P-27

139613

NASA Technical Paper 3251

封建 김 동안소리

December 1992

and a second and a s Second and a second a

and the second secon Second second

اللا، بيداد بين فري من المحمد من المحمد. الا يونيفي المربوع مع في في بينو بينا

and a second s

User's Guide for a Large-Signal Computer Model of the Helical Traveling Wave Tube

Raymond W. Palmer

(NASA-TP-3251) USER'S GUIDE FOR A LARGE SIGNAL COMPUTER MODEL OF THE HELICAL TRAVELING WAVE TUBE (NASA) 27 p

Unclas

N93-15531

H1/33 0139613

<u>_____</u> na na shi waxayin shi ƙwal Manazarta 1975 na 1976 M

. . 774 -

n ki

N

Å T

승규는 가지 않는 것이 있는 것이 없다. NASA Technical Paper 3251

1992

User's Guide for a Large-Signal Computer Model of the Helical Traveling Wave Tube

Raymond W. Palmer Lewis Research Center Cleveland, Ohio

National Aeronautics and Space Administration

Office of Management

Scientific and Technical Information Program

.

Ē

-

t al G - I

-

Summary

We describe the use of a successful large-signal, twodimensional (axisymmetric), deformable disk computer model of the helical traveling wave tube amplifier, an extensively revised and operationally simplified version of the one originally developed by Detweiler. We also discuss program input and output and the auxiliary files necessary for operation. Included is a sample problem and its input data and output results.

Interested parties may now obtain from the author the FORTRAN source code, auxiliary files, and sample input data on a standard floppy diskette, the contents of which are described herein. All requests should be submitted in writing.

Introduction

The Electron Beam Technology Branch of the NASA Lewis Research Center has a successful history of improving the performance of helical traveling wave tubes (TWT's). Achievements include the computer-aided designs of refocusercollector combinations (refs. 1 to 4) and velocity-tapered output helices using the dynamic velocity taper (DVT) prescription of Kosmahl (refs. 5 and 6). The principal tool in these design procedures is a large-signal helical TWT program which accurately models the electron beam and the amplification process that results from beam-circuit interaction.

The code used at NASA Lewis is a large-signal, twodimensional (axisymmetric), deformable disk model developed originally by Detweiler (ref. 7). This model chops an electronic wavelength of the beam entering the helical circuit into a row of charge disks. It follows these disks through the tube as they interact with the circuit and with each other, ultimately converting their kinetic energy to enhanced, radiofrequency (rf) field energy. That is, the system of coupled integrodifferential equations of motion and disk-circuit interaction is solved, and results are reported at predetermined periodic axial locations. Space-charge forces are formulated such that the disks can overtake and even travel through each other. Also, although each disk retains a constant thickness, it can expand or contract radially. Azimuthal quantities are solved for by preserving each disk's angular momentum in the imposed sinusoidally periodic or solenoidal magnetic field.

The original Detweiler model was acquired and revised extensively by NASA Lewis personnel. Improvements to the original included an accurate solution of the expanded equation set, relativistic effects, a reduced potential due to imposed magnetic field (ref. 8), attenuation, and circuit severing with an automatic program restart. Perhaps the most significant improvement was making the data input procedure easier. Most of the data are now physically meaningful (dimensional) parameters. With the revised model the user no longer has to precalculate dimensionless inputs, a tedious and possibly error-prone process; the revised program consistently and transparently performs these tasks.

The source code is written in ANSI-compatible FORTRAN and requires no special function libraries. At NASA Lewis, it runs on a Cray X-MP supercomputer which produces 64-bit precision and has great speed. Typically, a case using a moderate number of simulated charge disks, such as the one shown in the SAMPLE CASE section of this user's guide, takes less than 1 min of central processor time. The storage requirement for the executable module (absolute element) is less than 0.8 megabyte.

The success of the program and the case of its use, coupled with the relative stasis it has achieved, prompt us to release the program to users. Interested parties may write to the author to obtain the source program, auxiliary files, and sample input on a standard floppy diskette.

The user's guide includes a description of the diskette contents as well as the program input, file attachment, and output. The guide also analyzes the sample case whose input data are given on the diskette and it gives a complete presentation of the resultant output. The descriptions assume that the user is familiar with both large- and small-signal TWT theories (refs. 7 and 9 to 11). For those who wish to delve more deeply into the model or the code, Detweiler's thesis (ref. 7) is indispensable.

The Diskette

The diskette is a standard, double-sided, 80-track, highdensity, 5¹/₄-in. floppy disk. The four text files it contains were copied to it with an AT-compatible personal computer operating under MS-DOS, version 5.0.

The files all have the same name (TWT_HMOD); their identity comes from their extensions (FOR, BSØ, SCT, and INP). TWT_HMOD.FOR (116 112 bytes written from 1416 card images) is the FORTRAN source code. TWT_HMOD.BSØ (24 641 bytes from 302 card images) and .SCT (215 241 bytes

from 2714 card images) are two data files that must be attached to the operating module in order to compute space-charge forces. TWT_HMOD.INP (860 bytes from 22 card images) is a sample input data file.

Input Data

A sample input file (TWT_HMOD.INP) is included on the diskette and is printed out in appendix A. This file is read on FORTRAN logical I/O unit 5.

The data entrance process begins when we divide the TWT into logical break points (e.g., where attenuation changes or the tube is severed). Then we define each section by three packets of information:

The first packet is simply a title, up to 80 characters in length. If the first four characters are the word "STOP", the program terminates.

The second and third information packets are the NAMELIST's &IN1 and &IN2.

&IN1 contains the important physical parameters. All FORTRAN variable names therein, except for ZTYPE, are real. &IN1 includes the following (*Those parameters marked with an asterisk should be entered in the first section and not changed thereafter):

- GHZ*-the operating frequency, GHz
- RADA-mean helix radius, in.
- BOVERA*—ratio of entering beam radius to mean helix radius
- TESLA-peak magnetic flux density on helix centerline, T
- VKV*—the helix voltage (i.e., the net accelerating voltage applied to the electron beam), kV
- IMA*-electron beam current, mA
- OHMS-interaction impedance, ohm
- ZTYPE-a character indicator
 - ZTYPE='C' if the interaction impedance value given in OHMS is centerline impedance
 - ZTYPE='A' if it is the impedance value at the mean helix radius
 - ZTYPE='P' if the impedance value is the Pierce, or integrated impedance

Note: the character must be embedded between two single quotation marks. (The impedances are defined in, or can be deduced from, the material of ref. 10, ch. 10.)

- VOVERC-the ratio of the helix phase velocity to the speed of light, dimensionless
- LMAG—the magnetic period, in. (Note: one may simulate a solenoidal field by making LMAG >> TWT length.)
- RATB*—the ratio of the magnetic flux density at the cathode to the magnetic flux density at the beam entrance to the helix, dimensionless. When RATB=0., the value or RATR (see below) is irrelevant. Typically, magnetic stack-cathode flux linkage in space tubes is quite small, and analyses with RATB set to zero are quite acceptable.

- RATR*—the ratio of the radius of the cathode to the radius of the entering beam, dimensionless. When the value of RATB (see above) is zero, the value of RATR is irrelevant.
- ZEND-the end point of this segment, in.
- ATTEN1, ATTEN2—attenuation at the beginning of this section and at the end, respectively, dB/in. Over the course of the section then, attenuation varies linearly between ATTEN1 and ATTEN2.
- DZ—step size for integrating the differential equations of motion of the charge disks with an internal Runge-Kutta scheme, in. One may increase the accuracy of the solution by choosing a very small value of DZ, but at the expense of increased central processor time.
- PINDBM—the input drive power, dBm. In all sections beyond the first, PINDBM serves as a program flag: if PINDBM is positive, the calculation continues normally; if it is zero, a sever section is indicated; if it is negative, a section immediately following a sever section is indicated. Thus, the values 0., 1., and -1. are all that are needed beyond the first section.
- URATIO*—the ratio of the input electron radial disk edge velocity to the input axial velocity, dimensionless. URATIO is thus negative for a converging beam and positive for an expanding beam.
- ALPHA, TAUZ-DVT parameters. The Pierce velocity parameter b (ref. 10, ch. 10) is modelled as

$$b = b_0 + \alpha \left(\frac{Z_a}{Z_p}\right)^{1/3} \left\{ \exp[\tau_z(z - z_0)] - 1 \right\}$$

Here b_0 is the value of this parameter at the beginning of the section (at $z = z_0$); ALPHA corresponds to α and is dimensionless; Z_a is the interaction impedance evaluated at the mean helix radius; Z_p is the Pierce interaction impedance; and TAUZ corresponds to τ_z and is in in.⁻¹. Note that the ratio of the local phase velocity to the phase velocity at the beginning of the section is

$$\frac{v}{v_0} = \frac{1 + b_0 C}{1 + bC}$$

where C is the Pierce interaction parameter.

The NAMELIST &IN2 contains parameters that are more administrative in nature. The variables are integers and logical switches. &IN2 includes the following:

- RUN*—an integer run identifier for record keeping convenience
- IPRNT—an integer output control. Program information is put out every IPRNT steps (i.e., at IPRNT*DZ inch intervals).

- PLOTT—logical switch that, when .TRUE., causes beam trajectory information to be saved in a file on FORTRAN logical I/O unit 14 every IPRNT steps. From the saved file, one can later plot the disk edge trajectories.
- PLOTE—logical switch that, when .TRUE., causes beam energy information at the end of the section to be saved on FORTRAN logical I/O unit 15. As with trajectories, this information can be plotted later.
- M^* —the number of model charge disks used in the simulation of the electron beam. Permissible values are 2, 4, 8, 16, 20, 32, 64, 80, and 160. One may increase the accuracy of the simulation by choosing a large number of disks, but at the expense of increased central processor time. Setting M = 32 serves well for preliminary design studies.

Auxiliary File Attachments

Disk trajectory and energy distribution information can be saved in files for later plotting (see INPUT DATA). These two files are written to FORTRAN logical I/O units 14 and 15, respectively. Their contents are described later in the PROGRAM OUTPUT section.

In addition to these two files, the program module requires two more for operation. These files are used for the computation of space-charge forces between charge disks.

The first file (TWT_HMOD.BSØ on the diskette) consists of the first 750 zeros of the zeroth-order Bessel function of the first kind J_0 , followed by the 750 squares of the J_1 function evaluated at these zeroes. These tabular values are used in the construction of the dimensionless space-chargeweighting function tables, from which radial and axial spacecharge forces between adjacent disks are interpolated.

These data are read on FORTRAN logical I/O unit 7 when the program requires new tables to accommodate the input parameters. Before each segment of 750 data words is an information record (not to be erased). The data follow in 5E16.7 format written to 302 card images.

The second file (TWT_HMOD.SCT on the diskette) consists mainly of the space-charge-weighting-function tables. If the input parameters require, these data must be recomputed and the file overwritten before the problem can continue. Overwriting occurs if one changes the ratio of mean helix radius to electronic wavelength or if one starts the run with a new number of charge disks in the simulation. The user must allow for this possible occurrence in any job control command stream that runs the program in either the interactive or batch mode of operation.

The space-charge file is read on FORTRAN logical I/O unit 4. The first record is informational but must not be erased. The tables follow in 1P5E16.7 format. After the tabular data is another informational record (also not to be erased). Finally,

there are 57 data words, which are the distances apart, in terms of phase space (ref. 7, ch. 2), at which the tables are evaluated. These data words are also in 1P5E16.7 format. Excluding the data on the informational record, there are a total of 13 107 data words. The whole file is contained on 2714 card images.

Program Output

In appendix B, a complete specimen program output is presented exactly as printed by the computer. This output results from the input file given in appendix A.

The output is directed to FORTRAN logical I/O unit 6. This information is divided into sections corresponding to the input data. Following is a description of those quantities that are reported.

First, at the beginning of each section, the program prints an echo of the section title and the two input NAMELIST's (see INPUT DATA). Then follows another NAMELIST, &OUT. &OUT contains some parameters of interest to those familiar with the Pierce, or small-signal theory of amplification (ref. 10, ch. 10):

- RELFAC—the square of the ratio of the input velocity to the speed of light, dimensionless. (Note: relativistic effects are retained in all calculations of axial velocity but not for radial or azimuthal velocities, which are generally nonrelativistic.)
- •VEFF—the ratio of the centerline (reduced voltage) to the applied voltage, dimensionless. The voltage reduction arises because of the magnetic containment of the beam. (Note: this reduced voltage is used in the calculation of the axial entrance velocity and, where applicable, in the calculation of the following Pierce parameters.)
- WP—the ratio of the plasma frequency to the frequency of operation, ω_p/ω, dimensionless
- BCPRCE—the product of the electronic wave number and the Pierce interaction parameter, $\beta_e C$, in.⁻¹
- CPRCE-the Pierce interaction parameter C, dimensionless
- BPRCE-the Pierce velocity parameter b, dimensionless
- QCPRCE—the Pierce space-charge parameter QC, dimensionless
- D1PRCE, D2PRCE—the Pierce attenuation factors d, at the beginning and at the end of the section, respectively, dimensionless
- ZRATH—the cube root of the ratio of the interaction impedance evaluated at the mean helix radius to the Pierce interaction impedance, $(Z_a/Z_p)^{1/3}$, dimensionless. This parameter is used in the prescription of the DVT (see INPUT DATA).

After the printout of &OUT is completed, the code then determines from the section input if new space-change tables are required. Recall that the tables must be recomputed if the ratio of mean helix radius to electronic wavelength changes or if one starts a run with a new number of charge disks in the simulation. If new tables are computed, the program prints a message to inform the user.

These preliminary tasks performed, the program now labels a page heading with RUN and section number and marches through the section DZ inch per step. It prints results every IPRNT steps or IPRNT*DZ inch intervals (see INPUT DATA). Thirteen quantities are printed out at each print step:

- Z-the axial location, in.
- GAIN-the tube gain, dB
- EFF—the beam efficiency, or 100 times the ratio of rf output power to the beam power (the product of helix voltage and beam current), percent
- PHASE—the rf signal phase, θ_y , rad. The growing voltage wave on the helix is of the form

$$\operatorname{R}_{\epsilon}\left\{V\exp\left[-j(\beta_{e}Z-\omega t-\theta_{y})\right]\right\}$$

where V is the (real) voltage. θ_y is PHASE and is an angular measure of the time difference between the arrival of the rf signal at Z to the arrival of an idealized hypothetical charge disk that moves through the TWT at the injection velocity. A negative value of PHASE means that the signal lags this reference trajectory.

- HLOSS, SLOSS, ILOSS—normalized beam power lost to the helix in ohmic heating, lost to the sever, and lost through beam interception on the helix, respectively, percent of beam power
- FAMP, FPHS, HAMP, HPHS—normalized fundamental current amplitude (i_1/i_0) , fundamental current phase, (θ_1) , normalized first harmonic current amplitude (i_2/i_0) , and first harmonic current phase, (θ_2) respectively. Current is normalized via division by the beam current. Phase is given in degrees. These quantities constitute the first two terms of the Fourier decomposition of the modulated beam current that is of the form

$$\sum \frac{i_n}{i_0} \cos(n\Phi - \theta_n)$$

where Φ is the angle of the circuit voltage.

- WVSPD—ratio of the helix phase velocity to the value at the start of the section, dimensionless. This ratio is given by $(1 + b_0 C)/(1 + bC)$, where b is the Pierce velocity parameter, b_0 is its value at the beginning of the section, and C is the Pierce interaction parameter.
- MGFLD—ratio of on-axis magnetic flux density to the peak value for the section, dimensionless

During the process of stepping through the section, the code will send printed notifications whenever the edge of a charge disk contacts the helix (at the average helix radius RADA). The user will also be informed the first time that the integration process drives a disk trajectory negative in the r-coordinate. Internally the model "reflects" the trajectory through the axis by changing the sign of r. The calculation then continues with this positive value as the new starting condition. We have noticed no adverse effects when only a small number of the trajectories is reflected during a run.

Finally, when the end of the section is reached, the code produces an energy and trajectory "snapshot" at ZEND. Printed out for each disk are the total kinetic energy, the (combined) kinetic energy in the z- and r-directions, the kinetic energy in the azimuthal direction only (energies in eV); the normalized radius (normalized to the average helix radius RADA); the angle at which each disk is expanding or contracting (convergence/divergence angles in deg); and the normalized position of the disk in the phase space of an electronic wavelength (normalized to pi radians). The disks are ordered in ascending total kinetic energy so that the user can get a quick idea of the energy distribution.

Following the snapshot, the program concludes the printed information of the section by giving some disk statistics. Printed out are the average and standard deviations of the sample (see eq. (10-2), ref. 12) for the normalized radii, the convergence/divergence angles, and the total kinetic energies.

the interaction with

Ξ

The user may optionally request information to be saved for plotting later (see INPUT DATA section), trajectory information being written to FORTRAN logical I/O unit 14, and beam energy distribution information to unit 15.

Two records of the trajectory file are written every IPRNT steps. The first record consists of the single integer variable M, the number of charge disks, written in 112 format. The second record consists of the location Z, the radius RADA, a quantity proportional to the magnetic field, and these followed by M values of disk radius. Z, RADA, and the disk radii are in inches. The dimensionless magnetic quantity is $(\omega_c/\omega)(B/B_0)$, where ω_c is the cyclotron frequency, ω is the angular frequency of operation, B is the local field, and B_0 is the peak field for the section. The format of this second record is 6E12.5.

The energy distribution file is written at the end of the section (at ZEND). The first record, written in 2112 format, consists of M and the section number. The second record gives M values of the ratio of charge disk total kinetic energy (in eV) to the helix voltage. These are sorted and written in ascending order. The format is 6E12.5. The third record gives M values of 1 - (i - 1)/M for *i* from 1 to M, also in 6E12.5 format.

These latter two records give the normalized energy distribution plot abscissa-ordinate pairs: the first record is M ordered values of the abscissa, the second is the corresponding values of the ordinate. An ordinate value on the curve represents the fraction of the total beam having normalized total kinetic energy greater than or equal to its corresponding abscissa value.

Sample Case

Our sample case is a preliminary attempt to design a nominal 5- to 7-W, Ka-Band (GHz, 32) TWT which might have application in a deep space mission. The input data are given in appendix A and the resulting output in appendix B.

The tube uses a 14-mA electron beam accelerated to 5.255 kV. This beam has quite low perveance and, consequently, high thermal effects (refs. 13 and 14) which the model cannot simulate. Therefore, the size of the beam used in the input data (beam radius, BOVERA*RADA = 0.03013 in.) is determined by a parametric analysis beyond the scope of this document. The peak magnetic flux density (TESLA = 0.21 T) is $\sqrt{2}$ times the solenoidal Brillouin field necessary to contain the beam. At the TWT entrance, the beam is expanding at an angle of $\frac{1}{2}$ deg (URATIO = 0.00873). Approximately 5 G leaks back from the entrance to link the cathode (RATB = 2.381 × 10⁻³), which has 25 times the area of the beam (RATR = 5.0).

The TWT consists of four sections: an input helix, a sever, and an output helix which is divided into a constant-pitch section and a dynamically tapered section. All have the same radius (RADA = 0.0131 in.), the same peak field (TESLA = 0.21 T), the same magnetic period (LMAG = 0.2025 in.), and the same centerline (ZTYPE = 'C') impedance (OHMS = 28.84 ohms). The active helices have the same attenuation (ATTEN1 = ATTEN2 = 2.35 dB/in.). The sever, into which is dumped the power from the previous section, is given the artificial attenuation values of 99 dB/in. (merely as a reminder to the user that this section is indeed the sever).

The input helix is 1.616 in. long, the sever is 0.560 in. long, and the output helix is 2.079 in. long, the last 1.099 in. being dynamically tapered. The input helix is wound such that the normalized phase velocity is 0.1353, corresponding to a Pierce velocity parameter of approximately 1.79. The output helix has a normalized phase velocity of 0.1426, which results in a Pierce velocity parameter slightly less than synchronous (b = -0.19). The tapered section (TAUZ = 4.3, ALPHA = 0.045) reduces this velocity to about 83 percent of its input value over the last 1.099 in.

The equations of motion are integrated every 5×10^{-4} in. in this problem whose run number is 1234. A moderate number of disks (M = 32) is used in this simulation. In three of the four sections, we call for output every 0.1 in. (IPRNT = 100); in the tapered section, we want five times more detail (IPRNT = 20). We save no plot data. Each section is labeled, and the problem is halted when the last label is the word "STOP".

4

The drive power is nearly 2 mW (PINDBM = 2.75 dBm). Note that the nature of PINDBM changes in sections 2 to 4. In the second section, the program recognizes that PINDBM = 0. corresponds to a sever section. PINDBM = -1. in the third section causes recovery (auto restart) of the solution. The value of 1. in the last section means problem continuation.

In appendix A, we note that the signal is amplified by 17.3 dB in the input helix. That power is dumped into the sever where the signal phase is maintained constant while the gain and efficiency calculations are terminated, but their values are arbitrarily reported as zero.

In the output helix the problem is restarted; here the product of the fundamental current amplitude times a coupling factor results in a new starting condition for the current-circuit interaction.

The rf efficiency grows to nearly 0.8 percent by the time the charge disks enter the tapered section where the phase velocity is continuously reduced in order to maintain an efficient disk-circuit reaction. The result is an rf efficiency of more than 9 percent (6.6 W output power). The combination circuit and sever loss is 1.9 W. The output kinetic energy of the charge disks varies from a minimum of 4069 to 5397 eV.

Concluding Remarks

We describe the operation of a large-signal, two-dimensional (axisymmetric), deformable disk computer model of the helical traveling wave tube amplifier.

This FORTRAN program is a modified version of the one developed originally by Detweiler. It was greatly expanded and improved by NASA Lewis Research Center Personnel. In particular, the data input procedure was significantly simplified. This revised code was used successfully in a variety of analytical and design tasks.

We describe the program input process, the output, and the auxiliary files that must be attached to the operating module. Included and discussed is a sample problem, the input data and output results for which are provided in the appendices.

Since the program is successful, easy to use, and in relative stasis, we can now release it to potential users. Interested parties may obtain the source code, auxiliary files, and the sample input data file on a standard floppy diskette by writing the author. The contents of the diskette are described herein.

Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio, March 30, 1992

Appendix A Sample Input

INPUT HELIX &IN1 GHZ=32.0, RADA=.01310, BOVERA=.230, TESLA=.2100, VKV=5.2500, IMA=14.000, OHMS=28.84, VOVERC=.13530, LMAG=.2025, RATB=2.381E-03, RATR=5.0, ZEND=1.616, DZ=.0005, ATTEN1=2.3500, ATTEN2=2.3500, PINDBM= 2.750, ZTYPE='C', URATIO= 0.00873 &END &IN2 RUN=1234, IPRNT=100, M= 32, PLOTT=F, PLOTE=F &END SEVER SECTION &IN1 ZEND=2.176, PINDBM=0., TAUZ=0.000000, ALPHA=0., ATTEN1= 99., ATTEN2= 99. &END &IN2 IPRNT=100, PLOTT=F &END CONSTANT PITCH SECTION OF THE OUTPUT HELIX &IN1 ZEND=3.156, PINDBM=-1., TAUZ=0.000000, ALPHA=0.000, ATTEN1= 2.35, ATTEN2=2.35, VOVERC=.1426 &END &IN2 PLOTT=F &END DVT SECTION OF THE OUTPUT HELIX &IN1 ZEND=4.255, ATTEN1= 2.350, ATTEN2= 2.350, PINDBM= 1., TAUZ=4.300000, ALPHA= 0.045 &END &IN2 IPRNT= 20, PLOTE=F, PLOTT=F &END STOP

6

AUDALAND I MARIA

.....

Appendix B Sample Output

MGFLD (B/B0)	0.019 0.019 0.0999 0.0978 0.0997 0.0997 0.0978 0.00780 0.00780 0.00780 0.00780 0.00780 0.00780 0.00780000000000	
(0//N)		
HPHS (DEG)	-131.837 -53.236 -53.236 -59.563 -59.563 -16.425 -15.2000 -15.200 -15.200 -15.200 -15.200 -15.200 -15.200 -15.200 -15.200 -15.200 -15.200 -15.200 -15.200 -15.200 -15.200 -15.200 -15.200 -15.20000 -15.20000 -15.2000 -15.2000 -15.200000 -15.20000 -15.20	
HAMP (12/10)		
IO. I FPHS (DEG)	-7.546 13.097 55.475 55.475 55.475 55.475 55.475 68.396 88.396 88.396 119.527 119.527 119.642 118.896 118.896 118.896 118.896 118.896 118.896 118.896 1227.903 1227.9	
SECTION N FAMP (I1/I0)	0.002 0.00000000	
ND. 1234, ILOSS (%)		
RUN SLOSS (2)		
(<i>%</i>) HLOSS		
PHASE (RAD)	66655555555555555555555555555555555555	
EFF (X)	42200000000000000000000000000000000000	
GAIN (DB)		
Z Z Z		

1

8

A THE REPORT OF THE PARTY OF TH

The set of the line framework

- meeting of the state of the state of

D MGFLD (B/BD)	
WVSP (V/V)	
HPHS (DEG)	-117.371 -121.957 -123.661 -122.488 -117.663 -115.903 -115.903
HAMP (I2/I0)	0.012 0.014 0.017 0.021 0.028 0.028 0.028 0.028 0.028 0.028 0.028
NO. I FPHS (DEG)	123.363 124.114 125.076 125.395 125.774 125.774 125.635 125.101
SECTION FAMP (I1/ID)	0.124 0.135 0.156 0.156 0.156 0.156 0.166 0.189
NO. 1234, ILOSS (2)	
RUN SLOSS (Z)	
(%) 11055	0.000 0.010 0.014 0.014 0.017 0.017 0.019 0.023 0.023
PHASE (RAD)	-6.780 -7.007 -7.233 -7.458 -7.458 -7.684 -7.684 -8.139 -8.139 -8.139
EFF (%)	0.050 0.059 0.089 0.081 0.081 0.111 0.128 0.128 0.128 0.128
GAIN (DB)	13.158 143.856 15.534 15.534 15.850 15.850 17.124 17.124 17.124
CIN)	1.450 1.450 1.450 1.550 1.550

N MANAGARAN IN TANK

÷

PHASE/PI	0.8385955 0.83870955 0.68872735 0.68872735 0.688757735 0.68876757735 0.68876757735 0.6876757735 0.6876757735 0.687676799 0.75067679 0.75067679 0.750767555 0.750767555 0.750767555 0.75076755 0.750767555 0.7	
ANGLE DEG	00000000000000000000000000000000000000	
R/A	0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.235 0.234 0.235 0.255	
EK(PHI) EV	5.627825 5.527825 5.5941453 5.5941453 5.5941453 5.5547129 5.5549127 5.1102018 5.5549129 5.110202 5.56491361 5.1102028 5.110228 5.110228 5.1108 5.11028	
EK(Z+R) EV	511385 511385 511385 511385 511385 511385 511385 511385 511385 511385 511385 51144 511347 511345 51144 51144 5114445 5114445 5114445 5114445 5114445 5114445 5114445 5114445 511445 511445 511445 511445 511445 511445 511445 511445 511445 511445 511445 511445 511455 511455555555	
EK(TOTAL) EV	51441.29 51441.29 51444.265586 51444.265586 51444.265586 51444.265586 51444.265586 51444.265586 51444.265586 514446.265586 514466 511553.5821586 51553.582156 5116620 551599.7796453 552995.7443888 552995.7443888 552995.749456 552995.749456 552995.749456 552995.749456 552995.7794456 552995.779586 55299676 5529686 55299676 5529686 55299676 5529686 5529686 55299676 5529686 55299676 55299676 55299676 5529686 55299676 55299676 55299676 55296866 552968666 552968666 552968666 55296866 55296866 552968666 552968666 55296866 55296866 55296866 552968666666666666	
SK ND.	2 2 2000000000000000000000000000000000	
IQ	STATISTICS	r r r

110011

TELETER NUMBER OF THE PROPERTY OF

1111) Marine

-----

÷

1.1.1.1.1.1.1.1

RUN NO. 1234, SECTION ND.

ч

 $1,2,1,\dots,1$

Ē

÷

*** SEVER SECTION 8INL GHZ = 32.0, RADA = 1.3IE-02, BOVERA = 0.23, TESLA = 0.21, VKV = 5.25, IMA = 14.0, OHMS = 28.84, VOVERC = 0.1353, 8INL GHZ = 0.2022; RATB = 2.3IE-03, RATE = 5.0, ZEND = 2.176, DZ = 5.0E-04, ATTENI = 99.0, ATTEN2 = 99.0, ALPHA = 0.0, TAUZ = 0.0, PINDBM = 0.0, URATIO = 8.73E-03, ZTYPE = 10', REND AUZ = 0.0, PINDBM = 0.0, URATIO = 8.73E-03, ZTYPE = 10', REND 8INZ RUN = 1234, M = 32, IPRNT = 100, PLOTE = F, PLOTT = F, REND 80UT RELFAC = 2.012526147E-02, VEFF = 0.995738666, WP = 9.379711547E-02, BCPRCE = 3.49912416, ZRATH = 1.45508064, REND 8PRCE = 1.78709604, QCPRCE = 0.196395845, DIPRCE = 3.49912416, D2PRCE = 3.49912416, ZRATH = 1.45508064, REND

-

	HPHS WVSPU MGFLU (DEG) (V/VO) (B/BO)	135.170 1.000 0.597 160.189 1.000 -0.790	178.422 1.000 -0.628	160.791 1.000 0.766	144.061 1.000 0.658	130.254 1.000 -0.741	116.836. 1.000 -0.686	105.468 1.000 0.714	93.664 1.000 0.714	81.424 1.000 -0.686	66.779 1.000 -0.741	58.648 1.000 -0.027
	HAMP (IZ/ID)	0.033	0.048	0.056	0.065	0.074	0.083	0.090	0.094	0.094	0.090	0.086
ND. 2	FPHS (DEG)	115.396 103.717	93.816	86.001	79.112	73.408	68.053	63.295	58.557	53.984	49.105	46.536
SECTION	FAMP (11/10)	$0.199 \\ 0.218$	0.240	0.263	0.284	0.303	0.318	0.328	0.332	0.329	0.319	0.312
ND. 1234,	(%) SSOTI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
RUN	(%) (%)	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135
	(%) HLOSS	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024
	PHASE (RAD)	-8.213 -8.213	-8.213	-8.213	-8.213	-8.213	-8.213	-8.213	-8.213	-8.213	-8.213	-8.213
	EFF (%)	0.000	0.000	0.000	0.000	0,000	000.0	0.000	0.00	0.000	0.000	0.000
	GAIN (DB)	0.000	0.000	0.000	000.0		000 0	0.000		0.000	0.000	0.000
	(IN)	1.650	1.750	1 800	1 850		1.050	2 000	2.050	2 100	2.150	2.176

Ē

and shares and shares

:

PHASE/PI	-0.007408 0.210985 0.1093514 0.1093514 0.1539635 0.1539635 0.1539635 0.1539635 0.152728 0.1527285 0.25170 0.25671 0.256712 0.257288 0.277282 0.07728282 0.077282 0.07728282 0.
ANGLE DEG	000000000000000000000000000000000000000
R/A	0.2335906 0.218656 0.218656 0.2123688 0.2123688 0.2123691 0.2225157 0.2282537 0.176576 0.176576 0.176576 0.176576 0.176576 0.226128 0.226128 0.226128 0.226128 0.226128 0.227772 0.226128 0.226128 0.227777 0.2168059 0.226128 0.226219 0.226225 0.2262605 0.226225 0.22625 0.22625 0.22625 0.22625 0.22625 0.22625 0.22625 0.22625 0.22625 0.22625 0.22625 0.22625 0.22625 0.22625 0.22625 0.22650 0.26600 0.2660000000000000000000000000
EK(PHI) EV	0.042772 0.042772 0.045070 0.045070 0.045070 0.045070 0.045070 0.045070 0.045070 0.0450530 0.04505530 0.0551777 0.05517779 0.055177790 0.055177790 0.055156530 0.055156530 0.055156530 0.0551577790 0.055177790 0.055177790 0.055177790 0.055177700 0.055177700 0.055177700 0.055177700 0.055177700 0.055177000 0.055177000000 0.05517700000000000000000000000000000000
EK(Z+R) EV	51440 51440 5153.970647 51553.970647 51553.970647 51553.970647 51553.970647 51553.970647 51171.782091 51990.984532 51990.984532 51990.984532 51971.782094 51970.984532 51973.2195451 52266.5195552 52266.5195555 52266.5105695 552665.55055520 552665.5505559 552665.5505559 552665.5505559 552665.5505559 552665.5505559 552755 552655.550559 552655.550559 552755 552655.550559 552655.550559 552655.550559 552755 552655.550559 552655.550559 552755 552755 552655.550559 552655.550559 552755 552655.550559 552655.550559 552755 552755 552655.550559 552755 552755 552755 552755 552755 552755 552755 552655 552655 552655 552655 552755 552655 552655 552755 552755 552755 552655 55275 552755 552755 552755 552755 552755 55275 552755 55275 552755 552755 552755 552755 5527555 5527555 5527555 552755 5527555 5527555 5527555 5527555 5527555 5527555 55275555 55275555 55275555 55275555 552755555555
EK(TOTAL) Ev	5140.706649 5154.0157.8906168 5154.016649 5157.8055117 5157.8055117 5151.8575594 5171.8575594 5191.02285594 5193.2558564 5193.2558564 5193.2558564 5193.2558564 5216.2516.66 52265.552665 52265.555266 52265.555265 52265.55555 52265.55555 52265.55555 52265.55555 52265.55555 52265.55555 52265.55555 52265.55555 52265.55555 52265.55555 52265.55555 52265.55555 52265.55555 52265.55555 52265.55555 52265.55555 52265.555555 52265.555555 52265.555555 52265.555555 52265.555555 52265.555555 52265.555555 52265.555555555 52265.5555555555
DISK NO.	STATISTICS

RUN NO. 1234, SECTION NO.

N

13

.

• • • •

ti latatan granditan 1 mini 1

I some holder

MGFLD (B/B0)	0.658	-0.628	0.597	0.814	-0.835	0.533	-0.500	-0.876	0.466	0.894	-0.431	-0.910	0.396	0.926	-0.360	-0.940	-0.860
UVSPD (V/V)	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	000 T	1.000	1.000	1.000	1.000	1.000	1.000
HPHS (DEG)	114.115 113 146	94,906 71,403	51.072	27.393	22.296	20.671	23.773	28.403	35.353	42.885	101.404	10/.00	061.40	69.030	70.762	69.173	68.759
HAMP (IZ/IO)	0,082 0,073	0.067	0.082	0.124	0.146	0.190	0.211	0.233	0.257	1.62.0		10.04	0.040	0.549	0.352	0.348	U.34/
NO. 3 FPHS (DEG)	75.877 79.860	71.131	63.031 E2 103	40.516	30.130	19.920	19.619	21.348	296.92	201.07	26.0/0		ATT-00	298.86	40.968	41.133	00T.14
SECTION FAMP (I1/I0)	0.304	0.261	0.218	0.211	0.229	0.301	0.344	0.389	0.404	0.479	177.0 1778	202.0				747.0	04/10
ND. 1234, ILOSS (2)	0000.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000					000.0	0.000	0000	
RUN SLOSS (%)	0.135 0.135	$0.135 \\ 0.135$	0.135	0.135	0.135	0.135	0.135	001-D 07-1-D	0 1 7 C	0.135	0.135	0 1 25					
(%) HLOSS	0.024 0.024	0.024	0.026 0.028	0.030	0.036	0.039	250.0		0.056	0.063	0.070	0.080	200 0	0.107	0 1 25	0 127	
PHASE (RAD)	-8.749 -8.919	-8.987 -9.045	-9.105	-9.249	-9.442	-9.561	0,070 070 0-	000 0-	-10.142	-10.292	-10.432	-10.562	-10.680	-10.788	-10.888	-10.899	
EFF (%)	-0.001	0.035	0.070	0.086	0.114	0.127	0.158	0.181	0.214	0.258	0.319	0.397	0.496	0.615	0.757	0.775	
GAIN (DB)	-3.126	9.118 11.573	14.451	15.324	16.486	16.926	242	18.430	19.134	19.951	20.862	21.818	22.785	23.726	24.624	24.728	
CNID	2.250	2.350	2.450	2.500	2.600	2.650	2.750	2.800	2.850	2.900	2.950	3.000	3.050	3.100	3.150	3.156	

PHASE/PI	0.118756 0.082188 0.082188 0.558455 0.558455 0.558465 0.558465 0.558465 0.558465 0.55865 0.55865 0.55865 0.55865 0.55865 0.55865 0.55885 0.55855 0.558855 0.558855 0.558855 0.558855 0.558855 0.558855	
ANGLE DEG	-0.45235 -0.4523557 -0.255109 -0.255109 -0.5122109 -0.5123108 -0.5525109 -0.59137669577 -0.5913766957769757767 -0.59137669577697577677766957766957766957766957766977667766	
R/A	0.301460 2765433 0.32255433 0.2765433 0.2765433 0.205585249 0.2295547 0.2559547 0.25595424 0.25595424 0.25595424 0.25595424 0.25595428 0.25595428 0.25595428 0.25595428 0.25595428 0.25595428 0.25595428 0.25595428 0.25595428 0.25595428 0.25595428 0.25595428 0.25595428 0.25595428 0.25595428 0.25595428 0.25595428 0.2555956 0.25559556 0.25559556 0.25559556 0.25559556 0.25559556 0.25559556 0.25559556 0.25559556 0.25559556 0.25559556 0.25559556 0.25559556 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555956 0.2555556 0.25555556 0.25555556 0.25555556 0.25555556 0.25555556 0.25555556 0.25555556 0.25555556 0.255555556 0.25555556 0.25555556 0.25555556 0.25555556 0.255555556 0.255555556 0.255555556 0.255555556 0.2555555556 0.255555555556 0.2555555555555555555555555555555555555	
EK(PHI) Ev	7.9564864 8.9660864 9.122458 9.660864 9.122282 9.122282 9.122282 9.122282 9.122282 9.122282 9.122869 9.12286 9.12286 9.12286 9.12286 9.12286 1.12286 1.12286 1.1228 1.1228 1.1228 1.1228 1.12866 1.12866 1.1286 1.1286 1.12866 1.12866 1.12866 1.12866	
EK(Z+R) EV	5038.515798 50702.56782.515798 50702.567838 50702.5628368 50702.5628368 5087.112016 5087.112016 5087.112016 5187.112016 5187.112016 5187.112016 5187.112016 5187.112016 5187.126888 5187.575388 5189.687888 5189.687888 5189.687888 5189.687888 5189.687888 5189.687888 5189.687888 5189.687888 5189.68733 5189.6878888 5189.687888 5189.687888 5189.6878888 5189.6878888 5189.6878888888888 5189.6878888 5189.6878888 5189.6878888 5189.68788888888 5189.6878888888888888888888888888888888888	
EK(TOTAL) EV	50946. 442661 5077. 047973 5077. 047973 5077. 047973 5094. 047973 5094. 0121575 5094. 012161575 5094. 340939 5094. 340939 5095. 642741 5095. 642741 5095. 642741 5095. 508776 5110. 205692 5117. 497555 5117. 497555 5173. 497575 5173. 497575 5173. 497575 5173. 497575 5173. 497575 5173. 4975755 5173. 4975755 5177. 6644925 5377. 6641755 5377. 664199	08/ 0.060 18/ 0.305 89/ 110.404
DISK NO.	ананал 808,188,199,285,595,595,595,595,595 80,499,497,895,595,595,595,595,595,595 80,495,595,595,595,595,595,595,595,595,595	STATISTICS 0.2 R

Description (1990) (1) - 40 (1) (1)

Ē

·· · - L.

:

RUN NO. 1234, SECTION NO.

ю

-

budde and

*** DVT SECTION OF THE OUTPUT HELIX
&INL GHZ = 32.0, RADA = 1.31E-02, BOVERA = 0.23, TESLA = 0.21, VKV = 5.25, IMA = 14.0, OHMS = 28.84, VOVERC = 0.1426,
 LMAG = 0.2025, RATB = 2.381E-03, RATR = 5.0, ZEND = 4.255, DZ = 5.0E-04, ATTENI = 2.355, ATTEN2 = 2.355, ALPHA = 4.5E-02,
 LMAG = 0.2025, PINDBM = 1.0, URATIO = 8.73E-03, ZTVPE = 4.255, DZ = 5.0E-04, ATTENI = 2.355, ALPHA = 4.5E-02,
 SINZ RUA = 3.2, IPRNI = 20, PLOTE = F, PLOTT = F, REND
 SUNT RELFAC = 2.012526147E-02, VEFF = 0.995738666, WP = 9.579711547E-02, BCPRCE = 8.315930428E-02, DZPRCE = 8.315920428E-02, DZPRCE = 8.315930428E-02, DZP

MGFLD (B/B0)	-0.790 -0.566	-0.287	0.324	0.597	0.814	0.952	1.00U	0.952	0.814	0.597	0.324	0.019	-0.287	-0.566	-0.790	-0.940	-0.999	-0.963	-0.835	-0.628	-0.360	-0.058	0.249
WUSPD (U/VD)	1.000	000.1	1.000	1.000	0.999	0.999	0.999	0.999	0.999	0.999	0,999	0.999	0.998	0.998	0.998	0.998	0.998	0.998	0.997	0.997	0.997	0.997	0.997
(DEG)	68.460 67.651	66.774	64.636	63.327	61.813	60.138	58.302	56.354	54.356	52.327	50.331	48.366	46.428	44.523	42.632	40.791	39.036	37.419	36.018	34.851	33.932	33.236	32,700
HAMP (I2/I0)	0.346 0.345	0.343	0.339	0.337	0.335	0.333	0.331	0.330	0.330	0.330	0.331	0.333	0.336	0.339	0.343	0.347	0.353	0.359	0.365	0.372	0.379	0.387	0.394
D. 4 FPHS (DEG)	41.072 40.996	40.921	40.706	40.560	40.370	40.151	39.896	39.620	39.340	39.052	38.774	38.403	38.206	37,905	37.570	37.209	36.825	36.429	36.048	35.688	35.359	35.056	34.759
SECTIDN N FAMP CI1/I0)	0.750	0.765	0.779	0.786	0.793	0.800	0.806	0.812	0.819	0.825	0.832	0.838	0.844	0.851	0.857	0.863	0.869	0.876	0.882	0.889	0.896	0.903	0.910
ND. 1234, ILOSS (%)	000.0	0.000		0.000	0.000	0.000	0.000	0.000	0.00.0	0.000	0.00.0	0.000	0.000	0.000	0.00.0	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000
RUN I SLOSS (X)	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135
(%) HLOSS	0.129	0.138	0.143	0.153	0.158	0.163	0.169	0.174	0.180	0.187	0.193	0.200	0.206	0.214	0.221	0.228	0.236	0.244	0.252	0.261	0.269	0.278	0.287
PHASE (RAD)	-10.907	-10.945	-10.964	-11.002	-11.021	-11.040	-11.058	-11.077	-11.096	-11.115	-11.134	-11.153	-11.173	-11.192	-11.211	-11.231	-11.251	-11.271	-11.291	-11.312	-11.332	-11.353	-11.374
EFF (%)	0.787 0.819	0.851	0.884	0.952	0.988	1.024	1.060	1.098	1.136	1.174	1.214	1.253	1.294	1.335	1.377	1.419	1.462	1.506	1.550	1 594	1.639	1.684	1.730
GAIN (DB)	24.798	25.135	25.301 25.463	25.624	25.782	25.937	26.091	26.241	26.389	26.534	26.677	26.818	26.955	27.091	27.225	27.356	27.486	27.613	27.737	27.860	27.981	28.099	28.216
(NI)	3.160	3.180	3.190	3.210	3.220	3.230	3.240	3.250	3.260	3.270	3.780	3.290	3.300	3.310	3 320	3.330	3.340	3.350	3.360	3 370	3.380	3.390	3.400

Ē

-

18

o as failt is

the local

MGFLD (B/B0)	0.533 0.766	0.926	0.997	0.973	0.856	0.658	0.396	0.097	-0.212	-0.500	-0.741	-0.910	-0.993	-0.981	-0.876	-0.686	-0.431	-0.135	0.174	0.466	0.714	0.894	0.988	0.988
(0//N) (1/0)	0.996 0.996	0.996	0.996	0.995	0.995	0.995	0.995	0.994	966.0	0.994	0.993	0,993	0.993	0.992	0.992	166.0	0.991	066.0	0.990	0.989	0.989	0.988	0.988	0.987
HPHS (DEG)	32.287 31.943	31.655	31.452	31.369	31.476	31,798	32.338	33.074	33.940	34.890	35.879	36.887	37,940	39,060	40.290	41.651	43.134	44.722	46.368	48.031	49.677	51.280	52.858	54.434
HAMP (I2/I0)	0,401 0,408	0.415	0.423	0.430	0.437	0.444	0.452	0.459	0.465	0.472	0.479	0.485	0.492	0,498	0.505	0.511	0.518	0.524	0.531	0.537	0.543	0.548	0.554	0.559
IO. 4 FPHS (DEG)	34.458 34.133	33.780	33.412	33.041	32.698	32.398	32.146	31.939	31.752	31.571	31.379	31.166	30.947	30,733	30.548	30.407	30.310	30.257	30.229	30.213	30.198	30.174	30.152	30.141
SECTION N FAMP (I1/I0)	0.918 0.925	0.932	0.940	0.948	0.956	0.964	0.972	0.981	0.990	0.998	1.006	1.015	1.023	1.032	1.040	1.049	1.057	1.066	1.074	1.082	1.089	1.097	1.104	1.111
40. 1234, ILOSS (%)	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SLOSS (2) (2)	0.135 0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135
(%) SSOTH	0.297 0.306	0.316	0.326	0.337	0.347	0.358	0.370	0.381	0.393	0.405	0.417	0.430	0.443	0.456	0.469	0.483	0.497	0.511	0.526	0.541	0.556	0.571	0.587	0.603
PHASE (RAD)	-11.395 -11.417	-11.439	-11.461	-11.484	-11.506	-11.530	-11.553	-11.577	-11.601	-11.625	-11.650	-11.675	-11.701	-11.727	-11.754	-11.781	-11.808	-11.836	-11.864	-11.893	-11.923	-11.953	-11.984	-12.015
EFF (%)	1.777 1.824	1.872	1.920	1.969	2.018	2.067	2,117	2.167	2.218	2.269	2.321	2.374	2.427	2.480	2.534	2.589	2.644	2.699	2.755	2.812	2.870	2.928	2.987	3.047
GAIN (DB)	28.331 28.445	28.557	28.667	28.776	28.882	28.988	29.091	29.193	29,294	29.393	29.492	29.589	29.685	29.780	29.874	29.966	30.058	30.148	30.238	30.327	30.415	30.503	30.590	30.676
CNI)	3.410 3.420	3.430	3.440	3.450	3.460	3.470	3.480	3.490	3.500	3.510	3.520	3.530	3.540	3.550	3.560	3.570	3.580	3.590	3.600	3.610	3.620	3.630	3.640	3.650

[9

-

MGFLD (B/B0)	$0.894 \\ 0.714 \\ 0.714$	0.174	-0.431	-0.686 -0.876	-0.981	-0.910	-0.741	-0.500	217.0-	0.396	0.658	0.856	0, 4, U	0.926	0.766	0.533	0.249	מכט, ט-	
WVSPD (0//0)	0.986	0.984	0.984	0,982	0.980	0,978	0.977	0.976	6/6.0 070 0	0.973	0.972	0.970	0.020	006.0	0.965	0.963	0.961	0.960	
HPHS (DEG)	56.038 57.699	59.411 61.174	62.952 64.706	66.413 68.048	69.627	72.767	74.427	76.178	770.8/	81.842	83.725	85.547	87.506	100.48	92.585	94.505	96.534	98.626	
HAMP (12/10)	0.563	0.570	0.574	0.573	0.568	0.564	0.552	0.545	0.53/	0.517	0.504	0.491	0.477	1940 0 665	0.428	0.410	0.391	0.372	
ID. FPHS (DEG)	30.156	30.431	30.589	30.940	31.303	31.501	31.997	32.312	32.674	10.000	33.932	34.373	34.823	35.296	36.388	37.037	37.758	38.540	
SECTION N FAMP (I1/I0)	1.124	1.130 1.136	1.141 1.146	1.151	1.159	1.162	1.168	1.170	1.173	1.1/4	1.176	1.177	1.177	1.177	1177	1.177	1.176	1.175	
ND. 1234, ILOSS (%)	0.000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	000.0		0.000	0.000	0.000	
RUN SLOSS (%)	0.135	0.135 0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	571.0 521.0	0.135	0.135	0.135	
(%) SSO1H	0.620 0.637	0.654	0.689	0.726	0.764	0.784	0.824	0.845	0.866	0.887	0.932	0.955	0.978	1.002	1 050	1.075	1.101	1.127	
PHASE (RAD)	-12.047 -12.080	-12.113	-12.182	112.254	-12.330	-12.369	-12.450	-12.493	-12.536	-12.581	-12.674	-12.723	-12.773	-12.824	-12.8//	-12.989	-13.047	-13.107	
EFF (%)	3.107 3.168	3.230	3.356	3.486	3.621	3.690	3.831	3.903	3.976	4.051	4.205	4.285	4.367	4.450	4,550,4 1771 x	170.4	4.800	4.893	
GAIN (DB)	30.762 30.847	30.931	31.099	31.265	01.048 31.430	31.513	31.577	31.759	31.840	31,922	32,086	32.169	32.251	32.334	32.41/	36.301	32.668	32.752	
Z	3.660	3.680	3.700	3.720	3.740	3.750	3.760 3.770	3.780	3.790	3.800	5.81U 7 820	3.830	3,840	3.850	3.860	0/0/0 Mag	2 890	3.900	

1

-

20

ł

te. İlmi

MGFLD (B/B0)	-0.360	-0.628	-0.835	-0.963	-0.999	-0.940	-0.790	-0.566	-0.287	0.019	0.324	0.597	0.814	0.952	1.000	0.952	0.814	0.597	0.324	0.019	-0.287	-0.566	-0.790	-0.940	-0.999
UVSPD (0//0)	0,958	0.956	0.954	0.952	0.950	0.948	0.946	0.943	0.941	0.938	0.936	0.933	0.930	0.927	0.924	0.921	0.918	0.915	0.911	0.908	0.904	0.900	0.896	0.892	0.888
(DEG)	100.694	102.653	104.408	105.914	107.163	108.182	108.993	109.506	109.461	108.317	105,134	98.554	87.260	72.136	57.796	48.224	43.679	42.873	44.644	48.226	53.128	59.007	65.630	72.844	80.558
HAMP (12/10)	0.352	0.331	0.310	0.288	0.266	0.244	0.222	0.199	0.177	0.154	0.132	0.113	0.100	0.097	0.108	0.130	0.160	0.195	0.234	0.274	0.317	0.359	0.401	0.442	0.481
NO. 4 FPHS (DEG)	39,364	40.215	41.081	41.965	42.887	43.872	44.947	46.126	47.412	48.793	50.247	51.758	53.313	54.920	56.597	58.371	60.273	62.318	64.512	66.844	69.299	71.861	74.512	77.250	80.072
SECTION FAMP (II/ID)	1.174	1.172	1.171	1.169	1.167	1.166	1.164	1.162	1.159	1.157	1.154	1.151	1.147	1.143	1.139	1.134	1.129	1.123	1.116	1.108	1.099	1.088	1.076	1.061	1.045
ND. 1234, ILOSS (%)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
RUN SLOSS (%)	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135
(%) SSOTH	1.154	1.181.1	1.208	1.237	1.265	1.295	1.325	1.355	1.387	1.418	1.451	l.484	1.518	1.553	1.588	1.624	1.661	1.699	1.737	1.777	1.817	1.857	1.899	1.942	1.985
PHASE (RAD)	-13.169	-15.232	-13.298	-13.367	-13.437	-13.510	-13.585	-13.663	-13.744	-13.827	-13.914	-14.003	-14.096	-14.192	-14.291	-14.394	-14.502	-14.613	-14.728	-14.848	-14.972	101.41-	452.41-	-15.5/4	-15.519
ЕFF (%)	4.988	990.5	5.186	5,289	5.395	5.504	5.614	5.728	5.844	5.963	6.085	6.210	6.558	6.470	6.604	6.741	6.879	<u>1.uzu</u>	191.7	7.304	255.	CAC. /	101.1	1.880	8.022
GAIN (DB)	32.837	226.25	55.009	33.095	53.185	33.271	55.359	55.448	55.556	55.626	<u>53.715</u>	55.806	55.89/	55.988	54.0/9	54.1/0	59.261	100.40	D##.#0	54.528	010.40		04.40	04.000	54.94/
(NI)	3.910	076.5	5.450	5.940	5.950	3.960	5.9/0	0.980	5.990	4.000	4.010	4.020	4.050	4.040	4.050	4.060	4.0/0	4.080	4.090	9.100	011.4	021.4			061.4

AMP HPHS WVSPD MGFLD IO) (DEG) (V/VO) (B/BO)	517 88.729 0.883 -0.963 549 97.329 0.879 -0.835 576 106.341 0.874 -0.628 591 115.731 0.864 -0.560 624 125.443 0.859 -0.550 624 135.423 0.854 -0.556 625 155.823 0.854 0.249 623 155.823 0.854 0.555 628 176.447 0.856 0.926 613 166.122 0.856 0.926 628 176.447 0.856 0.926 618 176.343 0.856 0.926 618 176.343 0.836 0.927 628 176.343 0.836 0.926 618 176.343 0.836 0.926 618 176.343 0.836 0.927 629 178.380 0.835 0.926 630 178.380 0.835 0.927
FPHS (DEG) (I2.	86444444444444444444444444444444444444
SECTION NO. FAMP (I1/10)	1.027 1.007 1.
ND. 1234, ILOSS (%)	
RUN SLOSS (X)	000000000000000000000000000000000000000
(%) HLOSS	22.074 201119 20110000000000
PHASE (RAD)	-15.670 -15.990 -15.990 -16.337 -16.337 -16.327 -16.327 -16.915 -17.154 -17.344
EFF (%)	8.160 8.295 8.295 8.647 8.647 8.647 8.763 9.69 9.039 9.107 9.107 9.107
GAIN (DB)	35, 024 35, 028 35, 098 35, 232 35, 232 35, 232 35, 232 35, 232 35, 232 35, 232 35, 519 35, 519 35, 519
NR	00000000000000000000000000000000000000

Contract of the state of the

1.1.1.1.1.1.1.1

=

I TO DESCRIPTION OF TAXABLE I TO DESCRIPTION OF TAXABLE DESCRIPANTE DESCRIPTION OF TAXABLE DESCRIPTION OF TAXABLE

.

L. L.

PHASE/PI	0.336464 0.536464 0.536464 0.52100505 0.546058333 0.546058333 0.5405658333 0.540565833 0.57100505 0.5710555881 0.57213555 0.57213555 0.57213555 0.57213555 0.57213555 0.57213555 0.57213555 0.57213555 0.57213555 0.57213555 0.57213555 0.57213555 0.57213555 0.57213555 0.57213555 0.57213555 0.5721355 0.5721355 0.5721355 0.5721355 0.5721355 0.5721355 0.5721355 0.5721355 0.5721355 0.5721355 0.5721355 0.5721355 0.5721355 0.5721355 0.5721355 0.572135 0.572135 0.572135 0.572135 0.572135 0.572135 0.57515 0.57215 0.57215 0.57215 0.57215 0.57215 0.5751505 0.
ANGLE DEG	0.286551 0.286752 0.286752 0.287452 0.287453 0.2731752 0.2731752 0.2731752 0.2731752 0.2731752 0.2731752 0.2731752 0.2731752 0.2731752 0.2731752 0.2731752 0.2559551 0.2559551 0.25575551 0.25575551 0.25575551 0.25575551 0.25575551 0.25575551 0.25575551 0.25575551 0.25575551 0.25575551 0.25575551 0.25575551 0.25575551 0.2557555551 0.255755551 0.2557555551 0.2557555551 0.2557555551 0.2557555551 0.2557555551 0.255755551 0.255755551 0.255755551 0.255755551 0.2557555551 0.2557555551 0.2557555551 0.2557555551 0.2557555551 0.2557555551 0.2557555551 0.2557555551 0.2557555551 0.25575555551 0.2557555551 0.25575555555555555555555555555555555555
R/A	0.2557880 2257822 2257822 2257822 2257822 2257822 2257822 2257822 2257822 2257822 2257822 2257822 22582 225822 25822 258582 258582 258582 258582 258582 258582 258582 2585
EK(PHI) Ev	17.589385 9.1583064 5.1513004 5.1513104 5.1513104 5.1513104 5.1513104 5.1513104 5.1513104 5.1513104 5.45135 5.45135 5.45135 5.45135 5.513445 5.51345 5.513445 5.513445 5.513445 5.513445 5.513445 5.513445 5.513445 5.513445 5.5135 5.51345 5.5135 5.5155 5.5155 5.5155 5.5155 5.51555 5.51555 5.51555 5.51555 5.515555 5.515555 5.5155555555
EK(Z+R) EV	4051.532992 4100.5328992 4100.5328992 4100.5328992 4100.53288416 4100.5328845 4100.5328845 41164.0353706 41164.0353706 41164.0353706 41164.0353706 41164.0353706 41164.0353706 41164.0353706 41164.0353706 41164.035370 41264.05766 41265.552885 41164.035370 41265.552885 41164.035370 41265.552885 41164.035370 41265.552885 41265.552885 41265.5528
EK(TOTAL) Ev	4102.462425 4107.26425 4107.26426 4107.26426 4107.26426 4107.26426 4107.26426 4107.26426 4107.26426 4107.26426 4107.26426 4107.26426 4107.26426 4107.26568 4107.26568 4107.26568 4107.26568 4107.26568 4107.26568 4107.26568 4107.26568 4107.26568 42568 42568.217 42568.25446 42568.25468 42568.25468 42568.25468 42568.25468 42568.25468 42568.25468 42568.25468 42568.25468 42568.25468 42568.254700 42568.254700 42568.254700 42568.254700 42568.2547000000000000000000000000000000000000
DISK NO.	STATISTICS R R R STATISTICS STATI

RUN ND. 1234, SECTION ND.

đ

References

- Dayton, J.A., Jr., et al.: Analytical Prediction and Experimental Verification of TWT and Depressed Collector Performance Using Multidimensional Computer Programs. IEEE Trans. Electron Devices, vol. ED-26, no. 10, Oct. 1979, pp. 1589-1598.
- Dayton, J.A., Jr., et al.: Experimental Verification of a Computational Procedure for the Design of TWT-Refocuser-MDC Systems. IEEE Trans. Electron Devices, vol. ED-28, no. 12, Dec. 1981, pp. 1480-1489.
- Ramins, P. et al.: Verification of an Improved Computational Design Procedure for TWT-Dynamic Refocuser-MDC Systems with Secondary Electron Emission Losses. IEEE Trans. Electron Devices, vol. ED-33, Jan. 1986, pp. 85-90.
- Ramins, P.; Force, D.A.; and Kosmahl, H.G.: Analytical and Experimental Performance of a Dual-Mode Traveling-Wave Tube and Multistage Depressed Collector. NASA TP-2752, 1987.
- Kosmahl, H.G.; and Peterson, J.C.: A TWT Amplifier with a Linear Power Transfer Characteristic and Improved Efficiency. NASA TM-83477, 1984.
- Curren, A.N. et al.: High-Efficiency Helical Traveling-Wave Tube with Dynamic Velocity Taper and Advanced Multistage Depressed Collector.

24

Ξ

IEDM-International Electron Devices Meeting, Dec. 1987, Proceedings, IEEE, 1987, pp. 473–476.

- Detweiler, H.K.: Characteristics of Magnetically Focused Large-Signal Traveling-Wave Amplifiers. Report RADC-TR-68-433, Oct. 1968.
- Dayton, J.A. et al.: Analytical Prediction with Multi-Dimensional Programs and Experimental Verification of the Performance, at a Variety of Operating Conditions, of Two Traveling Wave Tubes with Depressed Collectors. NASA TP-1449, 1979.
- 9. Pierce, J.R.: Traveling Wave Tubes. Van Nostrand Company, 1950.
- Gewartowski, J.W.; and Watson, H.A.: Principles of Electron Tubes, Including Grid-Controlled Tubes, Microwave Tubes, and Gas Tubes. Van Nostrand Company, 1965.
- 11. Rowe, J.E.: Nonlinear Electron-Wave Interaction Phenomena. Academic Press, 1965.
- Herrmann, G.: Optical Theory of Thermal Velocity Effects in Cylindrical Electron Beams. J. Appl. Phys., vol. 29, no. 2, Feb., 1958, pp. 127-136.
- Amboss, K.: Verification and Use of Herrmann's Optical Theory of Thermal Velocity Effects in Electron Beams in the Low Perveance Regime. IEEE Trans. Electron Devices, vol. ED-11, no. 10, Oct. 1964, pp. 479–485.

	Form Approved		
REPORT D	OMB No. 0704-0188		
Public reporting burden for this collection of info gathering and maintaining the data needed, and collection of information, including suggestions fi Davis Highway, Suite 1204, Arlington, VA 2220	rmation is estimated to average 1 hour per res completing and reviewing the collection of inf- or reducing this burden, to Washington Headq 2-4302, and to the Office of Management and	sponse, including the time for re ormation. Send comments rega uarters Services, Directorate for Budget, Paperwork Reduction f	viewing instructions, searching existing data sources, rding this burden estimate or any other aspect of this information Operations and Reports, 1215 Jefferson Project (8704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED
	December 1992		Technical Paper
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
User's Guide for a Large-Sig Wave Tube	w11_506-72		
6. AUTHOR(S)			
Raymond W. Palmer			
7. PERFORMING ORGANIZATION NA	8. PERFORMING ORGANIZATION REPORT NUMBER		
National Aeronautics and Sp Lewis Research Center Cleveland, Ohio 44135–31	E-6804		
	ICY NAMES(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING
3. SPUNSUHING/MUNITURING AGEN			AGENCY REPORT NUMBER
National Aeronautics and Sp Washington, D.C. 20546–0	NASA TP-3251		
11. SUPPLEMENTARY NOTES		_	.l
Responsible person, Raymon	nd W. Palmer, (216) 433–3518.		
12a. DISTRIBUTION/AVAILABILITY S	12b. DISTRIBUTION CODE		
Unclassified - Unlimited Subject Category 33			
13. ABSTRACT (Maximum 200 words We describe the use of a suc the helical traveling wave tu nally developed by Detweile Included is a sample problem FORTRAN source code, aux described herein. All reques	Description of the second state of the seco	ional (axisymmetric), ised and operationally t and output and the au sults. Interested parties ita on a standard flopp; g.	deformable disk computer model of simplified version of the one origi- ixiliary files necessary for operation. may now obtain from the author the y diskette, the contents of which are
			15. NUMBER OF PAGES
14. SUBJECT TERMS	28		
User's guide, Large-signar,	Comparer model, Prenear 7 (17		16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFI OF ABSTRACT Unclassified	AU3 CATION 20. LIMITATION OF ABSTRACT
NSN 7540-01-280-5500			Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

1.1.1.1

-----ł

> 100 1 4

0.000 Ē

A DOUBLE HILD DEPENDENCE

ē -

. 1000

100001011010101

- - - - - - -

......

The product of the second second