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FOREWORD

The Reusable Reentry Satellite (RRS) Launch Tradeoff Study described herein was

performed during Part 1 of the RRS Phase B contract. This report is one of several that describes

the results of various trade studies performed to arrive at a recommended design for the RRS

satellite system. The overall RRS Phase B Study objective is to design a relatively inexpensive

satellite to access space for extended periods of time, with eventual recovery of experiments on

Earth. The RRS will be capable of: 1) being launched by a variety of expendable launch vehicles,

2) operating in low earth orbit as a free flying unmanned laboratory, and 3)executing an

independent atmospheric reentry and soft landing. The RRS will be designed to be refurbished

and reused up to three times a year for a period of 10 years. The expected principal use for such a

system is research on the effects of variable gravity (0-1.5 g) and radiation on small animals,

plants, lower life forms, tissue samples, and materials processes.

This Summary Report provides a description of the RRS Launch Tradeoff Study

performed to identify available launch vehicles applicable for the RRS mission. This report

discusses the various launch vehicle options, launch sites, shroud limitations, interfaces, launch

environment, injection accuracy, availability, integration, and costs relevant to the overall RRS

design.

The study was performed under the contract technical direction of Mr. Bob Curtis, SAIC

Program Manager. The Launch Vehicle Tradeoff Study was performed by Eagle Engineering, via

subcontract from SAIC, under the direction of Mr. William Davidson. Mr. Michael Richardson,

JSC New Initiatives Office, provided the RRS objectives and policy guidance for the performance

of these tasks under the NAS 9-18202 contract.
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EXECUTIVE SUMMARY

A goal of the Phase B study is to define the launch system interfaces for the RRS program.

The focus of the launch tradeoff study, documented in this report, is to determine which

expendable launch vehicles (ELV's) axe best suited for the RRS application by understanding the

impact of all viable launch systems on RRS design and operation.

Initial study included an ELV technical merit scoring and design maturity analysis on 19

viable options. It was concluded that none of the 19 launch vehicles studied were optimum for

RRS. Most ELV's demonstrated insufficient performance, excessive performance and cost, or a

lack of design maturity. The Delta 6920 and the S-II were the candidates most worthy of further

evaluation. The main discriminator was cost. It was also determined that since shared launches

present severe operational complexities, dedicated launches are recommended.

A more detailed investigation of RRS/ELV interfaces was conducted for both the Delta and

S-I/vehicles. The analysis focused on Delta due to a lack of design detail for S-II. The payload

attachment system, which features a thin, composite, cylindrical support structure, was configured

to allow for late life specimen installation [i.e. Experiment Module (EM)] without scarfing the heat

shield. An alternative concept, which included a removable fairing and interstage-like adapter

sleeve, presented performance penalties and payload access and cost advantages.

It was also concluded from this interface analysis that the Delta should employ the 10'

fairing being modified to contain a large access panel for the Roentgen Satellite (ROSAT) program

to meet the late EM installation requirement. Modifications to the pre-launch timeline are required

for Delta to meet the RRS close-out requirement.

RRS design should proceed in Part II of the contract with a launch vehicle interface design

compatible with Delta. The S-II lacks sufficient design maturity, eliminating it from further

analysis. An effort should be made to address the interface issues presented in the Spacecraft

Questionnaire used by McDonnell Douglas Space Systems Company (MDSSC). Significant

issues with Delta will include pre-launch timeline adjustments and payload attachment/separation

system design.

Recent developments indicate that the DoD may cut spending by reducing tactical missile

inventories. Several companies could propose new ELV derivatives using these surplus

components to offer low cost vehicles. NASA should consider a launch services contractor

competition to reduce RRS program costs.

..°
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1.0 INTRODUCTION

1.1 Background

As currently conceived, the Reusable Reentry Satellite (RRS) will be designed to provide

investigators, in several biological disciplines with a relatively inexpensive method of access to

space for up to 60 days with eventual recovery on Earth. The RRS will be designed to permit

totally intact, relatively soft recovery of the vehicle, system refurbishment, and reflight with new

and varied payloads. The RRS system will be capable of 3 reflights per year over a 10-year

program lifetime. The RRS vehicle will have a large and readily accessible volume near the vehicle

center of gravity for the Payload Module (PM) containing the experiment hardware. The vehicle is

configured to permit the experimenter late access to the PM prior to launch and rapid access

following recovery.

The RRS will operate as a free-flying spacecraft in orbit and allowed to drift in attitude to

provide an acceleration environment of less than 10-5 g's. The acceleration environment during

orbital trim maneuvers will be less than 10-3 g's. The RRS is also configured to spin at controlled

rates to provide an artificial gravity of up to 1.5 Earth g. The RRS system will be designed to be

rugged, easily maintainable, and economically refurbishable for the next flight. Some systems

may be designed to be replaced rather than refurbished if cost effective and capable of meeting the

specified tumaround time. The minimum time between recovery and reflight will be approximately

60 days. The PM's will be designed to be relatively autonomous with experiments which require

few commands and limited telemetry. Mass storage if needed will be accommodated in the PM.

The start of the hardware development and implementation phase is expected in 1991 with a first

launch in December 1994.

Numerous trade studies and RRS functional design descriptions are required to define a

RRS concept which satisfies the requirements and is viable. NASA has contracted with Science

Applications International Corporation (SAIC) to perform a Phase B study to provide the RRS

concept definition. Eagle Engineering, Inc. is supporting SAIC in accomplishing the necessary

studies. The Launch Tradeoff Study is one of the supporting study analyses performed by Eagle.

1.2 NASA JSC Statement of Work Task Definition

Conduct required study with depth of analysis as appropriate to clarify and document the

viability of each approach. Give particular attention to effects of complexity, flexibility, or

-1-



imposedconstraints on the RRSdesign, RM design, or mission operations. Also, special

considerationshouldbegivento systemreliability andoperationalsafetyaswell asthereductionin
programlife cyclecosts.

"Considerthe launchvehicleoptionsincluding: (1) Delta, (2) Titan II, (3) NASDA H-II,

and(4)appropriatecommercialvehicles(of U.S.or Foreignorigin) whicharelikely to beavailable

by the mid to late 1990s. Consideration shall be given to the likely launch sites, shroud

limitations, interfaces,andlaunchenvironmentandaccuracy. It is desirablethat the RRSbe

capableof beinglaunchedby anyof theELV's with noor minimummodification. Consideration

shallalsobegivento theexpectedaccuracyof orbitalinsertion,launchvehicleintegrationcost,and

expectedavailability. For launchvehicleswhich are likely to be usedduring sharedlaunches,

considerationshall be given to the effect of late on-padaccessto the payload on the RRS

configurationanddesign. All launchvehicledataon performance,interface,environment,and

availableestimatesshallbesubmittedfor approvalby theNASA COTRbeforeuse."

1.3 Scope

This NASA PhaseB studyis intendedto providetheRRSconceptdefinition. Thestudy

includestradeoff studieswith the depthof analysisasappropriateto clarify and documentthe

viability of eachapproach.TheRRSsystemandoperationsaredevelopedto thedegreenecessary

to provideacompletedescriptionof theconceptualdesignsandfunctionalspecifications.Detailed

engineeringdesignsarenot producedduringPhaseB studiessincethe significantresourcesare

allocated and reservedfor the subsequentPhaseC/D design and implementationactivities.

Therefore,manyanalysesanddefinitionsin this studyarebasedon engineeringexperienceand

judgementratherthandetaileddesigncalculations.

2.0 Study Approach

2.1 Organization

The study is organized to be accomplished in a series of related but separate tradeoff studies

and system concept definitions. Therefore, the documentation has been formatted to accommodate

a compendium of analyses which are published in one document for launch tradeoff. The

document is produced in a series of report iterations in the form of interim reports which culminate

in the publishing of the final report at the midterm of the RRS Phase B Study.
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2.2 Document Format

Although the individual analyses and studies are not amenable to documentation in exactly

the same topical arrangement, a general outline is used where reasonable. The guideline outline for

preparing the individual study sections is provided below:

* Purpose

. Assumptions and Groundrules

. Tradeoff Options

. Analysis

. Conclusions

• Recommendations

2.3 Assumptions and Groundrules

In the process of performing the subject trade study, certain data or study definition was

not available or specified. Assumptions and groundrules have been established to document, for

the purposes of this trade study, the definition of important information which is not a definite fact

or is not available in the study time period. Specific assumptions are listed in the section where

appropriate. General assumptions and groundrules which affect all studies are listed in Table 2-1.

Table 2-1. General Launch Tradeoff Study Assumptions and Groundrules

1)

2)

Assumptions and Groundrules

Where project, hardware, and operations definition has been insufficient,
detailed quantitative analysis has been supplemented with assessments based
on experienced judgement of analysts with space flight experience from the
Mercury Project through the current time.

The RRS missions to be supported are those baselined in the mission operations
design definition study and referred to as RRS design reference missions (DRMs).
The RRS design reference missions are identified in Table 2-2.
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Table 2-2. Design Reference Mission Set Definition

Design Reference Mission Set
Definition
Parameter DRM- 1 DRM-2 DRM-3 DRM-4 DRM-5

Character Land l-Ii_ High Integer Water
Recovery Altitude Inclination Orbits Recovery

Inclination 33.83 ° 33.83 ° 98° 35.65 ° 28.5 °

Orbit Type Circular Circular Circular, Circular, Circular
Near-Integer Integer

Orbit Altitude 350 km 900 km 897 km 479 km 350 km
(189 nm) (486 nm) (484 nm) (259 nm) (189 rim)

Launch Site Eastern Eastern Western Eastern Eastern
Test Test Test Test Test
Range (ETR) Range (ETR) Range (WTR) Range (ETR) Range (ERR)

Recovery Site White Sands
Missile
Range
(WSMR)

White Sands
Missile
Range
(WSMR)

White Sands
Missile
Range
(WSMR)

White Sands
Missile
Range
(WSMR)

Water
(ETR, Gulf
of Mexico,
WTR)

3.0 PURPOSE

The purpose of this tradeoff study was to assess the expendable launch vehicle fleet to

determine viable RRS launch options. Early in the study, bounds on RRS size and weight were

established based on performance and fairings of ELV fleet candidates. The study involved

understanding the impact of candidate ELV options on RRS design and operation. Based on this

analysis, specific ELV options were recommended.
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4.0 LAUNCH VEHICLE OPTIONS

A relatively large set of potential ELV candidates (listed below) was composed with respect

to launching the initial RRS configuration (3,000 lbs). This list includes all viable ELV options.

Viable options are defined as launch vehicles likely to be operational by the mid to late 1990s with

a performance of at least 3,000 lbs to DRM-1 orbit (34 ° and 200 nm). This list excludes Soviet

and Chinese launchers due to the political implications. Also, some medium and all heavy lift

launchers (i.e., Titan IV, Ariane 5, ALS) were excluded as these would probably be more

expensive than other vehicles. Consequently, the list is composed of all performance-adequate

versions of Atlas, Delta, Titan, Ariane, Japan's H-series, and current commercial ELV programs.

The Ariane 4, Atlas II, and Atlas JII can be modified for a range of payload performances (e.g.,

addition of strap-on boosters) but each can be discussed as one candidate.

Note, the candidate ELV's are separated into three categories indicating the present status of

each vehicle. Some vehicles have limited private funding (i.e., proposed). The probability of

these proposed vehicles being available and flight proven in the near future is not as high as for

ELV's which are under development or operational. Note, shared launch possibilities were also

evaluated.

Ope_rational Under Development Proposed

Ariane 4 - Atlas II - AmRoc ILV-110

Arias I - Atlas JII SSI Conestoga 421-48
Delta 6920 - Delta 7920 EPAC S-II

- H-I - H-II - PacAmLibertyX
Titan II - OSC Taurus (SSLV) Titan II/Biprop Kit

- Titan ]1/

5.0 EVALUATION METHODOLOGY

The launch vehicles were evaluated from both a technical and maturity viewpoint. ELV

maturity is a programmatic parameter to establish a confidence level in the proposed ELV

availability and performance. Prior to any judgments regarding ELV maturity, the technical merit

of each ELV was numerically evaluated. Each ELV was assessed with respect to RRS design and

operation compatibility via a list of appropriate evaluation factors (listed and described below).

Each candidate was evaluated relative to each individual factor using a scoring system described

later and based on the manufacturer's description of his vehicle as it is currently designed.

Modifications to improve compatibility with the RRS were not considered during this initial
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analysis. Eachevaluationfactor wasweightedas eachrelatedto the currentRRS designand
operationalobjectives(e.g.,RRSsize, late accesscriteria). Another matrix wascomposedto

illustrate the final comparisonof the candidates.Basedon thesetechnicalevaluationsa setof

candidateELV's could be recommendedfor further investigation. Note, theseevaluationswere

donerepeatedlyastheRRSdesignchanged(i.e.,sizeandweight).

It waslaterdeterminedthatsomeELV characteristicswereessentiallyconstantamongthe

candidatesandcouldnotservein theselectionof theELV fleet. Forinstance,umbilical interfaces

areavailableon all ELV's which providesufficient air conditioningandelectricalpower on the

pad. Also, all standardseparationsystemsemployedpyrotechnicdevices. Other factors were

foundto bedependentonRRSdesignparametersyet to be determined. For example, vibrational

characteristics depend on RRS structural dynamic responses. Note, insertion accuracy became a

non-issue (see below) and was not scored.

5.1 Technical Merit Evaluation Factors

Availability Date

Performance/Inclination

Insertion Accuracy

Launch Site/Rate Capability

Insertion Stg Stabilization

If the ELV is "operational" or "under development" and has full
financial support, the date of Initial Operation Capability (IOC) is
indicated. These vehicles have a high probability of being available.
The "proposed developments" (or "conceptual designs") have a low
probability of being available.

A study assumption was established that 75% of the RRS missions
would have no orbital objectives other than microgravity and are
referred to as DRM-1 missions (200 nm, 34 ° incl.). NASA has

specified that some missions may require high altitudes for radiation
experiments, close to 500 nm (DRM-2). Other missions may also
impose high inclinations of up to 98 ° (DRM-3). Consequently,
performance bounds were developed for each ELV using the altitude
range of 200 nm to 500 nm and an inclination range of 34 ° to 98 °.

All ELV's evaluated had insertion accuracies which are compatible
with the RRS objectives; therefore this factor was not a discriminator.
ELV's can launch into a high enough altitude to ensure the 60 day
mission duration despite insertion altitude error (i.e., 200 nm plus
altitude dispersion).

The RRS program is expected to require a maximum launch rate of 3
per year. Some ELV's cannot easily accommodate this flight rate
(e.g., shared launch opportunities). It is desirable to be able to
launch from the continental U.S. from KSC, VAFB, or Wallops to

satisfy the DRMs.

Due to the requirement for life science experiments aboard the RRS
which require live animals (i.e., rodents) the ELV selected cannot use

spin stabilization during orbital insertion.
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PayloadAccommodations

PayloadAccessibility

FlightEnvironment

CostperFlight

TheRRSis to beflown in a "heatshielddown" launchconfiguration
to maintaina constantaxial accelerationload direction during the
entire mission. A payload fairing is required to protect the RRS
duringascent.Themostimportantconstraintimposedby thefairing
is on the size of the RRS (i.e., diameterand length). For some
ELV's a largeenoughfairing cannotbedeveloped.Payloadattach
fitting (PAF) constraintson RRSc.g. werenot assessedin this part
of thecontract.

RRSclose-outis to occurup to T-4 hoursbeforelaunch. Close-out
is assumedto involve human access (e.g., final inspections,
detachmentof umbilicals,rodentcagereplacement).

Thermalloadsduring launchvary moderatelyamongELV's. Some
candidateELV's may require fairing insulation to reduceinternal
temperaturesbelowRRS tolerance.Acceleration and shock loads
werealsodetermined.It is requiredthattheELV not imposegreater
than10gaxialaccelerationloadson therodents.

Life cyclecostwasa key issueregardingselectionof thecandidate
ELV fleet.

5.2 Maturity Evaluation Factors

ELV maturity was considered a top-level programmatic concern which should be addressed

after technical merit was established. Launch vehicle maturity factors were evaluated and included

the following:

• Company Relevant Experience and Past Performance

• ELV Design Approach

• Development Status

• Recurring Cost Risk

These factors were introduced to establish a confidence level in the proposed ELV availability

and performance. It is desirable to choose a flight proven, operational launch system as opposed

to a proposed design involving potential development, cost, and schedule risk.

6.0 LAUNCH VEHICLE DATA

Data for each of the candidate ELV's was obtained with respect to the technical evaluation

factors described earlier. Data sheets have been included in Tables 6-1 through 6-19 for each

candidate launch system in alphabetical order. Extra Atlas configurations (i.e., Atlas IIA, Atlas

IIAS, and Atlas JIIS) have also been included.
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Table6-1. CandidateLaunchVehicleDataSheet,Ariane4 (AR40)

Vehicle: Ariane 4 (AR40) Date: 8-15-89

Sponsor: Arianespace/CNES

Factor Evaluation Remarks

Availability Date:

Performance:

200 nm due East @ 5°:
500 nm due East @ 5°:
200 nm@ 98°:
500 nm @ 98°:

Insertion Accuracy:
Altitude:
Inclination:

Launch Site Availability:

Inclination Capability:

Launch Rate Capability:

Insertion Stage Stabilization:

Reliability:

Cost per Flight:

Payload Accommodations:
Usable Fairing Diameter:

Adapters and Interface Rings:
Single/Multi Payload Capab.:

Payload Accessibility:
Fairing Timeline Installation:

Flight Environment:
Internal Fairing Skin Temp.:
Accelerations:
Shock:

1987 2.5 yr ARO

10,500 lbs

7,300 lbs
7,800 lbs
5,700 lbs

!-0.38 nm
5_-0.032°

Kourou, French Guiana

5.2°-102 °

8-10/year

3-axis ACS

85%

$80M

144" (12.0' int., 13.1' ext.)

Usable Fairing Length:
103.3" VEB, 75.6" std

Dual Payload Capability

TBD

59°F-77°F (prelnch); 77°F-94°F (in-fit)
4.5 g (long.), +_2 g (lat.)
1100 g (1050 Hz - 10000 Hz)

for 435 nm and 98.6°incl.

ELA 3; ELA 2 is backup

23/27 launches

Fixed price estimate

15' Contraves fairing
avail.
31.5' or 37.4'

3 other adapters available
SPELDA (encloses
lower payload)
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Vehicle:
Sponsor:

Factor

Table6-2. CandidateLaunchVehicleDataSheet,AriasI

AtlasI Date: 8-15-89
GeneralDynamics/USAF

Evaluation Remarks

AvailabilityDate:
Program

Performance:
200nmdueEast@ 28.5°:
500nmdueEast@ 28.5°:
200nm@ 98°:
500nm@ 98°:

InsertionAccuracy:
Altitude:
Inclination:

LaunchSiteAvailability:

InclinationCapability:

LaunchRateCapability:

InsertionStageStabilization:

Reliability:

CostperFlight:

PayloadAccommodations:
UsableFairingDiameter:
UsableFairingLength:
AdaptersandInterfaceRings:
Single/MultiPayloadCapab.:

PayloadAccessibility:
FairingTimelineInstallation:

FlightEnvironment:
InternalFairingSkinTemp.:
Accelerations:
Shock:

1990 Avail. viaUSAFMLV

11,600lbs
5,100lbs
n/a
n/a

+3.5 nm
_+0.011 °

ETR/WTR

28.50-340/63.50-98 °

1/yr commercial

3-axis ACS

88% (demonstrated since 1970)

$65M-$70M

36B/SLC-3

4/yr USAF

Fixed price estimate

115" (9.6' int., 11' ext.); 147" (12.3' int., 14' ext.)
17.3'; 29.4'

Standard type A and B S/C adapters
Single

T-8to13 days

60°F-69°F (prelnch); 80°F-398°F (in-fit)
5.5 g (long.), +_2 g (lat.)
2000 g @ 2000 Hz
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Table6-3. CandidateLaunchVehicleDataSheet,AtlasII

Vehicle:AtlaslI Date: 8-15-89
Sponsor:GeneralDynamics/USAF

Factor Evaluation Remarks

AvailabilityDate: Early1991
Program

Performance:
200nmdueEast@ 28.5°:
500nmdueEast@ 28.5°:
200nm@ 98°:
500nm@ 98°:

InsertionAccuracy:
Altitude:
Inclination:

LaunchSiteAvailability:

InclinationCapability:

LaunchRateCapability:

InsertionStageStabilization:

Reliability:

CostperFlight:

PayloadAccommodations:
UsableFairingDiameter:
Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab:

Payload Accessibility:
Fairing Timeline Installation:

Flight Environment:
Internal Fairing Skin Temp:
Accelerations:
Shock:

Avail. via USAF MLV

13,500 lbs
7,500 lbs
11,300 lbs
6,300 lbs

5:3.5 nm
_+0.011 °

ETR/WrR

28.50-340/630-98 °

1/yr commercial

3-axis ACS

88% (demonstrated since 1970)

$70 - $80 M

36B/SLC-3

4/yr USAF

Fixed price estimate

115" (9.6' int., 11' ext.); 147" (12.3' int., 14' ext.)
17.3'; 29.4'

Standard type A and B S/C adapters
Single

T-8 to 13 days

69°F (prelnch); 80°F-398°F (in-fit)

5.5 g (long.); -1-2.0 g (lat.)
8000 g @ 2000 Hz

-10-



Table6-4. CandidateLaunch Vehicle Data Sheet, Atlas HA

Vehicle: Atlas IIA Date: 8-15-89

Sponsor: General Dynamics/USAF

Factor Evaluation Remarks

Availability Date: Early 1991
Program

Performance:

200 nm due East @ 28.5°:
500 nm due East @ 28.5°:
200 nm @ 98°:
500 nm @ 98°:

Insertion Accuracy:
Altitude:
Inclination:

Launch Site Availability:

Inclination Capability:

Launch Rate Capability:

Insertion Stage Stabilization:

Reliability:

Cost per Flight:

Payload Accommodations:
Usable Fairing Diameter:
Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab:

Payload Accessibility:
Fairing Timeline Installation:

Flight Environment:
Internal Fairing Skin Temp:
Accelerations:
Shock:

Avail. via USAF MLV

13,900 lbs
7,800 lbs
11,700 lbs
5,450 lbs

+3.5 nm
_+0.011 °

ETR/WTR

28.5°-34°/63°-98 °

1/yr commercial

3-axis ACS

88% (demonstrated since 1970)

$80 M

36B/SLC-3

4/yr USAF

Fixed price estimate

115" (9.6' int., 11' ext.); 147" (12.3' int., 14' ext.)
17.3'; 29.4'

Standard type A and B S/C adapters
Single

T-8 to 13 days

69°F (prelnch); 80°F-398°F (in-fit)
5.5 g (long.); +2.0 g (lat.)
8000 g @ 2000 Hz
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Table 6-5.

Vehicle: Arias RAS

Sponsor: General Dynamics

Candidate Launch Vehicle Data Sheet, Atlas ILAS

Date: 8-15-89

Factor Evaluation Remarks

Availability Date:
Program

Performance:

200 nm due East @ 28.5°:
500 nm due East @ 28.5°:

200 nm @ 98°:
500 nm @ 98°:

Insertion Accuracy:
Altitude:
Inclination:

Launch Site Availability:

Inclination Capability:

Launch Rate Capability:

Insertion Stage Stabilization:

Reliability:

Cost per Flight:

Payload Accommodations:
Usable Fairing Diameter:
Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab:

Payload Accessibility:
Fairing Timeline Installation:

Flight Environment:
Internal Fairing Skin Temp:
Accelerations:
Shock:

1992 Avail. via USAF MLV

14,750 lbs
7,000 lbs
unavall.
unavail.

+_3.5 nm

+-0.011 o

ErR/WTR

28.5o-34o/63o-98 °

1/yr commercial

3-axis ACS

88% (demonstrated since 1970)

$85 M

36B/SLC-3

4/yr USAF

Fixed price estimate

115" (9.6' int., 11' ext.); 147" (12.3' int., 14' ext.)
17.3'; 29.4'

Standard type A and B S/C adapters
Single

T-8 to 13 days

69°F (prelnch); 80°F-398°F (in-fit)
5.5 g (long.); +_2.0 g (lat.)
8000 g @ 2000 Hz
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Table6-6. CandidateLaunchVehicleDataSheet,AtlasJII

Vehicle:AtlasJII
Sponsor:GeneralDynamics/USAF

Factor Evaluation

Date: 8-15-89

Remarks

AvailabilityDate:
Program

Performance:
200nmdueEast@ 28.5°:
600nmdueEast@ 28.5°:
200run@ 98°:
500nm@ 98°:

InsertionAccuracy:
Altitude:
Inclination:

LaunchSiteAvailability:

InclinationCapability:

LaunchRateCapability:

InsertionStageStabilization:

Reliability:

CostperFlight:

PayloadAccommodations:-
Usable Fairing Diameter:
Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab:

Payload Accessibility:
Fairing Timeline Installation:

Flight Environment:
Internal Fairing Skin Temp:
Accelerations:
Shock:

1989 Avail. via USAF MLV

8,700 lbs

6,200 lbs
n/a
n/a

+3.5 nm
_+0.011 °

EqR/WTR 36B/SLC-3

28.50-340/630-98 °

1/yr commercial 4/yr USAF

Spin-stabilized

90% (demonstrated by Atlas w/o Centaur)

$52 M Fixed price estimate

115" (9.6' int., 11' ext.); 147" (12.3' int., 14' ext.)
17.3'; 29.4'

Standard type A and B S/C adapters
Single

T-8 to 13 days

69°F (prelnch); 80°F-398°F (in-fit)
5.5 g (long.); +2.0 g (lat.)

2000 g @ 2000 Hz
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Vehicle:
Sponsor:

Table6-7.

AtlasJ1/S
GeneralDynamics

CandidateLaunchVehicleDataSheet,AtlasJHS

Date: 8-15-89

Factor Evaluation Remarks

AvailabilityDate:
Program

Performance:
200nmdueEast@ 28.5°:
700nmdueEast@ 28.5°:
200nm@ 98°:
500nm@ 98°:

InsertionAccuracy:
Altitude:
Inclination:

LaunchSiteAvailability:

InclinationCapability:

LaunchRateCapability:

InsertionStageStabilization:

Reliability:

CostperFlight:

Payload Accommodations:
Usable Fairing Diameter:
Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab:

Payload Accessibility:
Fairing Timeline Installation:

Flight Environment:
Internal Fairing Skin Temp:
Accelerations:
Shock:

1992 Avail. via USAF MLV

8,000 lbs
4,600 lbs
n/a
n/a

+15 nm
_+0.011 °

E'IR/WTR

28.50-340/630-98 °

1/yr commercial

Spin-stabilized

90% (Atlas w/o Centaur)

$55 M

36B/SLC-3

4/yr USAF

Fixed price estimate

115" (9.6' int., 11' ext.); 147" (12.3' int., 14' ext.)
17.3'; 29.4'
Standard type A and B S/C adapters

Single

T-8 to 13 days

69°F (prelnch); 80°F-398°F (launch)
5.5 g (long.); +2.0 g (lat.)
2000 g @ 2000 Hz

Insulation required
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Table6-8. CandidateLaunchVehicleDataSheet,Conestoga421-48

Vehicle: Conestoga421-48
Sponsor:SpaceServicesInc.

Date: 8-15-89

Factor Evaluation Remarks

AvailabilityDate:

Performance:
200nmdueEast@ 37°:
500nmdueEast@ 37°:
200nm@ 98°:
500nm@ 98°:

InsertionAccuracy:
Altitude:
Inclination:

LaunchSiteAvailability:

InclinationCapability:

Launch Rate Capability:

Insertion Stage Stabilization:

Reliability:

Cost per Flight:

Payload Accommodations:
Usable Fairing Diameter:
Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab:

Payload Accessibility:
Fairing Timeline Installation:

Flight Environment:
Internal Fairing Skin Temp:
Accelerations:
Shock:

Proposed development

2,800 lbs
1,900 lbs
2,030 lbs
1,350 lbs

+17.6 nm
_+0.1 °

Wallops/WTR

380-??/630-98 °

12/year

3-axis stable with TVC

95%

$15 M

57" (4.75')
11.3' or 12.3'
Std Delta PAF 3712C

Single or Multiple (3 cannisters)

Up to T-5 hours

20°C-25°C (prelnch); 195°C (in-fit)
8.7 g (long.); _+0.4 g (lat.)
+1000 g @ 1000 Hz

goal

Fixed price estimate

76" could be developed
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Table6-9. CandidateLaunchVehicleDataSheet,Delta6920

Vehicle:Delta6920
Sponsor:McDonnellDouglas/USAF

Factor Evaluation

Date: 8-15-89

Remarks

AvailabilityDate: February1989

Performance:
200nmdueEast@ 28.7°:
500nmdueEast@ 28.7°:
200nm@ 98°:
500nm@ 98°:

8,400lbs
7,200lbs
5,600lbs
5,000lbs

InsertionAccuracy:
Altitude:
Inclination:

+10 nm
_+0.05 °

Launch Site Availability: ETR (2)/WTR 17A, 17B/SLC-2W

IncLination Capability: 28.50-42.50/94 °- 145.3 ° (retro 34.7 °)

Launch Rate Capability: 10-12/yr

Insertion Stage Stabilization: 3-axis ACS

Reliability: 92% (demonstrated since 1970)

Cost per Flight: $43 M Fixed price estimate

Payload Accommodations:
Usable Fairing Diameter:
Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab:

100" (8.3' int., 9.5' ext.); 110" (9.2' int., 10' ext.)

21.7', 19.8' (143" cyl.)
6019 (5.0');6306 (5.25');6915 (5.7')

Single

Payload Accessibility:
Fairing Timeline Installation: T-3 days

Flight Environment:
Internal Fairing Skin Temp: 62°F (prelnch); 62°F-110°F (launch) w/insulation
Accelerations: 5.8 g (long.); _+2.5 g (lat.)
Shock: 5500 g @ 4000 to 5000 Hz
Note: MDSSC requires roll-back 5 hours, at the latest, before any Delta launch.
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Table6-10. CandidateLaunchVehicleDataSheet,Delta7920

Vehicle:Delta7920
Sponsor:McDonnellDouglas/USAF

Factor Evaluation

Date: 8-15-89

Remarks

AvailabilityDate: June1990 Navstarlaunches

Performance:
200nmdueEast@ 28.7°:
500nmdueEast@ 28.7°:
200nm @ 98°:
500 nm @ 98°:

10,500 lbs
9,200 lbs
7,300 lbs
6,700 lbs

Insertion Accuracy:
Altitude:
Inclination:

+10 nm
_+0.05 °

Launch Site Availability: ETR (2)/WTR 17A, 17B/SLC-2W

Inclination Capability: 28.5°-42.5oD4°-145.3o (retro 34.7 °)

Launch Rate Capability: I0-12./yr

Insertion Stage Stabilization: 3-axis ACS

Reliability: 92% (demonstrated since 1970)

Cost per Flight: $45 M Fixed price estimate

Payload Accommodations:
Usable Fairing Diameter:
Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab:

100" (8.3' int., 9.5' ext.); 110" (9.2' int., 10' ext.)

21.7'; 19.8' (143" cyl.)
6019 (5.0');6306 (5.25');6915 (5.7')

Single

Payload Accessibility:
Fairing Timeline Installation: T-3 days

Flight Environment:
Internal Fairing Skin Temp: 62°F (prelnch); 62°F-110°F (launch) w/insulation
Accelerations: 10 g (long.); +_2.5 g (lat.)
Shock: 5500 g @ 4000 Hz to 5000 Hz
Note: MDSSC requires roll-back 5 hours, at the latest, before any Delta launch.
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Table6-11.

Vehicle:H-I
Sponsor:Mitsubishi/NASDA

Factor

CandidateLaunchVehicleDataSheet,H-I

Date: 8-15-89

Evaluation Remarks

AvailabilityDate:

Performance:
200nmdueEast@ 30°:
500nmdueEast@ 30°:
200nm@ 98°:
500nm@ 98°:

InsertionAccuracy:
Altitude:
Inclination:

LaunchSiteAvailability:

InclinationCapability:

LaunchRateCapability:
launches

InsertionStageStabilization:

Reliability:

CostperFlight:

PayloadAccommodations:
UsableFairingDiameter:
UsableFairingLength:
AdaptersandInterfaceRings:
Single/MultiPayloadCapab.:

PayloadAccessibility:
FairingTimeline Installation:

Flight Environment:
Internal Fairing Skin Temp.:
Accelerations:
Shock:

1986-1991

5,500 lbs
5, I00 lbs
3,250 lbs
2,900 lbs

3-sigrna
TBD
TBD

Tanegashima Island, Japan

30°-96°+

2-4/year

3-axis ACS

89% (demonstrated)

$70 M

86" (7.2' int., 8' ext.)
20 ' (22'ext.)
60.2"

Single

T-1 to 4 days

25°C (prelnch); 66°C (in-fit)
8 g (long.)
2000 g @ 600 Hz to 4000 Hz

Two-stage

Restart,able LE-5 engine

Osaki Pad

4 months/yr avail, for

"N" & "H" vehicles

NASA estimate

w/acoustic blankets
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Table 6-12.

Vehicle: H-II

Sponsor: Mitsubishi/NASDA

Factor

Candidate Launch Vehicle Data Sheet, H-II

Date: 8-15-89

Evaluation Remarks

Availability Date:

Performance:

200 nm due East @ 30°:

500 nm due East @ 30°:
200 nm @ 98°:
500 nm @ 98°:

Insertion Accuracy:
Altitude:
Inclination:

Launch Site Availability:

Inclination Capability:

Launch Rate Capability:

Insertion Stage Stabilization:

Reliability:

Cost per Flight:

Payload Accommodations:
Usable Fairing Diameter:

avail, able

Adapters and Interface Rings:
Single/Multi Payload Capab.:

Payload Accessibility:
Fairing Timeline Installation:

Flight Environment:
Internal Fairing Skin Temp.:
Accelerations:
Shock:

1992

22,000 lbs

19,900 lbs
14,100 lbs
11,200 lbs

3-sigma
TBD
TBD

Tanegashima Island, Japan

30°-100°+

2-4]year

3-axis ACS

91% (predicted)

$110 M

145" (12.1' int., 13.4' ext.)

Usable Fairing Length:
TBD

Dual payload capability

TBD

15°C-25°C (prelnch)

4 g (long.)
2000 g @ 750 Hz to 5000 Hz

Restartable LE-5 engine

Yoshinobuzaki Pad

4 months/yr avail, for
launches

NASA estimate

15' Contraves fairing

39.4'
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Table6-13. CandidateLaunchVehicleDataSheet,ILV- 110

Vehicle: ILV- 110
Sponsor:AmericanRocketCompany(AmRoc)

Date: 8-15-89

Factor Evaluation Remarks

AvailabilityDate:

Performance:

200 nm due East @ 28.5°:
500 nm due East @ 28.5°:

200 nm @ 98°:
500 nm @ 98°:

Insertion Accuracy:
Altitude:
Inclination:

Launch Site Availability:

Inclination Capability:

Launch Rate Capability:

Insertion Stage Stabilization:

Reliability:

Cost per Flight:

Payload Accommodations:
Usable Fairing Diameter:
Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab:

Payload Accessibility:
Fairing Timeline Installation:

Flight Environment:
Internal Fairing Skin Temp:
Accelerations:
Shock:

Proposed development for 1991

3,600 lbs
2,800 lbs
2,500 Ibs
1,850 lbs

TBD

TBD

WTR

630.98 °

3/yr

3-axis ACS

TBD

$10 M

90" (7.5')

15' (10' cyl.)
TBD

Single

TBD

TBD

5.2 g (long.)
TBD

Static-test fires complete

Proposed

Estimated from Titan II

Predicted

ROM estimate

Similar to Delta fairing
Includes 6' conical section

-20-



Table6-14. CandidateLaunchVehicleDataSheet,Liberty X

Vehicle:LibertyX
Sponsor:PacificAmerican

Factor Evaluation

Date: 8-15-89

Remarks

AvailabilityDate:

Performance:

150 nm due East @ 28.5°:
500 nm due East @ 28.5°:

200 nm@ 98°:
500 nm@ 98°:

Insertion Accuracy:
Altitude:
Inclination:

Launch Site Availability:

Inclination Capability:

Launch Rate Capability:

Insertion Stage Stabilization:

Reliability:

Cost per Flight:

Payload Accommodations:
Usable Fairing Diameter:
Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab.:

Payload Accessibility:
Fairing Timeline Installation:

Flight Environment:
Internal Fairing Skin Temp.:
Accelerations:

Shock:

Conceptual Design

2000 lbs
TBD
TBD
TBD

TBD
TBD

Hawaii/E'IRAVTR

TBD

TBD

TVC

TBD

$5 M

TBD
TBD
24" Scout-type and 37" Delta-type

Single

Day of launch

TBD

10g
TBD

Predicted

$5M development/pad

ROM estimate
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Table6-15. CandidateLaunchVehicleDataSheet,S-I/

Vehicle: S-II
Sponsor:E PrimeAerospace(EPAC)

Factor Evaluation

Date: 8-15-89

Remarks

AvailabilityDate:

Performance:
200nmdueEast@ 28.5°:
500nmdueEast@ 28.5°:
200 nm @ 98°:
500 nm @ 98°:

Insertion Accuracy:
Altitude:
Inclination:

Launch Site Availability:

Inclination Capability:

Launch Rate Capability:

Insertion Stage Stabilization:

Reliability:

Cost per Flight:

Payload Accommodations:
Usable Fairing Diameter:

Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab.:

Payload Accessibility:
Fairing Timeline Installation:

Flight Environment:
Internal Fairing Skin Temp.:
Accelerations:
Shock:

Proposed Development

7,800 Ibs
6,700 lbs
5,200 lbs
4,400 lbs

+9 nm

_+0.05 °

ETR/WTR

28.5°-57°/63°-90°+

1/wk

3-axis ACS

TBD

$30 M

88" (7.4'); 100" (8.3')

10.3' + TBD extension ; 13.6' (cyl.)
92"

Single

TBD

70°F-75°F

6.5 g (long.); +2.5 g (lat.)
9,000 g @ 1050 Hz to 5000 Hz

Preliminary discussions
w/KSC

Predicted

Derived from Peacekeeper

ROM estimate

100" hammerhead being
studied

Cork insulation

-22-



Vehicle:
Sponsor:

Table6-16. CandidateLaunchVehicleDataSheet,Taurus(SSLV)

Taurus(SSLV)
OrbitalSciences/DARPA

Date: 8-15-89

Factor Evaluation Remarks

AvailabilityDate:

Performance:
225nmdueEast@ 28.5°:
500nmdueEast@ 28.5°:
225nm@ 98°:
500nm@ 98°:

InsertionAccuracy:
Altitude:
Inclination:

LaunchSiteAvailability:

Inclination Capability:

Launch Rate Capability:

Insertion Stage Stabilization:

Reliability:

Cost per Flight:

Payload Accommodations:
Usable Fairing Diameter:
Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab:

Payload Accessibility:
Fairing Timeline Installation:

Flight Environment:
Internal Fairing Skin Temp:
Accelerations:
Shock:

March 1991

3,350 |bs
2,750 lbs
2,6001bs
2,1001bs

+_25 nm
!-0.2 °

ETR/WTR

28.5°-42.5°/63°-98 °

TBD

3-axis ACS

95%

$15M

50" (4.2'); 75" (6.3')

8'; 15' (10' cyl.)
TBD

Single

Day of launch

TBD

< 7 g (long.)
TBD

18 month ARO

Mobile launch system

Greater than 3/yr

Goal

Fixed price estimate

75" hammerhead being
studied

Less than 10 g
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Table6-17. CandidateLaunchVehicleDataSheet,TitanII

Vehicle:TitanII
Sponsor:MartinMariettaAJSAF

Factor Evaluation

Date: 8-15-89

Remarks

AvailabilityDate:

Performance:
200nmdueEast@ 63.5°:
500nmdueEast@ 63.5°:
200nm@ 99":
500nm@ 99°:

InsertionAccuracy:
Altitude:
Inclination:

LaunchSiteAvailability:

InclinationCapability:

LaunchRateCapability:

InsertionStageStabilization:

Reliability:

CostperFlight:

PayloadAccommodations:
UsableFairing Diameter:
Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab:

Payload Accessibility:
Fairing Timeline Installation:

Flight Environment:
Internal Fairing Skin Temp:
Accelerations:
Shock:

September 1988 Not commercially avail.

700 lbs
n/a
500 lbs
n/a

+12-25 ft/sec
_+0.15 °

WTR

63.5 ° - 100 °

3/yr

3-axis ACS

98.8% (Gemini and 34B)

$30-35 M Fixed price estimate

112" (9.36' int., 10' ext.)
20', 25', 30'
36" and 56"

Single

T-12to14 days

40°F-110°F (prelnch); 75°F-200°F (launch)
10 g (long.); +2.5 g (lat.)
200 g @ 400 Hz
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Table6-18. CandidateLaunchVehicleDataSheet,Titan ll/Bipmp

Vehicle: Titan l]/Bipmp ExtendedMissionKit
Sponsor:MartinMarietta

Date: 8-15-89

Factor Evaluation Remarks

AvailabilityDate: ProposedDevelopment

Performance:
200nmdueEast@ 63.5°:
500nmdueEast@ 63.5°:
200nm@ 99°:
500 nm @ 99°:

4,400 lbs
3,200 lbs
3,300 lbs
2,200 lbs

Insertion Accuracy:
Altitude:
Inclination:

+ 12-25 ft/sec
_+0.15 °

Launch Site Availability: WTR

Inclination Capability: 63.5 ° - 100 °

Launch Rate Capability: 3/yr

Insertion Stage Stabilization:

Reliability:

Cost per Flight:

3-axis ACS

98.8% (Gemini and 34B)

$45 M (w/biprops kit) Fixed price estimate

Payload Accommodations:
Usable Fairing Diameter:
Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab:

112" (9.36' int., 10' ext.)
20', 25', 30'
36" and 56"

Single

Payload Accessibility:
Fairing Timeline Installation: T-12 to 14 days

Flight Environment:
Internal Fairing Skin Temp:
Accelerations:

Shock:

40°F-110°F (prelnch); 75°F-200°F (launch)
10 g (long.); +2.5 g (lat.)
200 g @ 400 Hz

Martin has found significant structural problems in using the Delta SSPS as an Upper Stage on
Titan II.
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Table6-19. CandidateLaunchVehicleDataSheet,TitanIII

Vehicle:TitanHI
Sponsor:MartinMarietta/USAF

Factor Evaluation

Date: 8-15-89

Remarks

Availability Date: July 1989

Performance:

200 nm due East @ 28.5°:
500 nm due East @ 28.5°:

200 nm @ 98°:
500 nm @ 98°:

22,000 lbs

n/a
n/a

Insertion Accuracy:
Altitude:
Inclination:

3-sigma

Launch Site Availability: ETR Pad 40

Inclination Capability: 28.6°-35.4 °

Launch Rate Capability: 2-4/yr

Insertion Stage Stabilization: 3-axis ACS

Reliability: 94% (demonstrated since 1970)

Cost per Flight: $130-$140M Fixed price estimate

Payload Accommodations:

Usable Fairing Diameter:
Usable Fairing Length:
Adapters and Interface Rings:
Single/Multi Payload Capab.:

112" (9.36' int., 10' ext.)
15.0' + 5' increments
120"

Dual launch capability

Larger fairings avail.

Payload Accessibility:
Fairing Timeline Installation: TBD

Flight Environment:
Internal Fairing Skin Temp:
Accelerations:
Shock:

50°F - 100°F(prelaunch);500°F(in-flt)
7.0 g (long.); +1.0 g (lac)
1,000 g @ 2000 Hz

125°F w/insulation

Note: Titan HI requires roll-back 2 hours before launch.7.0 ELV Candidate Analysis
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7.0 ELV CANDIDATE ANALYSIS

7.1 Dedicated versus Shared Launches

Analysis regarding shared-launch potential was included in the technical merit evaluation.

Several medium-lift launchers can provide shared launch opportunities (i.e., Delta, Atlas, Ariane,

Titan III, H-II). Delta and Atlas have not developed a shared launch capability; however, they

could if required. The Japanese are currently developing a dual launch system for H-II. Ariane

and the commercial Titan Ill already employ operational dual launch systems.

The majority of the Delta launches support GEO payloads and are launched due East from

ETR into a 28.5 ° inclination. On these flights normally no excess payload capability is available.

On Delta low Earth orbit missions there could be opportunities for shared missions; however, none

could be assured. Titan HI has sufficient performance to launch two relatively heavy payloads to

LEO (e.g., two GEO satellites). Titan III will typically insert into a 90 or 100 nm circular orbit.

Titan III cannot reach the 200 nm circular orbit required by RRS due its continuous bum trajectory

(no coast). The propulsive requirements for a maneuver to raise perigee from 100 nm to 200 nm is

large enough (AV = 350 ft/sec) to significantly change the baseline RRS design (150 lbs. of

propellant estimated), which allows for only minor orbit corrections. Development of restart

capability on the Titan 2nd stage is an alternative to this additional RRS propulsive requirement.

General Dynamics (Atlas) estimates that possibly two ETR opportunities per year could arise by

shifting primary payloads to Atlas versions with more performance to allow for an RRS piggyback

(e.g., from Atlas II to Atlas IIA).

A shared launch on Ariane 4 may be difficult to schedule in 1992 or 1993 due to the large

backlog of payloads. The launch site latitude of Kourou (5 °) would make shared launches with

GEO costumers extremely difficult. The Ariane vehicle must first deliver the RRS to 200 nm and

34 ° inclination. It would not be possible for the Axiane 4 to make the substantial inclination change

back to 5 ° for delivery of a GEO payload. The software and propulsion systems onboard the GEO

satellite would have to be modified significantly to accommodate this scenario. One piggyback

opportunity per year may exist on the H-II once it becomes operational. However, the relatively

high cost per lb (i.e., $5,000/1b) would drive the cost of a shared launch close to that of a dedicated

launch on a smaller ELV. Note, a shared launch opportunity could be offered to the RRS program

by NASDA for political reasons at no expense.

Shared launches are operationally complex. Launch scheduling can be extremely delicate.

The RRS must be ready to fly when the primary payload is scheduled to launch. Even if the RRS

is prepared to fly the primary payload may create a delay or cancellation causing RRS to be re-
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manifested. Padaccessibilityand launchtimelinesarealsorestrictedwhenanotherpayloadis
involvedsincecrewsfor bothpayloadsmaywantlateaccess.It mayalsobedifficult to install the

ExperimentModule (EM) via accesspanelsdueto theEM sizeandcumbersomeweightwithout
modificationsto thefairing (accessissuesdiscussedin moredetaillater). As mentionedearlier,the

RRSwill imposemodificationson theELV trajectoryandtheprimarypayload'sorbital operations

dueto RRSuniqueorbit requirements(i.e., 34° inclination). Thesemaneuverswill significantly
affectGEOpayloadsoftwareandpropulsionrequirementsfrom anylaunchsitebelow34° latitude
(e.g.,KSC). Thepotentialcostsavingsfor asharedlaunchonAtlas wouldnotbedesirabledueto

theseoperationalimpacts.Even if a sharedlaunchis offeredfor political reasons(i.e., onH-II or

Ariane4) it appearsthatsuchamissioncouldnotbeaccomplishedwithout majorinconveniences.
DedicatedELV's appearto bemoredesirablefor RRSlaunches.ELV sharedlaunchescould be

assessedin depthduring thesecondhalf of thePhaseB contract.

7.2 Technical Evaluation Factor Scoring System

A discussion follows pertaining to the technical merit scoring for each evaluation factor.

Figure 7-3 has been inserted after the discussion to summarize the ELV candidate comparison

results based on current baseline RRS design (3,800 lbs. including attach hardware, 90" diameter).

This chart includes shaded circles to represent points (see legend). Note, these points are adjusted

by appropriate weighing factors in a final scoring matrix (discussed later). For purposes of final

evaluation the H-II and Titan III were assumed to allow one shared launch opportunity per year at

half the dedicated launch cost.

7.2.1 Availability Date

The likelihood of a specific ELV being operational for the RRS program (early to mid

1990s) was assessed. Any vehicle funded by the government is assumed to have a high

probability of becoming operational (e.g., OSC's Taurus is being funded by DARPA) and was

given a full point. It is difficult to project that a specific proposed vehicle will be fully-funded and

be available for RRS. Vehicles which require technology developments were considered less likely

to become operational than proposed vehicles which incorporate existing, flight proven hardware.

For instance, AmRoc's ILV is to use the first large hybrid motor. The first launch was a failure

due to a LO 2 valve malfunction. It is difficult to determine whether the vehicle will be fully

operational in the near term. SSrs Conestoga and EPAC's S-II are based on existing, flight

proven components; however, are not currently fully-funded for development. The same is true

for the Titan II with a new bi-propellant upper stage. All of these vehicles were given half points.
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Materialsobtainedfrom Pacific American demonstrated that the Liberty X design was a technology

development not mature enough to seriously consider (no points). Note, the H-I will be out of

production in 1991 and could not be considered available (no points).

7.2.2 Performance/Inclination Capability

It is appropriate to consider only those ELV configurations which have the performance to

satisfy DRM-1 (200 nm, 34°). Note, the RRS weight has grown from the proposal configuration

of 3,000 lbs to the current baseline of 3,400 lbs. Including minimum attach hardware this weight

is expected to increase to approximately 3,800 lbs. This weight growth eliminates the Taurus as

currently designed for DRM-1. Note, Taurus could be modified to accommodate the weight

growth. Performance-inadequate vehicles were included in the final score matrix (Figure 7-4) but

were considered "not applicable" for RRS launches. A summary chart of performance capabilities

for all candidates is provided in Figures 7-1.

Any ELV which cannot accomplish all orbit requirements (DRM-3) but can handle the

minimum orbit requirement (DRM-1) should be given 3/4 of a point since their performance would

satisfy a predicted 75% of RRS missions. If an ELV can accomplish the entire range of required

orbits a full point is given. Note, it will be necessary to have at least one ELV capable of all

reference missions.

7.2.3 Launch Site/Launch Rate Capability

The capability of ELV candidates to handle the mission model was assessed. The RRS

program may require up to three launches per year. The mission model requires high inclination

launch capability. The ability to launch from both ETR and WTR allows for the entire range of

inclinations. If an ELV has access to the entire range of inclinations from its pad(s) and can

accommodate three launches per year a full point was given. If an ELV cannot launch into high

inclinations (i.e., 98 °) only half a point was allocated. If three launch opportunities per year are not

available no points were given.

7.2.4 Insertion Stage Stabilization

Any ELV configuration that uses spin stabilization during insertion provides an

unacceptable environment for RRS life science payloads. However, ELV manufacturers could
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Figure 7-1. Launch Vehicle Evaluation - Performance Assessment
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replace the spin-stabilized upper stage with a 3-axis ACS at some development cost.

which employ spin-stabilization were not given a point.

7.2.5 Payload Accommodations

All ELV's

Provided the candidate ELV can supply a standard fairing to enclose the RRS dimensions,

the ELV candidate will not seriously constrain the RRS shape and a full point is given. If a new

fairing must and can be developed to enclose the RRS only half a point was given. ELV's which

cannot feasibly accommodate the size of the RRS despite a fairing development received no points.

Here again, the dimensions of the RRS changed during the tradeoff study. The diameter increased

from about 80" to the current baseline of 90".

7.2.6 Payload Accessibility

The late installation requirement is for EM installment up to T-12 hours before launch. The

late access requirement is for hands-on (human) interaction with the payload up to T-4 hours

before launch (e.g., visual inspection). The EM must be installed vertically. Provided the

candidate ELV can satisfy both late installation and close-out requirements, the ELV is given a full

point.

Typical size access panels cannot be used to install the baseline EM of 34" diameters, 30"

long, and approximately 300 lbs. Fairing modifications, discussed in section 8.3.1, appear

necessary. It is assumed that standard fairing access panels provide adequate means to perform

close-out activities. However, some ELV's do not allow for late human access to the payload due

to presence of hazardous propellants, gantry removal, etc. It may be possible to alter pre-launch

timelines to accommodate the close-out requirement for most ELV's (also discussed in section

8.3.1).

Although solid and pre-packaged storable propellant ELV's have less restrictions on late

human access (i.e., no propellant loading), these installation and access issues are still not easily

resolved. None of the ELV's evaluated complied with the requirements in their entirety and were

given half points; therefore, this is a major issue to be worked in the second half of the contract.
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7.2.7 Flight Environment

All the ELV candidates can offer reasonable thermal environments. Some candidates will

require fairing insulation while others will not. The addition of insulation is not a significant issue.

The ELV candidates impose axial acceleration loads varying from 4 g to 10 g. It was assumed that

any ELV imposing 10 g loads is approaching the threshold of rodent tolerance. Also, the structural

implications may be significant since re-entry g loads are not expected to reach 10 g.

Consequently, the ELV's which impose I0 g axial acceleration loads during ascent were only

given half points.

7.2.8 Cost per Flight

A major driver in RRS design is life cycle cost. The cost per flight indicated for each

candidate launch vehicle is given in Figure 7-2. Since even small variations in cost are important,

launch costs were normalized by dividing each cost into the lowest launch cost of $30 M. Note,

Liberty X, Conestoga IV, and ILV-110 launch costs were not considered applicable due to

performance inadequacy. For instance, the Delta 6920 is scored as 0.70 points (30/43) and the S-

II as 1.00 points (30/30). The launch costs were obtained from NASA, the DoT, and ELV

representatives, and include basic launch services (i.e., propellants, mission analysis, etc.) and

hardware costs. These normalized ratios have been placed in the summary chart as points in

Figure 7-3. Due to the proposed status of the S-II there is risk associated with assessing the cost.

7.3 Technical Evaluation Factor Weighting

The following relative weights were used to assess the technical merit of the candidate

ELV's. However, the resulting scores were not intended to produce clear winners. This scoring

exercise was used to determine the optimum or most desirable candidate ELV's for the RRS

program.

Technical Evaluation Factors

Availability Date
Performance/Inclination Capability
Launch Site/Rate Capability
Insertion Stage Stabilization
Payload Accommodations
Payload Accessibility
Flight Environment
Cost per Flight

10
20

5
10
10
15

5
25

"IOTAL I00
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7.4 Technical Evaluation Scoring Results

Initial ELV scoring was completed based on the early RRS baseline configuration of

3,000 Ibs (3,400 lbs with attach hardware) and approximately 76" diameter. The top scorers were

Taurus, ILV-110, S-II, and Delta 6920. After further analysis Taurus became clearly the best

option for DRM-1. Delta or S-II vehicles would still be required for the high inclination missions.

By dropping the RRS payload weight to 2,500 lbs., no ELV's would be added to the list of

performance qualifiers from the 3,000 lb case. The smaller ELV's would still not be able to

perform the entire range of orbit requirements (i.e., DRM-3).

Science requirements pushed the weight to the current baseline of 3,800 (with attach

hardware), out of the performance range of Taurus and ILV-110. The diameter has also increased

to 90". OSC calculations indicate that a maximum usable diameter of 75" could be achieved on

Taurus via a hammerhead shroud. Another set of scores were generated (Figure 7-4). Note, the

launch costs for Liberty X, Conestoga IV, ILV-110, and Taurus are based on performance-

inadequate designs and could not be scored and compared to the other launchers (i.e., n/a).

Since all of the scored ELV's could perform DRM-1 the "performance/inclination

capability" category did not significantly affect the relative scores. It was difficult to determine

which ELV's posed less serious late accessibility issues (i.e., fairing modifications, timeline

adjustments, etc.) and all ELV's were given the same score. The most significant factor, as

expected, was cost per flight. Many of the ELV's can do the job provided certain modifications are

made and minor additional costs are accepted; however, the basic cost of the dedicated launch

vehicle service makes Delta 6920 and S-II (the two most inexpensive vehicles with sufficient

performance) the best options from a purely technical viewpoint.

Top Technical Scores

Delta 6920 (85 pts.)

S-I/(80 pts)

$43 M (Fixed price estimate)

$30 M (ROM estimate)

performanCg (DRM- 1

8,150 lbs

7,500 lbs
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7.5 Maturity Considerations

The S-II is a conceptual design based on existing, flight proven peacekeeper components

and the Star-92 motors under study by Morton Thiokol. Currently, EPAC is not actively

developing the S-II due to a lack of funding. EPAC has no contractual agreements to launch the

S-II. Although EPAC was involved in a sub-orbital launch, EPAC has not conducted an any

orbital launches to date. Consequently, due to the lack of flight experience of EPAC and current

development status of the S-II, it would be premature to choose the S-II as a leading candidate.

In contrast, the Delta 6920 is based on a mature launch system. Delta versions have

demonstrated the highest success rate (98%) of any medium launcher over the past 20 years and

have flown about 140 missions since 1967. The only major modifications involved with the Delta

II series over its predecessor is the stretching of the first stage (i.e., propellant addition), first stage

motor nozzle extension, and replacement of the Castor IV solid booster strap-ons with the Castor

IVA. The Delta 6920 does not include the Star-48 upper stage. There is little reason to question

the reliability of the Delta II 6920 launch vehicle. MDSSC has had nearly 30 years experience,

including over 180 flights, with the earlier Delta vehicles.

7.6 Evaluation Results

Utilizing the technical evaluation factor weighting the Delta 6920 and S-II vehicles are the

best options among the 19 ELV options investigated. The S-II cannot be considered a serious

contender to the Delta 6920 due to a lack of maturity. Altering the weight and size of the RRS

slightly (10%) will not result in a different set of best ELV candidate options. ELV/RRS interface

analysis was conducted for both vehicles and has been summarized in Section 8.0.

8.0 ELV/RRS INTERFACE ANALYSIS

8.1 Purpose

The purpose of this analysis is to define the interfaces between the RRS and the candidate

ELV's (i.e., Delta 6920 and S-II) and determine the constraints imposed by these interfaces on

RRS design and operation. A more thorough interface analysis will be conducted during the

second half of the Phase B contract and summarized in another report.
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8.2 Interface Definition

The process of defining the spacecraft/ELV interfaces typically requires that the user agency

and ELV representatives follow an extensive documentation process. The Delta program has a

well-defined documentation process. Typically MDSSC conducts a broad feasibility study to

determine if general needs (e.g., performance, payload volume, launch window, etc.) can be

accommodated. The user's first responsibility to MDSSC is the Spacecraft Questionnaire (see

Figure 8-1). This document is not kept current, but evolves into the Payload/Launch System

Interface Specification. The focus of the questionnaire is on specific spacecraft requirements

which might interfere with ELV operation. For instance, Section 2.4 requires a description of the

spacecraft mass properties and a dynamic model. This data is used to determine how the spacecraft

will respond to various ascent and separation loads.

Several aspects of the RRS/ELV interface were investigated and are discussed in this

section including structural (attach fittings, fairing), electrical, thermal, data, separation, and flight

environment interfaces. Potential interface issues are discussed.

8.3 Interface Options and Analysis

8.3.1 Payload Attachment System

The Payload Attach Fitting (PAF) is typically the structural interface between the RRS and

the ELV. These mechanisms are typically supplied by the ELV manufacturer and do not count as

user payload. These devices normally employ pyrotechnics to separate the payload. PAFs

constrain the payload within the allowable dynamic fairing envelope tolerances during ascent.

Standard PAF configurations have been studied and are summarized in Table 8-1. MDSSC offers

three different PAF's for the Delta 6920, each capable of handling a CG at least 80" from the

attachment plane. EPAC (S-II) plans to employ the 3712 PAF (see Figure 8-2) currently used on

3-stage Delta vehicles.

The RRS will be flown "heat shield down" to maintain the axial acceleration loads in the same

direction throughout the mission, to keep the rodents oriented in the same direction. A groundrule

has been established that no scarring of the heat shield is permitted; therefore, structural attachment

of the RRS to the ELV will require an extra support structure between the PAF and the flat side of

the RRS (see Figure 8-3). The separation mechanism on the PAF will not be activated.
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A separation system which detaches and deploys the RRS from the support structure must be

designed.

Table 8-1. Payload Attach Fitting Configurations

ELV

Delta

Delta

Delta

S-H

PAF

6019

6915

6306

3712'

Weight s

125 lbs

210 lbs

110 lbs

27 lbs

Release

Type

Bolt/Latch z

Bolt

Clamp/Latch 2

Clamp

Separation

System

Redo

Spring/Re_o:
Redo

Spring

Mating CG Comments
Dia. Limit I

60" 82" 3 bolts

69" 82" 4 bolts

63" 101"

37" 40" Same as Delta 3712

Distance from separation plane to payload CG (based on payload weight of 3800 lbs)

Optional for reducing attitude dispersions

3Not chargeable to payload

' MDSSC designation

The major consideration involved in PAF selection is the constraint on payload CG

position. The baseline RRS length of 80" would indicate that the standard Delta PAF's will be

compatible. The PAF 3712, supplied by MDSSC for Delta missions using the Star-48 upper

stage, and baselined for the S-II would not provide sufficient support. EPAC would have to

investigate alternative PAF designs.

The extra support structure between the PAF and RRS could be a composite, cylinder-

shaped, support structure analogous to the SYLDA, which is used to separate/support payloads for

dual launches on Ariane 4. The weight for such a structure would be driven by the payload size

and weight, and ascent loads. By properly scaling the SYLDA to support the RRS, it appears that

this structure would weigh between 200 and 400 Ibs, or roughly 5% to 10% of the RRS weight.

This weight is chargeable to the RRS spacecraft.

It would be advantageous to be able to attach this support structure to any candidate PAF

(i.e., to a wide range of PAF mating diameters). A flat, disk-shaped interface (called baseplate

herein) could accommodate the range of PAF mating diameters, acting as an adapter between the

PAl:: and support structure.
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If a clamp type attachmentsystemis employed(as on PAF 3712), an RRSspacecraft

chargeablering mustbeattachedto thebaseplateandthen thering is connectedto the PAFvia

clampretainers.PAFs witha bolt typeattachmentdonot requirethisextraring andcanbebolted

to thebaseplatedirectly. Bolt typeoptionsaresomewhateasierto usethanclampsystems.Holes

mustbedrilled viaa templateinto thebaseplate.Sincethesesystemswill notbeactivated(i.e.,no

separation)thechoicebetweenPAFs shouldbebasedon structuralrequirements.Consequently,

RRSstructuralattachmentto variousELV's canbeaccomplishedvia traditionalPAF attachment
mechanismalongwith aspecialadapterandsupportcylinderstructureatamoderateweightpenalty

(10%of RRSweightestimated).Note,theseparationinterfaceisdiscussedlaterin Section8.3.2.

8.3.1 Fairing Volume/Access

Significant characteristics for fairings offered or under study by MDSSC (Delta) and EPAC

(S-II) are displayed in Table 8-2 below. The RRS must be attached in a "heat shield down"

configuration. Since the maximum diameter of the RRS occurs 80" from the nose of the shield, it

is necessary to have a usable cylindrical volume within the fairing of 90" diameter and 80" in

length. Only the 10' standard Delta fairing currently in development will accommodate this

volume. A hammerhead fairing concept being studied by EPAC could also provide sufficient

volume.

Table 8-2. Candidate Fairing Characteristics

Fairing

Delta 9.5' (std)

Delta 10'(std) I

S-II (standard)

S-II (hammerhead) 2

RRS Dia.

Constraint

86"

110"

88"

100"

RRS Length
Constraint'

144"

147"

'rBIY

163"

Sectors

2
3

None
2

I Currently under final development

Growth approximate (under study)

3 Requires extension module

' Fairing cylindrical length

Install. Time

(nominal)

T-3 days

T-3 days
TBD

TBD
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The requirementfor late installation(T-12 hours) will be difficult to satisfy with these

standardfairings. On Delta theproblemof late installation is compoundedby liquid propellant

loading,whichrequiresfairing installationat T-3 daysto minimize humanpresencearoundthe

payloadduringsubsequenthazardousactivities(e.g.,2nd stagepropellantloadingat T-2 days). A
generalizedpre-launchactivityfirnelinefor Deltavehiclesduringthefinal weekhasbeeninsertedas

AppendixA.

Sincethe Delta requiresfairing installation at T-3 days,accesspanelsmust be usedto

install theEM atT-12 hoursbeforelaunchto avoidcostlymodificationsto thetimeline, fairing,

etc. The standardaccesspanel size for Delta is 24" by 21". Larger panelscausestructural

problemsfor thefairing which canbecompensatedfor viaextrastiffeners. Themaximumpanel

sizeallowablefor theDeltafairings,withoutsignificantre-design,is a36" by 36"panel.

TheEM, whichcontainstherodentcages,someconsumables,andtherodentsthemselves,

is currently34" wide and30" long, andweighsalmost300lbs. Installationof theEM via apanel

adjacentto the RRS periphery would not be possible as there is not sufficient clearanceto

maneuvertheEM betweenthefairingandRRS. A portablegantrycranecouldbeusedto translate

theEM overtheRRSandlower it intoposition. Note,theEM mustremainverticalto keepthelife

specimensorientedproperly.The portablegantrycraneboom (I-beam) andhook mechanism

would requiresomeclearance(12"estimated).The 36" X 36" panelsalreadyavailableonDelta

fairings would not provide sufficient clearancefor maneuveringthe EM into place. Note, the

recoverypackagemust be installedafter theEM and will affect the pre-launchtimeline. This
packageis smaller and lighter (150 lbs) than the EM and should not constrain the access
infrastructure.

A specialfairing/interstagedevelopment,illustratedin Figure8-4, wasconceptualizedto

improveaccessconditionsandprovideasystemmoreeasilyadaptedfor useonotherELV's. The

conceptincludes a removablefairing noseand an adaptersleevefor structural support. The

removablefairing could beinstalledafterclose-out,or beconnectedvia ahingeandthenrotated

into placeandinstalledafterclose-out. Thenosepiecewould bepyrotechnicallyseparatedafter

leavingtheatmosphere.Theadaptersleevewouldactasaninterstageandsupportthepayload.A

structural adaptercould beaddedto the baseof this sleeveto allow for smoothaerodynamic

transitiontoELV's withdifferentmatingdiametersataeconomicalcostandweightpenalty.
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Figure 8-4. Payload Adapter Sleeve and Removable Fairing (PASARF)
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This concept is similar to the standard S-II fairing (derived from the MX) which is tri-conic

and installed in longitudinal segments. This MX fairing would require an extension module,

similar to the adapter sleeve, to enclose the RRS. This approach would require the white room

ceiling to be disassembled just prior to lowering the EM into place.

The consensus from MDSSC, EPAC, and Hercules was that this special fairing unit cost

would be slightly cheaper than standard fairings. The development cost would be offset by the

unit cost savings over 30 flights according to MDSSC. Some cost benefit may arise, according to

Hercules and EPAC.

This interstage would be approximately 160" long and 96" wide to accommodate the RRS

and the separation device on the Delta; however, this sleeve would be carried to orbit and a portion

of the weight would be payload chargeable. The performance penalty would be significantly more

than if the fairing was jettisoned sub-orbital, which is the standard procedure (1,000 lbs penalty

estimated based on Delta interstage scaling calculations). Consequently, the removable fairing/

adapter sleeve concept does appear to have some performance penalties; but the excessive

capability of the Delta for RRS missions does not rule out this option.

MDSSC has recently announced plans to modify the 10' fairing for the ROSAT program to

include a larger access panel under the God,lard contract. This panel could be installed any place

on the cylindrical portion of the fairing without significant cost penalty, and will be 36" wide and

60" tall. Further investigation of this new development will be conducted during the second half of

the contract as information becomes available (e.g., design drawings).

Installing the 36" X 60" access panel near the upper rim of the cylindrical section of the

fairing, above the RRS, would accommodate the portable gantry crane clearance requirements

(i.e., 12"). Since the standard Delta 10' fairing with the large access panel will exist and appears

to present no serious late access issues, it was baselined for the Delta vehicle. Figure 8-5

illustrates this Delta EM installation scenario.

The late access requirement of T-4 hours requires human access to the RRS (e.g., visual

inspection, rodent cage change-out). Access panels are typically employed for late access

requirements. However, late access on the Delta is a significant issue. The current pre-launch

timelines indicate that MST roll-back must commence at T-5 to T-7 hours prior to launch.

Preparations for roll-back typically take approximately two hours to complete; therefore, the actual

close-out of the RRS must occur sometime before the roll-back. It may be possible to work out a
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new pre-launch timeline (e.g., reduce built-in holds, reduce activity durations, etc.) at some cost.

Preliminary analysis indicates only minor time reductions are possible. MDSSC could determine if

meeting the T-4 hour constraint is feasible. This issue must be studied in depth in Part II of the

contract.

If it is later determined that the large panel does not provide adequate access conditions

(e.g., not compatible with pre-launch timeline adjustments for late access), new fairing designs

will be explored. For instance, modifications to a standard fairing to allow for a removable nose

which is pyrotechnically separated prior to separation of the fairing sectors may improve access

without significant cost and performance penalties.

The S-II is configured for horizontal integration (including payload) with a portable clean

room on the ground. The S-II uses no gantry; rather, this vehicle is launched from a canister much

like the MX missile from which it was derived. This canister is to be rotated into vertical position,

followed by solid motor arming, platform stabilization, etc. and launched in two hours or less;

however, as mentioned earlier, horizontal integration of the EM is unacceptable. Consequently, a

portable white room (on work platform) and vertical installation procedure will probably be

required if S-II was utilized.

A solid and pre-packaged storable propellant-using a vehicle like the S-II does not require

hazardous propellant loading and can accommodate late fairing installation somewhat easier.

However, due to the typically employed "crocodile" separation technique it takes a considerable

amount of time to install one fairing half and perform all post-installation checks. It takes

approximately 12 hours to prepare for, install, and check the Delta 9.5' fairing. Note, the Delta

10' fairing separates into three sectors. The S-II hammerhead shroud would require similar

installation efforts. It is questionable whether one half could be installed, followed by final solid

motor arming, terminal countdown, etc., without exceeding the 12 hour late installation

requirement. Note, an autonomous crane could lower the EM into place since no gantry crane

normally exists with the current S-II baseline. The proposed S-II hammerhead design could

include a large enough access panel (e.g., similar to the ROSAT fairing) to satisfy the installation

requirement; however, it may be more difficult to use an access door on the S-II without a gantry

crane. A removable nose fairing design may be a better solution to the late installation requirement

for S-II since the EM could be lowered into position via an autonomous crane.
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8.3.2 Separation

As explained earlier, no attachments (i.e., scars) to the heat shield are acceptable. The

cylindrical support structure (see Figure 8-3) must attach to the top side of the RRS. The

separation plane must then be above the heat shield in the launch configuration. Typical separation

mechanisms, discussed herein, will require attach points which protrude beyond the periphery of

the RRS; however, no protrusions over the periphery of the RRS are allowable due to the need for

a smooth aerodynamic shape. Consequently, these attach points must be retracted (i.e., four

individual attach points) or jettisoned (i.e., ring structure). An alternative would be to have the

support structure separate much like a fairing followed by a 2nd stage retro fire to produce the

relative separation velocity; however, such an option would be too complex and expensive to

develop.

MDSSC offers four standard PAF's with the Delta which use two basic release

mechanisms including the clamp retainer and the exploding nut mechanisms. Secondary latch

systems are offered to reduce attitude dispersions upon release. The RRS separation system could

employ these mechanisms, but not with the PAF. For missions where the separation tip-off

angular rate must be less than 0.2 ° per second, a two-step separation system is recommended by

MDSSC. After bolt or clamp release and a sufficient time for angular-rate dissipation (e.g., 15

sec), secondary latches are released and the 2nd stage retro f'tres to provide the relative separation

velocity. However, this recommendation is based on separation from PAF's. Springs can also be

used to provide separation velocity. It is desirable that the RRS separate from cylinder support

structure without contacti/ag the inner wail. The payload tip-off rate must be relatively small

compared to that required during a typical payload release from a PAF due to the presence of the

cylinder. Attitude dynamics modelling will be necessary to determine which separation systems

should be employed. Tentatively, it would appear that a secondary latch system could be desirable

to reduce attitude dispersions, ff it is determined that the inner wall will be contacted additional

design modifications should be investigated (e.g., guides, teflon inner wall, etc.).

Since the Delta-type separation systems must remain outside the maximum RRS diameter,

attached to protruding attach points, separation clearance becomes an issue. This tolerance would

be at least 4" on each side if the Delta clamp release ring (see Figure 8-6) is attached just above and

on the periphery of the RRS due to the clamp retainers. The Delta exploding nut release

mechanism (see Figure 8-7) also will require significant additional clearances since the bolt catcher

must remain outside the RRS diameter (e.g., 2" on each side). The presence of secondary latches

(as devised by MDSSC) will not increase the clearance requirements if used as a secondary
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separation mechanism. It appears that the 10' standard Delta fairing and the hammerhead S-II

fairing could accommodate this extra clearance requirement.

Design of the separation system will be a design challenge. The impact of scarring the heat

shield to attach the separation device will be investigated but presents potential safety problems by

tripping the boundary layer during reentry causing asymmetric ablation. Attitude dynamics models

should be produced to verify the accuracy of typical separation techniques and innovative

approaches. This effort will be accomplished during the Part II exercises.

8.3.3 Electrical/Data

Umbilical connectors are used to allow for transmission of power, telemetry, and

commands between the payload and the blockhouse payload console. Typical Delta umbilicals link

the payload console in the blockhouse to the RRS via quick-disconnect connectors. An umbilical

connection is made between the blockhouse and 2nd stage and then routed to the RRS via a wire

harness and finally connected to the payload using another umbilical connector (see Figure 8-8).

Two such connections are allowed (i.e., Quad I and Quad III). These connectors detach just prior

to liftoff (between blockhouse and 2nd stage) and during fairing separation (between 2nd stage and

fairing) via disconnect lanyards (see Figure 8-9). The umbilicals are connected prior to fairing

installation using the same configuration described earlier with additional, temporary, extensions.

These extra cables are removed during fairing installation (T-3 days).

The Delta umbilical interface (see Figure 8-10) includes a 32-pin umbilical plug, a battery

flight plug, and an ordnance arming plug. The 32-pins allow for 32 hard-lined spacecraft

command, telemetry, and/or power connections. The battery plug is used to maintain spacecraft

battery charge. The ordnance arming plug enables the explosive nut mechanism for umbilical

separation via lanyards upon command from the payload console.

The RRS will require monitoring during pre-launch operations. Since the RRS is to be

equipped with its own radio-frequency (RF) telemetry system it may be desirable to have

significant data transmitted to the payload console directly. Fairings typically allow for installment

of transparent fiberglass RF windows or panels. The Delta 10' fairing is made of three sections,

of which one is fiberglass, allowing for RF telemetry capability. Critical parameters, pertaining to

the health of the rodents, for example, should also be monitored via the umbilicals to guarantee

accurate data on the launch pad (i.e., redundancy to RF telemetry).
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The RRS will require power to measure and transmit data during pre-launch. The power

could be obtained via the 32-pin umbilical plug (each wire has a voltage rating of 600 volts DC) or

indirectly from the battery plug. If the RRS uses a battery as a major source of power, the battery

plug could be used to maintain charge during pre-launch.

The lanyard disconnects operate properly as long as they are oriented within a specific

envelope. Lanyards disconnect as the fairing splits and must be oriented close to normal to the

fairing wall (see Figure 8-9). Since, an umbilical connection cannot be made to the heat shield

(i.e., no scars allowed), attachment could be made to the adapter or an attach point already required

to employ the separation mechanism. Note, if the adapter sleeve plus removable nose fairing

concept is employed the lanyard mechanisms could not be employed and manual detachment would

be necessary (i.e., no fairing split). Consequently, umbilical disconnection presents a minor issue.

The spacecraft designer will have to supply the information pertaining to spacecraft-to-

blockhouse wiring including:

• Number of wires required

• Pin assignments in the RRS umbilical connector

• Function of each wire (e.g., voltage, current, frequency requirements)

• Shield requirements for RF protection

• Voltage of RRS battery and polarity of battery ground

• Part and item numbers for RRS umbilical connectors

• Physical location of RRS umbilical

• Periods during which hard-line systems will be operated

The RRS wiring must be designed not to exceed the standards provided by each ELV in the

fleet. The requirements for the Delta 6920 have been roughly defined herein. However, standard

wiring for the S-II has not yet been determined.

8.3.4 Thermal/Cleanliness

RRS and fairing mating operations for Delta 6920 take place in the whiteroom of the mobile

service tower (MS'I) where temperature and humidity is controlled. Once the fairing is instaUed a

payload air distribution system (air conditioning) is typically installed via an umbilical which

connects to a fairing access door to maintain temperature and humidity control. However, late

access requirements will require the white room to provide thermal control until the white room is
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dissembled and the gantry rolled-back. The air-conditioning umbilical is ejected at liftoff via a

lanyard disconnect and the access door automatically closes. It is expected that all of the candidate

ELV's will provide air conditioning in a similar manner.

If the removable fairing and adapter sleeve concept is developed the RRS environmental

control requirements may be more difficult to satisfy since the payload is exposed to the external

atmosphere during EM installation. However, this is an extremely short period of time and should

not pose significant cleanliness or humidity control problems provided the RRS is not subjected to

excessive moisture during these minutes (i.e., rain), facility to protect the RRS.

During ascent on a Delta 6920 the internal fairing skin temperature will reach a maximum of

about 110°F assuming standard acoustic blankets have been installed. The clearance required for

the acoustic blankets has been included in the fairing unusable volume.

8.3.5 Flight Environment

Flight environment statistics for maximum acceleration and shock loads are presented in the

candidate ELV data sheets. The maximum steady-state axial acceleration imposed by Delta ascent

is approximately 6.7 g for a dedicated RRS launch without ballast. This load occurs at 2nd stage

burn-out. The S-II should impose similar loads, crudely estimated at 6.5 g. This maximum

loading occurs during the third stage burn. The Star-92 motor currently under study by Morton

Thiokol is the S-II third stage baseline and is to incorporate a decreasing thrust pattern to reduce

peak axial accelerations. The axial loads during ballistic re-entry are expected to exceed this range.

Consequently, ascent accelerations will probably not drive RRS structural design criteria.

However, all payload attach mechanisms must be designed for the ascent environment.

8.4 RRS/ELV Interface Analysis Summary

The focus of interface work was on the Delta 6920 since the S-II lacks detailed design

maturity. MDSSC uses the Spacecraft Questionnaire to screen potential Delta costumers to identify

significant interface issues. Only some of the major interfaces were analyzed herein.

The payload attach fittings available on Delta should easily accommodate RRS support

requirements. A composite, cylindrical structure (analogous to SYLDA used on Ariane) could be

used to attach the RRS to the PAF without scarring the heat shield. Use of standard separation
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mechanismswould require incorporatingjettisonableor retractableprotrusions(attachpoints).

Thissystemcouldweighapproximately400lbs (spacecraftchargeable).

The late installationrequirement(T-12 hours)will bedifficult to meetwithout useof a

relatively largeaccesspanel. MDSSCis currentlymodifying thestandard10' fairing underthe
Delta II GSFCcontractto incorporateaccesspanelsof amplesize (36" X 60") to accommodate

ROSAT. A portablegantrycranecanbeusedto translateandlower theEM intoplace. However,

theclose-outrequirement(T-4 hours)will requiresignificant timelineadjustmentson theDelta

vehiclesincegantryroll-backnormallyoccursbetween5 and7 hoursbeforelaunch. Thiswill be

further assessedin the last half of the PhaseB contract. Use of the large accesspanel was

baselinedfor the Deltascenariosinceit will existanddoesnot appearto imposedifficult access
issues.

A removablefairing noseand interstage-likeadaptersleevecould bedevelopedasan

alternativetothesystemjust described;however,therewill beaperformancepenaltyaspreviously

discussed(1,000 lbs estimated). Sucha systemmay presentsomecost savings(i.e., more

economicalthanstandardfairing).

Scarringthe heatshield wasassumedunacceptable.However,scarsto implementthe

separationsystemshouldbeinvestigated.Also, detailedattitudedynamicsanalysisis requiredto

determineif useof Delta-typeseparationmechanisms(i.e.,clampretainerandexplodingnut) are
viable.

Umbilicalconnectorscanbeusedto hard-linecritical telemetryandcommandsduringpre-

launchandprovidepowerasneeded.A RRSbatterychargecould be maintainedvia a battery

flight plug if the battery is usedas a power sourceon the pad. RF capability shouldalso be

incorporatedduring pre-launchoperationsto monitor the RRS. White room facilities and air

conditioningumbilicalsareavailableto maintainpayloadtemperatureandhumidity. Sincevertical

integrationis required,aportablewhiteroomfacility is requiredon thegantryor workplatform. It

may bedifficult to implementelectrical umbilicals due to the lanyarddisconnectionenvelope

requiredunlessmanuallydisconnected.
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9.0 FINAL ELV CANDIDATE ANALYSIS

After careful consideration of all viable ELV options and a more in-depth look at the Delta

6920 and S-II candidates, key launch vehicle discriminating factors were identified (see below).

The ELV's typically demonstrated either a lack of performance, excessive cost and performance, or

a lack of design maturity. All of the ELV's also presented moderate to serious late installation and

access complications. None of the 19 ELV's analyzed were considered optimum for RRS

launches.

Q Cost

Performance

Development Maturity

Payload Accessibility

9.1 ELV Candidate Issues

The best candidates, the Delta 6920 and S-II, present significant issues with respect to

these discriminating factors. The Delta 6920 cost is estimated at $43 M. This value may escalate.

Assuming the current requirement for late access up to T-4 hours is maintained, significant timeline

adjustments must be produced by MDSSC. The new countdown procedures must also be

coordinated with range safety. The standard I0' fairing offered by MDSSC will not provide

sufficient access for late installation of the EM. However, modifications for the ROSAT program

under contract from Goddard will enable installation of large enough access panels for EM

installation without additional cost to the RRS program.

An alternative fairing concept for improving access conditions could be the development of

a removable fairing and an interstage-like adapter sleeve. This system would provide convenient

access via the removable fairing, nose piece. MDSSC has estimated that the cost to the RRS

program of this system will be negligible over 30 flights; the development cost will be offset by the

savings in unit cost. However, a significant performance penalty (1,000 lbs) is incurred by

carrying the adapter sleeve to orbit, which makes this option less attractive.

One way to reduce the Delta unit cost would be to remove several Castor IVA solids (i.e.,

derate 6920) or GEMs (i.e., derate 7920). The basic cost of the 6920 or 7920 may be reduced by

$3 M (Delta 6920) or $5 M (Delta 7920) in this manner; however, this savings is not as much as

desired. McDonnell Douglas is currently evaluating this option (7300 series).
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The S-II concept is based on Peacekeepercomponentsand appears to present a

considerablylessexpensivealternativeto theDelta. However,theS-II severelylacksmaturity.

TheStar-92baselinedfor theS-II is currentlyonly understudy. EPAC hasno experiencewith
orbital launches. Furthermore,EPAC hasno firm contractsto launchS seriesvehicles. The

performancevalueshavenotbeenverifiedbyanSAIC or Eagleascentsimulation.Thepre-launch

timelinehasonly beenroughlyconceptualized.Interfaceanalysison theS-II waslimited dueto a

lack of designdetail. Consequently,the S-II is an interesting conceptfor the RRS launch

application;however,the S-II shouldnot beconsideredanalternativeto Delta dueto a lack of

designmaturity.

9.2 Recent Launch Vehicle Developments

The launch vehicle environment has been significantly affected by the recent warming of

relations between the United States and the Soviet Union. The DoD is considering substantial

reductions in tactical missile inventories. Between 250 and 400 Minuteman II's are being

considered for removal from silos to cut DoD costs. The Trident is replacing the Poseidon in

nuclear submarines. The MX has been a political controversy, and its future is not clear.

Peacekeeper solid components have already been made available for purchase. Use of existing

missile components reduces development and unit costs significantly. Several companies could

propose new ELV derivatives using Minuteman, Poseidon, and/or Peacekeeper stages to offer low

cost launch vehicles. OSC is employing the Peacekeeper 1st stage in the Taurus vehicle selected as

the SSLV for DARPA. EPAC has proposed using Peacekeeper stages in various S series vehicle

configurations.

Consequently, a competitive procurement for RRS launches via a launch services contract

could result in significant cost savings. It would be reasonable to expect ELV launch costs of $20

M. For example, the Taurus launch cost is presently $15 M. Adding another Peacekeeper stage or

strap-ons could increase performance to an adequate level while increasing cost to approximately

$20 M. This cost per flight would result in significant ELV life cycle cost savings as compared to

a program using only Delta launch vehicles (i.e., $0.7 B over 30 flights, or a 50% cost reduction).

Another benefit with issuing a launch services contract would be that these new vehicle concepts

could be developed to meet RRS unique requirements (e.g., access requirements) at no expense to

the RRS program.

This RRS-specific launch vehicle could be based entirely on existing and flight proven

stages. The maturity or reliability of the launch vehicle may be in serious question if companies
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withoutpreviousELV designexperienceareproposinga conceptwhich includesnew hardware

elements.Evenif nohardwaredevelopmentis proposedthereliability of adesignestablishedby
aninexperiencedcompanymaybeconsideredlower thanfor adesignproposedby acompanywith

a long historyof launchvehicledesignandlaunchexperience.Therearemanycompanieswith

significantexperiencethat could enter the competitiveprocurement.
servicecontractorsarelistedbelow.

Boeing
GD

Lockheed

MDSSC

MMC

OSC

TRW

Others

Severalpotential launch

MinutemanIntegrationContractor

Atlas Prime Contractor

Poseidon, Polaris, Trident Integration Contractor

Delta 6920 Contractor

Peacekeeper Integration Contractor, Titan Prime Contractor

Pegasus and Taurus Contractor

BMD Systems Contractor

E-Prime, SSIA, AmRoc, PacAm, etc.

10.0 CONCLUSIONS

There is no optimum launch vehicle among the candidates studied. The most appropriate,

operational launch vehicle is the Delta 6920. From a technical viewpoint the S-II also appeared

desirable; however, this concept lacks design maturity. Recent launch vehicle developments

indicate that a competfive procurement via a launch services contract may result in the development

of a "tailor-made" launch vehicle, possibly derived from flight proven weapon system components

at significant cost savings (50% of Delta cost estimated).

Shared launches present serious operational challenges (e.g., scheduling, access, orbital

operations) and minor cost savings over small dedicated launchers. Shared launches may be

desirable only if offered for political reasons at no cost to the RRS program and if the primary

payload(s) can be delivered to the same orbital inclination as RRS (i.e., 34°).

The Delta 6920 could employ the 10' standard fairing with the large access panel, being

developed for the ROSAT program, to handle the late EM installation requirement (T-12 hours).

Significant modifications to the pre-launch timeline, if possible, are necessary to meet the close-out

requirement (T-4 hours) which will result in some cost penalty. Other fairing modifications (e.g.,

removable nose cap) may be necessary to meet the close-out requirement (i.e., if the access panel is

not compatible with the necessary timeline adjustments).
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TheRRSshouldbesupportedwithin thefairing usingacompositestructureanalogousto
theSYLDA usedon Arianeto separateandsupportpayloadsin adual launchconfiguration. A

PAl::will connectthesupportstructureto theELV. Theseparationsystemmustbeattachedabove

theheatshieldandwill requireasignificantdesigneffort despiteuseof existingseparationmecha-

nisms. Scarfingtheheatshieldto connecttheseparationmechanismswouldeliminatetheneedfor

protrudingattachpointswhichmustberetractedor jettisonedafterseparationbutmaycreateother

problems.Thetotalchargeableweightto RRSisestimatedto beamaximumof 400lbs.

Thealternativeconceptfor improvedaccessanalyzedhereinincludedaremovablefairing

for convenientaccessand an interstage-likeadaptersleeveto supportthepayload and handle

aerodynamicloads. Despitesomeaccessadvantages(i.e., craneinstalls EM without needfor

gantrycrane;fairing nosemaybeinstalledafterclose-out)andnegligiblecostto theRRSprogram,

this conceptpresentsa significantperformancepenalty (1,000lbs estimated)sincethe adapter
sleeveis carriedto orbit aspreviouslydiscussed.

Umbilicals are typically available for electrical, data, thermal control interfaces. No

significant issues are expected with respect to these interfaces or the flight environment.

11.0 RECOMMENDATIONS

RRS design should proceed in Part II of the Phase B contract with a launch vehicle

interface design compatible with the Delta. Due to the lack of detail available for the S-II concept,

the analysis of specificati6ns should focus on the Delta vehicle. An effort should be made to

address as many of the interface issues presented in the Spacecraft Questionnaire used by MDSSC

as possible.

A significant issue for Delta which will require further input from MDSSC will be pre-

launch timeline adjustments. Separation system design will also be a significant issue. Scarring

the heat shield to attach the separation system should be studied. A more detailed structural

analysis should be conducted to define the support structure size and mass. Specifications for

other interfaces (i.e, electrical, data, thermal, etc.) should be determined as spacecraft design detail

is available.

NASA should consider a launch services contractor competition to reduce cost per flight

and life cycle costs.
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APPENDIX A

DELTA 6920 PRE-LAUNCH TIMELINE



The prelaunch activities for Delta 6920 during the final days before launch (starting at T-6

days) are highlighted in the schedules on the following pages. These schedules have been included

to demonstrate the types of activities involved during the final days of prelaunch, hazardous access

periods are indicated throughout the schedules.

Significant launch site payload processing events prior to T-6 days are listed below.

Payload checkout activities after T-6 days are conducted in the MST white room.

T- 16 days

T-10 days

T-8 days

%7 days

S/C transported to explosive-safe facility for hazardous payload systems preparation

S/C ready to mount to Delta launcher

S/C flight weight measured

S/C handling canister assembled
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Figure A-1. Typical Schedule of Activities F-6 Day
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Figure A-2. Typical Schedule of Activities F-5 Day
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Figure A-3. Typical Schedule of Activities F-4 Day
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Figure A-4. Typical Schedule of Activities F-3 Day
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Figure A-5. Typical Schedule of Activities F-2 Day
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Figure A-6. Typical Schedule of Activities F-1 Day
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Figure A-7. Typical Schedule of Activities F-0 Day
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