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1. Motivation and Objective

The best way of verifying turbulence models is to do a direct comparison between

the various terms and their models 1,2,s. The success of this approach depends upon

the availability of the data for the exact correlations (both experimental and DNS).

The other approach involves numerically solving the differential equations and then

comparing the results with the data. The results of such a computation will depend

upon the accuracy of all the modeled terms and constants. Because of this it is

sometimes difficult to find the cause of a poor performance by a model. However,

such a calculation is still meaningful in other ways as it shows how a complete

Reynolds stress model performs.

In this study thirteen homogeneous flows are numerically computed using the

second order closure models. We concentrate only on those models which use a

linear (or quasi-linear) model for the rapid term. This, therefore, includes the

Launder ,Reece and Rodi 4 (LRR) model; the isotropization of production 4 (IP)

model; and the Speziale, Sarkar and Gatski 5 (SSG) model. The purpose of this

study is to find out which of the three models performs better and what are their

weaknesses, if any.

The other work reported here deals with the experimental balnces of the second

moment equations for a buoyant plume. Despite the tremendous amount of activ-

ity toward the second order closure modeling of turbulence, very little experimental

information is available about the budgets of the second moment equations. Part

of the problem stems from our inability to measure the pressure correlations. How-

ever, if everything else appearing in these equations is known from the experiment,

pressure correlations can be obtained as the closing terms. This is the closest we

can come to in obtaining these terms from experiment, and despite the measure-

ment errors which might be present in such balances, the resulting information will

be extremely useful for the turbulence modelers. The purpose of this part of the

work reported here was to provide such balances of the Reynolds stress and heat

flux equations for the buoyant plume.

2.0.0 Work Accomplished

2.1.0 Comparison of Second Order Models in Homogeneous Flows

Before presenting the results a note about the LRR model constants used in the

present study is in order. These constants have evolved to slightly different values

than those orginally recommended by LRR 4. The value of the Rotta constant C1

(in the return to isotropy term) used in the present study is 3.6 (note that due to a

different definition of bij used here the value of CI differs by a factor of two). The
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rapidterm constant C_ was assigned a value of 0.4 in the original LRR model. In

the present study the value used for this constant is 0.55 which is slightly higher

than the value of 0.5 recommended by Morris 6. It was found out that the value of

0.55 led to improvement in the performance of LRR model in all the flows tested

here. (The improvements were slight for the irrotationally strained flows but

Figure 1 compares the development of Reynolds stresses computed using these

three models in a flow through axisymmetric contraction with the DNS data 7.

Here we show a typical case of S = 100.00 (Sko/eo = 55.73, case AXM). All

the models deviate from the DNS data. However, LRR model gives slightly better

results than the SSG model with IP model performing the worst.

Figures 2 and 3 show a similar comparison for flow through axisymmetric expan-

sion for two different strain rates. For the smaller strain rate flow (S = 0.717, Sko/eo =

.408, case EXO) SSG model reproduces the_u2development quite well while both IP

and LRR models underpredict it. For the v 2 component all the models give similar

results. Therefore, for this low strain rate flow SSG model is better than the other

two models. For the flow with higher strain rate (S = 7.17, Sko/eo = 4.08, case

EXP) the LRR model is in excellent agreement with the DNS data for both the

components while both IP and SSG models show overprediction So for this flow

LRR model works the best.

Now we show comparisons for the distortion of turbulence by plane strain for

four cases of differing strain rates. We start from the lower strain rate case. Figure

4 compares the evolution of the three non-zero Reynolds stress com__ponents for the

flow with strain rate S = 2.6 (Sko/eo = 2.309, case PXC), For u2component all

the models underpredict the DNS data. LRR model is slightly better than the SSG

model. IP model is the worst of the three. For v 2 component IP model works the

best. LRR model slightly underpredicts v 2 while SSG overpredicts it. The third

component w 2 is overpredicted by all the models with LRR model being better than

the other two. Figure 5 shows the similar comparisons for the highest strain rate

case (S = 25.0, Sok/eo = 22.227, case PXE). All the three models underpredict the

u--_Component. IP model is the worst of the three models. LRR model_gives slightly

better result than the SSG model for tl/is stress component. For v 2 componen_tt
LRR model is the best and SSG model is the worst of the three. For the w 2

component all the three models overpredict the DNS data with LRR mdoel being

closest to the data. From the above four plane strain flow comparisons, we note

that the performance of all the three models deteriorates as the strain rate increases.

However, on the overall LRR model works better than the other two models.

Figure 6 shows the same comparisonwith the homogeneous shear flow experiment s

(S = 46.8, Sko/eo = 6.46). For the u2component LRR_model gives the best result

whereas SSG and IP models overpredict it. For the v _ component also the LRR

works the best. SSG model slightly overpredicts the data where as IP model if off

by a larger margin. For the w 2 component both SSG and IP models reproduce

the data very weii_eas LRR model overpredicts the data. For the shear stress

component LRR performs reasonably whereas SSG model slightly overpredicts the

data and IP model is off the data by a higher margin. So, for this experiment, LRR
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model has better overall performance than the other two mddels.

Last, we discuss the evolution of q2 for the case of rotating homogeneous shear

flow. Since no experimental or DNS data is available for this flow the comparisons

will be made (for two cases) with the LES 9. Bardina 1° pointed out that in this

case we should be careful in interpreting the comparisons for anything more than

the trends shown by the LES. In all the cases shown here the initial conditions

corresponded to isotropic turbulence with eo/Sko = 0.296. Figure 7 shows the

comparisons for the three cases of different Rosby numbers (= fl[S). For fl/._S = .25

we note that all three models significantly underpredict the LES results for q2 ; SSG

being closest to the LES data and the LRR being the furthest. Qualitatively all

the three models reproduce the LES trends. For the case of 12/S = 0.50 SSG is in

excellent agreement with the LES results. Both IP and LRR give identical results

and give a smaller value of q2 than the LES. It should be pointed out that SSG

model constants were partially calibrated against this flow. For the third case of

f_]S = 1.0, all the three models give identical results. Since no LES results are

available for this case the only purpose of showing the results is to see how the

three models compare with each other.

2.1.2 Conclusions

Results were shown from numerical computation of various homogeneous turbu-

lent flows using three differentturbulence models. All of these models use a linear

(or quasi-linear)model for the rapid part of the pressure strain model. Based on

their overall performance it isfound that LRR model works better than both SSG

and IP models. For the irrotationallyflows the differencesbetween the models and

DNS data increased with the strainrate with LRR model performing better than

the other two models. For the simple homogeneous shear flow LRR model better

than the SSG model (forthe DNS both performed equally good but for the exper-

iment LRR worked better). For the homogeneous shear flows both SSG and LRR

model showed trends similar to those shown by LES with SSG performing better

than the LRR model. It isworth noting that SSG model has seven empirical con-

stants as compared to two in LRR model and on the overallitstilldoes not perform

better than LRR model. Part of the reason for this may be due to the fact that

the SSG model does not satisfythe normalization constraint where as LRR model

does. (Normalization is an exact property of the pressure strain correlation;see

references 4 and 11 for details.)As has been pointed out by Shih and Lumley 3, for

a model of the rapid pressure strain part which islinearin the anisotropic tensor

and satisfies all of its ezact properties, LRR is the most general model.

2.2.0 Experimental Balances for the Second Moments for a Buoyant Plume

2.2.1 Heat Flux Budgets

The transport equation for the vertical (streamwise) heat flux can be written as

ar + .Oz _--r ff-_ OT cgT1 - - -
r
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_ow __ow !t °P r)_ j,,,j- ut 0--7-- _ + gZ-5- p_ - (_,+ (1)

Note that the molecular term is written in local cartesian coordinates. The balance

of this equation is shown in figure 8. Advection term is the smallest in this balance

and, therefore, contributes least to the transport of the heat flux w--t. It is clear

that in the central core of the flow.(r/z < 0.04), the production of this heat flux is

maintained by the mean buoyancy gradients and the turbulent buoyancy force i.e.

the source of energy is the gravitational field. The shear production is relatively

small in this region. Then there is an intermediate region where the production

from mean velocity and gravitational field are of the same order. However, for

r/z > 0.1 (which approximately corresponds to the plume half width), most of the

production is maintained by the mean velocity and buoyancy gradients and the

turbulent buoyancy production is only a small fraction of these two. The closing

term in the heat flux balances is labelled as Hi and represents the sum of the pressure

correlation and the molecular destruction terms i.e.

= lt°p - (_,+ r) ou, ot
II_ p oz_ Ozj d-_x_ (2)

The molecular term in (2) is thought to get weaker with increasing Reynolds and

Peclet numbers, eventually approaching a value of zero in the limit of local (small

scale) isotropy. This term was not measured and, therefore, its magnitude relative

to others can not be established. However, in turbulence modeling, it is customary

to combine this term with the pressure correlation term s and, therefore, from that

point of view not knowing each term separately does not reduce the usefulness of

these budgets. Notice that the shape of this term is very similar to the shape of the

heat flux w't and its magnitude remains large throughout the flow field.

The equation for the radial heat flux is

--_ + Oz =-7 Or -UW O-7

_ou ou 1T-_
-,_tT--_Oz _ - (_+ rl(_,j (31

The balance of this equation is shown in figure 9. Again, we note that the advection

term is quite small as compared to the other dominant terms in the equation. Unlike

the _t heat flux balance, the shear production is extremely Small here. This is

because the gradients of mean radial velocity are much smaller than the gradients in

the mean vertical (streamwise) velocity. There is no turbulent buoyancy production

in this equation and all the production is due to the mean buoyancy gradients. We

note that the term representing sum of the pressure correlation and the molecular

destruction makes up a substantial part of the budget and its shape is similar to

the radial heat flux. We also note that this budget can not be divided into any

subregions, where some phenomenon are more dominant than others, because the

relative magnitude of each of the terms in equation (3) remains the same across the

flow field.
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2.2.2 Reynolds Stress Budgets

The transport equation for the Reynolds stress, within Bussinesq approximation,

is

u_ (_-_),k - - [_],_ - (u-_ _;j,_+ _ u_,_)

+ [h_-fit + _t_t + _(u_p,_ + ujp,_) - 2UUi,kUj,k
P

(4)'

where the viscous diffusion term has been neglected since it will be small as com-

pared to the turbulent diffusion.

For reasons of convenience, turbulence modelers do not model the pressure cor-

relation term in the form as it appears in the above equation but re-write it in a

different form by separating it into a deviatoric and a non-deviatoric part. Two

ways of doing this have been suggested in the literature and we will look at both of

these before deciding which one to use in the present study. The traditional way of

writing this term is 4

--_(uip,j + ujp,i) =_p(uij + Uj,i)-- _(_-_,Sj_ + _ffjSik),k (5)

where the first term on the right hand side is the deviatoric part. The second term

is the so called pressure diffusion term. Lumley 1_ (1975) has instead suggested the

following separation

where the term in the square brackets is the deviatoric part and the last term on

the right hand side is the pressure diffusion term. Regardless of which separation is

employed a correction or model has to be used for the correlation p-"_.. The model

used here is due to Lumley 8 is given by _ = -q2u---k/5. This study indicates that

the use of this model with (5) produces so much pressure diffusion that it negates

the velocity diffusion (i.e. due to _). On this basis it was concluded to use the

separation given by (6) in the present study. (For further details see Shabbir 13).

Therefore, using (6) the equation for the Reynolds stress can be re-written as

1 "u, 2{-[_( .p,j + _jp,,)- _(_1,_,_]
2 2

- 2vul,kui,k + -_egij} -- _e6ii

- (_-_ u_,k+ _ u_,_)- __jt- _j_

(_)

where e = ew Note that anisotropic part of the dissipation part has been combined

with the pressure correlation term 11. The term in the curly parenthesis has a zero

trace and will be denoted by _ij in the rest of the paper. It is this term whose models

55



Aamir Shabbir

i

have been proposed. Note that the above equation is exact since no approximations

have been used so far. Now we introduce the model for the pressure diffusion term,

as given above, and with this approximation the above equation becomes

2

+ ¢_j - ]eSij

- uj,k + + +

(8)

Note that due to the model for the pressure diffusion term this is no longer an exact

equation and _ has been used to emphasize this fact. It is this equation which will

be balanced out with the experimental data and the term _j will be obtained as

the closing term. It should be reminded that in addition to the measurement errors,

any uncertainty in the approximation of the pressure diffusion will also be lumped

into ¢_j.

The equation for the streamwise Reynolds stress w 2 is given by

m

U Ow2 W Ow2
Or +

(9)

The balance of this equation is shown in figure 10. Advection is the smallest of

all the terms. Diffusion term is a gain near the center of the plume and a loss

in the rest of the flow. Also, its magnitude near the center is comparable to the

other dominant terms in the balance. We note that the buoyancy production is

comparable to the production due to mean velocity gradients near the plume center

but over the rest of the flow field the shear production is much larger than the

buoyancy production. It is also interesting to note that the buoyancy production

and dissipation rate approximately balance each other. The closing term in this

balance is ¢,z and represents the sum of the pressure correlation term an, d the

anisotropic part of the dissipation. This term is a loss for the u 2 budget and we

note that beyond r/z = 0.08 this term and shear production approximately balance

each other.

The equation for the radial component u 2 is given by

Or + Oz _ ----
0 -::-_.2

r Or

2-_ _r o zOU 2- - - - 5 (10)

and its balance is shown in__figure 11. Obviously the advection of u 2 has the same

form as the advection of w:. The production due to velocity gradients is a loss

near the plume center and is a gain after about r/z = 0.04. This is because the

radial gradient of the radial mean velocity is positive near the plume center. The
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mechanical production term is not large. The diffusion terrri is a loss over most of

the flow field and becomes a gain toward the outer edge of the flow field. The sum

of the pressure correlation term and the anisotropic part of the dissipation rate is

obtained as the closing term in the budget and represents a gain for u 2. We further

note that beyond r/z = 0.08 it approximately balances the dissipation rate.

Finally we look at the budget for the shear stress _-_ as shown in figure 12. Its

equation is given by

Or + W -b-_z 1 0 (r_-_'_)- OzO(_-_-_)r Or

__OW
- uw-5-_zz + gfl-_ _ ,_=

ou _ ou Maw
- _ - uw-O_z - Or

(11)

Both advection and the turbulent buoyancy production are of very small magnitude

and over most of the flow field these approximately balance each other. Neglecting

these two terms would not cause any significant change in the shear stress balance.

We note that the diffusion term is not negligible in this budget. The term Cr= is

essentially balanced by the difference between the shear production and diffusion

processes. The shape of Cr= is obviously similar to that of the shear stress and its

peak approximately corresponds to the peak in the shear production.

3. Future Plans

3.1 Turbulence Modeling (with T.-H. Shih)

(a). Compare the performance of the various non-linear second order models in

different homogeneous flows in order to find out their strengths and weakneses. This

will be an extension of the work presented in section 1 of this brief.

(b). To develop and test models for turbulent diffusion terms in the Reynolds

stress equations using Lumley's theory of third moments 11.

3.2 DNS of Bypass Transistio n (with T.-H. Shih and G. Karniadakis).

The bypass transition is an important engineering problem due to its relevence

to turbomachinery environment and, therefore, there is a considerable interest both

at LeRC and at CMOTT to study this phenomenon. We are interested in carrying

out the DNS for this problem both in order to provide a data base for the modeling

efforts of bypass transition at CMOTT and to study its physics. For the former we

are interesting in finding out what kind of global parameters, if any, are linked to

the transition process. For the later we are interested in finding out, for instance,

what is the effect of anisotropy in the free stream turbulence velocity and length

scale on the transition process.

These simulations will be designed after the experiments of Sohn and Reshotko 14

who studied the bypass transition over a flat plate with differing free stream turbu-

lence intensities. The results of DNS will be compared with these experiments.
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3.2.1 Numerical Scheme.

Currently we are exploring the possibility of using a spectral element code for its

suitability for doing such a DNS. We are inclined to use a spectral element method

because of its higher accuracy and its ease of local grid refinement.

The numerical scheme used in the code involves fractional time discretization

which results in three sets of semi discrete equations. In the first step advection term

is handled explicitly using a third order Adams-Bashforth scheme. In the second

step Poisson equation for pressure is solved implicitly and continuity is satisfied. In

the third fractional step the diffusion terms are accounted implicitly by a second

order Crank-Nicholson method.

In order to carry out the spatial discretization the flow domain is first decom-

posed into macro elements. Each of these macro elements uses a local cartesian

mesh by employing Gauss-Labatto collocation points. Then within each macro ele-

ment the flow variables are represented as tensor product of Chebychev polynomial.

These representations of the flow variables are then substituted into the governing

equations and discrete equations are obtained by applying the weighted residual

technique.

3.2.2 Test Cases to be run

Several test cases will have to be run in order to validate the code before a full

DNS can be carried out. First of these is to solve the laminar boundary layer flow

over a flat plate in order to insure that the numerical method gives the Blasius

solution. This will also help us explore the various boundary conditions which can

be used at the top boundary and at the outflow and latter can be used for the

mean flow during the DNS. After this has been successfully accomplished the most
unstable mode disturbances based on the linear stability theory will be intorduced.

This will allow comparing their growth rates (in the linear region) with the solutions

from the linear stability theory. The third case will be that of suction and blowing

through the flat plate and the resutls will be compared with those obtained by

previous workers.
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