NASA Technical Memorandum 4429

Pressure Distribution for the Wing of the YAV-8B Airplane; With and Without Pylons

(NASA-TM-4429)PRESSUREN93-14451DISTRIBUTION FOR THE WING OF THE
YAV-8B AIRPLANE; WITH. AND WITHOUTUnclasPYLONS (NASA)139 pUnclas

H1/02 0133994

Edwin J. Saltzman PRC Inc. Edwards, California

John H. Del Frate, Catherine M. Sabsay, and Jill M. Yarger Dryden Flight Research Facility Edwards, California

National Aeronautics and Space Administration

Office of Management

Scientific and Technical Information Program

1 1 10 10 10 1 7 . .

CONTENTS

ABSTRACT	1
NOMENCLATURE	1
INTRODUCTION	2
AIRCRAFT General Physical Features	3 3 8 10
INSTRUMENTATION AND DATA ACQUISITION Wing Pressures Airdata System Data Processing Flow Visualization	14 14 14 15 15
DATA UNCERTAINTY Random Error	17 17 17
TEST CONDITIONS	18
PRESENTATION OF THE DATA	18
RESULTS AND DISCUSSION General Remarks Chordwise Pressure Distribution, Pylons On and Pylons Off Comparison at Off-Design Mach Number Comparison at Angle of Attack Near 5° for Off-Design Mach Number and Near-Design Mach Number Comparison at Near-Design Mach Number, α ≈ 3.4° Comparison at Mach Numbers Near 0.87 Comparison of Lower Surface Pressure Coefficients at Three Transonic Mach Numbers Summary of Flight Conditions Providing Supercritical Upper Surface Pressure Plateaus Section and Panel Characteristics General Remarks Section Normal Force Coefficient Panel Normal Force Coefficient	18 18 21 21 24 32 35 39 39 41 41 46
CONCLUDING REMARKS	54
TABLES Table 1. Physical dimensions of the YAV-8B. Information extracted from ref. 5	56 56 57 59

PRECEDING PAGE BLANK NOT FILMED

INTENTIONALT & OFFICE

iii

APPENDIX A—SURFACE PRESSURE COEFFICIENTS, PYLONS ON, HP \approx 20,000 FT 60 70 APPENDIX B—SURFACE PRESSURE COEFFICIENTS, PYLONS ON, HP \approx 30,000 FT 79 APPENDIX C—SURFACE PRESSURE COEFFICIENTS, PYLONS ON, HP \approx 40,000 FT APPENDIX D—SURFACE PRESSURE COEFFICIENTS, PYLONS OFF, HP \approx 20,000 FT 83 105 APPENDIX E—SURFACE PRESSURE COEFFICIENTS, PYLONS OFF, HP \approx 30,000 FT 121 APPENDIX F—SURFACE PRESSURE COEFFICIENTS, PYLONS OFF, HP \approx 40,000 FT APPENDIX G—INTEGRATED SECTION QUANTITIES, c_n and $c_m,$ PYLONS ON, HP $\approx 20,000\ FT$ ~125APPENDIX H—INTEGRATED SECTION QUANTITIES, c_n and c_m , PYLONS ON, HP \approx 30,000 FT -126127 APPENDIX I—INTEGRATED SECTION QUANTITIES, c_n and c_m , PYLONS ON, HP \approx 40,000 FT APPENDIX J—INTEGRATED SECTION QUANTITIES, c_n and c_m , PYLONS OFF, HP \approx 20,000 FT 128 APPENDIX K—INTEGRATED SECTION QUANTITIES, c_n and c_m , PYLONS OFF, HP \approx 30,000 FT 129 APPENDIX L—INTEGRATED SECTION QUANTITIES, c_n and c_m , PYLONS OFF, HP \approx 40,000 FT 130 131 REFERENCES

iv

LIST OF FIGURES

Figure 1. YAV-8B in wingborne flight; four chordwise rows of external (pressure orifice) tubing shown on right wing	4
Figure 2. YAV-8B airplane	
(a) Three view, dimensions in feet, without pylons or LERX	5
(b) View showing rotatable exhaust nozzles on left side, without LERX	6
(c) Leading-edge root extension (LERX)	7
Figure 3. Airfoil of YAV-8B at $\eta = 0.47$. Ordinates for all four orifice row sections shown in table 2 (a)	8
Figure 4. The variation of airfoil thickness ratio as a function of semi-span, reference 5	9
Figure 5. Four chordwise rows of external tubing, cover plate removed	9
Figure 6. Four rows of flexible external tubing, cover plate in place	10
Figure 7. Interface of pylons and lower surface of wing	
(a) Relative location of pylons, outrigger, and lower surface pressure orifices (as viewed from above the wing).	11
(b) Top view of intermediate pylon, $\eta = 0.70$, showing interface of pylon and wing lower surface in region of mounting flanges	12
(c) Intermediate pylon, $\eta = 0.70$, viewed from 2 o'clock position	12
Figure 8. In-flight views of wing lower surface, $M \approx 0.64$, $\alpha \approx 5^{\circ}$	
(a) Pylons on	13
(b) Pylons off	13
Figure 9. Cross-sectional view of external tubing	14
Figure 10. Airdata head and noseboom, reference 4	15
Figure 11. Flow cones as applied to left wing and pylons of YAV-8B	
(a) Upper surface, flight conditions	16
(b) Flow cones as applied to lower surface outboard of landing gear outrigger, static conditions	16
Figure 12. Schematic of chordwise pressure distribution for typical supercritical airfoil at design condition, i.e., at design Mach number and angle of attack	19
Figure 13. Mach number-angle-of-attack combinations for which wing pressure distribution data have been obtained in flight	20
Figure 14. Chordwise distribution of pressure for $M = 0.64$, $\alpha = 7.0^{\circ}$	
(a) Pylons on	22
(b) Pylons off	23
(c) Comparison for pylons on and pylons off at $\eta = 0.78$, $M \approx 0.64$, $\alpha = 7^{\circ}$	24
Figure 15. Chordwise distribution of pressure for $M \approx 0.75$, $\alpha \approx 5.0^{\circ}$	
(a) Pylons on	25

(b) Pylons off	26
Figure 16. Chordwise distribution of pressure for $M \approx 0.84$, $\alpha \approx 5.2^{\circ}$	
(a) Pylons on	28
(b) Pylons off	29
(c) Comparison for pylons on and pylons off at $\eta = 0.64$, $C_p^* = -0.32$	30
Figure 17. Flow cone patterns for the lower surface, $M \approx 0.84$, $\alpha \approx 5.2^{\circ}$	
(a) Pylons on	30
(b) Pylons off	31
Figure 18. Relative aft loading from $\eta = 0.47$ to $\eta = 0.78$ for YAV-8B wing, 15-percent model data, $M = 0.85$, interpolated to $\alpha = 5.16^{\circ}$, reference 12	32
Figure 19. Chordwise distribution of pressure for $M \approx 0.84$, $\alpha \approx 3.3$ to 3.4°	
(a) Pylons on	33
(b) Pylons off	34
Figure 20. Chordwise distribution of pressure for $M \approx 0.875$, $\alpha \approx 4.0^{\circ}$	
(a) Pylons on	36
(b) Pylons off	37
Figure 21. Effect of pylons on distribution of lower surface pressure at $\eta = 0.64$, for three Mach number- angle-of-attack combinations	38
Figure 22. Mach number and angle-of-attack conditions for all flight data runs. Flagged symbols indicate supercritical upper surface pressure plateaus extend to $x/c \ge 0.5$	40
Figure 23. The variation of section normal force coefficient with angle of attack, pylons on and pylons off	
(a) $M \le 0.75$	42
(b) $M \approx 0.80$	43
(c) $M \approx 0.845$	44
(d) $M \approx 0.875$	45
Figure 24. Slope of section normal force coefficients as a function of Mach number. Representative of pylons on and pylons off for flight and pylons off for 15-percent scale model	46
Figure 25. Example of integrand for obtaining panel normal force coefficient. $M \approx 0.82$, $\alpha \approx 5.9^{\circ}$,	
pylons on	48
Figure 26. The variation of panel normal force coefficient with angle of attack; pylons on and pylons off	
(a) $M \le 0.65$	48
(b) $M \approx 0.75$	49
(c) $M \approx 0.80$	49
(d) $M \approx 0.845$	50
(c) $M \approx 0.875$	50
Figure 27. Panel normal force coefficient as a function of angle of attack for a range of Mach numbers	

and the second s

Į

A (i) - D (in the left) of (i) (i) + a
A (i) - a
A (

ŧ

.

terine anno 1 a 1 🗰 1

.

PLATE AND A DISTRICT OF A DISTRICT

addine of the court

Ŧ

111

द्वित को ब**ला**- क

"但不可能","你不可能"。""你们","你能"。

(a) Pylons on	51
(b) Pylons off	51
Figure 28. Slope of panel normal force coefficient as a function of Mach number	52
Figure 29. Panel normal force coefficient slope parameter, N , as a function of planform parameter, F , for swept wings at high subsonic Mach numbers	53
Figure 30. Ratio of panel normal force coefficient slope parameter for flight and theory (relative panel lifting efficiency) for three aircraft	54

.

•

-

. . .

լ են ենչեն ներ են երելու են է ենչենը մենստուսեն ենցել լուտուն եննանք՝ են են ենչենը է ենչել են իսկ ել ենչել ենչե

.........

ABSTRACT

Pressure distribution data have been obtained in flight at four span stations on the wing panel of the YAV-8B airplane. Data obtained for the supercritical profiled wing, with and without pylons installed, ranged from Mach 0.46 to 0.88. The altitude ranged from approximately 20,000 to 40,000 ft and the resultant Reynolds numbers varied from approximately 7.2 million to 28.7 million based on the mean aerodynamic chord.

Pressure distribution data and flow visualization results show that the full-scale flight wing performance is compromised because the lower surface cusp region experiences flow separation for some important transonic flight conditions. This condition is aggravated when local shocks occur on the lower surface of the wing (mostly between 20- and 35-percent chord) when the pylons are installed for Mach 0.8 and above. There is evidence that convex fairings, which cover the pylon attachment flanges, cause these local shocks. Pressure coefficients significantly more negative than those for sonic flow also occur farther aft on the lower surface (near 60-percent chord) whether or not the pylons are installed for Mach numbers ≥ 0.8 . These negative pressure coefficient peaks and associated local shocks would be expected to cause increasing wave and separation drag as transonic Mach number increases.

NOMENCLATURE

А	wing aspect ratio, $\frac{b^2}{S}$
a/c	aircraft
b	total wing span, ft or in.
C _D	drag coefficient, $\frac{D}{\bar{q} \cdot S}$
CL	lift coefficient, $\frac{L}{4 \cdot S}$
$C_{L_{\alpha}}$	slope of lift coefficient with respect to α , $\frac{dC_L}{d\alpha}$, deg ⁻¹
C _N	wing panel normal force coefficient, $\int_{0.185}^{1.0} c_n \frac{c}{c_{av}} d_{\eta}$, normal to wing panel
C _{N'}	wing panel normal force coefficient, $\cos \varepsilon \int_{0.185}^{1.0} c_n \frac{c}{c_{av}} d_\eta$, normal with respect to aircraft reference axis system, (accounts for negative dihedral)
$C_{N_{\alpha}}$	slope of panel normal force coefficient with respect to α , $\frac{dC_N}{dx}$, deg^{-1}
$C_p(CP)$	local pressure coefficient, $\frac{(p-p_{\infty})}{\bar{a}}$
C_p^*	critical pressure coefficient for sonic velocity
c (C)	local wing chord, in.
ē	mean acrodynamic chord, in., $\frac{2}{S} \int_0^{\frac{b}{2}} c^2 dy$
C _{av}	average chord of wing panel, in.
C _m	section pitching moment coefficient about 0.25 c, $\int_0^1 \Delta C_p(0.25 - \frac{x}{c}) d\frac{x}{c}$
C _n	section normal force coefficient, $\int_0^1 \Delta C_p d \frac{x}{c}$
D	drag, lb
F	plan form parameter, A[$\frac{\sqrt{1 - (M\cos\Lambda')^2}}{0.9 \cos\Lambda'}$]

hp(HP)	pressure altitude, ft
L	lift, lb
LERX	leading-edge root extension
$\frac{L}{D}$ max	maximum lift-drag ratio
M(MINF)	free-stream Mach number
N	panel normal force coefficient slope parameter, 10 $C_{N_{\alpha}} \left[\frac{\sqrt{1 - (M\cos \Lambda')^2}}{\cos \Lambda'} \right]$
р	local absolute static pressure $p_1 + p_r$, lb/ft^2
\mathbf{p}_1	local differential static pressure, lb/ft ²
pr	reference pressure, lb/ft ²
$p_{\infty}(PSINF)$	ambient static pressure, lb/ft ²
q(QBAR)	free-stream dynamic pressure, $0.7M^2 \cdot p_{\infty}$, lb/ft^2
S	wing reference area, ft ²
THEO	theoretical
T.P.	test point
t	local airfoil thickness, in.
V/STOL	vertical short takeoff and landing
x(X)	distance along chord from leading edge, in.
у	distance outboard from aircraft centerline, in.
Z'	distance above and below wing chord line normal to the wing panel, in.
α (ALPHA)	angle of attack, deg
ΔC_p	Cp lower - Cp upper, at same value of $\frac{x}{c}$
∆t/c	ratio of increase in section thickness (from addition of strip tubing) to the section cord
ε	negative dihedral angle, per panel, deg
η	semi-span fraction, $y/\frac{b}{2}$
Λ	leading-cdge sweep angle, deg
$\Lambda \frac{c}{4}$	sweep angle of quarter chord, deg
Λ'	effective angle of sweep, deg (as defined in ref. 14), $\Lambda \frac{c}{4} - \frac{25}{\Lambda}$
λ	taper ratio

INTRODUCTION

Development of a prototype vertical short takeoff and landing (V/STOL) tactical fighter known as the Hawker Siddeley Kestrel (designated the P.1127), was begun in the United Kingdom in 1957. From this beginning evolved the Harrier, whose mission was close support and armed reconnaissance (approximately 1966, (ref. 1)). In 1971, the first Harriers, with modifications to suit customers' specifications, were delivered to the United States Marine Corps (USMC) under the designation AV-8A.

Ē

During the mid-1970's, the USMC issued requirements for an advanced version of the Harrier, the AV-8B, which was intended to have a significantly increased range-payload radius. The increased performance was to be obtained through structural, propulsion, and aerodynamic improvements. The aerodynamics improvements have

several sources, but the primary elements of aerodynamics improvement were to be the inclusion of an advanced supercritical airfoil and a planform of greater area and span.

Before the AV-8B was in production, McDonnell-Douglas (St. Louis, MO) and the USMC modified two AV-8A aircraft (designated as YAV-8B) to serve as prototype configurations for the follow-on AV-8B aircraft (ref. 2). One of the YAV-8B aircraft was loaned to the National Aeronautics and Space Administration (NASA) for special in-flight evaluation.

Early flight experience with the YAV-8B revealed inadequate level flight acceleration. From the standpoint of aerodynamics, the YAV-8B wing was designed without regard for pylons. However, the aircraft was to be flown operationally with six underwing pylons, and there was concern that these items might preclude efficient lower surface flow. In addition, when the aircraft was loaned to NASA it was considered appropriate to define the range of flight conditions (Mach number (M) and angle of attack (α)) that would provide efficient supercritical chordwise pressure profiles over the wing upper surface. Consequently, NASA performed an in-flight wing pressure distribution and flow visualization evaluation with and without the underwing pylons. Taken together, the pressure data and flow visualization results were expected to define the performance of the wing, show the effects of the pylons, and reveal any regions of poor flow conditions over the wing surface.

The NASA Ames Research Center in Moffett Field, CA, completed these flight tests during the spring and summer of 1986, with analysis done by the NASA Dryden Flight Research Facility at Edwards, CA. The data are shown mainly as wing surface pressure coefficients (plotted as a function of local chord station), section normal force coefficients, and panel normal force coefficient. Data were obtained from four rows of wing surface orifices aligned parallel to the aircraft centerline at discrete span stations. Mach numbers ranged from approximately 0.46 to 0.88, and altitude varied from 20,000 to 40,000 ft. This provided Reynolds numbers between 7.2×10^6 and 28.7×10^6 based on the wing mean aerodynamic chord.

AIRCRAFT

General Physical Features

The YAV-8B is a single-seat, transonic light attack V/STOL aircraft powered by a single turbofan engine (fig. 1). The YAV-8B aircraft is a derivative of the AV-8A aircraft. It retains the characteristic appearance of the AV-8A while incorporating an improved inlet design, a larger wing with an advanced technology airfoil (the design was considered advanced during the mid-1970's), and other modifications (ref. 2). With this airfoil, the "design" Mach number was 0.85 and the Mach number for cruise was 0.815 (ref. 3).

DRIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 1. YAV-8B in wingborne flight; four chordwise rows of external (pressure orifice) tubing shown on right wing.

The YAV-8B has provisions for external store installations on six wing pylons. In addition, two gun pods can be attached to the fuselage. Figure 2(a) is a three-view of the YAV-8B. Figure 2(b) shows two of the four rotatable exhaust nozzles. Although these nozzles were rotated to exhaust to the rear for the wingborne flights in this report, they can rotate downward through 98° for V/STOL operations and transitional flight. The YAV-8B was flight tested using a removable leading-edge root extension (LERX) designed to increase the wingborne maneuverability. A version of the LERX was installed on the YAV-8B aircraft for the flights reported in this report, figures 1, 2(c), and other subsequent photographs.

Conventional aerodynamic controls are used in wingborne flight and engine bleed-air reaction controls are used in jetborne flight, with both systems operative during transition modes. A comprehensive listing of physical characteristics of the airplane and other details about the propulsion system, controls system, and the V/STOL phases of flight are found in references 4 and 5. A brief listing of physical dimensions is given in table 1.

ā

100

alt full

12

1. 1. 机械械械 机械械械 机械制造 化过程分子 计分析的 有效的 化

(b) View showing rotatable exhaust nozzles on left side, without LERX.

Figure 2. Continued.

100

1

3

iliaiti

i in the second second

and the state of the second state of the second state of the second second second second second second second s

Wing Characteristics

Table 2(a) gives the section coordinates for the YAV-8B at the four semi-span stations from which pressures were obtained. Figure 3 is a diagram of one of the sections, and the variation of thickness ratio with respect to span station is shown in figure 4 (ref. 5). The variation of wing twist, leading-edge radius, and camber with span station is also found in reference 5.

Twelve vortex generators are located at approximately 29 percent of local chord on the upper surface of each wing from slightly outboard of the landing gear outriggers, from $\eta = 0.58$ to $\eta = 0.87$. The spacing of the vortex generators along the span is about 5.2 in., nearly 7 times the height (span) of each vortex generator. The vortex generators have a span of 0.75 in., a chord of 1.88 in., and are canted (leading-edge outboard) at an angle of 13° relative to free-stream flow. They are shown in figures 5 and 6 and will appear in another in-flight photograph to follow.

Figure 3. Airfoil of YAV-8B at $\eta = 0.47$. Ordinates for all four orifice row sections shown in table 2 (a).

i litat.

A STATE OF STRUCTURE OF

12

artiklik herbitak filik (di 101 11 - ditta attai oleh erdeka)

Figure 4. The variation of airfoil thickness ratio as a function of semi-span, reference 5.

Figure 5. Four chordwise rows of external tubing, cover plate removed.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 6. Four rows of flexible external tubing, cover plate in place.

Pylons

e skilled have

The wing surface pressure measurements of this report were made with pylons installed and with pylons removed. The three semispan locations of the pylons are shown in figures 1, 2(b), and in figure 7(a) in terms of the semispan fraction. Figure 7(a) also shows the pylon interface profile with the lower surface of the wing. The bulbous portions of these profiles are caused by convex fairings which cover mounting flanges and bolts. Photographs of the fairing and a part of the pylon for $\eta = 0.70$ (left wing) are shown in figures 7(b) and 7(c) to show the relative size and shape of these convex fairings. For flights without pylons these fairings, flanges, and bolts are absent and the wing lower surface is clean except for the outrigger fairings and control surface actuator fairings.

(a) Relative location of pylons, outrigger, and lower surface pressure orifices (as viewed from above the wing).
Figure 7. Interface of pylons and lower surface of wing.

ŧ

-

(b) Top view of intermediate pylon, $\eta = 0.70$, showing interface of pylon and wing lower surface in region of mounting flanges.

(c) Intermediate pylon, $\eta = 0.70$, viewed from 2 o'clock position.

Figure 7. Concluded.

Figure 8(a) shows an in-flight view of the pylons-on configuration. Note the location and relative size of the outrigger landing gear fairing, and the array of tufting (flow cones) which were used to identify regions of separated flow. Figure 8(b) shows the pylons-off configuration. When the pylons are installed (fig. 8(a)), the aft-most portions blend into the aileron actuator fairings, and the inboard pylon covers a major part of the flap actuator fairing.

(a) Pylons on.

(b) Pylons off.

Figure 8. In-flight views of wing lower surface, $M \approx 0.64$, $\alpha \approx 5^{\circ}$.

INSTRUMENTATION AND DATA ACQUISITION

Wing Pressures

The in-flight surface pressures were measured on the upper and lower surfaces at four rows of orifices. These orifices were located in external flexible tubing which was installed parallel to the free-stream flow. The locations of these orifice rows over the span are shown in figure 7(a); the chordwise orifice locations for the lower surface are illustrated schematically in figure 7(a) and given explicitly in table 2(b). Figure 5 shows the flexible tubing during installation. The two inboard rows extend to the trailing edge (over the flaps), whereas the two outboard rows end where they intersect the ailcron hinge line. In figure 5 near the leading edge of the wing surface, the cover plates have been removed to permit access for hook-up of the external flexible tubing to the pressure transducers. Figure 6 shows the installation after the flush cover plates had been installed, which provided a smooth, sealed profile.

The external flexible tubing was obtained in strips of multiple tubes and was bonded to the upper and lower surfaces of the wing with a potting compound. The same compound provided a faired ramp-like surface at the lateral edges of the tubing strip (fig. 9). Figure 9 also shows the inside and outside diameters of this tubing. Reference 6 contains details on the method of installation and examples of comparisons of pressure data obtained from external tubing and flush orifices, both for the same airplanc.

Figure 9. Cross-sectional view of external tubing.

Inside the wing, beneath the cover plates (fig. 6), the tubing from the individual orifices was connected to individual ports of a pressure transducer unit (one unit for each of the four orifice rows). The transducer units were 32-port electronically multiplexed differential devices which were referenced to a plenum (volume roughly 0.4 gal.) that provided a quasi-steady level of reference pressure. Heater blankets covered the transducer units to maintain a constant temperature throughout the test flights.

The reference pressure for the wing pressure transducer units, the reference plenum, originated from within the fuselage (vented to the outside atmosphere) aft of the wing. An absolute high-accuracy digital transducer measured the plenum reference pressure. It was not necessary to control the temperature of this transducer because it was located in the avionics bay which was maintained at a temperature near +22 °C.

Airdata System

Absolute high-accuracy digital transducers measured static pressure and total pressure for determining Mach number, dynamic pressure, and surface pressure coefficients. These transducers were also located in the temperature controlled avionics bay. Figure 10 shows the airdata head which senses static and total pressure. Static pressure was calibrated for position error by the pacer method (ref. 7). Calibrated vanes on the airdata head measured angle of attack and angle of sideslip.

Figure 10. Airdata head and noseboom, reference 4.

Data Processing

Most of the flight-test program consisted of steady-state flight conditions where each condition was held for at least 30 sec. Because the data rate was 10 samples/sec, the data sets were approximately 300 samples for each parameter. Each data set was run through two sets of filters. The first filter removed telemetry dropouts and spikes, the second filter took out points which deviated significantly (more than ± 10 percent) from the mean. After the filtering, the data were averaged. The averaged pressure values were used to calculate local pressure coefficients for each orifice and these were the pressure coefficients analyzed and integrated to obtain section and panel normal force coefficients and pitching moments.

Flow Visualization

In-flight flow visualization was used as an aid in interpreting the wing surface pressure data. The visualization was achieved through the use of flow cones, which provide evidence similar to tufts (ref. 8), and in-flight photography from a nearby chase plane. The flow cones were attached with nylon filament reinforced tape in chordwise rows spaced throughout the span (approximately 10 in. apart) with a fore-to-aft spacing of about 5 in. The cones were applied to the upper and lower surfaces of the left wing and pylons (figs. 8 and 11). Figure 11(b) shows the flow cones as applied to the lower wing surface, outboard of the main landing gear, under static conditions. Though flow cones were used to achieve flow visualization, there are instances in this report where they are referred to as tufts.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

(a) Upper surface, flight conditions.

(b) Flow cones as applied to lower surface outboard of landing gear outrigger, static conditions. Figure 11. Flow cones as applied to left wing and pylons of YAV-8B.

DATA UNCERTAINTY

Random Error

Random pressure errors are estimated to be within the following limits. These limitations are based on the characteristics of the various pressure transducers used to obtain the wing surface pressure coefficients, experience with similar sensor systems, and the airdata calibration (i.e., position error calibration of the research airspeed system).

Error source	Pressure error, lb/ft ²
₽∞	±3.9
Pr	±0.6
p 1	±4.0
q	±2.6

These errors are calculated for flight at M = 0.85, a pressure altitude of 30,000 ft, and an angle of attack of approximately 5°. This important combination of Mach number and angle of attack provides upper surface flow that is supercritical at near-design conditions. The random error limits for Mach number and angle of attack are approximately $\pm 0.005^\circ$ and $\pm 0.3^\circ$, respectively.

A worst-case arrangement of the pressure errors, i.e., a case in which the errors are entirely additive, would produce a maximum random error in C_p of ± 0.02 . This occurrence would be statistically rare, however, and a representative average random error would be approximately ± 0.01 in C_p .

Bias Error

External tubing was bonded to the wing surfaces longitudinally at four span stations to obtain wing pressure data. It was not practical to retrofit the wing panel with flush orifices and internally routed pressure tubing because the YAV-8B had a wet wing.

The probable bias in measured pressures caused by the external tubing (primarily near the leading edges) was acceptable because the wing pressure data were to be interpreted primarily on an incremental basis. That is, the main purpose of this investigation was to define the difference in wing pressures for the same flight condition, for pylons-on and pylons-off configurations. Thus, for this evaluation, random errors are of greater concern than are bias errors.

The bias in the data caused by the external tubing can be estimated through earlier experiments in which data were obtained on a high-aspect ratio supercritical wing (ref. 6). It was determined therein that the presence of a proportionally larger (thicker) strip of tubing caused an increase in section normal force coefficients of approximately 10 percent over those c_n values obtained from flush orifices. This increase in c_n was attributed to an apparent increase in local section thickness. The ratio of apparent local section thickness-to-chord length, t/c, for the YAV-8B was increased less than for the aircraft of reference 6, when the external tubing was applied (Δ t/c for YAV-8B was 40 percent of Δ t/c for ref. 6). Therefore, the expected increase in c_n caused by the external tubing on the YAV-8B was approximately 4 percent. This increase, however, would exist for pylons-on and pylons-off configurations.

A data anomaly not addressed in the previous paragraphs was discovered after all the flights were completed and after the data were processed. This problem affected pressure coefficients derived from two orifice locations between x/c = 0.65 and x/c = 0.80 for the upper surface at $\eta = 0.47$. Two different ports of the 32-port transducer devices may have been assigned the same parameter identification, or the controller card may have addressed the wrong transducer port on two occasions for every cycle through the 32 ports. Irrespective of which condition was the cause, because only two orifice locations experienced the problem, the impact on the affected section profiles is not major and the influence on the panel normal force coefficients is considered to be minor. The conclusions derived from the data are unaffected.

TEST CONDITIONS

Flight data were obtained from a range of approximately M = 0.46 to 0.88. Test altitudes varied from approximately 20,000 to 40,000 ft which provided a Reynolds number range extending from 7.2 million to 28.7 million based on the mean aerodynamic chord. Data were obtained over much of these stated ranges for pylons on and pylons off. Most of the test runs were constant Mach number-altitude, however, a few runs were made in which velocity was increased or decreased, or constant angle of attack turns were made at constant altitude.

The following table contains the number of test runs at which pressure distribution data were obtained for several

Pylons

оп

0

1

1

1

2

0

3

Pylons

off

0

3

3

3

3

0

3

off

0

0

1

1

1

0

0

on

0

0

1

1

1

0

0

The second se

1111

E

.

combinations of nominal Mach number and pressure altitude. Nominal altitude, ft Nominal 20,000 30,000 40,000 Pylons Pylons

Pylons

off

3

3

4

5

3

2

1

Pylons

on

2

1

1

3

1

1

0

PRESENTATION	OF THE DATA	

Mach

питber

0.50

0.65

0.75

0.80 0.845

0.86

0.875

Tables in Appendixes A through F contain tabulated local surface pressure coefficients derived from the pressure measurements for the YAV-8B airplane with pylons on and pylons off. The chordwise distribution of some of these pressure coefficients will be presented in support of the Results and Discussions section.

All other quantitative flight data to be presented in subsequent figures are integrated quantities which are derived from the basic data presented in Appendixes A through F and the various pressure distribution plots. The integrated section quantities, cn and cm, are listed in Appendixes G through L for all the flight conditions shown in the preceding table.

RESULTS AND DISCUSSION

General Remarks

Among the well-known features of supercritical airfoils is a significantly reduced upper surface curvature as compared with conventional airfoils. This lessened surface curvature provides reduced shock losses and, for the same lift, reduced wave drag and possibly diminished shock induced separation (refs. 9, 10). The design condition pressure distribution resulting from a supercritical airfoil is characterized by a flattened or plateau-like upper surface chordwise distribution of pressure and a high-pressure region under the aft, cusp, portion of the airfoil (fig. 12).

The preceding characteristics, which are somewhat typical for advanced supercritical airfoils, are noted to gauge qualitatively whether the YAV-8B wing provides the design (i.e., supercritical) upper surface plateau-like pressure distribution for important high-speed flight conditions. Of the many flight-test conditions recorded (Test Conditions section and Appendixes A through F), those displaced not more than 1° in angle of attack from the envelope of conditions for near maximum lift-drag ratio will be given the most attention.

The conditions evaluated in this series of flights, the specific combinations of Mach number and angle of attack, are shown in figure 13. In addition, shown in cross-hatch is the envelope for conditions near maximum lift-drag ratio. These conditions are the Mach number-angle-of-attack combinations which would be expected to provide nearmaximum lift-drag ratios throughout the speed range, and Mach number-angle-of-attack combinations that would achieve wing pressure profiles displaying supercritical upper surface flow conditions at "design" transonic speeds. This envelope was derived from 15-percent scale model force tests (ref. 11) because the full-scale airplane was not instrumented to determine lift and drag in flight. Figure 13 shows that at the higher Mach numbers where compressibility is important, many of the flight-data runs were performed at angles of attack lower than those expected to produce the most efficient flight, based upon the model-derived envelope. The approximate design condition and the anticipated cruise condition are also shown in figure 13. Few of the many test points shown in figure 13 will be analyzed and discussed in detail; however, all the test points shown will become a part of the integrated force and moment coefficients and will be used to evaluate the relative efficiency of the entire wing panel.

Figure 12. Schematic of chordwise pressure distribution for typical supercritical airfoil at design condition, i.e., at design Mach number and angle of attack.

1

į

Figure 13. Mach number-angle-of-attack combinations for which wing pressure distribution data have been obtained in flight.

ź

likidi I

1.4.1

III main Indi Indenia.

Chordwise Pressure Distribution, Pylons On and Pylons Off

Comparison at Off-Design Mach Number

ł

Chordwise pressure distributions will be compared at a Mach number well below the region where the most significant compressibility effects occur. These data are presented for pylons on and pylons off in figures 14(a) and (b) respectively for $M \approx 0.64$ and $\alpha = 7^{\circ}$. The flight conditions for these two configurations are closely matched, therefore differences in the pressures provide conclusive evidence of the effects of the pylons.

Careful orifice-by-orifice study of the data (i.e., comparison of pressure data at a given test chord for the same x/c location) in figures 14(a) and 14(b) reveals differences in pressure coefficients for some orifice rows. A less tedious observation is presented as figure 14(c), where the pressure coefficient data at $\eta = 0.78$ are shown for both configurations. The pylons-on configuration experiences a lower negative pressure coefficient (higher pressure) in the region of the most forward upper surface orifice x/c = 0.05. For the lower surface, the pylons cause somewhat lower pressures over most of the instrumented portion of the chord. These upper and lower surface pressure differences, between the two configurations, combine to reduce the section lift being produced when the pylons are mounted for a given angle of attack.

A closer orifice-by-orifice comparison for all orifice rows (figs. 14(a) and 14(b)) shows that for the lower surface, the pylons cause slightly lower pressure over much of the chord (approximately 40 percent) for $\eta = 0.25$ and a somewhat larger region of lower pressures at $\eta = 0.64$. These differences are in addition to the aforementioned greatest differences at $\eta = 0.78$. The net result is that the pylons cause pressure differences that are measurable which diminish lift in local areas at Mach numbers well below design or cruise conditions. The degree to which the entire wing panel loading is diminished by the pylons will be presented later in this report through the integrated pressures which will provide section and panel normal force coefficients.

Photographs of flow cones for $M \approx 0.64$ and $\alpha \approx 5^{\circ}$ (fig. 8) show the lower surface flow to be attached, although there is evidence of some velocity decay in the aileron-cusp region. Flow cone photographs are not available for $\alpha = 7^{\circ}$, the angle of attack for the data of figure 14; however, based upon experience at various angles of attack for other Mach numbers, it is believed that there would be less velocity decay at the conditions of figures 14(a) through 14(c) than at the $\alpha \approx 5^{\circ}$ condition of figure 8.

Figure 11 (a) shows upper surface flow cone patterns for the pylons-on configuration. This photograph is typical of the results for all the Mach numbers and angles of attack reported herein; it is also representative of the pylons-off configuration. The upper surface flow is attached throughout. Though attached flow was always observed over the upper surfaces for these tests, it should be acknowledged that the angle-of-attack range of these tests was modest. The slight canting of cones in the third longitudinal row of flow cones outboard from the fuselage is assumed to be caused by a vortex from the LERX.

i.

NUMBER OF STREET, STRE

22

3

iti addi i

New Additional International I

Figure 14. Continued.

Figure 14. Concluded.

Comparison at Angle of Attack Near 5° for Off-Design Mach Number and Near-Design Mach Number

Off-Design Mach Number, $\alpha \approx 5^{\circ}$. Chordwise pressure distribution data are shown in figure 15 for both configurations at $M \approx 0.75$ and $\alpha \approx 5.0^{\circ}$. The pylons-on and pylons-off data, figures 15(a) and 15(b) respectively, show peaked upper surface pressure profiles forward of 0.2 x/c for the three outboard orifice rows. This is typical for supercritical airfoils at Mach numbers below the design condition (ref. 9, 10). The pressure profiles for both configurations are characterized by very low upper surface-to-lower surface pressure differentials over the mid-chord region for all four η locations, orifice rows. Consequently, for this flight condition, whatever lift is being generated by the wing must come primarily from the regions toward the leading and trailing edges. Because external tubing was not bonded to the ailerons, the distribution of pressure over the aft 0.3 chord is not available from flight for the two outboard orifice rows, $\eta = 0.64$ and 0.78. Therefore, only at $\eta = 0.47$ is there evidence from flight data of significant amounts of lift (i.e., significant upper surface-to-lower surface pressure differentials) over the aft 0.3 chord.

Orifice-by-orifice comparison of upper surface pressures shows almost no influence from the pylons (figs. 15(a) and 15(b)). For the lower surfaces, at $M \approx 0.75$ and $\alpha \approx 5.0^\circ$, the effect of the pylons is qualitatively similar to the effects seen earlier for $M \approx 0.64$. Thus, the pylons cause somewhat lower pressures throughout much of the under surface, resulting in diminished lift for a given angle of attack. The pressure data for the most forward lower surface orifice (x/c = 0.075) at $\eta = 0.47$, and for the x/c = 0.225 at $\eta = 0.64$, show the effects of the pylons, negative pressure coefficient peaks, which portend lower surface supersonic velocity regions and local shock losses at higher aircraft Mach numbers. These local effects are believed to be caused by the convex fairings mentioned in the description of the pylons in the Aircraft section of this report and illustrated in figure 7.

ł

Figure 15. Chordwise distribution of pressure for $M \approx 0.75$, $\alpha \approx 5.0^{\circ}$.

.

ŝ

I NAME IN T

, tiluk ova lint

Ē

• • • • •

THE PART OF T

ī

臣

Figure 15. Concluded.

Near-Design Mach Number, $\alpha \approx 5.2^{\circ}$ Figures 16 (a) and 16(b) show pressure distribution profile data near design conditions. In contrast to the results from the lower Mach numbers, the data of figure 16 (which are close to the design Mach number of 0.85) show some of the upper surface pressure profile features expected of a supercritical airfoil (see General Remarks section).

For both configurations, upper surface negative pressure coefficients of -0.7 or greater are maintained essentially to mid-chord for all four span stations; the gradients over these regions tend to be mild, though only for $\eta = 0.25$ and 0.64 could they be described as flattened. In addition, the upper surface pressure coefficients remain more negative than C_p^* to about x/c = 0.6, which also defines the extent of the supercritical pressure plateaus.

These pressure data, again referring to both configurations, indicate attached flow almost to the trailing edge at $\eta = 0.25$ for upper and lower surfaces. Corresponding data for $\eta = 0.47$ show attached flow throughout the entire chord length for the upper surface, however, flow cone data (figs. 17(a) and 17(b)), show evidence of velocity decay in the lower surface cusp region. In addition, incipient separation may exist in this region. For the longitudinal orifice rows at $\eta = 0.64$ and 0.78 which are outboard of the outrigger fairing, the flow cone patterns indicate lower surface flow separation in the aileron-cusp region. These observations apply to the pylons-on and the pylons-off configurations.

The model data from reference 12 for M = 0.85 and interpolated to $\alpha \approx 5.2^{\circ}$ (fig. 18) show a significant amount of lower surface lift from the cusp region. The loading for the aft 30-percent chord for $\eta = 0.64$ and 0.78 tends to exceed, proportionately, that of $\eta = 0.47$. However, though the Mach number-angle-of-attack combination considered in figures 16(a) and 16(b), i.e., $M \approx 0.84$, $\alpha \approx 5.2^{\circ}$, exhibits effective supercritical flow characteristics over the upper surface; the pressure data and flow cone data taken together reveal that the full-scale flight wing performance is compromised because the lower surface cusp region experiences flow separation and is not contributing lift as would be expected based on the model data seen in figure 18.

An orifice-by-orifice comparison of the pressure data for pylons on and pylons off (figs. 16(a) and 16(b)) would show that the differences caused by the pylons are limited to the lower surface, and are indicative of local shocks caused by the aforementioned convex fairings. Though there is evidence of this for all three outboard orifice rows, the data for $\eta = 0.64$ show the most graphic influence of the pylons. In figure 16(c), the pylons-on configuration has significantly higher negative pressure coefficient peaks (lower surface, square symbols) at x/c = 0.225 and 0.325 than for the pylons-off configuration. These peaks exceed the critical coefficient for sonic velocity. There is also a relatively strong local shock near x/c = 0.6 for both configurations. All these shocks, and local shocks at other locations throughout the span of the wing lower surface, go together to increase drag creep through shock losses, per se, and in some instances there is probable added drag from localized shock induced flow separation.

Figure 16. Chordwise distribution of pressure for $M \approx 0.84$, $\alpha \approx 5.2^{\circ}$.

Name of Bolt of the bolt

28

(MANANIA II) Incentia kanadatan 1 | 1. kut

THE WORLD

j,

COMPANY OF A DATE

u the u

Figure 16. Concluded.

(a) Pylons on.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Ē

73

te di fasta de la

e i kil li ki i ki a tu a

ORIGINAL FAGE BLACK AND WHITE PHOTOGRAPH

5.4

Figure 18. Relative aft loading from $\eta = 0.47$ to $\eta = 0.78$ for YAV-8B wing, 15-percent model data, M = 0.85, interpolated to $\alpha = 5.16^{\circ}$, reference 12.

Į

Comparison at Near-Design Mach Number, $\alpha \approx 3.4^{\circ}$

To achieve the characteristic supercritical chordwise pressure distribution, it is necessary to have the correct combination of Mach number and angle of attack (ref. 9). Figure 16 shows that some typical supercritical characteristics are evident for this wing at $M \approx 0.84$ and $\alpha \approx 5.2^{\circ}$. There were no data for $M \approx 0.84$ at higher angles of attack, but there are data at lower angle of attack values, 3.3° to 3.4° . The data are shown in figures 19(a) and 19(b) where the upper surface pressure profiles are not well developed as compared to the levels for $\alpha \approx 5.2^{\circ}$ (fig. 16). This would be expected based upon the well-known characteristic of supercritical airfoil performance to be sensitive to relatively small changes in Mach number and angle of attack. Thus, it is not surprising that the angle of attack for these data (fig. 19) is significantly below the Mach number–angle-of-attack envelope for high lift-drag ratio (L/D) shown in figure 13 whereas the conditions for figure 16 ($M \approx 0.84$, $\alpha \approx 5.2^{\circ}$) are within the lower part of the envelope and closer to the design condition. Orifice-by-orifice examination of the data for figure 19 (pylons on to pylons off) reveals again the additional negative pressure coefficient peaks, for the lower surface associated with the convex fairings when pylons are installed. A noticeable example would be at x/c = 0.075 for $\eta = 0.47$ and x/c = 0.325 for $\eta = 0.64$.

:

Figure 19. Chordwise distribution of pressure for $M \approx 0.84$, $\alpha \approx 3.3$ to 3.4° .

Figure 19. Concluded.

34

14.645

21

ALC: NO.

Comparison at Mach Numbers Near 0.87

ĩ

100

The highest Mach number data obtained for an angle of attack reasonably close to the envelope for nearmaximum L/D are shown in figures 20(a) and 20(b). Though the upper surface pressure coefficients for both configurations are less negative for this condition ($M \approx 0.87$, $\alpha \approx 4.0^{\circ}$) than for some previously shown conditions which demonstrated supercritical pressure profiles; the recompression to sonic conditions, C_p^* , has been delayed to locations significantly farther aft on the wing, $x/c \ge 0.7$. At $\eta = 0.47$, the flow over the upper surface appears to be attached over the entire instrumented portion of the section. For $\eta = 0.25$ attached flow is maintained to at least x/c = 0.9. There is no suggestion of separation for the two outboard rows where the pressure measurements end at the aileron hinge line. There are no corresponding flow cone data available to supplement the pressure data for this flight condition.

Though the upper surface pressure coefficients are unaffected by the pylons at these conditions; as noted earlier for $M \approx 0.84$, there are lower surface negative pressure coefficient peaks associated with the pylons. An example will be shown for $\eta = 0.64$ at three Mach numbers in figure 21, for $M \approx 0.87$ and two lower Mach numbers. These negative pressure coefficient peaks representing local shocks will be discussed in the next section.

Ē

÷

Ξ

-

-_

Ξ

_

_

=

Ξ

-

Figure 20. Chordwise distribution of pressure for $M \approx 0.875$, $\alpha \approx 4.0^{\circ}$.

Figure 20. Concluded.

ī.

Figure 21. Effect of pylons on distribution of lower surface pressure at $\eta = 0.64$, for three Mach number-angle-of-attack combinations.

38

The second s

Comparison of Lower Surface Pressure Coefficients at Three Transonic Mach Numbers

In figure 21, pylons-on and pylons-off lower surface pressure profiles are compared for three transonic Mach numbers in which the Mach number and angle of attack for each configuration are closely matched. It has been previously established that the upper surface distribution of pressure is unaffected by the pylons for each Mach number. For the lower surface, however, there is a negative pressure coefficient peak associated with the pylons (see circular symbols, especially for x/c values from 0.22 to 0.32). As expected, the peak becomes more extreme as Mach number increases. Similar peaks, which represent local velocities that exceed the speed of sound, are also evident at the other semi-span stations having pressure orifices. The comparisons shown in figure 21 for $\eta = 0.64$ are the most graphic examples recorded, however.

For $M \approx 0.80$ and $M \approx 0.84$, critical pressure coefficient is exceeded (negatively) between x/c = 0.5 and 0.6 for the lower surface even without pylons, and a large portion of the lower surface section is supercritical at $M \approx 0.87$, without pylons. These local shocks are apparently caused by the flap-aileron actuator fairings and the large outrigger gear fairing. In summary, it is evident that at transonic speeds the wing lower surface experiences some shock losses without pylons and significantly greater shock losses when the pylons are installed. The accumulated effect of all the wing lower surface shocks results in wave drag and some related shock induced separation drag creeping upward as the transonic velocities increase.

Of the several orifice rows, the one at $\eta = 0.64$ shows the most prominent negative pressure coefficient peaks associated with the convex fairings. This is caused not only by the adjacent pylon and convex fairing located at $\eta = 0.70$ but it is probably compounded by the nearby outrigger fairing at $\eta = 0.56$ (fig. 7).

At Mach numbers significantly lower than those in figure 21, as compressibility effects diminish, the pressure peaks caused by the pylons are eliminated. Nevertheless, the general level of the lower surface pressure coefficients remains somewhat more negative for the outboard portions of the wing panel when the pylons are mounted. Thus, the wing lower surface contribution to overall lift is slightly reduced by the pylons throughout the Mach number range of these tests. The net effect of this will be evident through a different data format in following sections. The accumulated effects of the pylons will be presented through integrated pressure coefficients in the form of section and panel normal force coefficients.

Summary of Flight Conditions Providing Supercritical Upper Surface Pressure Plateaus

A typical supercritical upper surface pressure profile is described within the General Remarks portion of the Results and Discussion section. Figure 12 is a schematic of such a pressure profile, including the upper surface pressure plateau and the lower surface loading in the cusp region. Pressure profiles from flight exhibiting the upper surface pressure plateau characteristic have been shown in figures 16 and 20, and flight conditions which produce such profiles will be shown in subsequent figures.

Figure 22 shows the combinations of angle of attack and Mach number for all 59 data runs reported herein (39 runs for pylons off and 20 for pylons on). To qualify a data run as providing adequate upper surface supercritical pressure plateaus, as defined herein, the plateau must extend to x/c = 0.5 for all four orifice rows. The eight data runs in which the criterion was met are indicated by flagged symbols in figure 22. These eight data runs represent approximately one-fourth of the test conditions flown for $M \ge 0.8$. Note the symbols representing the approximate cruise and design conditions relative to these same eight flagged data run conditions. The performance enhancement in lift which occurs concurrently with meeting the preceding criterion will be evident in some of the panel normal force coefficient data to follow.

A REPORT OF A SUCCESSION OF A REPORT OF

-

-

Figure 22. Mach number and angle-of-attack conditions for all flight data runs. Flagged symbols indicate supercritical upper surface pressure plateaus extend to $x/c \ge 0.5$.

Section and Panel Characteristics

General Remarks

To obtain section normal force coefficients from the pressure distribution data, it is necessary to integrate the pressures over the length of the local chord. Because pressure orifices were not included over the ailerons, there are no data available for the aft 30-percent chord for the two outboard rows of orifices, $\eta = 0.64$ and 0.78. Consequently, for these two sections the integrations to calculate c_n and c_m assumed linear pressure variations from the aft-most measured pressure to the trailing edge (assuming a trailing-edge pressure coefficient of zero). The pitching moment coefficients are considered, for this report, to be less important than the section and panel normal force coefficients, they have been computed and are tabulated in Appendixes G through L along with the c_n values.

Section Normal Force Coefficient

Section normal force coefficients presented as a function of angle of attack are presented for the four semi-span stations having pressure orifices, for pylons-on and pylons-off configurations, in figure 23. The abscissa origins are shifted to the right as consideration of each semi-span station changes from inboard to outboard.

Figure 23(a) is assembled from data for M = 0.46 to approximately 0.75 because for this range of Mach numbers it was assumed that compressibility effects, as a discriminator between the two configurations, would be a minor factor. For both configurations the slope, $dc_n/d\alpha$, is significantly greater for the three outboard stations than for the inboard station. Though the level of c_n for a given angle of attack is essentially the same for both configurations, at $\eta = 0.25$ and 0.47; the pylons tend to cause some reduction in loading, c_n , over the angle-of-attack range for the two outboard test sections. The average reduction is 0.03 to 0.04 in section normal force coefficient for the two outboard stations. For a Mach number of 0.8 (fig. 23 (b)), the data are limited; however, the trends in the data are similar to those for Mach numbers of 0.75 and below (fig. 23 (a)).

Figures 23(c) and 23(d) extend the comparison to Mach numbers of approximately 0.845 and 0.875 respectively. For these higher Mach numbers, the most inboard station again shows no significant effect of pylons on the level of c_n for a given angle of attack. On the other hand, the outboard station, $\eta = 0.78$, which showed some loss in loading (c_n per given angle of attack) with pylons at the lower Mach numbers now shows essentially the same loading for pylons on and off. In addition, the two middle stations experience reduced loading for the pylons-on configuration at $M \approx 0.845$ (fig. 23 (c)). Based on these observations and the detailed discussion of pressure distribution from earlier figures, this reduced loading results from changes in the lower surface pressure profiles because the upper surface pressure profiles are essentially identical for both configurations at these Mach numbers.

Though figure 23 provides identifiable differences in the level of c_n for a given angle of attack for the two configurations, differences in slope are minor and are not great enough to justify discrimination between the configurations. Therefore, slopes representative of both configurations have been combined for each semi-span station (row of orifices) and are shown in figure 24. The most significant features of the slopes are the higher values of the slopes for the three outboard stations, as compared to the inboard station, and the slopes all reach their maximum values near $M \approx 0.845$ and decrease somewhat at the higher Mach number, 0.875. The 15-percent scale model data (ref. 12) flagged symbols, also show lower slopes for the inboard row. At $M \approx 0.80$, the model slopes are significantly higher than the corresponding flight slopes for all four test chords.

Figure 23. The variation of section normal force coefficient with angle of attack, pylons on and pylons off.

•

.

-

.

ļ

k tekni nim mana terna Utrus sisteranini - iz 1. 1. s.

.....

Figure 24. Slope of section normal force coefficients as a function of Mach number. Representative of pylons on and pylons off for flight and pylons off for 15-percent scale model.

Panel Normal Force Coefficient

Integration of chord-length weighted section normal force coefficients across the span has provided panel normal force coefficients for pylons-on and pylons-off configurations. Figure 25 is an example of the integrand for a flight condition where each of the four test stations displayed the characteristic flattened, supercritical, upper surface pressure plateau. The variation of the resulting panel normal force coefficients with angle of attack for both configurations is presented in figure 26 for the range of test Mach numbers. The level of $C_{N'}$ for a given angle of attack is close for the two configurations throughout the range of test Mach numbers; however, the values for pylons on tend to be slightly lower than for pylons off. (III) PINK

=

Ē

The data of figure 26 and corresponding data for $M \approx 0.82$ are assembled (all Mach numbers on the same plot) in figure 27 to make it easier to visualize Mach number and Mach number-angle-of-attack combination effects. As previously discussed, certain important combinations of Mach number and angle of attack are necessary to achieve the desired upper surface pressure coefficient plateau which is characteristic of supercritical flow. In figure 27, those data points in which all four test chords provided upper surface pressure plateaus extending at least to x/c = 0.5 have been flagged. The higher $C_{N'}$ values for each given angle of attack, for the flagged symbols, seem to demonstrate that panel normal force coefficient is enhanced when the supercritical plateau is extensive over the upper surface, which would be expected.

Figure 28 shows the variation of the slope of panel normal force coefficient with Mach number. The unflagged circular and square symbols show the mean flight slopes between $C_{N'} = 0$ and $C_{N'} = 0.3$ for the airplane with and without pylons, respectively. The effect of the addition of pylons on the panel normal force coefficient slopes is small and the differences shown are within the accuracy for these slopes. The diamond symbol at M = 0.845 represents the mean slope from the flight data for both configurations when considering only the data between $C_{N'} \approx 0.15$ and $C_{N'} \approx 0.30$ (or angles of attack above 3°). This greater slope for M = 0.845 and $\alpha > 3^\circ$ relates to the earlier

discussion about figure 27 in which it was observed that the presence of extended upper surface chordwise pressure plateaus was providing higher levels of $C_{N'}$ for a given angle of attack, as would be expected.

The flagged symbols in figure 28 represent the 15-percent scale model pressure data derived from reference 12. The flight panel $C_{N'}$ slope value at M = 0.80 is significantly lower, approximately 23 percent, than the model derived slope. The individual section normal force coefficient slopes for flight were also significantly lower than the model slopes for M = 0.8 as shown in figure 24.

The lower panel normal force coefficient slope for the full-scale YAV-8B (as compared to the model), especially at M = 0.80, is also evident in the format of figure 29. Here a panel normal force coefficient slope parameter, N, is plotted as a function of a planform or aspect ratio parameter F. This format was proposed by Diederich in 1951 (ref. 13) and later applied by Hoerner and Borst (ref. 14) as an aid in correlating lift curve slope data for configurations having different wing sweeps and aspect ratios for subsonic and low transonic compressible flow Mach numbers. This format has been used in figure 29¹ so that panel normal force coefficient slope data from the YAV-8B can be compared with slopes from other current aircraft with some accounting for differences in planform and Mach number.

The slopes for the other aircraft are from unpublished flight data for the AFTI/F-111, represented by a square symbol and flight data from the variable sweep F-14, various diamond symbols (ref. 15). Because this analysis procedure is restricted to "subsonic Mach numbers preferably not too near 1," as stated in reference 13, the comparisons of results from the three aircraft should be regarded as qualitative, and this is acknowledged through the format used in figure 30.

On this basis, the ratio of the N parameter for the three aircraft to the corresponding theoretical N parameter is plotted at the respective F parameter values in figure 30. The low value of this ratio at M = 0.80 for the YAV-8B, may be related to the fact that the panel normal force coefficient slope for flight is significantly lower than for the model as seen in figures 28 and 29. However, the YAV-8B panel efficiency ranks with the panel efficiency of the other aircraft as defined by this parameter for the Mach numbers equal to 0.845 or above, solid symbols. This format for portraying panel lifting efficiency is oblivious to the respective drag levels for the three wing panels considered in figures 29 and 30.

¹The ordinate for the theoretical curve for figure 29, refs. 13 and 14, would be: 10 $\frac{dC_L}{dg} = \frac{\sqrt{1 - (M\cos\Lambda')^2}}{\cos\Lambda'}$

Figure 25. Example of integrand for obtaining panel normal force coefficient. $M \approx 0.82$, $\alpha \approx 5.9^{\circ}$, pylons on.

Ē

1110100

2

line II a

_

Figure 26. The variation of panel normal force coefficient with angle of attack; pylons on and pylons off.

Figure 26. Continued.

Figure 26. Concluded.

=

(b) Pylons off.

THE R. P. LEWIS CO., LANSING

Ī

Ξ

_

_

Figure 28. Slope of panel normal force coefficient as a function of Mach number.

Figure 29. Panel normal force coefficient slope parameter, N, as a function of planform parameter, F, for swept wings at high subsonic Mach numbers.

Figure 30. Ratio of panel normal force coefficient slope parameter for flight and theory (relative panel lifting efficiency) for three aircraft.

CONCLUDING REMARKS

Pressure distribution data have been obtained in flight at four span stations on the wing panel of the YAV-8B airplane having a supercritical airfoil. Data have been obtained for the wing panel with and without pylons installed over a Mach number range from 0.46 to approximately 0.88. The altitude ranged from approximately 20,000 to 40,000 ft and the resultant Reynolds numbers varied from approximately 7.2 million to 28.7 million based on the mean aerodynamic chord. Analysis of these flight data resulted in the following observations:

- 1. The chordwise pressure distribution data and flow visualization results show that the full-scale flight wing performance is compromised because the lower surface cusp region experiences flow separation for some important transonic flight conditions. This occurs while the upper surface flow is producing extensive supercritical pressure plateaus as well as at angles of attack and Mach numbers that are too low to provide the characteristic upper surface supercritical chordwise pressure profiles.
- 2. Local shocks occur on the lower surface of the wing (mostly between 20-and 35-percent chord) when the pylons are installed for Mach numbers of approximately 0.8 and above. It is believed that convex fairings which cover the pylon attachment flanges cause these local shocks. Pressure coefficients significantly more negative than that for sonic flow also occur farther aft on the lower surface (near 60-percent chord) irrespective of whether the pylons are installed for $M \ge 0.8$. It is probable that these negative pressure coefficient peaks cause drag creep from the shock losses, per se, and in some instances, from local shock induced separation.
- 3. The more negative pressure coefficients associated with the local shocks and the convex fairings on the wing lower surface, with pylons, cause the level of C_N for a given angle of attack to be somewhat lower than for

1.11

1

1

ALL NUMBER

-

the wing without pylons, for $M \ge 0.8$. However, the effect of pylons on the slope of C_N with angle of attack was not significant.

- 4. The slope of the panel normal force coefficient with angle of attack for the full-scale wing was significantly lower (approximately 23 percent) than for the 15-percent scale model at Mach 0.8.
- 5. Upper surface chordwise pressure distributions demonstrate a characteristic supercritical pressure plateau for Mach numbers from 0.82 to about 0.87 for angles of attack near 5.9° and 4.0°, respectively. These flight conditions provide similar upper surface pressure profiles for the wing with and without pylons.
- 6. Flow visualization data show attached flow over the entire wing panel upper surface throughout the Mach number and angle-of-attack range and of these tests irrespective of whether the pylons were installed.

	Wing (theo)	Stabilator	V-tail
S (projected), ft ²	230.0	47.54	25.83
Aspect ratio	4.0	4.08	1.23
λ , taper ratio	0.300	.201	.268
b (projected), ft	30.33	13.92	
b/2 (projected), in.	181.99	83.54	(h) 67.50
C, root (projected), in.	139.99	67.39	86.93
C, tip (projected), in.	42.00	17.83	23.30
č (projected), in.	99.79	46.44	61.24
A L.E. (projected)	36°	39.80°	47.36°
Λ C/4 (projected)	30.62°	33.91°	40.37°
t/c, root, percent	11.5	7.0	8.2
t/c, tip, percent	7.5	7.0	5.2
Incidence	3°		
Dihedral	-11°	-15.84°	
Twist	8°	— — ·	
Displacement		+12.75°,-11.75°*	
Airfoil	Modified	HSA**	HSA
	Supercritical		

واحتها للك

and and the second second second

Table 1. Physical dimensions of the YAV-8B. Information extracted from ref. 5.

The state $\pm 1^{\circ}30'$ autostab

**Hawker Siddeley Aviation

Control surface	Area (projected)	Span (projected)	Deflection
Flap	15.49 ft ² /side	64.54 in./side	+7°, +25°, +61.7°
Aileron	6.19 ft ² /side	58.90 in./side	$\pm 27^{\circ **}$
Rudder	5.27 ft ²	60.75 in.	$\pm 15^{\circ}$
Speedbrake	4.5 ft ²	36.5 in.	66°

**Includes 15° aileron droop and $\pm 2^\circ$ autostab

Wetted areas, ft ²	
Fuselage	541
Wing	379
H-tail	84
V-tail	52
Outrigger pod	45
Ventral	11
Total	1112

Harrier YAV-88 wing ordinates, in.								
	η	= 0.25	η:	= 0.47	 η:	= 0.64	$\eta =$	0.79*
Station,	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
percent	surface	surface						
0.00	-0.994		-3.266		-3.762		-3.149	
0.25	0.037	-1.909	-2.355	-4.197	-3.080	-4.560	-2.673	-3.014
0.50	0.513	-2.789	-2.031	-4.509	-2.814	-4.710	-2.440	-3.847
0.75	0.827	-3.132	-1.789	-4.736	-2.634	-4.871	-2.272	-3.997
1.00	1.064	-3.383	-1.585	-4.922	-2.470	-5.015	-2.153	4.096
1.25	1.300	-3.635	-1.387	-5.102	-2.325	-5.137	-2.034	-4.195
1.50	1.468	-3.812	-1.261	-5.206	-2.221	-5.212	-1.955	-4.246
1.75	1.613	-3.965	-1.134	-5.310	-2.117	-5.288	-1.875	-4.297
2.00	1.759	-4.118	-1.008	-5.414	-2.013	-5.364	-1.796	-4.349
3.00	2.260	-4.657	-0.573	-5.709	-1.670	-5.583	-1.522	-4.502
4.00	2.626	-5.070	-0.233	-5.994	-1.395	-5.722	-1.304	-4.605
5.00	2.895	-5.408	0.045	-6.170	-1.156	-5.816	-1.114	-4.705
6.00	3.119	-5.702	0.287	-6.305	-0.944	-5.888	-0.946	-4.728
8.00	3.489	-6.204	0.717	-6.509	-0.573	-5.983	-0.647	-4.743
10.00	3.785	-6.617	1.090	-6.648	-0.236	-6.028	-0.369	-4.751
15.00	4.348	-7.396	1.872	-6.841	0.489	-6.016	0.231	-4.677
20.00	4.753	-7.930	2.501	-6.883	1.093	-5.892	0.738	-4.517
25.00	5.000	-8.306	3.005	-6.800	1.620	-5.682	1.192	-4.293
30.00	5.174	-8.474	3.437	-6.639	2.088	-5.406	1.600	-4.021
35.00	5.282	-8.569	3.812	-6.407	2.508	-5.068	1.971	-3.651
40.00	5.322	-8.557	4.133	-6.090	2.891	-4.597	2.312	-3.349
45.00	5.296	-8.433	4.404	-5.597	3.243	-4.220	2.622	-2.956
50.00	5.202	-8.121	4.629	-5.199	3.563	-3.705	2.901	-2.525
55.00	5.069	-7.788	4.814	-4.620	3.854	-3.119	3.158	-2.033
60.00	4.920	-7.189	4.974	-3.909	4.111	-2.433	3.390	-1.394
65.00	4.748	-6.269	5.103	-2.985	4.350	-1.499	3.595	-0.846
70.00	4.506	-5.058	5.167	-1.718	4.552	-0.620	3.772	-0.785
72.00	4.300	-4.509	5.177	-1.346	4.617	-0.191	3.822	0.248
74.00	4.216	-3.752	5.176	-0.828	4.669	0.251	3.863	0.586
76.00	4.057	-3.402	5.164	-0.298	4.714	0.707	3.899	0.931
78.00	3.888	-2.811	5.142	0.243	4.750	1.166	3.931	1.274
80.00	3.710	-2.198	5.109	0.784	4.779	1.621	3.957	1.610
82.00	3.524	-1.598	5.064	1.304	4.799	2.054	3.979	2.061
84.00	3.328	-1.037	5.005	1.796	4.808	2.459	3.991	2.250
86.00	3.123	-0.549	4.934	2.233	4.803	2.970	3.992	2.486
88.00	2.904	-0.145	4.844	2.597	4.780	3.190	3.977	2.713
90.00	2.672	0.196	4.726	2.930	4.740	3.387	3.943	2.895
92.00	2.429	0.468	4.577	3.148	4.671	3.576	3.888	3.033
94.00	2.179	0.665	4.401	3.246	4.573	3.707	3.809	3.128

Table 2(a). Coordinates for the four test sections, z'.

			Harri	ier YAV-88 v	ving ordinate	s, in.		
		n = 0.25		= 0.47	η =	= 0.64	$\eta = 0$	0.79*
Station percent	Upper surface	Lower surface	Upper surface	Lower surface	Upper surface	Lower surface	Upper surface	Lower surface
96.00	1.922	0.785	4.196	3.309	4.445	3.774	3.707	3.172
98.00	1.662	0.779	3.971	3.285	4.298	3.773	3.586	3.164
100.00	1.401	0.680	3.729	3.155	4.137	3.688	3.451	3.081

÷

a de la las manageres

Table 2(a). Concluded.

*Note: the manufacturer provided dimensions for $\eta = 0.79$ but the orifice row was as $\eta = 0.78$ because of access hatch location.

į

The second second second

1.4 1.146 2011

Orifice	η:	= 0.25	η:	= 0.47	η	= 0.64	η =	0.78
order	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
1	2.5	7.5	4	7.5	5	7.5	5	7.5
2	12	12.5	14	12.5	20	12.5	22	12.5
3	20	17.5	20	17.5	30	22.5	30	22.5
4	25	22.5	30	22.5	40	32.5	40	32.5
5	30	32.5	40	32.5	45	42.5	45	42.5
6	40	42.5	50	42.5	50	-52.5	50	52.5
7	50	(52.5)	55	52.5	55	57.5	55	57.5
8	55	57.5	60	57.5	60	67.5	60	67.5
9	60	62.5	65	62.5	65	72.5	65	
10	65	67.5	70	-67.5 -	70		70	
11	70	72.5	75	72.5	74		75	
12	75	77.5	80	77.5				
13	85	-82.5	85	82.5				
14	90	87.5	90	87.5				
15	98.4	97.5	100	97.5				
C,in.	1	26.0	9	96.5		75.4	6	1.6

Table 2(b). Location of orifices, percent chord.

Note: a location "slashed-out," as 52.5, means orifice was inoperative for all flights. A location indicated as (52.5) means orifice was inoperative for some flights.

-

.

$\label{eq:appendix} \begin{array}{c} \text{APPENDIX A} \\ \text{SURFACE PRESSURE COEFFICIENTS, PYLONS ON, HP} \approx \textbf{20,000 FT} \end{array}$

	M	α , deg
I	.456	8.8
2	.504	8.2
3	.640	5.1
4	.747	3.3
5	.800	2.7
6	.803	2,9
7	.805	2.7
8	.842	2.3
9	.859	2.2

Ì

Ē

Table A-1

MINI	F=	.456					
HP =	2	0229					
PSIN	F =	963.2					
PRI =	=	951.3					
QBA	R =	140.1					
ALPI	HA =	8.8					
			Unner	surface			
X/C	CP	X/C	СР	Surface X/C	CP	X/C	CP
7.) C m	- 0.25	<i>n</i> –	0.47	л.с 	- 0.64	л.с 	0.78
025	-1.257	- 1/ 040		η - 050	-1.432	$\eta = 050$	1 492
120	-1.257 -874	140	- 848	200	- 1.452	220	-1.492
200	- 704	200	040	300	750 743	300	- 707
250	- 601	300	- 649	400	743	400	- 556
300	647	400	- 568	450	5+5 - 514	450	550
400	- 503	500	500 474	500	-479	500	407
500	- 404	550	448	550	- 475	550	_ 448
550	- 357	600	-374	600	-371	600	- 438
600	- 405	650	- 393	650	- 384	650	- 398
.650	- 318	.700	- 393	700	_ 391	700	_ 494
.700	282	750	-283	740	-317	750	- 388
.750	242	.800	283	., .,			1000
.850	119	.850	- 214				
.900	057	.900	169				
.984	040	1.000	018				
			Lower	surface			
X/C	СР	X/C	СР	X/C	СР	X/C	СР
η :	= 0.25	$\eta =$	0.47	$\eta =$	0.64	$\eta =$	0.78
.075	.280	.075	.147	.075	.241	.075	.126

η	= 0.25	$\eta = 0.47$		$\eta = 0.47$ $\eta = 0.64$: 0.64	$\eta = 0.78$	
.075	.280	.075	.147	.075	.241	.075	.126	
.125	.297	.125	.160	.125	.175	.125	.035	
.175	.166	.175	.050	.225	085	.225	088	
.225	.136	.225	005	.325	141	.325	152	
.325	.040	.325	021	.425	194	.425	215	
.425	188	.425	160	.525	248	.525	226	
.525	294	.525	218	.575	303	.575	196	
.575	401	.575	224	.675	149	.675	080	
.625	442	.625	259	.725	119			
.675	343	.725	086					
.725	342	.775	.001					
.775	085	.825	.093					
.825	.011	.875	.211					
.875	.109	.975	.177					
.975	.033							

, The second se

Table A-2

MINF	=	.504					
HP =	20	423					
PSINE	- =	955.4					
PRI =		939.8					
QBAF	२ =	169.8					
ALPH	A =	8.2					
			Upper	surface			
X/C	СР	X/C	CP	X/C	СР	X/C	СР
$\eta =$	0.25	$\eta =$	0.47	$\eta =$	0.64	$\eta =$	0.78
.025	-1.261	.()4()	-1.464	.050	-1.357	.050	-1.378
.120	784	.140	817	.200	725	.220	640
.200	665	.200	749	.300	723	.300	689
.250	557	.300	632	.400	520	.400	532
.300	566	.400	553	.450	496	.450	453
.400	470	.500	463	.500	469	.500	435
.500	387	.550	440	.550	417	.550	431
.55()	342	.600	375	.600	369	.600	417
.600	386	.650	389	.650	383	.650	383
.650	321	.700	389	.700	381	.700	487
.700	281	.750	283	.740	311	.750	367
.75()	251	.800	283				
.850	123	.850	218				
.900	056	.900	170				
.984	039	1.000	013				

Ì

Ē

-

			Lower	surface				
X/C	CP	X/C	СР	X/C	СР	X/C	СР	
$\eta =$	= 0.25	$\eta =$	0.47	$\eta =$	0.64	$\eta =$	$\eta = 0.78$	
.075	.276	.075	.098	.075	.191	.075	.088	
.125	.274	.125	.121	.125	.134	.125	107	
.175	.153	.175	.019	.225	126	.225	120	
.225	.120	.225	()4()	.325	172	.325	167	
.325	.008	.325	051	.425	206	.425	242	
.425	202	.425	190	.525	262	.525	239	
.525	304	.525	237	.575	318	.575	211	
.575	4()5	.575	250	.675	158	.675	088	
.625	450	.625	277	.725	119			
.675	356	.725	095					
.725	333	.775	006					
.775	108	.825	.094					
.825	001	.875	.212					
.875	.105	.975	.181					
975	()44							

Table A-3

MINF =	.640
HP=	20352
PSINF =	958.2
PRI =	925.1
QBAR =	274.4
ALPHA =	5.1

.

CARLER ALLONG

Upper surface

X/C	СР	X/C	CP	X/C	СР	X/C	СР	
$\eta = 0.25$		$\eta =$	$\eta = 0.47$		$\eta = 0.64$		$\eta = 0.78$	
.025	-1.002	.040	-1.229	.050	939	.050	909	
.120	652	.140	646	.200	585	.220	502	
.200	568	.200	641	.300	654	.300	604	
.250	512	.300	546	.400	454	.400	444	
.300	485	.400	495	.450	424	.450	386	
.400	433	.500	428	.500	434	.500	380	
.500	375	.550	408	.550	384	.550	380	
.550	351	.600	355	.600	352	.600	361	
.600	355	.650	368	.650	361	.650	336	
.650	333	.700	368	.700	368	.700	456	
.700	298	.750	292	.740	295	.750	343	
.750	295	.800	292					
.850	153	.850	214					
.900	087	.900	175					
.984	073	1.000	.013					

Lower surface

X/C	СР	X/C	CP	X/C	CP	X/C	CP	
$\eta = 0.25$		$\eta =$	$\eta = 0.47$		$\eta = 0.64$		$\eta = 0.78$	
.075	.172	.075	168	.075	100	.075	212	
.125	.157	.125	063	.125	098	.125	250	
.175	.046	.175	171	.225	378	.225	321	
.225	012	.225	210	.325	338	.325	344	
.325	133	.325	216	.425	331	.425	393	
.425	303	.425	350	.525	387	.525	340	
.525	380	.525	358	.575	444	.575	312	
.575	457	.575	370	.675	226	.675	145	
.625	501	.625	382	.725	166			
.675	419	.725	151					
.725	353	.775	047					
.775	203	.825	.073					
.825	079	.875	.192					
.875	.044	.975	.190					
.975	.041							

ł

1

A Recent of the

AND FIRE

ł

MINF =	.747
HP=	20350
PSINF =	958.3
PRI =	905.3
QBAR =	373.9
ALPHA =	3.3

Upper surface								
X/C	CP	X/C	CP	X/C	СР	X/C	СР	
η =	= 0.25	$\eta =$	$\eta = 0.47$		$\eta = 0.64$		$\eta = 0.78$	
.025	753	.040	-1.161	.050	672	.050	662	
.120	589	.140	544	.200	532	.220	461	
.200	532	.200	611	.300	662	.300	595	
.250	493	.300	520	.400	435	.400	433	
.300	464	.400	487	.450	405	.450	376	
.400	429	.500	427	.500	436	.500	375	
.500	380	.550	410	.550	387	.550	374	
.550	353	.600	368	.600	353	.600	350	
.600	353	.650	380	.650	356	.650	327	
.650	350	.700	380	.700	384	.700	472	
.700	323	.750	314	.74()	288	.750	346	
.750	330	.800	314					
.850	166	.850	215					
.900	101	.900	172					
.984	089	1.000	.028					

Lower surface								
X/C	СР	X/C	CP	X/C	СР	X/C	CP	
$\eta = 0.25$		$\eta =$	$\eta = 0.47$		$\eta = 0.64$		$\eta = 0.78$	
.075	.106	.075	384	.075	270	.075	459	
.125	.089	.125	184	.125	235	.125	477	
.175	017	.175	286	.225	697	.225	484	
.225	095	.225	323	.325	450	.325	515	
.325	226	.325	326	.425	419	.425	524	
.425	357	.425	512	.525	497	.525	409	
.525	423	.525	475	.575	574	.575	357	
.575	490	.575	472	.675	280	.675	164	
.625	545	.625	472	.725	211			
.675	446	.725	173					
.725	384	.775	034					
.775	264	.825	.030					
.825	147	.875	.133					
.875	030	.975	.196					
.975	.001							

64

1

11.1

4

Ĵ.
MINF =	.800					
HP=	20454					
PSINF =	954.1					
PRI =	887.0					
QBAR =	427.1					
ALPHA =	2.7					
		Uppo	er surface			
X/C C	P X/C	CP	X/C	СР	X/C	СР
$\eta = 0.2$	5 $\eta =$	0.47	η :	= 0.64	$\eta =$	0.78
.0255	.040	970	.050	887	.050	853
.120 —.5	.140	641	.200	572	.220	517
.200 – .5	.200	548	.300	902	.300	619
.250 – .5	505 .300	523	.400	453	.400	458
.3004	.400	501	.450	418	.450	389
.400 –.4	451 .500	452	.500	464	.500	394
.5004	401 .550	429	.550	412	.550	398
.5503	.600	392	.600	373	.600	364
.6003	.650	401	.650	378	.650	341
.650 –.3	.700	401	.700	421	.700	524
.700 –.3	.750	335	.740	307	.750	365
.750 –.3	.800	335				
.850 —.	.850 .850	229				
.900 –.	.900	173				
.984 –.0	091 1.000	.037				

Lower surface

X/C	СР	X/C	CP	X/C	CP	X/C	CP	
$\eta = 0.25$		$\eta =$	$\eta = 0.47$		$\eta = 0.64$		$\eta = 0.78$	
.075	.105	.075	514	.075	286	.075	478	
.125	.088	.125	205	.125	232	.125	700	
.175	018	.175	309	.225	665	.225	477	
.225	095	.225	336	.325	-1.111	.325	528	
.325	253	.325	335	.425	404	.425	839	
.425	356	.425	568	.525	547	.525	383	
.525	444	.525	738	.575	690	.575	341	
.575	532	.575	671	.675	288	.675	153	
.625	636	.625	470	.725	216			
.675	504	.725	173					
.725	397	.775	080					
.775	284	.825	002					
.825	191	.875	.119					
.875	097	.975	.185					
.975	076							

R. S. Older, Market and Onder Association

141.

.....

. .

P

MINF =	.803
HP=	20489
PSINF =	952.7
PRI =	885.8
QBAR =	429.6
ALPHA =	2.9

Upper surface								
X/C	СР	X/C	СР	X/C	СР	X/C	CP	
η =	= 0.25	$\eta =$	0.47	η	= 0.64	η =	$\eta = 0.78$	
.025	590	.040	944	.050	930	.050	-1.052	
.120	611	.140	937	.200	608	.220	563	
.200	601	.200	514	.300	938	.300	649	
.250	530	.300	516	.400	460	.400	463	
.300	477	.400	502	.450	424	.450	389	
.4()()	457	.500	457	.500	469	.500	397	
.500	406	.550	430	.550	416	.550	400	
.550	368	.600	389	.600	375	.600	368	
.600	380	.650	398	.650	382	.650	344	
.650	370	.700	398	.700	425	.700	551	
.700	348	.750	334	.740	320	.750	379	
.750	364	.800	334					
.850	187	.850	229					
.900	116	.900	175					
.984	085	1.000	.038					

	Lower surface								
X/C	CP	X/C	СР	X/C	CP	X/C	CP		
η =	= 0.25	$\eta =$	0.47	η	$\eta = 0.64$		$\eta = 0.78$		
.075	.119	.075	491	.075	271	.075	453		
.125	.108	.125	190	.125	214	.125	672		
.175	002	.175	294	.225	651	.225	466		
.225	074	.225	320	.325	-1.142	.325	511		
.325	245	.325	324	.425	398	.425	823		
.425	338	.425	555	.525	552	.525	365		
.525	447	.525	727	.575	706	.575	327		
.575	555	.575	757	.675	282	.675	141		
.625	623	.625	460	.725	205				
.675	521	.725	175						
.725	422	.775	085						
.775	282	.825	003						
.825	- 191	.875	.118						
.875	101	.975	.187						
.975	079								

MINF =	:	.805					
HP=	205	569					
PSINF =	= 5)49.5					
PRI =	8	382.3					
QBAR :	= -	131.2					
ALPHA	\ =	2.7					
			Uppe	r surface			
X/C	СР	X/C	CP	X/C	СР	X/C	СР
<i>n</i> =	0.25	$\eta =$	0.47	$\eta =$	0.64	$\eta =$	0.78
.025	577	.040	924	.050	882	.050	926
.120	664	.140	836	.200	602	.220	552
.200	578	.200	512	.300	926	.300	639
.250	510	.300	514	.400	452	.400	461
.300	472	.400	495	.450	415	.450	387
.400	451	.500	451	.500	465	.500	397
.500	404	.550	428	.550	413	.550	401
.550	360	.600	389	.600	373	.600	374
.600	385	.650	394	.650	382	.650	349
.650	366	.700	394	.700	433	.700	573
700	- 346	.750	337	.740	335	.750	410
750	- 356	800	- 337				
850	- 185	850	- 227				
000	117	900	_ 177				
0.200		1.000	036				
.90+	000	1.000	.0.70				

2

X/C	СР	X/C	СР	X/C	CP	X/C	CP	
$\eta =$	= 0.25	$\eta =$	$\eta = 0.47$		$\eta = 0.64$		$\eta = 0.78$	
.075	.113	.075	514	.075	284	.075	463	
.125	.115	.125	200	.125	226	.125	683	
.175	()()4	.175	304	.225	651	.225	439	
.225	071	.225	329	.325	-1.160	.325	512	
.325	244	,325	330	.425	395	.425	819	
.425	332	.425	559	.525	549	.525	354	
.525	465	.525	721	.575	702	.575	318	
.575	598	.575	777	.675	272	.675	132	
.625	613	.625	444	.725	200			
.675	517	.725	174					
.725	442	.775	091					
.775	273	.825	006					
.825	194	.875	.115					
.875	116	.975	.183					
.975	094							

MINF =	.842
HP=	20547
PSINF =	950.4
PRI =	873.8
QBAR =	472.1
ALPHA =	2.3

Upper surface							
X/C	СР	X/C	СР	X/C	СР	X/C	CP
η =	= 0,25	$\eta =$	().47	η :	= ().64	$\eta =$	0.78
.025	463	.()4()	818	.050	782	.050	978
.120	727	.14()	-1.068	.200	804	.220	407
.200	594	.200	593	.300	721	.300	944
.250	569	.300	427	.400	485	.400	494
.300	589	.400	523	.450	417	.450	447
.400	444	.500	466	.500	511	.500	393
.500	420	.550	439	.550	456	.550	417
.550	389	.600	414	.600	383	.600	368
.600	394	.650	405	.650	381	.650	338
.650	391	.700	405	.700	458	.700	606
.700	377	.750	337	.740	330	.750	381
.750	403	.800	337				
.850	187	.850	217				
.900	116	.900	152				
.984	088	1.000	.054				

References and a second s

an a sana janga

÷

Ξ

-

Ξ

Lower surface							
X/C	СР	X/C	СР	X/C	CP	X/C	CP
η =	= 0.25	$\eta =$: 0.47	η	= 0.64	η =	= ().78
.075	.117	.075	558	.075	285	.075	436
.125	.105	.125	209	.125	210	.125	631
.175	021	.175	314	.225	592	.225	884
.225	042	.225	- 331	.325	-1.128	.325	655
.325	352	.325	313	.425	635	.425	680
.425	390	.425	595	.525	735	.525	342
.525	436	.525	69()	.575	834	.575	275
.575	481	.575	712	.675	277	.675	129
.625	603	.625	954	.725	211		
.675	687	.725	230				
.725	597	.775	141				
.775	320	.825	067				
.825	204	.875	.029				
.875	090	.975	.113				
.975	070						

T

68

;

:

MINF =	.859					
HP=	20659					
PSINF =	945.9					
PRI =	861.8					
QBAR =	488.8					
ALPHA =	2.2					
		Uppe	r surface			
X/C C	P X/C	СР	X/C	СР	X/C	CP
$\eta = 0.2$	5 η =	= 0.47	η :	= ().64	$\eta =$	0.78
.0254	.040	766	.050	726	.050	93()
.1206	.140	-1.026	.200	810	.22()	832
.200 – .5	.200	651	.300	830	.300	893
.2505	.300	571	.400	529	.400	360
.3005	.400	560	.450	456	.450	342
.4005	587 .500	578	.500	392	.500	400
.5004	.550	382	.550	383	.550	453
.5503	.600	355	.600	399	.600	389
.6003	.650	378	.650	394	.650	326
.6503	.700	378	.700	486	.700	580
.7003	.750	338	.740	398	.750	554
.7504	.800	338				
.850 —.1	.850	208				
.900 – . I	.900	127				
.984 —.(084 1.000	.()49				

Lower surface

X/C	CP	X/C	CP	X/C	CP	X/C	CP	
$\eta =$	= 0.25	$\eta =$	$\eta = 0.47$		= 0.64	η =	$\eta = 0.78$	
.075	.129	.075	537	.075	289	.075	- 414	
.125	.121	.125	199	.125	207	.125	613	
.175	019	.175	312	.225	571	.225	855	
.225	028	.225	326	.325	-1.102	.325	783	
.325	290	.325	306	.425	627	.425	687	
.425	657	.425	609	.525	734	.525	430	
.525	582	.525	665	.575	840	.575	224	
.575	508	.575	673	.675	302	.675	133	
.625	516	.625	844	.725	259			
.675	664	.725	263					
.725	629	.775	227					
.775	- 394	.825	162					
.825	237	.875	080					
.875	081	.975	.061					
.975	057							

	M	α , deg
l	.642	7.0
2	.747	5.0
3	.796	4.2
4	.841	5.2
5	.843	3.4
6	.874	4.0
7	.876	3.5
8	.877	2.7

Ē

MINF =	.642					
HP=	30100					
PSINF =	625.6					
PRI =	608.4					
QBAR =	180.7					
ALPHA =	7.0					
		Uppe	r surface			
X/C CP	X/C	CP	X/C	CP	X/C	СР
$\eta = 0.25$	$\eta =$	- 0.47	η =	= 0.64	η =	= 0.78
.025 -1.1	08 .040	-1.757	.050	-1.895	.050	-1.403
.120 –.7	.140	912	.200	719	.220	634
.200 –.6	68 .200	750	.300	750	.300	694
.250 –.6	.300	634	.400	528	.400	530
.300 –.5	56 .400	558	.450	497	.450	463
.400 – .5	05 .500	479	.500	480	.500	431
.500 –.4	.550	446	.550	432	.550	426
.550 –.4	.600	386	.600	378	.600	408
.600 –.3	.650	403	.650	382	.650	370
.650 –.3	.700	403	.700	377	.700	468
.700 –.3	.750	276	.740	289	.750	341
.750 –.3	.800	276				
.850 –.1	.850	211				
.900 –.1	.900	153				
.984 –.0	1.000	025				

X/C	CP	X/C	CP	X/C	CP	X/C	СР
η =	= 0.25	$\eta =$	0.47	η =	= 0.64	η =	= 0.78
.075	.227	.075	025	.075	.078	.075	044
.125	.181	.125	.035	.125	.041	.125	127
.175	.092	.175	074	.225	257	.225	221
.225	.029	.225	121	.325	269	.325	279
.325	104	.325	137	.425	293	.425	353
.425	256	.425	287	.525	365	.525	337
.525	325	.525	320	.575	436	.575	310
.575	394	.575	332	.675	237	.675	158
.625	470	.625	359	.725	201		
.675	413	.725	139				
.725	286	.775	051				
.775	207	.825	.063				
.825	069	.875	.184				
.875	.070	.975	.166				
.975	.042						

MINF =	.747
HP=	30346
PSINF =	618.6
PRI =	589.1
QBAR =	241.8
ALPHA =	5.0

Upper surfa	ce
-------------	----

Accel of the second

.--

-

Ē

			• P P				
X/C	CP	X/C	CP	X/C	CP	X/C	СР
$\eta =$	= 0.25	$\eta =$	= ().47	η	= ().64	η :	= 0.78
.025	787	.()4()	-1.314	.050	-1.364	.050	-1.592
.120	757	.140	956	.200	590	.220	561
.200	622	.200	611	.300	732	.300	665
.250	572	.300	563	.400	495	.400	505
.300	519	.400	533	.450	463	.450	431
.400	478	.500	468	.500	474	.500	419
.500	407	.550	445	.550		.550	415
.550	397	.600	388	.600	377	.600	389
.600	372	.650	407	.650	377	.650	357
.650	371	.700	407	.700	387	.700	482
.700	345	.750	305	.74()	285	.750	334
.750	354	.800	305				
.850	176	.850	224				
.900	113	.900	163				
.984	086	1.000	.017				

			Low	er surface			
X/C	CP	X/C	CP	X/C	CP	X/C	CP
η =	= 0.25	$\eta =$: ().47	η =	= ().64	η	= 0.78
.075	.177	.075	218	.075	104	.075	262
.125	.143	.125	083	.125	104	.125	298
.175	.()47	.175	188	.225	530	.225	
.225	029	.225	232	.325	392	.325	427
.325	160	.325	248	.425	383	.425	480
.425	315	.425	431	.525	471	.525	405
.525	378	.525	435	.575	559	.575	367
.575	440	.575	_,44()	.675	282	.675	180
.625	536	.625	453	.725	225		
.675	460	.725	162				
.725	353	.775	055				
.775	261	.825	.()44				
.825	122	.875	.153				
.875	.014	.975	.191				
.975	.019						

72

MINF =	.796					
HP=	30309					
PSINF =	619.6					
PRI =	581.1					
QBAR =	274.8					
ALPHA =	4.2					
		Uppe	r surface			
X/C CP	X/C	CP	X/C	СР	X/C	CP
$\eta = 0.25$	$\eta =$: 0.47	$\eta =$: 0.64	$\eta =$: 0.78
.02565	.040	-1.078	.050	-1.115	.050	-1.341
.120 –.84	9.140	-1.308	.200	922	.220	467
.20071	2	733	.300	610	.300	629
.25064	8	480	.400	461	.400	501
.30052	2.400	510	.450	445	.450	426
.40047	5	464	.500	474	.500	419
.50041	1 .550	446	.550	429	.550	422
.55039	5.600	399	.600	380	.600	
.60037	5	414	.650	385	.650	358
.65038	1	414	.700	405	.700	520
.70035	7	322	.740	295	.750	346
.750 –.36	.800	322				
.85017	5	229				
.900 –.11-	4 .900	164				
.98408	7 1.000	.030				

X/C	CP	X/C	CP	X/C	СР	X/C	CP
η =	= 0.25	$\eta =$	= ().47	η	= 0.64	η :	= 0.78
.075	.163	.075	319	.075	170	.075	375
.125	.134	.125	125	.125	136	.125	428
.175	.034	.175	231	.225	615	.225	438
.225	046	.225	266	.325	383	.325	494
.325	175	.325	278	.425	411	.425	629
.425	365	.425	507	.525	541	.525	414
.525	413	.525	680	.575	671	.575	368
.575	461	.575	490	.675	294	.675	173
.625	675	.625	490	.725	230		
.675	487	.725	168				
.725	361	.775	072				
.775	277	.825	.002				
.825	154	.875	.121				
.875	032	.975	.197				
.975	001						

:

į

tette a din una

an the standard and a sub-

talat. Jato attendari kanadati kanadati attendari attendari tanda tanta antanan kenana antana attendari attenda

÷

MINF =	.841					
HP= 3	80316					
PSINF =	619.4					
PRI =	583.0					
OBAR =	306.8					
ALPHA =	5.2					
	• • -		_			
		Upper	surface			
X/C CP	X/C	СР	X/C	СР	X/C	СР
$\eta = 0.25$	$\eta =$	0.47	$\eta =$	0.64	$\eta =$	0.78
.025 –.636	.040	-1.026	.050	-1.068	.050	-1.282
.120 –.891	.140	-1.295	.200	-1.193	.22()	-1.155
.200 – .852	.200	-1.178	.300	-1.211	.300	-1.291
.250 – .768	.300	-1.215	.400		.400	-1.116
.300 – .751	.400	825	.450	-1.158	.450	957
.400737	.500	778	.500	783	.500	650
.500 –.719	.550	710	.550	558	.550	543
.550685	.600	343	.600	334	.600	371
.600426	.650	304	.650	234	.650	205
.650340	.700	304	.700	210	.700	236
.700308	.750	247	.74()	175	.750	201
.750316	.800	247				
.850136	.850	170				
.900078	.900	113				
.984068	1.000	.042				
		Lower	r surface			
X/C CP	X/C	CP	X/C	СР	X/C	СР
$\eta = 0.25$	$\eta =$	0.47	$\eta =$	0.64	$\eta =$: 0.78
.075 .233	.075	246	.075	067	.075	289
.125 .199	.125	050	.125	042	.125	468
.175 .090	.175	157	.225	500	.225	373
.225 .055	.225	197	.325	951	.325	422
.325203	.325	206	.425	366	.425	731
.425 –.196	.425	444	.525	546	.525	294
.525344	.525	632	.575	726	.575	296
.575491	.575	683	.675	274	.675	148
.625526	.625	524	.725	214		
.675 –.662	.725	173				
.725 – .520	.775	084				
.775322	.825	.030				
.825 - 161	875	.146				
.875 001	975	.212				
.975016						

74

ł

÷

i,

MINF =	.843					
HP=	30400					
PSINF =	617.1					
PR1 =	574.9					
QBAR =	307.3					
ALPHA =	3.4					
		Uppe	er surface			
X/C CP	X/C	CP	X/C	СР	X/C	CP
$\eta = 0.25$	$\eta =$: 0.47	η =	= 0.64	η :	= 0.78
.02553	6 .040	870	.050	897	.050	-1.117
.120 –.74	.140	1.109	.200	989	.220	926
.20069	.200	-1.014	.300	-1.126	.300	1.219
.25063	6 .300	671	.400	465	.400	341
.300 –.65	5.400	668	.450	350	.450	283
.40064	8	396	.500	343	.500	309
.50042	3	388	.550	346	.550	360
.55036	.600	369	.600	335	.600	355
.60036	.650	395	.650	352	.650	335
.650 –.38	.700	395	.700	403	.700	566
.70039	3750	325	.740	305	.750	353
.75040	.800	325				
.850 –.18	.850	216				
.900 –.11	6.900	144				
.984 –.07	5 1.000	.033				

ŧ

X/C	СР	X/C	CP	X/C	СР	X/C	CP
η =	= ().25	$\eta =$	0.47	η	= 0.64	η =	= ().78
.075	.155	.075	457	.075	205	.075	389
.125	.128	.125	154	.125	145	.125	594
.175	.015	.175	257	.225	563	.225	846
.225	023	.225	282	.325	-1.068	.325	.415
.325	323	.325	276	.425	584	.425	748
.425	255	.425	538	.525	687	.525	325
.525	404	.525	668	.575	790	.575	280
.575	553	.575	706	.675	293	.675	146
.625	568	.625	875	.725	233		
.675	620	.725	208				
.725	555	.775	125				
.775	312	.825	021				
.825	188	.875	.075				
.875	065	.975	.141				
.975	061						

į

Annual India

ina si ngangan ngangan

NAME AND A DESCRIPTION OF

MINF =	874			
HP=	30480			
PSINE =	614.8			
PRI =	566.8			
OBAR -	328.5			
$\Delta I PH \Delta -$	4.0			
ALI IIA -	4.0			
		Uppe	r surface	
X/C CP	X/C	СР	X/C CP	X/C CP
$\eta = 0.25$	$\eta =$	0.47	$\eta = 0.64$	$\eta = 0.78$
.025 –.484	.040	836	.050 –.865	.050 -1.074
.120742	.140	-1.094	.200 –1.042	.220963
.200 –.734	.200	-1.007	.300 -1.075	.300 -1.173
.250662	.300	-1.029	.400 -1.024	.400 –.997
.300666	.400	712	.450 -1.004	.450 –.979
.400680	.500	714	.500971	.500984
.500654	.550	744	.550 –.736	.550 –.964
.550645	.600	718	.600 –.716	.600737
.600650	.650	762	.650 –.706	.650581
.650 –.594	.700	762	.700 –.474	.700415
.700631	.750	238	.740 –.263	.750 –.255
.750 –.458	.800	238		
.850147	.850	173		
.900086	.900	115		
.984065	1.000	010		
		Lowe	r surface	
X/C CP	X/C	СР	X/C CP	X/C CP
$\eta = 0.25$	$\eta =$	0.47	$\eta = 0.64$	$\eta = 0.78$
.075 .196	.075	406	.075 –.148	.075 –.326
.125 .168	.125	113	.125 –.087	.125 –.523
.175 .044	.175	218	.225 –.498	.225 –.774
.225 .024	.225	243	.325 -1.003	.325 –.496
.325200	.325	236	.425 – .591	.425 –.663
.425 –.575	.425	513	.525 – .684	.525 –.765
.525 –.493	.525	612	.575 – .776	.575 –.232
.575 –.412	.575	632	.675 –.282	.675 –.147
.625 –.461	.625	926	.725246	
.675 –.626	.725	272		
.725 –.603	.775	222		
.775 –.600	.825	135		
.825313	.875	028		
.875025	.975	.096		
.975013				

76

1

MINF =	:	.876					
HP=	3	()453					
PSINF =	=	615.6					
PRI =		564.8					
QBAR :	=	330.4					
ALPHA	\ =	3.5					
			Uppe	r surface			
X/C	СР	X/C	CP	X/C	СР	X/C	CP
$\eta = 0$	0.25	$\eta =$	0.47	η =	= ().64	η =	: ().78
.025	471	.040	799	.050	826	.050	- 1.034
.120 -	718	.140	- 1.049	.200	963	.22()	897
.200 -	693	.200	961	.300	- 1.059	.300	- 1.168
.250 -	634	.300	- 884	.400	952	400	957
.300	646	.4()()	670	.450	841	.450	9()4
.400	647	.500	694	.500	799	.500	920
.500	639	.550	716	.550	707	.550	856
.550	623	.600	702	.600	711	.600	660
.600	620	.650	732	.650	700	.650	498
.650	577	.700	732	.7()()	- 538	.700	- 405
.700	621	.750	251	.740	281	.750	270
.750	511	.800	251				
.850	146	,850	177				
.900	085	.900	115				
.984	071	1.000	()()9				

:

X/C	СР	X/C	CP	X/C	СР	X/C	CP	
$\eta =$: 0.25	$\eta =$	0.47	η =	= ().64	$\eta =$	$\eta = 0.78$	
.075	.179	.075	437	.075	183	.075	351	
.125	.153	.125	137	.125	115	.125	541	
.175	.024	.175	242	.225	509	.225	787	
.225	.009	.225	263	.325	-1.025	.325	557	
.325	210	.325	251	.425	603	.425	666	
.425	591	.425	545	.525	685	.525	767	
.525	519	.525	624	.575	767	.575	247	
.575	448	.575	641	.675	284	.675	160	
.625	458	.625	923	.725	259			
.675	624	.725	280					
.725	597	.775	228					
.775	597	.825	157					
.825	313	.875	063					
.875	037	.975	.070					
.975	017							

ŝ

առջջնես, որն անեն քունելիուն մեն են են ունելուն անդանում է հենո

ind has subject to the design and the second s

MINF =	.877		
HP=	30671		
PSINF =	609.5		
PRI =	553.7		
QBAR =	328.0		
ALPHA =	2.7		
		Upper	surface
X/C CP	X/C	СР	X/C
$\eta = 0.25$	$\eta =$	0.47	η =

X/C	CP	X/C	CP	X/C	СР	X/C	СР
η =	= 0.25	$\eta =$: 0.47	η:	= 0.64	η	= ().78
.025	- 440	.()4()	737	.050	746	.050	963
.120	658	.14()	- 1.006	.200	844	.22()	849
.200	638	.200	887	.300	-1.034	.300	-1.156
.250	594	.300	658	.400	742	.4()()	837
.300	601	.400	626	.450	582	.450	839
.400	618	.500	664	.500	647	.500	791
.500	600	.550	688	.550	607	.550	653
.550	603	.600	655	.600	661	.600	555
.600	557	.650	684	.650	667	.650	381
.650	537	.700	- 684	.700	645	.700	420
.700	594	.750	276	.740	331	.750	300
.750	566	.800	276				
.850	149	.850	190				
.900	089	.900	115				
.984	078	1.000	002				

			Low	er surface			
X/C	CP	X/C	СР	X/C	CP	X/C	CP
η =	= 0.25	$\eta =$: 0.47	η :	= 0.64	η =	= 0.78
.075	.152	.075	492	.075	249	.075	388
.125	.123	.125	174	.125	165	.125	577
.175	017	.175	280	.225	534	.225	816
.225	031	.225	298	.325	-1.058	.325	743
.325	218	.325	283	.425	628	.425	674
.425	620	.425	586	.525	686	.525	801
.525	557	.525	645	.575	743	.575	-,290
.575	495	.575	673	.675	299	.675	181
.625	466	.625	840	.725	285		
.675	601	.725	287				
.725	597	.775	247				
.775	600	.825	188				
.825	325	.875	110				
.875	052	.975	.035				

.975 -.025

l

I

**

$\label{eq:appendix} \begin{array}{c} \text{APPENDIX C} \\ \text{SURFACE PRESSURE COEFFICIENTS, PYLONS ON, HP} \approx 40,000 \ \text{FT} \end{array}$

	M	α , deg
l	.754	7.6
2	.818	5.9
3	.843	5.2

Table C-1

TTA ON DESTRUCTION

14.14.1

and transformer see

International Action (International International Internat

NUN INNO

11.11.11.11.11.11.11

MINF =	.754					
HP=	40334					
PSINF =	385.5					
PRI =	370.4					
QBAR =	153.2					
ALPHA =	7.6					
		1 to a s				
	VIC	CD CD		CD	NIC	CD
= 0.25	<i>A/C</i>	Cr . 0.47	7/C	0.64	ллс — — —	. N 79
$\eta = 0.25$ ()25 1 11($\eta = 0.10$	1 540	η - 050	- 1 576	()5()	_1.838
120 = 1.10		-1.789	200	-1.370 -1.307	22()	-1.000
200 - 922	7 2 00	-1.034	300	- 859	300	- 748
250 - 715	7 300	- 850	400	-520	400	-429
300 - 588	8 400	- 635	450	- 474	. 100	- 390
400521	.500	479	.500	409	.500	378
.500	.550	441	.550	382	.550	392
.550427	7	379	.600	330	.600	383
.600405	5	396	.650	339	.650	351
.650381	.700	396	.700	334	.700	419
.700352	.750	269	.740	-,261	.750	304
.75034-	.800	269				
.85015-	.850	204				
.900 – .091	.900	159				
.984072	2 1.000	038				
		Lowe	r surface	a b		
X/C CP	X/C	CP	X/C	СР	X/C	CP
$\eta = 0.25$	$\eta = 0$: 0.47	$\eta = 0$: 0.64	η =	0.78
.075 .267	.075	017	.075	.091	.075	053
.125 .24.	.125	.054	.125	.054	.125	131
.1/5 .140) .1/5 L .22	048	,225	520	.220	232
.225 .08-	+ .220 > 205	100	.340 495	294	.040 405	313
.525056	n .343 195	1±7	.420	020 419	.42.)	-,412
.42024%	· .+23	524	.323	410	.323 575	369
575 - 307) .525) 575	570	.575	514	675	550
625 - 542	575	- 419	725	-208	.075	
675 - 500	025 - 725	- 156	. //	.200		
.725 - 400	775	043				
.775253	825	.044				
.825 - 103	.875	.157				
.875 .040	.975	.183				
.975 .033	3					

Table C-2

MINF =	.818
HP=	40385
PSINF =	384.5
PRI =	363.0
QBAR =	180.0
ALPHA =	5.9

-

-

Upper surface

X/C	СР	X/C	СР	X/C	СР	X/C	СР
η	= 0.25	$\eta =$	0.47	η =	= 0.64	η :	= 0.78
.025	771	.040	-1.139	.050	-1.181	.050	- 1.406
.120	- 1.009	.140	-1.440	.200	-1.285	.220	-1.274
.200	930	.200	-1.284	.300	-1.321	.300	-1.354
.250	841	.300	-1.334	.400	965	.400	837
.300	789	.400	804	.450	709	.450	571
.400	773	.500	411	.500	493	.500	391
.500	407	.550	350	.550	340	.550	286
.550	373	.600	299	.600	249	.600	261
.600	360	.650	337	.650	247	.650	248
.650	355	.700	337	.700	263	.700	341
.700	334	.750	267	.740	206	.750	257
.750	329	.800	267				
.850	139	.850	190				
.900	080	.900	144				
.984	063	1.000	.016				

X/C	CP	X/C	CP	X/C	CP	X/C	CP
η =	= 0.25	$\eta =$	().47	η :	= 0.64	η =	= ().78
.075	.247	.075	167	.075	032	.075	246
.125	.214	.125	028	.125	()34	.125	287
.175	.112	.175	129	.225	505	.225	344
.225	.059	.225	182	.325	329	.325	422
.325	122	.325	194	.425	384	.425	734
.425	220	.425	426	.525	552	.525	391
.525	356	.525	658	.575	720	.575	351
.575	492	.575	469	.675	286	.675	173
.625	572	.625	501	.725	236		
.675	550	.725	167				
.725	489	.775	061				
.775	278	.825	.002				
.825	140	.875	.113				
.875	000	.975	.211				
.975	.038						

Table C-3

A NUMBER OF STREET

ł

ALMAN & LOOP AND ALMAN ALMAN

100 100 til

.

Ξ

Ξ

≣

_

=

_

MINF =	.843					
HP=	40431					
PSINF = 1	383.7					
PRI =	362.7					
QBAR =	191.0					
ALPHA =	5.2					
		Uppe	er surface			
X/C CP	X/C	CP	X/C	СР	X/C	CP
$\eta = 0.25$	$\eta =$: 0.47	$\eta =$	= 0.64	$\eta =$	= 0.78
.025653	3 .040	-1.007	.050	-1.062	.050	-1.277
.120887	7	-1.300	.200	-1.189	.220	-1.158
.20084	.200	-1.173	.300	-1.211	.300	-1.284
.250 –.773	3	-1.220	.400	-1.180	.400	-1.131
.300 –.75	1.400	829	.450	-1.167	.450	983
.400 –.74	1.500	788	.500	775	.500	645
.500720) .550	757	.550	566	.550	562
.550 –.699	.600	384	.600	362	.600	390
.600461	.650	320	.650	256	.650	218
.650354	.700	320	.700	217	.700	237
.700313	.750	- 236	.740	175	.750	195
.750 –.313	.800	236				
.850 –.13-	4 .850	164				
.900 –.078	3.900	108				
.984063	3 1.000	.035				
		Lowe	er surface			
X/C CP	X/C	СР	X/C	СР	X/C	СР
$\eta = 0.25$	$\eta =$: 0.47	η =	= 0.64	$\eta =$	= 0.78
.075 .226	5 .075	253	.075	063	.075	303
.125 .18-	1.125	063	.125	038	.125	477
.175 .073	.175	162	.225	494	.225	376
.225 .045	5	204	.325	922	.325	422
.325 –.219	.325	206	.425	380	.425	731
.425 –.250	5 .425	434	.525	553	.525	313
.525313	.525	642	.575	726	.575	296
.575370) .575	687	.675	286	.675	160

82

.625

.675

.725

.775

.825

.875

.975

-.551

-.680

-.498

-.376

-.190

-.003

-.008

.625

.725

.775

.825

.875

.975

-.554

-.183

-.090

-.008

.106

.197

-.237

.725

APPENDIX D SURFACE PRESSURE COEFFICIENTS, PYLONS OFF, HP $\approx 20,000~FT$

	M	α , deg
]	.486	7.4
2	.495	8.1
3	.500	7.6
4	.642	4.3
5	.647	4.7
6	.651	4.3
7	.725	5.0
8	.742	3.3
9	.750	2.6
10	.767	2.7
11	.799	2.4
12	.799	2.7
13	.800	1.9
14	.801	4.8
15	.820	5.2
16	.845	1,9
17	.848	2.0
18	.851	1.0
19	.866	1.6
20	.866	1.7
21	.876	1.4

MINF =	.485
HP=	18919
PSINF =	1017.3
PRI =	1003.3
QBAR =	167.8
ALPHA =	7.4

the second se

Of Active to Act

A STREET

=

-

-

X/C	СР	X/C	CP	X/C	CP	X/C	СР
η :	= 0.25	$\eta =$	$\eta = 0.47$		$\eta = 0.64$		= 0.78
.025	-1.285	.040	-1.277	.050	-1.215	.050	-1.266
.120	724	.140	771	.200	679	.220	597
.200	624	.200	722	.300	695	.300	636
.250	545	.300	584	.400	472	.400	490
.300	526	.400	506	.450	427	.450	433
.400	428	.500	454	.500	434	.500	393
.500	371	.550	412	.550	422	.550	410
.550	356	.600	387	.600	357	.600	400
.600	322	.650	363	.650	360	.650	370
.650	210	.700	363	.700	401	.700	494
.700	098	.750	269	.740	327	.750	381
.750	098	.800	269				
.850	131	.850	215				
.900	()79	.900	098				
.984	042	1.000	.014				

Lower surface								
X/C	СР	X/C	СР	X/C	CP	X/C	СР	
η :	= 0.25	$\eta =$	0.47	$\eta =$	= ().64	η =	= 0.78	
.075	.239	.075	.167	.075	.155	.075	.140	
.125	.221	.125	.143	.125	.098	.125	.011	
.175	.140	.175	016	.225	068	.225	084	
.225	.082	.225	081	.325	125	.325	111	
.325	007	.325	068	.425	150	.425	185	
.425	165	.425	192	.525	207	.525	186	
.525	326	.525	221	.575	263	.575	168	
.575	325	.575	27()	.675	- 142	.675	053	
.625	392	.625	274	.725	101			
.675	098	.725	098					
.725	241	.775	020					
.775	096	.825	.111					
.825	.001	.875	.205					
.875	.110	.975	.147					
.975	.029							

84

MIN	F =	.495					
HP=	2(0132					
PSIN	F =	967.1					
PRI	=	952.3					
QBA	R =	166.1					
ALPI	IA =	8.1					
			Upper	· surface			
X/C	СР	X/C	CP	X/C	СР	X/C	СР
η	$\eta = 0.25$ $\eta = 0.47$			η =	= 0.64	$\eta =$: 0.78
.025	-1.321	.040	-1.404	.050	-1.334	.050	1.409
.120	769	.140	806	.200	721	.220	638
.200	655	.200	746	.300	734	.300	680
.250	587	.300	617	.400	506	.400	510
.300	543	.4()()	521	.450	454	.450	440
.400	459	.500	444	.500	471	.500	423
.500	388	.550	-,413	.550	427	.550	419
.550	327	.600	391	.600	366	.600	408
.600	331	.650	350	.650	375	.650	386
.650	268	.700	350	.700	404	.700	506
.700	205	.750	245	.740	328	.750	400
.750	239	.800	245				
.850	125	.850	186				
.9()()	062	.900	158				
.984	()32	1.000	.()()4				

X/C	СР	X/C	СР	X/C	CP	X/C	CP
$\eta =$	= 0.25	$\eta =$	().47	η =	$\eta = 0.64$		= 0.78
.075	.259	.075	.215	.075	.175	.075	.167
.125	.251	.125	.169	.125	112	.125	.064
.175	.149	.175	.008	.225	057	.225	072
.225	.108	.225	036	.325	123	.325	083
.325	.005	.325	066	.425	134	.425	175
.425	184	.425	198	.525	200	.525	172
.525	383	.525	229	.575	267	.575	167
.575	385	.575	281	.675	<u> </u>	.675	067
.625	452	.625	294	.725	()99		
.675	299	.725	306				
.725	332	.775	034				
.775	144	.825	.104				
.825	038	.875	.208				
.875	.066	.975	.169				
.975	.038						

ł

स्ताय गोता का क्वीकी राजा राजा कर के कि

I

≣

:

.

:

-

MINF	F =	.500					
HP=	1	997()					
PSIN	F =	973.7					
PRI =	:	958.9					
QBAI	R =	170.6					
ALPF	IA =	7.6					
			Unner	rsprface			
NIC	CD	VIC	Ср	VIC	CP	X/C	CP
AC	0.25	AC	0.47	AC		AIC	0.70
$\eta =$	= 0.25	$\eta =$	0.47	η =	= 0.64	$\eta =$: 0.78
.025	-1.312	.040	-1.315	.050	-1.257	.050	-1.320
.120	741	.140	778	.200	687	.220	610
.200	648	.200	736	.300	727	.300	654
.250	572	.300	599	.400	496	.400	515
.300	530	.400	529	.450	438	.450	429
.400	458	.500	467	.500	449	.500	408
.500	383	.550	426	.550	408	.550	434
.550	337	.600	394	.600	364	.600	371
.600	336	.650	351	.650	394	.650	394
.650	219	.700	351	.700	391	.700	510
.700	102	.750	283	.740	330	.75()	392
.750	102	.800	283				
.850	150	.850	217				
.900	080	.9()()	102				
.984	035	1.000	.000				

Lower surface								
X/C	СР	X/C	СР	X/C	СР	X/C	CP	
η =	= 0.25	$\eta =$	0.47	η =	= 0.64	$\eta = 0.78$		
.075	.239	.075	.175	.075	.151	.075	.124	
.125	.220	.125	.151	.125	.089	.125	.033	
.175	.133	.175	005	.225	088	.225	067	
.225	.087	.225	035	.325	137	.325	085	
.325	004	.325	088	.425	142	.425	187	
.425	163	.425	186	.525	213	.525	193	
.525	337	.525	253	.575	285	.575	187	
.575	318	.575	281	.675	154	.675	067	
.625	385	.625	277	.725	092			
.675	102	.725	102					
.725	- 247	.775	024					
.775	098	.825	.082					
.825	.001	.875	.197					
.875	.100	.975	.127					
.975	.031							

86

Ē

ł

į

3

_

MINF =	.(42					
HP=	20024						
PSINF =	971.5	5					
PRI =	945.5	5					
QBAR =	280.4	ŀ					
ALPHA =	4.3	,					
			Upper	surface			
X/C	СР	X/C	CP	X/C	СР	X/C	СР
$\eta = 0$.25	$\eta =$	0.47	$\eta =$	0.64	$\eta =$	0.78
.025 —	1.013	.040	881	.050	816	.050	811
.120 -	593	.140	593	.200	530	.220	462
.200 -	523	.200	597	.300	617	.300	557
.250 -	471	.300	504	.400	401	.400	408
.300 -	436	.400	446	.450	374	.450	358
.400 -	4()1	.500	406	.500	403	.500	351
.500 -	346	.550	374	.550	364	.550	359
.550 -	307	.600	356	.600	333	.600	327
.600 -	310	.650	327	.650	338	.650	315
.650 -	215	.700	327	.700	365	.700	457
.700 -	120	.750	268	.740	295	.750	356
.750 -	120	.800	268				
.850 -	151	.850	193				
.900 -	086	.900	120				
.984 -	035	1.000	.036				

-

ā

_

X/C	СР	X/C	CP	X/C	CP	X/C	СР
η =	= 0.25	$\eta =$	0.47	η :	= 0.64	$\eta =$	= ().78
.075	.151	.075	029	.075	105	.075	146
.125	.147	.125	019	.125	096	.125	194
.175	.046	.175	171	.225	249	.225	252
.225	002	.225	197	.325	268	.325	239
.325	094	.325	204	.425	261	.425	306
.425	226	.425	321	.525	319	.525	284
.525	355	.525	330	.575	376	.575	267
.575	359	.575	376	.675	213	.675	
.625	413	.625	381	.725	150		
.675	12()	.725	120				
.725	260	.775	054				
.775	138	.825	.085				
.825	034	.875	.188				
.875	.069	.975	.169				
.975	.032						

MINF =	.647
HP=	20225
PSINF =	963.4
PRI =	930.3
QBAR =	282.3
ALPHA =	4.7

Upper surface

i

ĸ

THE REPORT

.

national and a second second

1.00104-00-1

.

			00	140		NIC	CD
X/C	CP	X/C	CP	X/C	CP	X/C	CP
η	= 0.25	$\eta =$	0.47	$\eta =$: 0.64	$\eta =$	0.78
.025	-1.020	.040	-1.069	.050	884	.050	882
.120	626	.140	623	.200	564	.220	487
.200	545	.200	621	.300	646	.300	589
.250	501	.300	532	.400	432	.400	430
.300	461	.400	458	.450	391	.450	372
.400	414	.500	412	.500	425	.500	373
.500	368	.550	380	.550	382	.550	370
.550	322	.600	368	.600	336	.600	346
.600	324	.650	333	.650	349	.650	338
.650	277	.700	333	.700	377	.700	469
.700	231	.750	249	.740	304	.750	364
.750	277	.800	_,249				
.850	149	.850	187				
.900	085	.900	164				
.984	045	1.000	.020				

Lower surface

X/C	СР	X/C	СР	X/C	СР	X/C	CP
$\eta =$	= 0.25	$\eta =$	().47	η =	= 0.64	$\eta =$	0.78
.075	.150	.075	023	.075	115	.075	143
.125	.139	.125	()24	.125	107	.125	197
.175	.047	.175	181	.225	261	.225	265
.225	009	.225	225	.325	289	.325	258
.325	114	.325	219	.425	275	.425	322
.425	278	.425	342	.525	341	.525	298
.525	442	.525	362	.575	407	.575	287
.575	455	.575	404	.675	231	.675	139
.625	500	.625	418	.725	167		
.675	326	.725	367				
.725	360	.775	077				
.775	222	.825	.065				
.825	104	.875	.170				
.875	.()14	.975	.179				
975	.030						

4

i

7.8

MINF =	-	.651					
HP=	20134						
PSINF :	= 967	'.0					
PRI =	936	o. 1					
QBAR :	= 286	.7					
ALPHA	ν = 4	.3					
			Upper	surface			
X/C	СР	X/C	CP	X/C	СР	X/C	СР
η =	= 0.25	$\eta =$	0.47	$\eta =$	0.64	$\eta =$	0.78
.025	-1.014	.040	982	.050	835	.050	846
.120	610	.140	615	.200	541	.220	477
.200	- 536	.200	626	.300	634	.300	582
.250	506	.300	526	.400	405	.400	437
.300	452	.400	450	.450	390	.450	373
.400	418	.500	404	.500	426	.500	362
.500	360	.550	401	.550	376	.550	387
.550	321	.600	353	.600	335	.600	352
.600	322	.650	350	.650	357	.650	327
.650	229	.700	350	.700	388	.700	483
.700	136	.750	277	.740	308	.750	406
.750	136	.800	277				
.850	176	.850	215				
.900	107	.900	136				
.984	060	1.000	.009				

5

.

Ĵ,

X/C	СР	X/C	СР	X/C	CP	X/C	СР
$\eta =$	= 0.25	$\eta =$	0.47	$\eta =$	0.64	$\eta =$: 0.78
.075	.137	.075	044	.075	116	.075	159
.125	.126	.125	046	.125	117	.125	212
.175	.033	.175	193	.225	256	.225	264
.225	024	.225	224	.325	279	.325	244
.325	109	.325	219	.425	275	.425	316
.425	247	.425	343	.525	339	.525	284
.525	375	.525	351	.575	404	.575	288
.575	377	.575	395	.675	224	.675	145
.625	415	.625	395	.725	164		
.675	136	.725	136				
.725	263	.775	070				
.775	155	.825	.072				
.825	050	.875	.162				
.875	.055	.975	.146				
.975	.017						

-

e u ádi dunhai

STATE AND ADDRESS

, nilitati kanal

-

i

_

-

-

-

MINF	=	.725					
HP=	1	9748					
PSINF	=	982.8					
PRI =		944.2					
QBAR	=	361.7					
ALPH.	A =	5.0					
			Upper	surface			
X/C	СР	X/C	CP	X/C	СР	X/C	CP
$\eta =$	0.25	$\eta =$	0.47	$\eta =$	= 0.64	$\eta =$	0.78
.025	858	.040	-1.387	.050	-1.252	.050	841
.120	674	.140	781	.200	601	.220	533
.200	574	.200	637	.300	710	.300	632
.250	539	.300	557	.400	460	.400	487
.300	484	.400	501	.450	420	.450	409
.400	453	.500	448	.500	461	.500	402
.500	382	.550	412	.550	405	.550	392
.550	351	.600	386	.600	363	.600	362
.600	342	.650	354	.650	365	.650	354
.650	242	.700	354	.700	392	.700	514
.700	141	.750	282	.740	327	.750	391
.750	141	.800	282				
.850	167	.850	204				
.900	097	.900	141				
.984	052	1.000	.026				

Lower surface

X/C	СР	X/C	CP	X/C	CP	X/C	CP		
η =	= 0.25	η =	= 0.47	η	= 0.64	$\eta =$	$\eta = 0.78$		
.075	.175	.075	015	.075	092	.075	126		
.125	.157	.125	013	.125	089	.125	211		
.175	.075	.175	183	.225	254	.225	265		
.225	.023	.225	215	.325	295	.325	270		
.325	086	.325	212	.425	276	.425	334		
.425	247	.425	343	.525	357	.525	317		
.525	399	.525	364	.575	438	.575	314		
.575	411	.575	420	.675	244	.675	149		
.625	470	.625	439	.725	167				
.675	141	.725	141						
.725	313	.775	069						
.775	187	.825	.063						
.825	074	.875	.159						
.875	.040	.975	.157						

90

.975

.015

i

1

- 10 MA 4 -

CONTRACTOR NUMBER

Finder of A holds for a first

101

÷

MINF =	=	.742					
HP=	203	79					
PSINF	= 9	57.1					
PRI =	9	06.9					
QBAR	= 3	69.1					
ALPHA	۱ =	3.3					
			Uppers	surface			
X/C	CP	X/C	CP	X/C	СР	X/C	СР
n =	: 0.25	n =	0.47	n =	0.64	$\eta =$	0.78
.025	792	.040	-1.128	.050	661	.050	683
.120	588	.140	561	.200	532	.220	458
.200	527	.200	607	.300	659	.300	582
.250	492	.300	516	.4()()	421	.400	423
.300	456	.400	452	.450	384	.450	365
.400	421	.500	418	.500	427	.500	371
.500	375	.550	389	.550	383	.550	372
.550	328	.600	367	.600	340	.600	345
.600	328	.650	344	.650	351	.650	331
.650	286	.700	344	.700	391	.700	490
.700	244	.750	259	.740	300	.750	370
.750	299	.800	259				
.850	161	.850	199				
.900	096	.900	170				
.984	048	1.000	.()4()				
			Luuran	andaaa			
NUC	CD	NIC	Lower	surface	CD	N/C	CP
X/C	CP	λ/C	CP 0.17	X/C	CP 0.64	7/C	0.78
η =	= 0.25	$\eta =$	125	$\eta = 0.75$	0.04	$\eta = 0.75$	0.76
.075	.100	.075	135	.073	200	.075	298
.125	.092	.125	107	.120 555	213	.120 115	+U 270
.175	.004	.175	212	,220	3/1	,220 275	2/0
.225	054	.225	311	.325	392	.323	
.325	168	.325	294	.425		.420	415

.875	053
.975	012

-.168

-.321

-.472

-.557

-.521

-.347

-.468

-.264

-.158

.325

.425

.525

.575

.625

.675

.725

.775

.825

.425

.525

.575

.625

.725

.775

.825

.875

.975

-.439

-.441

-.497

-.507

-.377

-.096 .029

.130

.169

.525

.575

.675

-.438

-.520

-.280

.725 – .194

.525

.575

.675

-.376

-.370

-.185

C-2

MINF =	.750
HP=	20339
PSINF =	958.7
PRI =	914.0
QBAR =	378.0
ALPHA =	2.6

Upper surface

the set of the shares of the second

. .=

.--

-

_

_

=

X/C	СР	X/C	CP	X/C	СР	X/C	СР
η =	= 0.25	$\eta =$	0.47	$\eta =$	0.64	$\eta =$: 0.78
.025	759	.040	995	.050	596	.050	577
.120	533	.140	535	.200	487	.220	428
.200	508	.200	583	.300	639	.300	562
.250	472	.300	506	.400	411	.400	408
.300	458	.400	442	.450	373	.450	349
.400	431	.500	429	.500	414	.500	355
.500	370	.550	398	.550	389	.550	372
.550	338	.600	362	.600	344	.600	345
.600	328	.650	348	.650	360	.650	335
.650	24I	.700	348	.700	409	.700	511
.700	155	.750	322	.740	320	.750	411
.750	155	.800	322				
.850	196	.850	235				
.900	132	.900	155				
.984	053	1.000	.027				

Lower surface

X/C	СР	X/C	СР	X/C	СР	X/C	СР
η =	= 0.25	$\eta =$	0.47	η =	= ().64	$\eta =$: 0.78
.075	.046	.075	183	.075	305	.075	376
.125	.063	.125	139	.125	250	.125	395
.175	036	.175	308	.225	412	.225	432
.225	089	.225	328	.325	4()7	.325	384
.325	177	.325	317	.425	370	.425	431
.425	312	.425	437	.525	450	.525	387
.525	406	.525	431	.575	529	.575	379
.575	407	.575	475	.675	275	.675	171
.625	445	.625	479	.725	181		
.675	155	.725	155				
.725	302	.775	098				
.775	194	.825	.006				
.825	113	.875	.081				
.875	036	.975	.145				
.975	037						

MINF =	.7	66					
HP=	2()4()9						
PSINF =	956.0						
PRI =	903.2						
QBAR =	390.4						
ALPHA =	2.7						
			Upper	· surface			
X/C C	'P	X/C	CP	X/C	СР	X/C	CP
$\eta = 0.2$	25	$\eta = 0$	0.47	$\eta =$	0.64	$\eta =$	0.78
.0250	657	.040	909	.050	637	.050	732
.120:	595	.140	694	.200	566	.220	498
.200	554	.200	607	.300	773	.300	737
.250 –	517	.300	520	.400	467	.400	469
.300	488	.400	502	.450	428	.450	419
.400	472	.500	486	.500	490	.500	423
.500	430	.550	457	.550	444	.550	432
.550	391	.600	442	.600	428	.600	407
.600	382	.650	418	.650	419	.650	378
.650 .	310	.700	418	.700	469	.700	.578
.700 1.	002	.750	367	.740	388	.750	449
.750 –.	177	.800	367				
.850	212	.850	246				
.900 –.	153	.900	177				
.984 –.	065	1.000	.022				

Lower surface

X/C	СР	X/C	CP	X/C	CP	X/C	CP
$\eta =$	= 0.25	$\eta =$	0.47	$\eta =$: ().64	$\eta =$	0.78
.075	.057	.075	189	.075	310	.075	- ,396
.125	.061	.125	142	.125	251	.125	- 442
.175	048	.175	322	.225	441	.225	_,498
.225	081	.225	350	.325	501	.325	467
.325	178	.325	320	.425	440	.425	495
.425	353	.425	488	.525	524	.525	470
.525	460	.525	512	.575	609	.575	,494
.575	- ,449	.575	518	.675	308	.675	190
.625	487	.625	547	.725	207		
.675	177	.725	177				
.725	346	.775	126				
,775	275	.825	031				
.825	163	.875	.049				
.875	052	.975	.102				

.975 –.066

2

7

-

11 1 1

the second processor

A second s

:

-

MINF =	.799
HP=	20403
PSINF =	956.2
PRI =	892.6
QBAR =	427.6
ALPHA =	2.4

			Upper	r surface			
X/C	CP	X/C	СР	X/C	СР	X/C	СР
η =	: 0.25	$\eta =$	0.47	η =	= 0.64	η =	= 0.78
.025	606	.040	-1.011	.050	725	.050	803
.120	566	.140	499	.200	504	.220	453
.200	536	.200	574	.300	889	.300	588
.250	507	.300	515	.400	432	.400	438
.300	467	.400	456	.450	393	.450	373
.400	444	.500	439	.500	451	.500	381
.500	397	.550	412	.550	406	.550	381
.550	362	.600	392	.600	362	.600	348
.600	346	.650	373	.650	366	.650	330
.650	359	.700	373	.700	418	.700	518
.700	310	.750	318	.740	300	.750	357
.750	366	.800	318				
.850	198	.850	219				
.900	131	.9()()	173				
.984	058	1.000	.048				

			Lower	r surface			
X/C	СР	X/C	СР	X/C	СР	X/C	СР
η =	= 0.25	$\eta =$	= 0.47	η =	= ().64	$\eta =$	= ().78
.075	.067	.075	204	.075	341	.075	411
.125	.051	.125	159	.125	287	.125	468
.175	030	.175	329	.225	472	.225	496
.225	094	.225	367	.325	475	.325	426
.325	184	.325	336	.425	411	.425	552
.425	409	.425	531	.525	593	.525	441
.525	451	.525	509	.575	775	.575	455
.575	524	.575	- 547	.675	309	.675	213
.625	647	.625	657	.725	218		
.675	442	.725	224				
.725	383	.775	101				
.775	314	.825	002				
.825	209	.875	.082				
.875	103	.975	.181				
.975	073						

94

.

MINF =	.799					
HP=	20477					
PSINF =	953.2					
PRI =	890.4					
QBAR =	425.8					
ALPHA =	2.7					
		Uppe	r surface			
X/C C	'P X/C	CP	X/C	СР	X/C	СР
$\eta = 0.2$	$15 \eta =$	0.47	$\eta =$	0.64	$\eta =$	0.78
.0250	529 .040	929	.050	905	.050	873
.1200	505 .140	637	.200	557	.220	483
.200	.200	553	.300	893	.300	610
.250 –	500 .300	515	.400	435	.400	445
.3004	471 .400	461	.450	391	.450	375
.4004	441 .500	438	.500	446	.500	385
.500	.550	409	.550	403	.550	388
.550 –	.600	388	.600	356	.600	355
.600 – .	.650	361	.650	368	.650	338
.650	311 .700	361	.700	417	.7()()	541
.700 –	.750 .750	284	.740	306	.750	381
.750	.800	284				
.850	.850	205				
.900 –.	.900	168				
.984 –.0	045 1.000	.047				

X/C	CP	X/C	CP	X/C	СР	X/C	CP
$\eta =$	= 0.25	$\eta =$	0.47	$\eta =$: 0.64	$\eta =$	0.78
.075	.085	.075	189	.075	318	.075	390
.125	.078	.125	147	.125	266	.125	449
.175	011	.175	316	.225	459	.225	482
.225	073	.225	356	.325	470	.325	418
.325	162	.325	328	.425	402	.425	542
.425	394	.425	520	.525	579	.525	431
.525	464	.525	504	.575	756	.575	441
.575	520	.575	548	.675	301	.675	198
.625	646	.625	672	.725	206		
.675	335	.725	349				
.725	476	.775	112				
.775	291	.825	013				
.825	202	.875	.070				
.875	113	.975	.163				
.975	083						

to the second statement of the statement of the second second second second second second second second second

Į

-

MINF =	.801
HP=	20433
PSINF =	955.0
PRI =	902.2
QBAR =	428.3
ALPHA =	1.9

			Uppe	r surface			
X/C	СР	X/C	СР	X/C	СР	X/C	CP
$\eta =$	= ().25	$\eta =$	0.47	$\eta =$: 0.64	$\eta =$	0.78
.025	593	.040	828	.050	483	.050	462
.120	538	.140	445	.200	517	.220	425
.200	514	.200	601	.300	846	.300	567
.250	475	.300	509	.400	423	.400	430
.300	454	.400	466	.450	389	.450	369
.400	439	.500	444	.500	445	.500	395
.500	391	.550	416	.550	403	.550	383
.550	345	.600	371	.600	350	.600	352
.600	349	.650	364	.650	372	.650	339
.650	256	.700	364	.700	44 l	.700	569
.700	163	.750	334	.740	340	.750	419
.750	- 163	.800	334				
.850	222	.850	246				
.900	162	.900	163				
.984	052	1.000	.039				

			Lowe	r surface			
X/C	CP	X/C	CP	X/C	СР	X/C	СР
η =	= 0.25	$\eta =$	0.47	η =	= 0.64	$\eta =$: 0.78
.075	.036	.075	236	.075	366	.075	448
.125	.()44	.125	173	.125	305	.125	497
.175	058	.175	337	.225	498	.225	522
.225	()96	.225	370	.325	473	.325	438
.325	19()	.325	338	.425	406	.425	546
.425	333	.425	506	.525	580	.525	431
.525	415	.525	475	.575	755	.575	428
.575	429	.575	536	.675	301	.675	198
.625	455	.625	516	.725	187		
.675	163	.725	- 163				
.725	304	.775	112				
.775	222	.825	022				
.825	159	.875	.044				
.875	097	.975	.101				
.975	077						

96

10 1000

Ē

2

2

i i

MINF =	.801					
HP=	21039					
PSINF =	930.9					
PRI =	885.5					
QBAR =	418.3					
ALPHA =	4.8					
		Uppo	er surface			
X/C CP	X/C	CP	X/C	СР	X/C	СР
$\eta = 0.25$	$\eta =$: 0.47	η =	= 0.64	η :	= 0.78
.02567	3 .040	-1.115	.050	-1.186	.050	-1.315
.120 –.890	.140	-1.314	.200	-1.221	.220	-1.011
.20073	5	-1.176	.300	676	.300	508
.25066	2	522	.400	351	.4()()	374
.30058	0.400	422	.450	357	.450	361
.40046	2	418	.500	410	.500	381
.50039	8	394	.550	385	.550	388
.55035	4 .600	374	.600	346	.600	351
.60034	0.650	357	.650	348	.650	341
.65024	4	357	.700	392	.700	541
.70014	8	283	.740	311	.750	389
.750 –.14	.800	283				
.850 –.16	3	199				
.90008	7.900	148				
.984 – .04	2 1.000	.058				

X/C	СР	X/C	CP	X/C	СР	X/C	СР
$\eta =$	= 0.25	$\eta =$	= 0.47	η	= 0.64	η :	= 0.78
.075	.187	.075	021	.075	102	.075	146
.125	.181	.125	007	.125	112	.125	233
.175	.093	.175	176	.225	287	.225	299
.225	.045	.225	225	.325	331	.325	298
.325	077	.325	225	.425	309	,425	401
.425	255	.425	387	.525	436	.525	352
.525	408	.525	406	.575	563	.575	364
.575	495	.575	477	.675	255	.675	147
.625	489	.625	506	.725	166		
.675	148	.725	148				
.725	361	.775	071				
.775	226	.825	.043				
.825	115	.875	.132				
.875	005	.975	.179				
.975	013						

MINF =	.820
HP=	19372
PSINF =	998.4
PRI =	948.4
QBAR =	470.2
ALPHA =	5.2

			Uppc	er surface			
X/C	СР	X/C	CP	X/C	СР	X/C	СР
$\eta =$	= 0.25	$\eta =$	0.47	η =	= 0.64	η :	= 0.78
.025	685	.040	-1.080	.050	-1.151	.050	148
.120	892	.140	-1.163	.200	-1.156	.220	-1.113
.200	824	.200	-1.139	.300	768	.300	148
.250	742	.300	148	.400	638	.400	679
.300	704	.400	612	.450	481	.450	421
.400	_148	.500	388	.500	401	.500	351
.500	433	.550	343	.550	311	.550	316
.550	342	.600	323	.600	273	.600	261
.600	332	.650	316	.650	277	.650	280
.650	240	.700	316	.700	324	.700	428
.700	148	.750	267	.740	276	.750	329
.750	148	.800	267				
.850	161	.850	196				
.900	095	.9()()	148				
.984	050	1.000	.052				

THE REPORT OF

The Meession of the complete test of the complete states of the

; , =

2

1 1 1

-

_

Lower surface								
X/C	СР	X/C	CP	X/C	СР	X/C	CP	
$\eta = 0.25$		$\eta =$	$\eta = 0.47$		$\eta = 0.64$		$\eta = 0.78$	
.075	.185	.075	.003	.075	085	.075	130	
.125	.186	.125	.012	.125	096	.125	219	
.175	.101	.175	160	.225	272	.225	307	
.225	.058	.225	211	.325	327	.325	301	
.325	062	.325	207	.425	308	.425	449	
.425	245	.425	388	.525	493	.525	370	
.525	395	.525	397	.575	678	.575	396	
.575	435	.575	468	.675	260	.675	166	
.625	487	.625	595	.725	175			
.675	148	.725	148					
.725	342	.775	079					
.775	205	.825	.019					
.825	092	.875	.112					
.875	.015	.975	.168					

.975 -.002

ā

Ì

MINF =	=	.845					
HP=	20	625					
PSINF	=	947.3					
PRI =		876.8					
QBAR	=	473.4					
ALPHA	\ =	1.9					
			Unper	surface			
X/C	СР	X/C	СР	X/C	СР	X/C	СР
n =	0.25	$\eta =$	0.47	$\eta =$	0.64	$\eta =$	0.78
.025	456	.040	790	.050	732	.050	841
.120	647	.14()	-1.019	.200	464	.220	496
.200	569	.200	552	.300	885	.300	971
.250	548	.300	476	.400	528	.400	
.300	526	.400	484	.450	443	.450	361
.400	507	.500	512	.500	531	.500	392
.500	417	.550	434	.550	426	.550	409
.550	387	.600	,424	.600	378	.600	357
.600	377	.650	392	.650	379	.650	332
.650	386	.700	392	.700	461	.700	611
.700	352	.750	338	.740	325	.750	378
.750	419	.800	338				
.850	211	.850	222				
.900	142	.900	162				
.984	052	1.000	.050				

Lower surface

X/C	СР	X/C	СР	X/C	CP	X/C	СР	
$\eta = 0.25$		$\eta =$	$\eta = 0.47$		$\eta = 0.64$		$\eta = 0.78$	
.075	.067	.075	238	.075	368	.075	435	
.125	.048	.125	185	.125	305	.125	567	
.175	050	.175	357	,225	512	.225	674	
.225	054	.225	377	.325	617	.325	637	
.325	304	.325	314	.425	628	.425	541	
.425	259	.425	640	.525	670	.525	628	
.525	598	.525	624	.575	711	.575	527	
.575	570	.575	572	.675	296	.675	206	
.625	552	.625	636	.725	194			
.675	548	.725	238					
.725	452	.775	143					
.775	370	.825	065					
.825	249	.875	.010					
.875	127	.975	.133					
075	107							

.975 –.107

-

.

-

1

A 1 () M 1 (

A (photestania in inclusion)

• • • •

Ŧ

_

=

MINF =	.848
HP=	20641
PSINF =	946.7
PRI =	875.8
QBAR =	476.3
ALPHA =	2.0

			Uppe	r surface			
X/C	CP	X/C	СР	X/C	СР	X/C	СР
η =	= 0.25	$\eta =$	0.47	$\eta =$: 0.64	η :	= ().78
.025	466	.040	756	.050	752	.050	892
.120	658	.140	-1.028	.200	725	.220	367
.200	573	.200	574	.300	697	.300	- 1.000
.250	544	.300	542	.400	499	.400	463
.300	533	.400	434	.450	414	.450	422
,400	518	.500	486	.500	524	.500	383
.500	395	.550	432	.550	447	.550	410
.550	363	.600	421	.600	382	.600	357
.600	352	.650	386	.650	376	.650	329
.650	366	.700	386	.700	462	.700	608
.700	381	.750	307	.740	330	.750	388
.750	386	.800	307				
.850	207	.850	212				
.900	139	.900	162				
.984	044	1.000	.()5()				

			Lowe	r surface				
X/C	СР	X/C	СР	X/C	СР	X/C	СР	
η =	= 0.25	$\eta = 0$	$\eta = 0.47$		$\eta = 0.64$		$\eta = 0.78$	
.075	.084	.075	230	.075	355	.075	426	
.125	.068	.125	179	.125	290	.125	547	
.175	040	.175	357	.225	505	.225	667	
.225	030	.225	374	.325	610	.325	621	
.325	293	.325	307	.425	614	.425	543	
.425	279	.425	624	.525	673	.525	623	
.525	567	.525	611	.575	732	.575	602	
.575	550	.575	564	.675	307	.675	196	
.625	574	.625	655	.725	195			
.675	454	.725	302					
.725	546	.775	165					
.775	372	.825	088					
.825	254	.875	010					
.875	135	.975	.098					
.975	109							
MINF =	.851							
---------------	--------------------	-------	----------	------	----------	-------		
HP=	20621							
PSINF =	947.5							
PRI =	882.6							
QBAR =	480.1							
ALPHA =	1.0							
			C					
		Upper	surface					
X/C CI	P X/C	CP	X/C	CP	X/C	CP		
$\eta = 0.23$	5 $\eta =$	0.47	$\eta =$	0.64	$\eta =$	0.78		
.0253	78 .040	586	.050	368	.050	181		
.1205	25 .140	525	.200	496	.220	489		
.2005	28 ,200	510	.300	920	.300	868		
250 4	81 .300	467	.400	441	.400	- 449		
300 - 4	50 .400	541	.450	396	.450	360		
400 - 4	65 500	450	.500	454	.500	371		
500 - 4	49 .550	411	.550	422	.550	409		
550 - 3	83 .600	428	.600	373	.600	351		
600 - 3	66 650	- 381	.650	378	.650	339		
650 - 2	74 700	381	.700	479	.700	593		
700 - 1	81 750	- 363	740	375	.750	496		
750 1	81 800	- 363						
.7501	01 .000 120 850	245						
.6.02	<u></u>	240						
.900 –.1	.64 .900	181						
.984 –.0	65 1.000	.036						

-

-

Lower surface

X/C	CP	X/C	CP	X/C	CP	X/C	CP	
$\eta =$: 0.25	$\eta =$	$\eta = 0.47$		$\eta = 0.64$		$\eta = 0.78$	
.075	011	.075	309	.075	432	.075	563	
.125	.020	.125	238	.125	358	.125	620	
.175	076	.175	4()4	.225	553	.225	665	
.225	118	.225	405	.325	710	.325	774	
.325	234	.325	332	.425	701	.425	595	
.425	385	.425	637	.525	713	.525	567	
.525	493	.525	629	.575	724	.575	378	
.575	476	.575	555	.675	281	.675	194	
.625	504	.625	631	.725	181			
.675	181	.725	181					
.725	338	.775	152					
.775	277	.825	080					
.825	203	.875	011					
.875	144	.975	.049					
.975	112							

MINF =	.866
HP=	20583
PSINF =	949.0
PRI =	871.5
QBAR =	498.2
ALPHA =	1.6

X/C	СР	X/C	СР	X/C	CP	X/C	CP
η =	= 0.25	$\eta =$	0.47	η =	= 0.64	$\eta =$	0.78
.025	385	.040	607	.050	648	.050	800
.120	608	.140	943	.200	701	.220	501
.200	555	.200	545	.300	849	.300	877
.250	517	.300	551	.400	514	.400	515
.300	527	.400	526	.450	466	.450	453
.400	550	.500	582	.500	554	.500	382
.500	515	.550	462	.550	371	.550	382
.550	401	.600	367	.600	417	.600	338
.600	373	.650	362	.650	380	.650	312
.650	379	.700	362	.700	476	.700	575
.700	363	.750	353	.740	368	.750	505
.750	448	.800	353				
.850	203	.850	213				
.900	132	.900	138				
.984	048	1.000	.050				

Lower surface

СР	X/C	СР	X/C	СР	X/C	СР
= 0.25	$\eta =$	0.47	$\eta =$: 0.64	$\eta =$	= 0.78
.069	.075	247	.075	381	.075	454
.054	.125	196	.125	308	.125	566
060	.175	391	.225	538	.225	633
034	.225	387	.325	654	.325	716
281	.325	304	.425	643	.425	561
385	.425	600	.525	686	.525	693
472	.525	625	.575	730	.575	814
550	.575	539	.675	358	.675	188
535	.625	697	.725	239		
603	.725	279				
478	.775	182				
413	.825	124				
272	.875	063				
132	.975	.071				
	CP = 0.25 .069 .054 060 034 281 385 472 550 535 603 478 413 272 132	$\begin{array}{cccc} CP & X/C \\ = 0.25 & \eta = \\ .069 & .075 \\ .054 & .125 \\060 & .175 \\034 & .225 \\281 & .325 \\385 & .425 \\472 & .525 \\550 & .575 \\535 & .625 \\603 & .725 \\478 & .775 \\413 & .825 \\272 & .875 \\132 & .975 \end{array}$	$\begin{array}{ccccc} CP & X/C & CP \\ = 0.25 & \eta = 0.47 \\ .069 & .075 &247 \\ .054 & .125 &196 \\060 & .175 &391 \\034 & .225 &387 \\281 & .325 &304 \\385 & .425 &600 \\472 & .525 &625 \\550 & .575 &539 \\535 & .625 &697 \\603 & .725 &279 \\478 & .775 &182 \\413 & .825 &124 \\272 & .875 &063 \\132 & .975 & .071 \end{array}$	CPX/CCPX/C= 0.25 $\eta = 0.47$ $\eta =$.069.075 247 .075.054.125 196 .125 060 .175 391 .225 034 .225 387 .325 281 .325 304 .425 385 .425 600 .525 472 .525 625 .575 550 .575 539 .675 535 .625 697 .725 603 .725 279 478 .775 182 413 .825 124 272 .875 063 132 .975.071	CPX/CCPX/CCP $= 0.25$ $\eta = 0.47$ $\eta = 0.64$.069.075 247 .075 381 .054.125 196 .125 308 060 .175 391 .225 538 034 .225 387 .325 654 281 .325 304 .425 643 385 .425 600 .525 686 472 .525 625 .575 730 550 .575 539 .675 358 535 .625 697 .725 239 603 .725 279 478 .775 182 413 .825 124 272 .875 063 132 .975.071 712 712	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

.975 – .097

•

-

_

Ξ

2

1 1 1

_

Table D-20

MINF =	:	.866					
HP=	2076	5					
PSINF =	= 94	1.7					
PRI =	86	4.3					
QBAR :	= 49	4.7					
ALPHA	. =	1.7					
			Uppe	r surface			
X/C	CP	X/C	СР	X/C	СР	X/C	СР
n =	= 0.25	n =	0.47	n =	0.64	$\eta =$	0.78
.025	394	.040	686	.050	675	.050	838
.120	616	.140	967	.200	716	.220	683
.200	578	.200	572	.300	798	.300	855
250	508	.300	568	.400	547	.400	490
.300	532	.400	536	.450	478	.450	339
.400	553	.500	583	.500	539	.500	334
.500	525	.550	460	.550	352	.550	404
.550	416	.600	334	.600	377	.600	368
.600	328	.650	345	.650	378	.650	312
.650	417	.700	345	.700	478	.700	571
.700	506	.750	316	.740	368	.750	532
.750	387	.800	316				
.850	193	.850	207				
.900	125	.900	146				
,984	044	1.000	.046				

Lower surface

X/C	СР	X/C	СР	X/C	СР	X/C	СР	
$\eta =$	0.25	$\eta =$	0.47	η =	$\eta = 0.64$		$\eta = 0.78$	
.075	.081	.075	239	.075	373	.075	450	
.125	.069	.125	188	.125	301	.125	555	
.175	()49	.175	383	.225	535	.225	632	
.225	022	.225	384	.325	645	.325	708	
.325	263	.325	299	.425	643	.425	560	
.425	389	.425	595	.525	685	.525	680	
.525	471	.525	615	.575	726	.575	794	
.575	553	.575	536	.675	378	.675	181	
.625	533	.625	696	.725	241			
.675	495	.725	265					
.725	642	.775	180					
.775	414	.825	148					
.825	270	.875	111					
.875	129	.975	.047					
075	087							

.975 – .087

Table D-21

MINF =	.876
HP=	20688
PSINF =	944.8
PRI =	869.6
QBAR =	507.1
ALPHA =	1,4

Upper	surface
-------	---------

and the second second

-

-

ŝ

2

=----

X/C	СР	X/C	CP	X/C	СР	X/C	CP
η =	= 0.25	$\eta =$	0.47	$\eta =$: 0.64	$\eta =$	0.78
.025	348	.040	620	.050	198	.050	719
.120	585	.140	849	.200	198	.220	484
.200	535	.200	523	.300	850	.300	876
.250	489	.300	539	.400	550	.400	578
.300	510	.400	531	.450	493	.450	551
.400	534	.500	594	.500	600	.500	530
.500	534	.550	588	.550	539	.550	580
.550	466	.600	561	.600	564	.600	582
.600	450	.650	459	.650	593	.650	317
.650	324	.700	459	.700	485	.700	491
.700	198	.750	392	.740	319	.750	371
.750	198	.800	392				
.850	241	.850	215				
.900	159	.900	198				
.984	050	1.000	.043				

Lower surface

X/C	СР	X/C	СР	X/C	СР	X/C	СР
η =	= 0.25	$\eta =$	0.47	$\eta =$	0.64	η =	: 0.78
.075	.030	.075	258	.075	373	.075	198
.125	.060	.125	196	.125	311	.125	568
.175	035	.175	387	.225	503	.225	618
.225	091	.225	373	.325	732	.325	737
.325	206	.325	317	.425	662	.425	589
.425	400	.425	614	.525	697	.525	711
.525	538	.525	652	.575	732	.575	198
.575	422	.575	579	.675	396	.675	176
.625	599	.625	706	.725	251		
.675	198	.725	198				
.725	404	.775	228				
.775	342	.825	163				
.825	270	.875	103				
.875	198	.975	.039				

.975 –.160

APPENDIX E SURFACE PRESSURE COEFFICIENTS, PYLONS OFF, HP \approx 30,000 FT

	M	α , deg
1	.630	10.5
2	.649	7.0
3	.650	6.3
4	.739	4.6
5	.747	5.0
6	.752	6.1
7	.793	7.1
8	.800	3.7
9	.800	4.0
10	.841	5.2
11	.845	3.1
12	.847	3.3
13	.873	2.7
14	.873	2.7
15	.875	4.0

İ

a ABRIMAN LINE OF NOT

_

£

1

11

1 114

MINF =	.630
HP=	30032
PSINF =	627.5
PRI =	615.0
QBAR =	174.3
ALPHA =	10.5

			Uppe	r surface			
X/C	СР	X/C	CP	X/C	СР	X/C	CP
η	= 0.25	$\eta =$	0.47	η :	= 0.64	η :	= 0.78
.025	-1.436	.040	- 1.659	.050	-2.471	.050	-2.230
.120	954	.140	-1.306	.200	973	.220	883
.200	789	.200	-1.053	.300	812	.300	757
.250	754	.300	888	.400	560	.400	574
.300	660	.400	677	.450	507	.450	497
.4()()	597	.500	525	.500	487	.500	466
.500	521	.550	469	.550	439	.550	443
.550	464	.600	438	.600	368	.600	413
.600	416	.650	388	.650	357	.65()	378
.650	382	.700	388	.700	348	.700	394
.700	348	.750	258	.740	282	.750	322
.750	318	.800	258				
.850	195	.850	206				
.900	135	.900	175				
.984	058	1.000	123				

Lower surface								
X/C	СР	X/C	СР	X/C	CP	X/C	CP	
η =	= 0.25	$\eta =$	0.47	$\eta =$	= 0.64	η :	= 0.78	
.075	.273	.075	.307	.075	.269	.075	.252	
.125	.257	.125	.253	.125	.197	.125	.133	
.175	.191	.175	.099	.225	001	.225	018	
.225	.128	.225	.037	.325	079	.325	065	
.325	.014	.325	002	.425	115	.425	174	
.425	156	.425	160	.525	2()4	.525	197	
.525	363	.525	223	.575	294	.575	208	
.575	397	.575	289	.675	182	.675	110	
.625	472	.625	325	.725	140			
.675	392	.725	329					
.725	341	.775	052					
.775	210	.825	.086					
.825	082	.875	.189					
.875	.046	.975	.115					
.975	.003							

MINF	=	.649					
HP=	30	291					
PSIN	F =	620.2					
PRI =		603.9					
QBAI	R =	183.0					
ALPF	IA =	7.0					
			Upper	· surface			
X/C	СР	X/C	CP	X/C	СР	X/C	СР
$\eta =$	= 0.25	$\eta =$	0.47	η =	= 0.64	$\eta =$	- 0.78
.025	-1.083	.040	-1.892	.050	-1.958	.050	-2.003
.120	752	.14()	894	.200	705	.220	627
.200	641	.200	723	.300	738	.300	673
.250	579	.300	632	.400	499	.400	508
.300	529	.400	517	.450	453	.450	435
.400	472	.500	448	.500	467	.500	420
.500	414	.550	411	.550	423	.550	411
.550	369	.600	396	.600	359	.600	391
.600	372	.650	356	.650	374	.650	372
.650	336	.700	356	.700	392	.700	492
.700	263	.750	252	.740	316	.750	384
.750	286	.800	252				
.850	141	.850	176				
.900	063	.900	126				
.984	038	1.000	.003				
			Lowe	r surface			

, and the second

. -

X/C	СР	X/C	СР	X/C	СР	X/C	CP
n = 0.25		$\eta =$	0.47	$\eta =$: 0.64	$\eta =$	0.78
.075	.246	.075	.135	.075	.081	.075	.069
.125	.246	.125	.102	.125	.041	.125	029
.175	.154	.175	()49	.225	135	.225	140
.225	.102	.225	103	.325	183	.325	155
.325	012	.325	120	.425	191	.425	238
.425	204	.425	254	.525	266	.525	237
.525	413	.525	298	.575	341	.575	235
.575	426	.575	344	.675	193	.675	106
.625	496	.625	370	.725	136		
.675	438	.725	170				
.725	346	.775	040				
.775	181	.825	.093				
.825	057	.875	.197				
.875	.067	.975	.182				
.975	.046						

a akta İstatlı tantışı tarıtı tarki net i menener

-

MINF =	.649
HP=	30183
PSINF =	623.2
PRI =	605.0
QBAR =	184.2
ALPHA =	6.3

			Uppe	r surface			
X/C	СР	X/C	СР	X/C	CP	X/C	CP
η	= 0.25	$\eta =$	0.47	η :	= 0.64	η	= 0.78
.025	-1.086	.040	-1.835	.050	-1.305	.050	-1.130
.120	711	.140	747	.200	668	.220	587
.200	614	.200	696	.300	719	.300	656
.250	588	.300	587	.400	482	.400	495
.300	503	.400	499	.450	430	.450	423
.400	468	.500	436	.500	449	.500	408
.500	407	.550	407	.550	415	.550	403
.550	377	.600	383	.600	350	.600	383
.600	344	.650	346	.650	362	.650	362
.650	304	.700	346	.700	388	.700	492
.700	264	.750	243	.740	300	.750	372
.750	291	.800	243				
.850	158	.850	183				
.900	092	.900	141				
.984	055	1.000	.013				

Lower surface								
X/C	СР	X/C	СР	X/C	CP	X/C	СР	
η :	= 0.25	$\eta =$	0.47	$\eta =$: 0.64	$\eta =$	0.78	
.075	.199	.075	.077	.075	.021	.075	004	
.125	.173	.125	.063	.125	010	.125	097	
.175	.096	.175	096	.225	182	.225	195	
.225	.034	.225	149	.325	229	.325	206	
.325	082	.325	165	.425	227	.425	281	
.425	241	.425	292	.525	302	.525	277	
.525	414	.525	324	.575	376	.575	267	
.575	447	.575	373	.675	222	.675	133	
.625	475	.625	393	.725	170			
.675	379	.725	337					
.725	380	.775	060					
.775	217	.825	.077					
.825	089	.875	.177					
.875	.034	.975	.174					
.975	.025							

MINF =	.739					
HP=	30307					
PSINF =	619.7					
PRI =	590.9					
QBAR =	236.9					
ALPHA =	4.6					
		Uppe	er surface			
X/C CP	X/C	CP	X/C	СР	X/C	СР
$\eta = 0.25$	$\eta =$	0.47	η =	= 0.64	η	= 0.78
.025 –.81	7.040	-1.285	.050	-1.321	.050	-1.514
.120 –.67	8	719	.200	601	.220	538
.200 –.57	9.200	618	.300	717	.300	633
.25055	4 .300	561	.400	461	.400	470
.30048	5.400	481	.450	421	.450	400
.400 – .45	1.500	431	.500	447	.500	389
.50039	9.550	414	.550	407	.550	392
.55036	1.600	386	.600	359	.600	367
.60032	9.650	355	.650	361	.650	347
.65031	8700	355	.700	393	.700	500
.70030	6.750	261	.740	294	.750	358
.750 – .31	0.800	261				
.85017	2	197				
.90010	5 .900	153				
.98405	2 1.000	.031				

Lower	surface	2
		~

X/C	CP	X/C	СР	X/C	СР	X/C	СР	
$\eta = 0.25$		$\eta =$	= 0.47	η	$\eta = 0.64$		$\eta = 0.78$	
.075	.145	.075	050	.075	143	.075	174	
.125	.122	.125	040	.125	132	.125	242	
.175	.042	.175	202	.225	302	.225	316	
.225	020	.225	249	.325	335	.325	303	
.325	142	.325	244	.425	316	.425	384	
.425	294	.425	388	.525	405	.525	357	
.525	449	.525	410	.575	494	.575	356	
.575	541	.575	465	.675	275	.675	180	
.625	495	.625	484	.725	198			
.675	405	.725	355					
.725	458	.775	083					
.775	261	.825	.043					
.825	136	.875	.139					
.875	008	.975	.178					
.975	.008							

MINF =	.747					
HP=	30342					
PSINF =	618.7					
PRI =	591.0					
QBAR =	241.4					
ALPHA =	5.0					
		Uppe	r surface			
X/C C	P X/C	CP	X/C	СР	X/C	СР
n = 0.2	5 n =	: 0.47	$\eta =$: 0.64	η =	= 0.78
.0257	799 .040	-1.343	.050	-1.364	.050	-1.649
.1207	.140	941	.200	582	.220	556
.2005	598 .200	602	.300	725	.300	646
.2505	559 .300	545	.400	477	.400	485
.3005	504 .400	489	.450	431	.450	414
.4004	464 .500	453	.500	465	.500	405
.5004	408 .550	415	.550	421	.550	405
.5503	.600	396	.600	365	.600	377
.600 –.3	.650	367	.650	372	.650	357
.6503	.700	367	.700	400	.700	508
.700 –.2	.750 .750	285	.740	306	.750	372
.750 –.2	.800	285				
.850 –.	168 .850	203				
.900 –.0	.900	157				
.984 –.(051 1.000	.037				
		Lawa	r eurfaca			
NIC C	\mathbf{v} \mathbf{v}	CP	X/C	CP	X/C	CP
02	$r = \Lambda/C$	- 0.47		- 0.64	n :	= 0.78
$\eta = 0.2$	176 ()75	- 0.47 000	- 11 175	- 0.04	075	- 129
.075 .	165 125	007	125	_ 103	125	- 209
.120 .	105 .125	_ 179	225	-280	225	- 283
225 1	0.00 .175 0.16 .75 0.16 .75 0.16 .75 0.16 .75 0.16 .75 0.16 .75 .7	_ <u></u>]	325	- 311	325	- 283
325	107 325	- 222.) - 222	425	298	.425	363
	107 .010		/	/0		

-.374

-.395

-.449

-.474

-.194

-.066

.060

.160

.196

.425

.525

.575

.625

.725

.775

.825

.875

.975

.525

.575

.675

.725

-.389

-.479

-.265

-.191

:

1 1

ł

ŧ

ļ

i

-

Ì.

-

-.342

-.339

-.165

.525

.575

.675

.425

.525

.575

.625

.675

.725

.775

.825

.875

.975

-.263

-.429

-.546

-.521

-.484

-.378

-.259

-.124

.011

.022

2

i

Ξ

÷

 $|\mathbf{h}_{i}| = |\mathbf{h}_{i}|$

ŧ

a h 46 km

4.16 - 5.46.

adit is a shift.

M. 14

7

ीत के बोक का तथ है.

I,

....

MINF =	.752					
HP=	30405					
PSINF =	616.9					
PRI =	590.3					
QBAR =	244.3					
ALPHA =	6.1					
		Linn	ar surface			
Y/C CP	V/C	Ср		CD	NIC	
AC CF	AIC		AIC	CP	X/C	CP
$\eta = 0.25$	η =	= 0.47	η =	= 0.64	$\eta =$	= 0.78
.025 –.89	1	-1.448	.050	-1.473	.050	-1.784
.120 –.943	3.140	-1.467	.200	917	.220	638
.200 –.68	7	800	.300	679	.300	603
.250 –.619	9.300	557	.400	457	.400	476
.300543	3	488	.450	421	.450	413
.400 –.488	.500	439	.500	452	.500	409
.500420) .550	413	.550	410	.550	409
.550380	600.	391	.600	359	.600	378
.60035	I .650	359	.650	361	.650	359
.650 –.328	3.700	359	.700	383	.700	494
.700300	5.750	247	.740	294	.750	359
.750 –.319	.800	247				
.850172	.850	179				
.900102	.900	144				
.984 – .057	7 1.000	.028				
		Lowe	vr surface			

X/C	CP	X/C	СР	X/C	СР	X/C	СР	
$\eta =$	= 0.25	$\eta =$	0.47	$\eta =$	$\eta = 0.64$		$\eta = 0.78$	
.075	.201	.075	.050	.075	021	.075	051	
.125	.178	.125	.040	.125	045	.125	143	
.175	.103	.175	124	.225	227	.225	239	
.225	.037	.225	173	.325	273	.325	248	
.325	071	.325	180	.425	272	.425	339	
.425	253	.425	335	.525	368	.525	333	
.525	402	.525	374	.575	463	.575	334	
.575	494	.575	446	.675	262	.675	164	
.625	510	.625	476	.725	192			
.675	423	.725	351					
.725	543	.775	069					
.775	261	.825	.063					
.825	130	.875	.161					
.875	.002	.975	.187					
.975	.014							

.

MINF = .793	
HP= 30457	
PSINF = 615.5	
PRI = 586.3	
QBAR = 270.6	
ALPHA = 7.1	
Upper surface	
X/C CP X/C CP X/C CP X/C	K/C CP
n = 0.25 $n = 0.47$ $n = 0.64$	$\eta = 0.78$
025 = 895 $040 = 1.392$ $050 = 1.405$ (050 -1.681
120 - 1121 - 140 - 1.623 - 200 - 1.453 - 200	22() -1.499
200 - 983 $200 - 1.453$ $.300 - 1.478$ $.3$	300 -1.234
250 - 877 $300 - 1.197$ 400764	400 – .670
300792 .400727 .450639 .4	450479
400555 .500 369 .500 457 .4	500338
.500417 .550341 .550366 .4	550 –.299
.550385 .600330 .600289 .6	600 –.285
.600348 .650315 .650284 .0	650 – .279
.650316 .700315 .700294 .	700355
.700283 .750209 .740246 .7	750283
.750322 .800209	
.850163 .850157	
.900087 .900138	
.984051 1.000 .026	
to a func	
Lower surface	X/C CP
X/C CP X/C CP X/C CP X/C CF Z	n = 0.78
$\eta = 0.25 \qquad \eta = 0.47 \qquad \eta = 0.04$	075 .005
.075 .241 .075 .107 .075 .050 .	125 - 098
125 211 125 099 125 -001 .	225 - 203
.175 $.142$ $.175$ 072 $.225$ 100 .	325 - 232
225 .093 .225116 .525251 .	425 - 336
325 = 0.029 $325 = 0.145$ $425 = 0.029$	525331
-425 - 217 - 425 - 351 - 325 - 300	575348
575 415 575 440 675 -257	.675 –.164
625 530 625 -494 725 183	
675 - 600 - 725 - 315	
725 - 498 $775 - 054$	
775 = 286 = 825 = 0077	
825 - 140 - 875 - 176	
875 .010 .975 .206	
975 024	

......

i T

n han a star and an and a star and a star a star and

-

i

-

÷

-* -

1 1-1 1000

t in series of a second second second

1

10.100

i

1.00.1

stant in the 100

्रतित क्रिक्ता 🗐 | प्रद्रोति कार्मित कर्मा व्यक्तित केर्वा संतर्भवात क्रिक्तार त्लावेर त्यावार स्थानमा क्रिस्ता

ta o III

inei

ula di ful-

da - 11.

- -- -

MINF =	.800					
HP=	30425					
PSINF =	616.4					
PRI =	581.0					
QBAR =	276.0					
ALPHA =	= 3.7					
		Upp	er surface			
X/C C	CP X/C	CP	X/C	СР	X/C	CP
$\eta = 0.2$	25η	= 0.47	η	= 0.64	n	= 0.78
.025 –.	668 .040	-1.035	.050	-1.049	.050	-1.271
.120 –.	.140	-1.229	.200	574	.220	504
.200	.200	628	.300	754	.300	689
.250 – .:	584 .300	484	.400	465	.400	487
.300 –	509 .400	473	.450	428	.450	405
.400 –.4	473 .500	455	.500	470	.500	404
.5004	413 .550	427	.550	427	.550	405
.550 –	.600 .377	399	.600	372	.600	368
.600 –	.650	375	.650	375	.650	352
.650 – .	312 .700	375	.700	416	.700	540
.700 – .2	.750	281	.740	309	.750	366
.750 –	.800	281				
.8501	.850	206				
.9001	.900	164				
.984 –.(052 1.000	.040				

Lower surface

X/C	CP	X/C	СР	X/C	CP	X/C	СР	
η =	= 0.25	$\eta =$	$\eta = 0.47$		$\eta = 0.64$		$\eta \doteq 0.78$	
.075	.113	.075	118	.075	232	.075	279	
.125	.098	.125	089	.125	199	.125	350	
.175	.020	.175	265	.225	393	.225	411	
.225	051	.225	296	.325	421	.325	373	
.325	144	.325	290	.425	378	.425	493	
.425	337	.425	467	.525	539	.525	421	
.525	438	.525	463	.575	699	.575	431	
.575	525	.575	528	.675	306	.675	205	
.625	631	.625	586	.725	221			
.675	497	.725	316					
.725	413	.775	094					
.775	303	.825	.012					
.825	190	.875	.098					
.875	071	.975	.178					
.975	032							

MINF =	.800
HP=	30423
PSINF =	616.4
PRI =	580.6
QBAR =	276.4
ALPHA =	4.1

Upper surface

i d

.....

÷

i

.

1

ļ

-

X/C	CP	X/C	CP	X/C	CP	X/C	СР
n –	- 0.25	n =	0.47	n :	= 0.64	<i>n</i> =	= 0.78
025	644	040	1 131	050	-1.093	050	-1.320
120	044	140	-1.151	200	- 876	220	- 444
.120	0.51	200	-1.2.00	300	611	300	608
.200	080	,200	720	.500	011	400	_ 485
.250	607	.500	401	.4(7)	410	.400	402
.300	518	.400	461	.450	412	.450	402
.400	468	.500	448	.500	467	.500	405
.500	411	.550	423	.550	422	.550	409
.550	374	.600	401	.600	370	.600	375
.600	357	.650	377	.650	375	.650	354
.650	357	.700	377	.700	414	.700	548
.700	302	.750	300	.740	309	.750	376
.750	349	.800	300				
.850	173	.850	204				
.900	106	.900	159				
.984	048	1.000	.048				

Lower surface

X/C	СР	X/C	СР	X/C	СР	X/C	CP	
n =	= 0.25	$\eta =$	n = 0.47		$\eta = 0.64$		$\eta = 0.78$	
.075	.145	.075	083	.075	197	.075	240	
.125	.133	.125	066	.125	177	.125	310	
.175	.051	.175	240	.225	362	.225	379	
.225	016	.225	279	.325	397	.325	351	
.325	113	.325	269	.425	358	.425	469	
.425	340	.425	447	.525	516	.525	403	
.525	426	.525	455	.575	673	.575	416	
.575	509	.575	521	.675	297	.675	195	
.625	672	.625	582	.725	209			
.675	459	.725	205					
.725	400	.775	080					
.775	289	.825	.028					
.825	164	.875	.115					
.875	040	.975	.194					

114

.975 –.006

-

11.1 MIN 1.1

111

1441 | 184 -

at his dial

idl ob.

de al la

scrinki re oli ol di

i ilal ano daor

i il li i

MINF	? =	.841					
HP=	3	0486					
PSIN	F =	614.7					
PRI =		578.3					
QBAF	२ =	304.2					
ALPH	IA =	5.2					
			Uppo	er surface			
X/C	CP	X/C	CP	X/C	СР	X/C	СР
η =	= 0.25	$\eta =$	0.47	η:	= 0.64	η =	= 0.78
.025	656	.040	-1.023	.050	-1.081	.050	-1.306
.120	875	.140	-1.280	.200	-1.179	.220	-1.179
.200	839	.200	- 1 .176	.300	-1.218	.300	-1.281
.250	771	.300	-1.232	.400	-1.167	.400	-1.112
.300	721	.400	801	.450	-1.079	.450	871
.400	732	.500	769	.500	667	.500	612
.500	738	.550	488	.550	485	.550	474
.550	597	.600	312	.600	307	.600	294
.600	344	.650	273	.650	224	.650	192
.650	295	.700	273	.700	216	.700	240
.700	247	.750	201	.740	190	.750	211
.750	296	.800	201				
.850	139	.850	147				
.900	082	.900	111				
.984	043	1.000	.068				

Lower surface

X/C	СР	X/C	СР	X/C	СР	X/C	СР	
η =	= 0.25	η :	= 0.47	η :	$\eta = 0.64$		$\eta = 0.78$	
.075	.197	.075	012	.075	114	.075	167	
.125	.165	.125	.003	.125	113	.125	258	
.175	.085	.175	171	.225	318	.225	341	
.225	.052	.225	215	.325	357	.325	326	
.325	124	.325	212	.425	327	.425	512	
.425	173	.425	421	.525	514	.525	382	
.525	558	.525	408	.575	701	.575	427	
.575	403	.575	457	.675	259	.675	196	
.625	502	.625	648	.725	182			
.675	554	.725	281					
.725	528	.775	104					
.775	387	.825	013					
.825	203	.875	.066					
.875	017	.975	.181					
.975	005							

1

115

:

MINF	=	.845					
HP=	3	0472					
PSINF	F =	615.1					
PRI =		572.7					
QBAR	R =	307.3					
ALPH	A =	3.1					
			Upper	surface			
VIC	CP	X/C	CP	X/C	CP	X/C	СР
лс 	0.25	m –	0.47	n =	0.64	n =	0.78
025	547	$\eta = 0.40$	- 864	050	878	.050	-1.079
120	710	140	_1.110	200	-912	220	909
200	719	200	-1.110	300	-1.107	300	- 846
.200	074	300	- 638	400	- 346	400	336
200	021	400	- 593	450	- 327	.450	326
.500	001	500	304	500	_ 392	500	367
500	023	550	- 391	550	- 385	.550	400
.500	407	600	- 387	600	- 354	.600	356
.550	505	650	- 372	650	- 358	.650	339
.000	540	700	_ 372	700	- 419	.700	589
700	521	750	372	740	_ 310	750	- 351
.700	294	800	- 287	.7.10	.510	1100	
.750	575	.000	207				
000	100	0.00	204				
.900	127	1.000	140				
.904	042	1.000					
			Lowe	r surface			
X/C	СР	X/C	СР	X/C	СР	X/C	CP
η =	= 0.25	$\eta =$	0.47	$\eta =$: 0.64	$\eta =$	0.78
.075	.105	.075	164	.075	281	.075	347
.125	.080	.125	121	.125	237	.125	400
.175	005	.175	291	.225	470	.225	658
.225	029	.225	321	.325	392	.325	366
.325	240	.325	289	.425	558	.425	546
.425	223	.425	604	.525	633	.525	648
.525	618	.525	437	.575	708	.575	455
.575	567	.575	483	.675	337	.675	209
.625	523	.625	665	.725	212		
.675	537	.725	280				
.725	468	.775	140				
.775	380	.825	059				
.825	237	.875	.013				
.875	093	.975	.115				
.975	059						

troordenterity in the second the second second second second second second second second second second second s

. . .

in the second second second second second second second second second second second second second second second

-

MANANANAN MENDERIKANAN MENDERIKAN MENDERIKAN MENDERIKAN MENDERIKAN MENDERIKAN MENDERIKAN MENDERIKAN MENDERIKAN

ŧ

and a set of the design of the set between an a place as and

Ξ

_

-

LOUID MODE

MINI	F =	.846					
HP=		30511					
PSIN	F =	613.9					
PRI =	=	572.1					
QBA	R =	308.0					
ALPI	HA =	3.3					
			Uppo	er surface			
X/C	CP	X/C	СР	X/C	СР	X/C	CP
$\eta = 0.25$		$\eta =$: 0.47	$\eta =$	= 0.64	η	= 0.78
.025	53	.040	919	.050	893	.050	-1.086
.120	735	5.140	-1.108	.200	956	.220	919
.200	682	.200	983	.300	-1.106	.300	-1.190
.250	623	3	662	.400	443	.400	337
.300	604	4.400	634	.450	323	.450	268
.400	632	2	372	.500	342	.500	296
.500	483	3.550	355	.550	341	.550	343
.550	355	.600	371	.600	319	.600	331
.600	341	.650	360	.650	338	.650	325
.650	364	.700	360	.700	401	.700	578
.700	321	.750	308	.740	308	.750	361
.750	380	.800	308				
.850	180	.850	203				
.900	110	.900	143				
.984	037	1.000	.061				

٦,

Lower surface

X/C	СР	X/C	СР	X/C	CP	X/C	CP	
$\eta =$	= 0.25	$\eta =$	$\eta = 0.47$		$\eta = 0.64$		$\eta = 0.78$	
.075	.128	.075	137	.075	268	.075	328	
.125	.112	.125	106	.125	227	.125	381	
.175	.020	.175	276	.225	448	.225	650	
.225	004	.225	308	.325	381	.325	356	
.325	202	.325	279	.425	556	.425	533	
.425	215	.425	593	.525	630	.525	639	
.525	618	.525	430	.575	704	.575	458	
.575	573	.575	486	.675	328	.675	202	
.625	526	.625	660	.725	200			
.675	546	.725	221					
.725	452	.775	130					
.775	365	.825	050					
.825	218	.875	.021					
.875	072	.975	.135					
.975	046							

MINF =	.873					
HP=	30556					
PSINF =	612.7					
PRI =	567.0					
QBAR =	326.7					
ALPHA =	2.7					
		Upper	surface			
X/C CP	X/C	CP	X/C	СР	X/C	СР
n = 0.25	n =	0.47	$\eta =$: ().64	$\eta =$	0.78
$\eta = 0.25$ 0.25 = 466	.040	752	.050	759	.050	952
120 - 666	140	-1.027	.200	831	.220	856
200 - 646	.200	877	.300	-1.035	.300	-1.150
250 - 615	300	618	.400	609	.400	806
250015 300 - 578	400	601	.450	552	.450	809
400 - 610	.500	667	.500	653	.500	574
500 - 609	.550	666	.550	595	.550	354
550 - 596	.600	655	.600	648	.600	252
600 - 536	650	631	.650	353	.650	229
650 - 445	.700	631	.700	290	.700	435
700 - 354	.750	232	.740	219	.750	285
750 - 358	8 .800	232				
850 - 178	8 .850	165				
900 - 118	.900	124				
984 - 039) 1.000	.065				
		Lowe	r surface			
X/C CP	X/C	CP	X/C	СР	X/C	CP
$\eta = 0.25$	$\eta =$: ().47	η :	= 0.64	η =	= 0.78
.075 .10	.075	193	.075	321	.075	3/3
.125 .069	9.125	148	.125	248	.125	506
.175030	6.175	336	.225	490	.225	620
.225023	3 .225	354	.325	588	.325	613
.32525	8	271	.425	633	.425	554
.425 –.34	4 .425	575	.525	666	.525	675
.525423	3.525	578	.575	699	.575	745
.57554	3.575	519	.675	429	.675	192
.62552	.625	675	.725	267		
.675 –.69	0.725	235				

-.158

-.122

-.097

.061

.775

:

: * *

÷

i

1

İ

ł

ī

.775 -.448 .825 .825 -.273 .875 .875 -.096 .975 .975 -.057

-.529

.725

11

615 AL 919

164

Ratio Judi at 1116.

ALL FRAME MERICAL TRACE

濩

_

and Lab

li.b.i. kd.J

al Li II II II.

MINF =	.873							
HP=	30644							
PSINF =	610.2							
PRI =	565.8							
QBAR =	325.9							
ALPHA =	2.7							
Upper surface								
X/C CP	X/C	СР	X/C	СР	X/C	СР		
$\eta = 0.25$	$\eta =$: 0.47	η =	$\eta = 0.64$		$\eta = 0.78$		
.025 –.44	3.040	767	.050	761	.050	957		
.120 –.67	1.140	-1.026	.200	833	.220	846		
.20064	7	885	.300	-1.029	.300	-1.142		
.25060	1 .300	666	.400	658	.400	808		
.30058	4 .400	606	.450	560	.450	818		
.40060	1 .500	666	.500	650	.500	703		
.50061	3	668	.550	605	.550	458		
.55059	3	664	.600	647	.600	272		
.60055	2.650	644	.650	506	.650	231		
.65053	3.700	644	.700	301	.700	416		
.700 –.452	2.750	245	.740	221	.750	305		
.750 – .37	4 .800	245						
.850 - 16	8	158						
.900122	2.900	099						
.984 –.032	2 1.000	.069						

13

Lower surface

X/C	СР	X/C	CP	X/C	СР	X/C	CP	
η =	= 0.25	$\eta =$	$\eta = 0.47$		$\eta = 0.64$		$\eta = 0.78$	
.075	.113	.075	176	.075	304	.075	364	
.125	.094	.125	142	.125	247	.125	486	
.175	017	.175	324	.225	463	.225	612	
.225	.001	.225	344	.325	574	.325	587	
.325	247	.325	267	.425	627	.425	539	
.425	313	.425	568	.525	660	.525	675	
.525	443	.525	575	.575	693	.575	746	
.575	554	.575	518	.675	357	.675	194	
.625	535	.625	676	.725	238			
.675	629	.725	250					
.725	467	.775	156					
.775	436	.825	097			•		
.825	268	.875	048					
.875	102	.975	.080					
.975	051							

119

2.

MINF =	.875
HP=	31192
PSINF =	595.1
PRI =	555.4
QBAR =	318.6
ALPHA =	4.0

Upper surface										
X/C	СР	X/C	СР	X/C	СР	X/C	CP			
$\eta =$	= 0.25	$\eta =$	0.47	η =	$\eta = 0.64$		$\eta = 0.78$			
.025	518	.040	850	.050	874	.050	-1.082			
.120	737	.140	-1.075	.200	-1.033	.220	978			
.200	737	.200	-1.005	.300	-1.072	.300	-1.172			
.250	681	.300	-1.022	.400	-1.017	.400	992			
.300	638	.400	707	.450	970	.450	979			
.400	680	.500	726	.500	943	.500	995			
.500	678	.550	745	.550	789	.550	856			
.550	656	.600	751	.600	727	.600	681			
.600	648	.650	757	.650	649	.650	555			
.650	566	.700	757	.700	420	.700	401			
.700	484	.750	216	.740	250	.750	238			
.750	406	.800	216							
.850	153	.850	133							
.900	089	.900	073							
.984	035	1.000	.022							

and the second sec

l

r

terden umstadentigt i bit bit mandet interdetere

ու գելող է եւնելու եւ երելու պատուտորին տարաները մեծ նում են ել եներել է դրդեն տեղեն տեղեն տեղեն են երելու է։

Bernander an inder anderen Ber an eigen-

Ì

مرابعة المراجع المراجع المراجع المراجع المراجع المراجع المراجع والمراجع

-

			Lower	r surface				
X/C	СР	X/C	СР	X/C	СР	X/C	CP	
$\eta =$	n = 0.25		$\eta = 0.47$		$\eta = 0.64$		$\eta = 0.78$	
.075	.155	.075	093	.075	204	.075	266	
.125	.123	.125	067	.125	173	.125	320	
.175	.025	.175	248	.225	403	.225	587	
.225	.027	.225	283	.325	351	.325	407	
.325	187	.325	233	.425	499	.425	493	
.425	297	.425	513	.525	573	.525	655	
.525	-,363	.525	418	.575	646	.575	717	
.575	354	.575	485	.675	478	.675	189	
.625	511	.625	618	.725	241			
.675	705	.725	301					
.725	532	.775	184					
.775	562	.825	095					
.825	312	.875	022					
.875	062	.975	.078					
.975	009							

APPENDIX F SURFACE PRESSURE COEFFICIENTS, PYLONS OFF, HP \approx 40,000 FT

	M	α , deg
Ι	.734	7.9
2	.799	6.1
3	.853	4.7

Table F-1

CP

-2.021

-1.018

-.643 -.472 -.412

-.403 -.401

-.378

-.360

-.439 -.338 1

i

Ē

1

į

į

Ł

ţ

na padjada ana isi isi isi isi isi isi a na isi a na isi isi i

-

ь Е

ŝ

Ļ

Ministry of the state of the state

1

111 1011 1011

MINF =		.734					
HP=	401	64					
PSINF =	3	88.6					
PRI =	3	75.7					
QBAR =	1-	46.7					
ALPHA	=	7.9					
			Upper	surface			
X/C	СР	X/C	CP	X/C	СР	X/C	CF
n = 0	.25	$\eta =$	0.47	$\eta =$	0.64	$\eta =$	0.78
.025 -	1.126	.040	-1.655	.050	-1.714	.050	-2.0
.120 -	1.131	.140	-1.284	.200	-1.253	.220	-1.0
.200 -	759	.200	989	.300	765	.300	6
.250 -	674	.300	795	.400	484	.400	4
.300 -	578	.400	591	.450	457	.450	4
.400 -	537	.500	479	.500	448	.500	4
.500 -	463	.550	-,425	.550	424	.550	4
.550 -	433	.600	406	.600	350	.600	3
.600 -	390	.650	375	.650	360	.650	3
.650 -	396	.700	375	.700	367	.700	4
.700 -	322	.750	261	.740	297	.750	3
.750 -	362	.800	261				
.850 -	178	.850	197				
.900 -	106	.900	155				
.984 -	070	1.000	025				
	MINF = HP = PSINF = PRI = QBAR = ALPHA $X/C = 0$ $025 = -1$ $120 = -200 = -250 = -200 = -250 = -200 = -250 = -200$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

	Lower surface									
X/C	СР	X/C	СР	X/C	СР	X/C	СР			
n =	0.25	$\eta = 0$	0.47	η =	$\eta = 0.64$		$\eta = 0.78$			
.075	.225	.075	.160	.075	.089	.075	.072			
.125	.207	.125	.126	.125	.035	.125	030			
.175	.140	.175	()4()	.225	149	.225	165			
.225	.074	.225	082	.325	202	.325	180			
.325	039	.325	115	.425	216	.425	285			
.425	194	.425	269	.525	310	.525	292			
.525	382	.525	304	.575	404	.575	295			
.575	454	.575	371	.675	242	.675	157			
.625	495	.625	408	.725	184					
.675	495	.725	166							
.725	345	.775	()47							
.775	251	.825	.087							
.825	140	.875	.187							
.875	029	.975	.184							
.975	.032									

1

111

1

1 -<u>-</u>

- ---

-

- --- - -

Table F-2

MIN	F=	.799					
HP=	4	0334					
PSIN	۱F =	385.5					
PRI	=	366.5					
QBA	R =	172.3					
ALP	HA =	6.1					
			Unne	r surface			
X/C	СР	X/C	CP	X/C	СР	X/C	СР
η	= 0.25	$\eta =$	0.47	η :	= 0.64	$\eta =$	= 0.78
.025	796	.040	-1.224	.050	-1.289	.050	-1.548
.120	- 1.012	.140	-1.502	.200	-1.352	.220	-1.365
.200	883	.200	-1.346	.300	-1.324	.300	965
.250	811	.300	959	.400	546	.400	477
.300	729	.400	482	.450	377	.450	318
.400	518	.500	375	.500	350	.500	282
.500	423	.550	365	.550	323	.550	306
.550	401	.600	366	.600	281	.600	312
.600	351	.650	348	.650	309	.650	310
.650	373	.700	348	.700	341	.700	437
.700	315	.750	262	.740	272	.750	324
.750	358	.800	262				
.850	174	.850	183				
.900	105	.900	145				
.984	059	1.000	.042				

Lower surface

X/C	СР	X/C	СР	X/C	CP	X/C	CP
η =	= 0.25	$\eta =$	0.47	η	= 0.64	η =	= 0.78
.075	.201	.075	.045	.075	046	.075	081
.125	.173	.125	.036	.125	072	.125	177
.175	.107	.175	131	.225	261	.225	279
.225	.039	.225	176	.325	308	.325	275
.325	066	.325	181	.425	298	.425	390
.425	271	.425	360	.525	421	.525	369
.525	384	.525	390	.575	544	.575	376
.575	480	.575	474	.675	284	.675	186
.625	572	.625	513	.725	206		
.675	505	.725	184				
.725	420	.775	053				
.775	296	.825	.060				
.825	177	.875	.149				
.875	058	.975	.209				
.975	.037						

Table F-3

MINF =	.853
HP=	40492
PSINF =	382.5
PRI =	360.7
QBAR =	195.0
ALPHA =	4.7

			•
- E ír	nner	Sur	lace
	ppor	our	acc

:

unmercentaria internet par della a a più a

i

en la substantia de la substanta en se

ant per film is a start of a start of the

-

-

. . . .

•

- 1 i e ļ

Ť

X/C	СР	X/C	СР	X/C	СР	X/C	СР
$\eta =$	= 0.25	$\eta =$	0.47	η =	= 0.64	η =	= 0.78
.025	589	.040	919	.050	992	.050	-1.212
.120	824	.140	-1.205	.200	-1.117	.220	-1.110
.200	793	.200	-1.108	.300	-1.163	.300	-1.218
.250	745	.300	-1.150	.400	-1.102	.400	-1.064
.300	691	.400	764	.450	-1.076	.450	-1.052
.400	713	.500	767	.500	949	.500	681
.500	720	.550	760	.550	649	.550	596
.550	689	.600	646	.600	378	.600	476
.600	629	.650	320	.650	251	.650	253
.650	388	.700	320	.700	219	.700	210
.700	286	.750	213	.740	170	.750	175
.750	315	.800	213				
.850	198	.850	144				
.900	158	.900	092				
.984	042	1.000	.063				

			Lowe	r surface			
X/C	СР	X/C	СР	X/C	СР	X/C	CP
$\eta =$	= 0.25	$\eta =$	0.47	$\eta =$: 0.64	η =	= 0.78
075	.176	.075	042	.075	155	.075	212
125	.143	.125	027	.125	150	.125	300
175	.060	.175	202	.225	365	.225	395
225	.034	.225	232	.325	378	.325	344
325	176	.325	220	.425	330	.425	522
425	174	.425	488	.525	510	.525	635
525	515	.525	423	.575	690	.575	402
575	491	.575	453	.675	305	.675	212
.625	489	.625	633	.725	197		
.675	511	.725	212				
725	455	.775	-,119				
.775	495	.825	036				
.825	290	.875	.033				
.875	086	.975	.155				
.975	.007						

.975

124

- ----

Ŧ

-1 Ŧ 18

al fulat in i

= ÷

ni i ii

-

_

- -----

11.000

APPENDIX G INTEGRATED SECTION QUANTITIES, c_n and c_m , PYLONS ON, HP \approx 20,000 FT

			C_n	C_m	C _n	C _m	C _n	$\overline{C_m}$	C _n	C _m
<u></u>	α , deg	Run no.	$\eta =$	0.25	$\eta =$	0.47	$\eta =$	0.64	$\eta =$	0.78
0.456	8.8	65T16	0.387	0.005	0.501	-0.047	0.432	-0.012	0.459	-0.034
0.504	8.2	65T1	0.357	0.007	0.469	-0.046	0.398	-0.011	0.408	-0.031
0.640	5.1	65T2	0.244	0.011	0.307	0.036	0.204	0.004	0.207	-0.022
0.747	3.3	66T14	0.173	0.016	0.210	-0.028	0.073	0.002	0.090	-0.023
0.800	2.7	66T15	0.155	0.021	0.162	-0.023	0.060	0.010	0.088	-0.022
0.803	2.9	65T3	0.162	0.024	0.183	-0.019	0.077	0.009	0.135	-0.023
0.805	2.7	65T15	0.156	0.027	0.168	-0.020	0.071	0.006	0.130	-0.030
0.842	2.3	65T13	0.154	0.027	0.124	0.008	0.034	0.018	0.112	-0.035
0.859	2.2	65T4	0.129	0.031	0.127	0.018	0.044	0.016	0.155	-0.042

APPENDIX H INTEGRATED SECTION QUANTITIES, c_n and c_m , PYLONS ON, HP \approx 30,000 FT

			$\overline{C_n}$	С _т	C _n	C _m	Cn	C _m	Cn	C _m
М	α , deg	Run no.	$\eta =$	0.25	$\eta =$	0.47	$\eta =$	0.64	$\eta =$	0.78
0.642	7.0	66T8	0.334	0.000	0.437	-0.030	0.375	0.014	0.337	-0.015
0.747	5.0	66T12	0.255	0.008	0.315	-0.027	0.211	0.013	0.265	-0.006
0.796	4.2	66T9	0.239	0.016	0.280	-0.017	0.185	0.016	0.186	-0.013
0.841	5.2	66T11T	0.348	0.012	0.446	-0.019	0.318	0.019	0.393	-0.008
0.843	3.4	66 T 11	0.225	0.020	0.230	0.002	0.103	0.029	0.206	-0.018
0.874	4.0	66T10MT	0.272	0.009	0.344	-0.013	0.278	-0.006	0.343	-0.041
0.876	3.5	66T10T	0.249	0.010	0.293	-0.007	0.235	-0.004	0.295	-0.034
0.877	2.7	66T10	0.207	0.012	0.224	-0.001	0.160	-0.002	0.209	-0.023

1

:

* 1

i

i

Ξ

lii i

_

=

APPENDIX I INTEGRATED SECTION QUANTITIES, c_n and c_m , PYLONS ON, HP \approx 40,000 FT

			C_n	C _m	Cn	C _m	Cn	$\overline{C_m}$	$\overline{C_n}$	$\overline{C_m}$
<u></u>	α , deg	Run no.	$\eta =$	0.25	$\eta =$	0.47	$\eta =$	0.64	$\eta =$	0.78
0.754	7.6	66T5	0.401	0.016	0.530	-0.019	0.386	0.026	0.400	0.010
0.818	5.9	66T6	0.361	0.019	0.463	-0.011	0.348	0.030	0.372	0.010
0.843	5.2	66T7	0.345	0.012	0.440	-0.016	0.317	0.021	0.391	-0.008

APPENDIX J INTEGRATED SECTION QUANTITIES, c_n and c_m, PYLONS OFF, HP \approx 20,000 FT

	······································		C _n	C _m	C_n	C _m	C _n	Cm	C_n	C _m	
М	α , deg	Run no.	$\eta =$	0.25	$\eta =$	$\eta = 0.47$		$\eta = 0.64$		$\eta = 0.78$	
0.486	7.4	612T1	0.333	0.009	0.422	-0.038	0.393	-0.020	0.419	-0.039	
0.495	8.1	610T1	0.337	0.016	0.429	-0.029	0.427	-0.020	0.460	-0.038	
0.500	7.6	612T19F	0.344	0.008	0.430	-0.036	0.401	-0.020	0.434	-0.038	
0.642	4.3	612T2	0.240	0.010	0.263	-0.031	0.211	-0.010	0.224	-0.028	
0.647	4.7	610T2	0.222	0.018	0.254	-0.019	0.219	-().()()7	0.235	-0.026	
0.651	4.3	612T19E	0.242	0.008	0.266	-0.029	0.211	-0.009	0.237	-0.031	
0.725	5.0	612T14	0.250	0.012	0.321	-0.022	0.277	-0.004	0.248	-0.030	
0.742	3.3	610T14	0.163	0.026	0.193	-0.010	0.128	-0.003	0.143	-0.022	
0.750	2.6	612T19D	0.176	0.013	0.193	-0.021	0.107	-0.008	0.116	-0.030	
0.767	2.0	612T18	0.091	0.054	0.203	-0.021	0.130	-0.011	0.142	-0.030	
0.707	2.1	69T15	0.142	0.023	0.154	-0.013	0.093	0.007	0.096	-0.014	
0.799	2.1	610T3	0.147	0.029	0.144	-0.003	0.128	0.008	0.126	-0.018	
0.722	1.9	612T19C	0.156	0.015	0.150	-0.019	0.075	-0.004	0.065	-0.029	
0.000	4.8	612T3	0.269	0.022	0.352	-0.010	0.297	0.011	0.315	-0.013	
0.801	5.2	612T13	0.274	0.021	0.299	-0.003	0.292	0.019	0.154	-0.015	
0.845	1.9	69T13	0.147	0.025	0.153	-0.002	0.072	0.002	0.085	-0.015	
0.843	2.0	610T13	0.148	0.029	0.141	0.007	0.087	0.007	0.084	-0.016	
0.040	1.0	612T19B	0.119	0.019	0.087	-0.011	0.011	-0.005	0.012	-0.041	
0.851	1.0	69T4	0.146	0.023	0.127	0.006	0.074	0.006	0.068	-0.018	
0.800	1.0	610T4	0.153	0.024	0.131	0.013	0.073	0.008	0.096	-0.019	
0.800	1.4	612 T 19A	0.139	0.025	0.144	-0.006	-0.020	-0.008	0.123	-0.030	

÷

į

APPENDIX K INTEGRATED SECTION QUANTITIES, c_n and c_m , PYLONS OFF, HP \approx 30,000 FT

			C _n	C_m	C _n	C _m	$\overline{C_n}$	C_m	C	C _m
<u> </u>	α , deg	Run no.	$\eta =$	0.25	$\eta =$	0.47	η =	= 0.64	n =	= 0.78
0.630	10.5	610T8T	0.444	0.003	0.595	-0.028	0.586	0.011	0.582	-0.008
0.649	7.0	69T8	0.316	0.012	0.439	-0.020	0.436	-0.001	0.469	-0.019
0.650	6.3	610T8	0.281	0.014	0.373	-0.012	0.326	-0.003	0.329	-0.027
0.739	4.6	610T12	0.215	0.019	0.262	-0.011	0.246	0.006	0.285	-0.010
0.747	5.0	69T12	0.244	0.016	0.316	-0.019	0.269	0.003	0.327	-0.013
0.752	6.1	610T12T	0.290	0.021	0.383	-0.003	0.331	0.010	0.363	_0.008
0.793	7.1	611 TT 9	0.375	0.025	0.534	0.002	0.498	0.015	0.508	0.010
0.800	3.7	611 T P9	0.200	0.027	0.245	-0.004	0.164	0.010	0.212	-0.010
0.800	4.0	69T9	0.227	0.022	0.281	-0.009	0.205	0.012	0.212	-0.011
0.841	5.2	611TT11	0.325	0.020	0.428	0.000	0.390	0.011	0.221	0.004
0.845	3.1	611TP11	0.193	0.028	0.234	0.005	0.168	0.017	0.412	0.004
0.847	3.3	69 T 11	0.216	0.024	0.256	0.002	0.181	0.017	0.102	0.003
0.873	2.7	611TP10	0.205	0.020	0.248	-0.002	0.139	0.010	0.212	-0.003
0.873	2.7	69T10	0.226	0.013	0.264	-0.009	0.152	0.010	0.170	0.005
0.875	4.0	611TT10	0.295	0.008	0.387	-0.020	0.351	-0.010	0.358	-0.002 -0.021

APPENDIX L INTEGRATED SECTION QUANTITIES, c_n and c_m , PYLONS OFF, HP \approx 40,000 FT

			C_n	C _m	$\overline{C_n}$	C _m	C _n	C_m	Cn	C_m
М	α , deg	Run no.	$\eta =$	0.25	$\eta =$	0.47	$\eta =$	0.64	η =	0.78
0.734	7.9	69T5	0.377	0.014	0.507	-0.023	0.450	0.013	0.472	0.001
0.799	6.1	69T6	0.329	0.021	0.450	-0.008	0.389	0.021	0.405	0.009
0.853	4.7	69T7	0.325	0.010	0.419	-0.012	0.371	0.006	0.374	0.003

1 ĩ

N.

4 Ē

Distanti i Viti (MIVA)

10.11.00

10.00

1

1 0 1

- Norman series in the state of the state o

REFERENCES

- 1. Taylor, John W.R., ed., "Jane's All The World's Aircraft," B.P.C. Publishing Limited, London, W.I., England, 1968–1969, pp. 178–180.
- 2. Taylor, John W.R. and Kenneth Munson, eds., "Jane's All The World's Aircraft," Jane's Yearbooks, Franklin Watts Inc., New York, NY,1979–1980, pp. 235–237 and 384–385.
- Lacey, T.R. and K. Miller, "The AV-8B Wing: Aerodynamic Concept and Design," AIAA-77-607, V/STOL Conference, Palo Alto, CA, June 6–8, 1977.
- 4. Berger, Roger L., James S. Crupper, and Donald L. Mosier, *Engineering and Technical Support for the NASA YAV-8B Research Aircraft*, NASA CR-166527, 1984.
- 5. McDonnell Douglas Corporation, YAV-8B Simulation and Modeling, Vol. 1: Aircraft Description and Program Summary, NASA CR-170397, 1983.
- 6. Montoya, Lawrence C. and David P. Lux, Comparisons of Wing Pressure Distribution From Flight Tests of Flush and External Orifices for Mach Numbers From 0.50 to 0.97, NASA TM X-56032, 1975.
- 7. Gracey, William, Measurement of Aircraft Speed and Altitude, NASA RP-1046, 1980.
- Crowder, James P. and Paul E. Robertson, "Flow Cones for Flight Test Flow Visualization," Flow Visualization III, edited by W.J. Yang, Proceedings of the Third International Symposium on Flow Visualization, University of Michigan, Ann Arbor, MI, Sept. 6–9, 1983, pp. 60–64.
- Staff of NASA Flight Research Center, Supercritical Wing Technology, A Progress Report on Flight Evaluations, Supercritical Wing Symposium proceedings, NASA Flight Research Center, Edwards, CA, NASA SP-301, 1972.
- Lock, R.C. and J.L. Fulker, "Design of Supercritical Aerofoils," *Aeronautical Quarterly*, Vol. 25, Royal Aircraft Establishment, Farnborough, England, Nov. 1974, pp. 245–265.
- 11. McDonnell Douglas Corporation, "YAV-8B, 15% Scale Powered Aerodynamic Test in the NASA-Ames 14 Foot (ARC) Transonic Wind Tunnel," Vol. I, Report MDC A5138, Mar. 1978.
- 12. McDonnell Douglas Corporation, "AV-8B/GR Mk.5, 15% Scale Model AV-8B/GR Mk.5 Aerodynamic and Loads Test in the ARA 9 Foot x 8 Foot Transonic Wind Tunnel," Report MDC A7540, May 1982.
- 13. Diederich, Franklin W., A Plan-Form Parameter for Correlating Certain Aerodynamic Characteristics of Swept Wings, NACA TN-2335, 1951.
- 14. Hoerner, Sighard F. and Henry V. Borst, "Fluid-Dynamic Lift," published by Mrs. Liselotte A. Hoerner, Brick Town, NJ, 1975.
- 15. Moes, Timothy R. and Robert R. Meyer, Jr., In-Flight Wing Pressure Distributions for the F-14A Aircraft, NASA TM-85921, 1985.

I

.

- 5

Form Approved

•

•

it introductions are seen

-Ξ

-

REPORT DOCUMENTATION FAGE			OMB No. 0704-0188
Public reporting burden for this collection of infor gathering and maintaining the data needed, and collection of information, including suggestions to Davis Highway, Suite 1204, Artington, VA 22202-	mation is estimated to average 1 hour per r completing and reviewing the collection of i or reducing this burden, to Washington Hea 4302, and to the Office of Management and	esponse, including the time for rev nformation. Send comments regar dquarters Services, Directorate for I Budget, Paperwork Reduction Pr	lewing instructions, searching existing data sources, ding this burden estimate or any other aspect of this information Operations and Reports, 1215 Jefferson oject (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED
November 1992 Techni			al Memorandum
4. TITLE AND SUBTITLE Pressure Distribution for With and Without Pylons	the Wing of the YAV-8B	Airplane;	5. FUNDING NUMBERS RTOP 505-59-53
6. AUTHOR(S) Edwin J. Saltzman, John and Jill M. Yarger	H. Del Frate, Catherine l	M. Sabsay,	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
NASA Dryden Flight Research Facility P.O. Box 273 Edwards, CA 93523-0273			H-1708
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING AGENCY REPORT NUMBER
National Aeronautics and Space Administration Washington, DC 20546-0001			NASA TM-4429
11. SUPPLEMENTARY NOTES Edwin J. Saltzman: PRC Jill M. Yarger: NASA Dry	Inc., Edwards, CA; John den Flight Research Faci	H. Del Frate, Cather lity, Edwards, CA.	ine M. Sabsay, and
12a. DISTRIBUTION/AVAILABILITY S	TATEMENT		12b. DISTRIBUTION CODE
Unclassified — Unlimited Subject Category 02			
13. ABSTRACT (Maximum 200 words	;)		
Pressure distribution data airplane. Data obtained for the to 0.88. The altitude ranged fr approximately 7.2 million to Pressure distribution data compromised because the low conditions. This condition is 20- and 35-percent chord) wh fairings, which cover the pylon negative than those for sonic the pylons are installed for Ma would be expected to cause in	have been obtained in flight e supercritical profiled wing, om approximately 20,000 to 28.7 million based on the ma and flow visualization resu- ver surface cusp region exper aggravated when local shock hen the pylons are installed in attachment flanges, cause th flow also occur farther aft on ach numbers 0.8. These nega ncreasing wave and separation	at four span stations of with and without pylon 40,000 ft and the result ean aerodynamic chord alts show that the full- iences flow separation is occur on the lower su- for Mach 0.8 and abov- nese local shocks. Press the lower surface (nea- tive pressure coefficien on drag as transonic Ma	on the wing panel of the YAV-8B s installed, ranged from Mach 0.46 ant Reynolds numbers varied from t.
14. SUBJECT TERMS			15. NUMBER OF PAGES
Supercritical wing aerodynamics; Wing pressure distribution; Wing-pylon interaction; YAV-8B			140 16. PRICE CODE A07
17. SECURITY CLASSIFICATION	B. SECURITY CLASSIFICATION	19. SECURITY CLASSIF	ICATION 20. LIMITATION OF ABSTRAC
OF REPORT Unclassified	of this page Unclassified	OF ABSTRACT Unclassified	Unlimited
NSN 7540-01-280-5500			Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102

NASA-Langley, 1992