattering behavior [4].

Among these anomalous properties are unusually high values of tins

slope and reflectivity in the ARCDR dataset. The two parameters are

highly correlated along a narrow halrpin-shaped parabolic feature

approximately 800 × 2000 km in size. Many of these surfaces show
anomalously high cycle 1 SAR backscatter values when compared

with cycle 2. Southeast of Kuan Tao-sheng Crater (45 km diameter),

numerous altimetry footprints have"unphysical" ARCDRreflectivity

values >1.0. The same footprints have ARCDR rms slope values in

the range 8°-12 °, unusually high for plains surfaces that appear

relatively smooth in the SAR images, and relatively flat in radius
(topography) data. The anomalous footprints frequently are sur-

rounded by footprints with reasonable values, leading to sharp

discontinuities. This combination of characteristics (unusually high

rms slope and reflectivity values, apparent discrepencies with SAR

and radius data, and sharp discontinuities), should again provide a

"flag" that the altimetry data reduction procedure may have yielded

spurious values. Examination of the range-unsharpened echo pro-

ides and their associated templates indicates that while the leading

edge of the echoes appears to have been accurately tracked, yielding

accurate radius values, the wide dispersion of echo power with time

may have led to spurious rms slope and reflectivity solutions.

Apparently the statistics of height and slope distributions assumed

in the Hagfors quasispecula.r scattering model do not adequately

describe the surface geometry within these footprints. The possible

east-west asymmetry associated with these parabolic crater features

[4] may account for the unusually wide dispersion of the echo. The

analysis of scattering functions provided in the Surface Character-

istics Vector Data Record (SCVDR) [2], in which fits to non-

Hagfors scattering behavior are reported, will be of use in further
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investigations of areas that display these unusual scattering charac-
teristics.

References: [1] Pettengill G. H. et al. (199I) Science, 252,

260-265. [2] Tyler G. L. et al. (1992)JGR, special Magellan issue,

in press. [3] Ford P. G. (1992)ARCDR SoftwarelnterfaceSpecifi-

cation (CD-ROM USA NASA_YPL_MG 2001). [4] Plaut J. J.

et al., this volume. _ • - .... _

4N93-14363 ,i
-- -- v

ANOMALOUS SCATTERING BEHAVIOR OF SELECTED
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Introduction: Magellan observations indicatc that many venu-

sian impact craters have associated surfaces, typically lower in

backscatter and emissivity than the surroundings, that extend up to
hundreds of kilometers to the west of craters, in parabolic planforms

[1,2]. During Magellan's second mapping cycle, a number of these

parabolic features were imaged for a second time, under a different

viewing geometry. In some cases, the SAR backscatter appearance

of portions of the parabolic features was quite different in the two

datasets. In this paper, we present a description and preliminary

interpretations of the anomalous appearance of these features as

observed during Magellan's first and second mapping cycles.

Observations: Two types of structures within the parabolas

show significant differences in appearance. These are "bright

patches" and "streaks." Bright patches are irregular, diffuse-appear-

ing areas of high backseatter (relative to surroundings). Values are

typically 0 to 5 dB above the expected (Venus average) sigma zero,

while surroundings are typically below the expected value. Differ-

ences in sigma zero between cycles can be as high as 9 dB, with

comparable incidence angles but opposite look azimuths (cycle 1

east-looking, cycle 2 west-looking). Bright patches usually occur

along the "arms" of the parabola features, but some are also seen in

the central portions. Their distribution appears to be partly con-

trolled by local small-scale (1-20 kin) topography, such as wrinkle

ridges. Discontinuous patches are often seen between (rather than

straddling) wrinkle ridges, and some patches appear to terminate

along ridges. Bright patch areas that are seen only in cycle 1 data

occur at the craters Kuan Tao-sheng (-61.1, 181.7,45 km), Eudocia

(-59.1,201.9, 29 kin), and Boulanger (-26.5, 99.3, 57 km); patches

seen only in cycle 2 data occur at the craters Stowe (-43.3,233.2,

78 kin), Kuan Tao-sheng, Austen (-25.0, 168.3, 47 km), Adaiah

(-47.3, 253.3, 19 kin), and Aksentyeva (--42.0, 271.9, 40 kin).

"Streaks" are alternating high and low backscatter bands 1-20

km wide, up to 500 km long. The bright bands have still relatively

low sigma zero values (within 2 dB of the expected), while the dark

bands are almost always lower than the expected value. Streaks are

often associated with, or are part of, bright patches. Trends of the

streaks are consistently east-west, within about 10 °. Like the bright

patches, streaks are commonly truncated along wrinkle ridges.

Streaks are more common near the axes of the parabolas (i.e., due

west of the crater), although some also me seen on the parabola

arms. At Kuan Tao-sheng and Eudoeia, sUreaks seen in cycle 1 SAR

data are rarely seen in cycle 2. At Stowe, many streak sets are visible

only in cycle 2 data, some are visible only in cycle 1 data, while
others are visible in both datasets.

Several areas that show anomalous scattering behavior in cycle
1 and cycle 2 SAR data also have unusual properties in the cycle 1

radiometry mad altimetry-derived datasets. In particular, the Eudocia/

Kuan Tao-sheng area, which shows an extensive (over 1500 x 2000

kin) emissivity parabola, also displays extremely unusual behavior

in the altimeter-derived reflectivity and rms slope parameters. The

two parameters are highly correlated (high values in both) along a

narrow hairpin-shaped parabolic feature approximately 800 x 2000

km in size. Many of the surfaces that show anomalously high cycle

1 SAP, backscatter values (compared with cycle 2) occur on this

hairpin-shaped feature. The magnitude of the rms slope (8°-10 °)

and reflectivity values (typically > 0.8; some >1.0) on otherwise

smooth-appearing, moderately low emissivity plains, suggests that

the altimeter echoes are not well-modeled by the Hagfors template
matching procedure of [3]. Specifically, examination of the echo

profiles shows that the anomalous areas have a wide dispersion in

echo power with time. This accounts for the high rms slope

solutions. The unphysical (> 1.0) reflectivity values may result from

a mismatch between the theoretical Hagfors quasispecular scatter-

ing formulation and the actual distribution of surface facets within

the altimeter footprint.

To summarize the key observations: (1) The differences arc only

seen in association with impact crater parabola features. (2) The

differences are seen in images taken with comparable incidence

angles from opposite sides (at Kuan Tao-sheng/Eudocia, angles are

within 5 °. at Stowe within 3°). (3) The patterns of bright patched
streaks are clearly associated with each other and with surface

morphology (e.g., wrinkle ridges). (4) The most dramatic differ-

ences are confined to a single broad region of the planet: mid to high

southern latitudes between Artemis and Phoebe. (5) The differences

have both "senses," i.e., bright patches and streaks may be seen

uniquely in either cycle I or cycle 2 data. (6) The Kuan Tao-sheng/

Eudocia area shows anomalously high reflectivity and rms slope

values in altimetry-derived data.

Interpretations: The lust issue that must be addressed is this:

Are the apparent differences in SAR backscatter between cycle 1

and cycle 2 data a result of a modification of the surface (or

subsurface) during the eight-month interval between data acquisi-

tions, or are they a result of an azimuthally biased surface (or

subsurface) structure in which backscatter is strongly enhanced in

either the east- or west-looking configuration?

The best test of the surface change hypothesis involves duplicat-

ing the geometry of the cycle 1 acquisition. This experiment, in the

Stowe Crater region, should have been conducted by the time of this

colloquium, and relevant results will be presented, cycle 1 and cycle

2 emissivity measurements, which were acquired at emission angles

equivalent to the SAR incidence angles, show differences at the 2%

level at Stowe and Kuan Tao-sheng, but the differences do not

correlate well with the SAR differences. However, the bright

patches and streaks do not have strong emissivity signatures in

either cycle, so changes at the surface may not be detectable in

emissivity. At present, altimetry-derived data from cycle 2 have not

been reduced for these areas. The similar nadir-looking geometry of

the cycle 1 and 2 altimetry measurements eliminates the look-


