
NASA Contractor Report 189729

ICASE Report No. 92-60

//f/ / ./"
/

/

ICASE
PARALLEL ALGORITHMS FOR SIMULATING

CONTINUOUS TIME MARKOV CHAINS

David M. Nicoi

Philip Heidelberger

NASA Contract Nos. NAS1-18605 and NAS1-19480

November 1992

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hamplon, Virginia 23665-5225

O
ur_

,,O

I

O'_
Z

t-"
,!
U.

Z

,1J ,_

_LLI--
aO

r_O

I b-Z
<_ _ Old

Z_O

m
m

U
c

cL

,4"
P,J

c_

L
O
m
¢

,,t"
I',,.,,

....4
o

_0

https://ntrs.nasa.gov/search.jsp?R=19930007361 2020-03-17T08:36:20+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42809859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel Algorithms for Simulating Continuous Time

Markov Chains

David M. Nicol *

Department of Computer Science

Tile College of William and Mary

Williamsburg, Virginia 23185

Philip Heidelberger

IBM Thomas J. Watson Research Center, Hawthorne

P.O. Box 704

Yorktown Heights, New York 10,598

Abstract

We have previously shown that the mathematical technique of uniformization can serve as

the basis of synchronization for the parallel simulation of continuous-time Markov chains. This

paper reviews the basic method and compares five different methods based on uniformization,

evaluating their strengths and weaknesses as a function of problem characteristics. The methods

vary in their use of optimism, logical aggregation, communication management, and adaptivity.

Performance evaluation is conducted on the lntel Touchstone Delta multiprocessor, using up to

256 processors.

*Research was supported in part by the National Aeronautics and Space Administration under NASA Contract

Nos. NASl-18605 and NAS1-19480 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681. This work was initiated
while David Nicol was a visiting scientist at the IBM T.J. Watson Research Center. Partial support was provided by

NSF Grants ASC 8819373 and CCR-9201195, and NASA Grants NAG-l-1060 and NAG-l-995.

1 Introduction

Discrete-event simulation is an invaluable tool for the design and analysis of complex systems such

as factories, transportation networks, computer systems, and communication networks. Large scale

simulations require a long time to execute, and because of this many researchers are interested in

parallelizing their execution. One of the key issues is synchronization between processors, as the

synchronization demands are highly variable, depending dynamically on the simulation model's

state. Recommended introductory surveys on the topic are found in [2] and [11].

In a series of previous papers [5, 9, 10] we developed the notion of using uniformizatimz as the

basis for synchronization in parallel discrete-event simulation of continuous-time Markov chains

(CTMCs). CTMC models are important, appearing frequently in the study of computer and com-

munication systems. Uniformization exploits the mathematical structure of these models, making

it possible to pre-compute instants in simulation time where Logical Processes (LPs) ought to syn-

chronize. The decision whether an LP actually influences another at one of these instants is left

until run-time. Conceptually, a simulation is performed in three phases. In the first phase, the

simulation model is partitioned into LPs, which are mapped to processors. All simulation activity

associated with an LP is assumed to be performed by its assigned processor. In the second phase

one randomly generates synchronization points; in the third phase one simulates a mathemati-

cally correct sample path through those points. We call the general method PUCS, for Parallel

Uniformized Continuous-time Simulation.

We have developed five different variations of PUCS that differ in their treatment of LP aggre-

gation, communication management, use of optimism, and generation of communication schedules:

• Conservative Aggregated PUCS (CA-PUCS),

• Conservative Partitioned PUCS (CP-PUCS),

• Optimistic PUCS (Opt-PUCS),

• Adaptive Conservative Aggregated PUCS (ACA-PUCS).

• Adaptive Conservative Partitioned PUCS (ACP-PUCS).

CA-PUCS uses no optimism, and treats the entire submodel assigned to a processor as a single LP.

Synchronization between LPs is thus equivalent to synchronization between processors. CP-PUCS

also eschews optimism, but permits a proeessor's submodel to be viewed as a collection of LPs that

are resident on the same processor. Opt-PUCS also allows multiple LPs per processor, synchro-

nizes optimistically, and uses techniques to reduce state-saving and perform smart on-processor

scheduling; these techniques are made possible by the basis in uniformization. ACA-PUCS is like

CA-PUCS, except that it attempts to reduce some overheads associated with synchronization, and

requires that one know less about the simulation model. Similarly, ACP-PUCS is an adaptive

version of CP-PUCS.

Each of these methods has strengths and weaknesses that are alternatively revealed by prob-

lem characteristics. The object of this paper is to give an overview of uniformization-based

synchronization,and empiricallyexaminethesedifferentmethodson the Intel TouchstoneDelta
multiprocessor[7],usingup to 256processors.

The remMnderof the paper is organizedasfollows. Section2 givesan overviewof direct
Markoviansimulation,and uniformization. Section3 introduceseachmethodand its rationale.
Section4 presentsand anMyzesourexperimentalresults,andSection5 givesourc?nclusions.

2 Uniformization-Based Synchronization

In this section we briefly describe the basic notions of direct Markovian simulation, and uniformiza-

tion. More rigorous and complete mathematical details can be found in [5]. Following the descrip-

tions we illustrate them concretely with an example.

Let us first review some basic elements of the theory of continuous time Markov chains. Read-

ers unfamiliar with CTMCs are encouraged to consult Ross [12] for a more complete and exact

introduction to the topic. A CTMC is a stochastic process {X(t)}, where X(t) is the state of

the CTMC at time t. For the purposes of generM description, X(t) is taken to be a nonnegative

integer; in practice it is often more natural to describe X(t) as a vector of integers, e.g., the vector

of queue lengths in a network. Upon entering a state s at time t, the CTMC remains in that state

for a random period of time called the holding time, which has an exponential distribution with

state-dependent rate A(s). This is also called the transition rate out of state s. At the end of the

holding time, the CTMC randomly changes state, jumping to some state s _. It is convenient to

think of this jump as choosing a winner among all possible jumps, in the following way. While

in state s the chain is attempting to make a transition to every other state reachable from s, si-

multaneously. It is as though there are a large number of stochastic processes-one for each state

distinct from s--that are all concurrently active. The transition rate for the process atteinpting to

jump to s _ is some qss,; note that A(s) = _{s'¢s} qss,. Each of these processes has an exponentially

distributed holding time; the rate of s's holding time is just qss,. We may imagine that each of

these holding times are randomly sampled at the point {X(t)} enters s. Now the time and nature

of {X(t)}'s transition out of s are defined by the process whose next transition time is least among

all possibilities. Thus, the probability that the exponential associated with a given state s _ is least

among its peers is just Pss' = qss,/A(s); Pss' is also known as a transition probability.

Observe that we can also interpret a transition in terms of {X(t)} simultaneously attempting

jumps to one of a number of sets of states. For example, we might partition the state-space into

two sets A and B, and interpret transition as the competition between all transitions to states in

A, and Ml transitions to states in B. This interpretation will be particularly useful when A is the

set of transitions that do not affect other LPs, and B is the set of transition that do.

A direct simulation of a CTMC involves sampling holding times, and choosing transitions, as

follows. Upon entering state s, one advances time by sampling an exponential with rate A(s),

essentially simulating the duration of time the CTMC remains in state s. To choose a transition

it is not necessary to choose the least of a large number of exponentiMs. It suffices to construct

the transition distribution by computing the rates qss', and then sampling from the distribution

Uniformizationof a CTMC is a mathematicaldevice(originally usedto simplify numerical
solution[4]) designedsothat everyholdingtimeis drawnfrom the samedistribution. Thebasic
ideais to find a uniformization rate ,_,,_× such that for every state s,)_(s) _<)un_,x- All holding times

are sampled from the exponential distribution with rate "_m_x- However, to make the uniformized

chain stochastically identical to the original chain, we introduce transitions back to the same state.

In the uniformized chain, the probability of making a transition from s to s' (# s) is qss,/A,,,ax.

The probability of making a transition back to s is 1 - ,_(S)/,_ln_X. Transitions of the latter form are

known as pseudo transitions, as they do not affect the state of the Markov chain. The mathematical

basis for uniformization is simply that a geometrically distributed sum (with mean l/p) of i.i.d.

exponential random variables (with mean 1/It)is itself an exponential, with mean 1�(pit). Whenever

the original chain in state s; its holding time is exponential with rate ,_(s). Now suppose the

uniformized chain (at rate ,_m_×) enters state s; the number of pseudo transitions that occur before

actually leaving s is geometrically distributed with mean ,_n,_x/'_(S), and the distribution of time

spent in s before leaving is that of a geometrically distributed sum of exponentials, each with mean

1/,_m_,. The effective distribution of time the uniformized chain spends in state s is exponential

with mean 1/,_(s), just as in the original chain.

Let us now apply these ideas to a specific exa, mple. Consider a type of queue that has It" servers,

a Poisson source process with rate ,_, and a service distribution that is a probabilistic mixture of

exponentials: with probability p;- the service time is exponential with a fast rate it/, and with

complimentary probability the service time is exponential with a slow rate It, < Itf. Now imagine

a queueing network with three such queues. We suppose that every departing job exits the system

with probability Pd; conditioned on not departing the system, the job rejoins the same queue with

probability p_, and otherwise joins either of the other queues with equal probability. The state of

one queue, say i, in this system can be described by a vector si = (Ni, Fi, El), where Ni gives the

total number of jobs in residence at the queue, Fi gives the total number of fast jobs in service, and

Si gives the total number of slow jobs in service. In the absence of any job transfers from other

queues, the transition rate out of si is /_i(Si) =)_ + Fi#] + SlIts. The state of the entire system is

the concatenation s = (Sl, s2, s3), with total transition rate A(s) = kl (Sl) + ,k2(s2) + Aa(sa).

Under an ordinary direct simulation of the Markov chain, the system remains in a given state

s for an exponentially distributed period of time with rate ,_(s). After the holding time, the chain

makes one of several possible transitions, chosen randomly. Transition due to a source arrival

at queue i is chosen with probability ,_/,k(s), while transition due to a fast (alt., slow) service

completion at queue i is chosen with probability itlF_/,_(s) (alt., #_S_/,_(s)). Following simulation

of the chosen transition and its effect on s, a new holding time is chosen based on the new state,

and the simulation process continues.

An alternative form of direct simulation is more closely related to how we do parallel simulation.

Let us now view the system as three interacting Markov chains, each one simulated directly. This

is equivalent to partitioning all transitions into three classes, grouping together all transitions that

are initiated at a common queue. We maintain a silnulation clock ti for each queue i, reflecting

the end of the queue'scurrent holdingtime. To selectthe next eventto do in the systemwe
first selectthe queuei whose time ti is least (recall the interpretation of a transition in terms of

competing exponentials). We then directly simulate that queue, choosing a source arrival with

probability ,X/,_i(si), a fast job departure with probability Fi#:/,_i(si), and a slow job departure

with probability Si#s//_i(Si). If a job departure is chosen, then with probability Pd the job leaves

the system. If the job does not leave the system, then with probability p,. the job rejoins the same

queue. Failing this, the job is routed to one of the other two queues, with equal probability. Queue

i now has a new state s_; its new next transition time is chosen by adding ti to an exponential

random variable with rate),i(s_). Observe that if the event caused a job to be routed to queue j ¢ i,

r We compute a new next transition time for queue j by adding tithen queue j has a new state sj.

(not tj!) to an exponential random variable with rate ,_j/(s_). Also observe that if the event does

not route a job to another queue, then the distribution of the holding times of the other queues are

unaffected by the event, and, by the memoryless property of the exponential distribution, do not

need to be resampled prior to selecting the next event. They could be resampled, but the resulting

chain would be probabilistically identical to the one where we do not.

This description suggests that one might directly simulate each queue on a separate processor,

provided one can accommodate the instances when jobs flow between queues. It is convenient

to view the behavior of a given queue as the superposition of an internal stream of events, and

a set of external streams. The internal stream is comprised of all events that do not directly

affect the state of another queue: Poisson source arrivals, departures that leave the system, and

departures that return immediately to the same queue. We have one (outgoing) external stream

associated with each other queue; such a stream is comprised of all transitions that send a job to

the associated queue. Now for each queue i we maintain a next internal transition time Ii, and

two next outgoing external transition times Eij, and Eia., j,k ¢ i. The queue's next transition

time is the minimum, ti = min{Ii, Eij, Elk}. This is simply another application of the "competing

processes" interpretation of a transition. When queue i is chosen for the next transition, then

the event is taken from the stream whose next transition time is ti. After simulating that event

so that the queue enters state s _, new next transition times are chosen for all streams associated

with the queue. The reason for changing every stream's next transition time is apparent from the

rates of these streams' holding times. The holding time rate for the internM process from state

si = (vi, Fi, Sd is
,_/(si) = A + (Pd + (1 -- Pd)P_)(#:F_ + #_Si), (1)

while the holding time rate for either external process is

= 0.s(1 - x -) (#: r, + (2)

Equation 1 reflects arrivals to queue i (at rate A), and service completions that either depart the

system or are routed back to queue i. (Note that the total rate at which jobs in queue i are

receiving service is (tz.tFi + tt_Si), a fraction Pd of which depart the system and a fraction (1 -P_t)Pr

of which are routed back to queue i.) Both of these rates depend on the state of the queue; any

event at that queue may change its state, and hence change the correct distribution for the next

event on each stream. New next transition times are computed by sampling from the new holding

time distribution, and adding to the time of the event, t{. If an external event is chosen, then

new holding times must also be chosen in like fashion for all streams of the queue receiving the

departing job.

Note that the transition rates above depend only on the number of fast and slow jobs in service.

As such, these rates are independent of the queueing (liscipline, whose effect is manifested in the

definition of the state transformation upon a job departure or arrival, A key point is that the

transition rates are independent of the queueing discipline. This is hnportant to rememl)er, as it

will imply that our synchronization algorithm is independent of the queueing discipline.

The problem remains that the instants when jobs leave one queue for another are erratic and

unpredictable. We approach the problem by uniformizing every external event stream. Why?

Because the holding time distribution of an external event stream then remains completely in-

dependent of any state changes that may occur at the queue. We can completely p_vsample the

holding times of all uniformized external event streams, Embedded in these transition thnes are

real ones, where jobs move between queues. We do not know which of these transitions will actually

move jobs and will not know until the simulation is actually performed, the queue states are actu-

ally known, and the real/pseudo decision thresholds are actually computable. The beauty of the

method is that the queues can generate and exchange their external transition times, and then use

these thnes as synchronization points, a.k.a. "appointments" [8]. Queue 1 presamples the potential

transition times for its external event streams to queue 2 and queue 3. These potential times are

sampled from Poisson processes whose rates, Al2 and AI:_ are at least as large as the maximum

possible instantaneous rates at which queue 1 can send jobs to queue 2 and queue 3. For example,

Al2 = 0.5(1 - pa)(1 - pr)h'p], which represents the rate at which jobs flow from queue 1 to queue

:2 when all K servers on queue 1 are busy serving in the fast phase. By Equation 2, A_.2(si) <_ Al2

for all possible states si. After queue 1 presamples these potential external transition thnes, it

sends those lists to queue 2 and queue 3. Each queue i receives from every other queue j lists of

times at which a job might be sent from j to i. These lists are merged with queue i's own lists of

times when it may send jobs to other queues. The n th entry in the merged list for queue i is of the

form (Ti(n),Ci(n)), where T_(n) is the time of the n th event and Ci(n)is the type of the ,_tJ, event,

i.e., Ci(n) = (i,j) or (j,i), depending on whether the potential job goes from i to j or vice versa.

Having done so, each queue now knows each and every time at which some other queue may affect

it, and at which it may affect some other queue. Without uniformization the synchronization times

are unpredictable; with uniformization they are completely pre-determined in advance of actually

running the simulation.

As we simulate in parallel, each processor will execute asynchronously of the others, except

for synchronization at the pre-arranged instants in time. For example, suppose that the state of

queue i is si, that the last event at queue i occurred at time ti, and that Ti(n) is the time of the

next (potential) external event. An exponential holding time Ei with mean 1/A[(si)is generated.

If ti + Ei < Ti(n), then the next event to occur on queue i is an internal event. In this case,

among all possible internal transitions, queue i chooses one with probability proportional to its

transitionrate, simulatesit, and updatesits clock to time ti + Ei. If tl + E; > Ti(n), then the

next event to occur at queue i is an external event. Suppose that Ci(n) = (i,j). Then queue i

decides whether the transition is pseudo or real by computing the ratio r = A_(si)/Aij (the ratio of

the stream's current actual rate to the stream's uniformized rate), opting for a real transition if a

uniform U(0, l) random variable is less than or equal to r. In this case queue i selects a job whose

service completes, selecting any particular job with probability proportional to the rate at which

that job is departing for queue j (0.5#s or 0.5#/, depending on whether the job is fast or slow).

Queue i sends a message to queue j specifying the job transfer and continues. If Ci(n) is judged to

be a pseudo (with probability 1 - r), then queue i sends a message to queue j reporting this fact.

Alternatively, if Ci(n) = (j, i), then queue i waits for the message from queue j. If queue j reports

a job arrival, then queue i simulates the arrival. If queue j reports a pseudo then the event does

not affect queue i's state. Following simulation of Ci(n), queue i advances its clock to time Ti(n).

A new holding time for the internal process is selected, and the process continues.

Observe that the description above serves to describe a general algorithm, if we merely replace

the word "queue" with "LP". Also observe that it is possible to define windows [t, t+A] in simulation

time. One generates and exchanges all uniformized external events that fall within the window,

simulates the system behavior through that period, then advances to the next window [t+A, t+2A].

The only limitation on the window size A is the memory storage necessary to hold the external

transition times.

Calculation of uniformization rates is always application dependent. Among all features of the

algorithm, this is one of the issues demanding the most attention by the modeler to the synchro-

nization algorithm. (The other major such issue is decomposing event streams into internal and

external streams.) It is possible, for example, for LPs to be defined so that jobs from an infinite

server queue are routed to different LPs, One can't bound the transition rate of such an external

stream, at least not in an open system. The method works best when every stream's uniformization

rate is very close to its actual job transfer rate, i.e., when most external events are real. However,

this may not always be the case. Pseudo transitions are the single most deleterious artifact of the

algorithm, because time spent generating, communicating, and synchronizing upon pseudos is time

spent on activity not found in an optimized serial implementation. All of our PUCS variations

were developed to reduce or elinlinate sources of pseudo transitions, or to minimize their effect on

performance.

Not all CTMCs are suitable for parallel simulation using PUCS. A key requirement is that one

be able to partition the CTMC into loosely synchronous interacting subchains. Such partitioning

follows intuitively when the CTMC has a basis in a physical domain, because partitioning the

domain often has the desired effect. Nevertheless, the issue of defining suitable LPs automatically

is one that we have not yet addressed.

The details above may seem complex, especially to those with little experience deafing with

C'TMC models. However, there is strong reason to believe that PUCS-style synchronization can

t)e embedded in a parallel simulation package specific to an application class (e.g., a large subset

of RESQ [3] for simulating queueing networks), with all the details of finding legal uniformization

rates being automated.

In the course of experimenting with PUCS we encountered several implementation issues. One

of these concerns external stream list management. On the one hand we can faithfully inq)lement

PUCS as described above. On the other hand, we can avoid list transmission altogether, by having

both ends of an external stream maintain a synchronized random number generator, so that LP

i computes the time of the next LP j _ LP i synchronization, rather than receives it. Another

issue is the degree of aggregation one ought to employ when defining LPs. It is possible for the

entire submodel assigned to a processor to be considered as a single LP. It is also possible to break

up the model into more natural LPs, and treat the workload on a processor as a collection of

distinct LPs. Yet another issue is whether to exploit optimism. The unifornlization framework

offers some unique optimizations for optimistic processing. Are they worth it? A final issue is

that of adaptivity in uniformization rates. What can yon do when a mathematically correct upper

bound is either impossible or so large that almost all external transitions end up being pseudos?

Our various implementations, to be described next, explore these issues.

3 Methods

We describe five different methods based on uniformization, and give the rationale for each.

3.1 Conservative Aggregated PUCS

CA-PUCS (identified simply as PUCS in [5, 9, 10]) was one of the first methods we developed.

In implementation it is almost identical to the description given in the last section. It has the

additional characteristics that the entire submodel assigned to a processor is considered to be one

LP, and that synchronization lists are generated and simulated on a window-by-window basis. The

latter feature is needed for the simple reason that computers' memories can retain only a finite

number of external transition descriptions, and very long runs will require very long transition

lists.

The rationale for aggregating all co-assigned workload into one LP is two-fold. First, a one-

LP-per-processor implementation is much easier to develop than one that allows multiple LPs.

The architecture used in our studies--the Intel family of multiprocessors--supports interprocessor

communication via explicit sends and receives. Receives m_y be either asynchronous (post a receive

and periodically check on whether the anticipated message arrived yet) or synchronous (block until

the anticipated message arrives). Furthermore, the Intel iPSC/860 and Touchstone Delta operating

system, NX, supports only one process per processor. Any multitasking--like switching between

LPs--has to be done at the application layer. By aggregating all of a processor's workload into one

LP we avoid scheduling issues; furthermore, there is no need to buffer incoming communication at

the application layer. When the processor expects message m at time t from processor j, it simply

does a synchronous receive until that message materializes. One cannot use synchronous receives

if switching between LPs is necessary. Secondly, massive aggregation avoids intcrnal pseudo events

that may occurwhenmultiple LPs areassignedto oneprocessor.The problemhereis that if
uniformizationis appliedat the LP level,then two LPson the sameprocessorsynchronizewith
eachother just as though they were assigned to separate processors. We surely can develop the

code so that the communication between co-resident LPs is cheap, but we cannot easily avoid the

overhead of generating, communicating, and synchronizing upon a pseudo event. An important

rationale for massive aggregation is to eliminate the possibility of internal uniformization.

3.2 Conservative Partitioned PUCS

The other side of the aggregation issue is that massive aggregation can cause artificial blocking.

Events on a processor under CA-PUCS are executed in increasing monotonic order. If any piece of

a processor's submodel needs a message at time t and if that message is not yet present, the entire

processor blocks. However, it may be that another piece of the submodel is free to continue past

time t. To block at time t is to cheat oneself of some potential parallelism.

CP-PUCS (identified as PUCSThreads in [9]) allows multiple LPs per processor, and also strives

to reduce the communication overhead of list generation. The principle features of the method are

LP independence: A processor may manage any number of distinct LPs. In addition, by

appropriate assigmnent of random number generator seeds, the sample path that is executed

can be made independent of the way in which LPs are assigned to processors.

Scheduling: At any time, each LP is classified as being ready or blocked, depending on

whether it is free to execute or is waiting for an incoming message. Scheduling consists of

selecting the ready LP with least time-stamp, performing a communication (either a send or

a receive) and simulating until it reaches its next communication instant. If an LP blocks

waiting for a message, a description of that message is stored in a binary search tree. Between

LP activations we probe for any newly received messages, accepting all such and storing them

in the application space. As each new message is processed we examine the search tree to see

if some LP is blocked on this message. If so, the LP is unblocked and placed on the list of

ready LPs.

List Generation: Every pair of LPs i and j maintain a synchronized random number

generator. This means that LP i can compute for itself the same transition times that j

computes for the LP j to LP i external stream. While each LP now executes more work by

duplicating the generation of external stream transition times, we avoid having to commu-

nicate and merge the Lists. There is an additional advantage in that no window is needed

now to limit the menmry usage of external transition times. We simply generate the "next"

transition time for a stream when it is needed.

Somewhat to our surprise, our previous empirical studies found no real benefit of CP-PUCS over

CA-PUCS. Those studies examined situations in which the deleterious effect of internal pseudos

is the dominant bottleneck to achieving good performance, and thus the benefit of avoiding them

outweighed the benefit of more parallelism. However, as we will see, data in the present paper

showsthat this is not alwaysthe caseand therearesituationsin whichCP-PU(',S outperforms

(;A-PUCS. We will comment more ell this in Section 4.

3.3 Optimistic PUCS

Opt-PUCS (identified in [9] as OptAll) endows CP-PUCS with optimism. This comes into play

when an LP reaches an incoming communication instant, and the message it is to receive is not

yet present. The LP can optimistically assume that the message will report a pseudo transition,

and hence there ix no need to wait for it. When the message does finally arrive, if the receiving

LP's guess was correct, then there is no need to roll back. This is an application of the idea of

"lazy reevaluation" explored first in [13]. Otherwise, as with standard optimistic algorithms such

as Time Warp[6], the receiving LP is rolled back to the time of the late message.

PUCS' general framework makes possible some unique optimizations.

• State Certainty: In a general purpose optimistic environment, one can never be certain

whether the next event processed will end up being committed, or will be discarded as a

result of rollback. In Opt-PUCS an LP can sometimes know that its state ix sure, that it

will not he roiled back past its present point. The key to this determination is that we know

all instants in simulation time where messages may arrive. If LP i knows it will not receive

any message between times s and t, and it knows that its present state is sure (all LPs are

initially sure), then its state remains sure while processing all internal events up to time

t. Furthermore, if LP j sends the message at t and was also sure at the time the message

was sent, then the message may be received and LP i remains sure. However, if either LP

j was unsure at time t, or if the LP i decides to optimistically bypass that communication,

then LP i becomes unsure. In [9] we show how every LP can maintain a Least ,S'ulv Time

(LST) that describes the last instant in simulation tilne when the LP was sure. By simply

appending sure/unsure tags to messages and analyzing these, every LP's LST advances

without extra calculation. Since we may release any state saved at a time less than the LST,

the LST calculation gives us the benefits of the usual GVT (Global Virtual Time--see [6])

calculation, without the additional overhead of actually performing a GVT calculation.

• State-Saving: Optimistic simulations generally save state prior to every event, because as

far as the LP knows, the simulation can in theory be roiled back to any point in simulation

time ahead of the last known GVT. Within the PUCS framework, a. rollback can occur only

at some communication instant, hence there is no advantage to saving state before an internal

event. The only time state must be saved is at a communication instant, and then only if the

receiving LP is either unsure or becomes unsure by either receiving an unsure message or

by optimistically bypassing it.

• Scheduling: Our ability to ascertain whether an LP's state is sure permits smarter schedul-

ing than is usually possible under Time Warp because we may give highest priority to an LP

with some work to do that we know is sure, and cannot be rolled back. In fact, our studies

in [9] foundthat a veryeffectiveschedulingstrategyis onethat is averseto state-saving,as
follows.An LP'sexecutionsliceis delimitedat eitherendbyexternalcommunications(either
incomingor outgoing);the executionslicebeginsby performinga communication, then all

internal work up to (but not including) the next communication is performed. Whether or not

we perform a state-save at the initial communication depends on the present sure/unsure

state of the LP, whether the communication is outgoing or incoming, and whether an commu-

nication is present or unsure. We define four scheduling classes, listed below in decreasing

order of priority.

1. sure LPs that will not save state because the first communication is either an incoming

message from a sure LP, or is an outgoing message.

2. unsure LPs whose first communication is either an incoming message from a sure LP,

or is an outgoing message.

3. sure LPs that must save state on the first communication, because that communication

(necessarily incoming) is either not yet present, or was sent by an unsure LP.

4. unsure LPs that must save state on the first communication, because that communica-

tion (necessarily incoming) is either not yet present, or was sent by an unsure LP.

One of our aspirations for Opt-PUCS was that it would reduce the cost of pseudo transitions.

While pseudos would still appear logically in the external event streams, the hope was that not

having to communicate them from unsure LPs would lead to some savings. Our initial experiments

showed that this intuition held true, provided that the fraction of pseudo events was very high. For

lessor fractions of pseudos, the overheads of optimism largely cancelled the benefits of optimism.

This observation is also borne out in the new data we present in this paper. One should also bear

in mind that the version we study in this paper is highly optimized. Our previous study suggested

that its performance is as large as a factor of 2 better than standard Time-Warp style algorithms.

3.4 Adaptive PUCS

We developed ACA-PUCS and ACP-PUCS in an effort to deal directly with the problem of excessive

pseudo events. The idea is to observe the behavior of an external stream, and uniformize it at a

rate slightly larger than the maximum rate it seems to achieve and repeat. There are two basic

issues that must be addressed. One is the selection of uniformization rate, and the other is dealing

with situations where the assumed upper bound on the external stream's transition rate actually

becomes less than the actual transition rate--an occurrence we call a rate fault.

To uniformize a stream at a rate which is not provably an upper bound on its transition rate

is to execute optimistically. Some provision must then be made to recover from faults suffered

when optimistically made assumptions are violated. Our earlier experience with other versions of

PUCS suggested that CA-PUCS was an appropriate point of departure, as it consistently achieved

better performance (on the problems studied) when the fraction of pseudo events was low. The

simplest way to incorporate optimism in CA-PUCS is to checkpoint the entire simulation state at

10

the beginningof everywindow,continuouslymonitoreachexternalstreamfor rate faults, andat
the endof a windowdeterminewhetheranyLP suffereda rate fault at anypoint in the window.
If a rate fault is encounteredthe entire windowis resimulatedby all LPs. In orderto correctly
resimulatethe window,exactlythe samesequenceof eventsmustbeperformedup to the time of
theearliestratefault, say t. The uniformization rate of the faulting stream is increased just prior

to time t to a level that will carry it passed the observed rate fault. The process of resimulating a

window is repeated until we get through the window without any faults, at which point we advance

to the next window. The net effect is that the uniformization rate for an external stream over a

window is a piece-wise constant function of simulation time, with jumps occurring at instants when

rate faults are observed on that stream.

We use a two-stage policy for determining a stream's initial uniformization rate, at the beginning

of a window. During the first phase we monitor the stream's transition rate, and record the largest

rate ever seen. While in the first phase, the initial uniformization rate given to the stream at

the beginning of a window is twice the maximum rate seen so far. The second phase begins after

the monitored maximum rate remains unchanged for a long time (more precisely, after the last

consecutive 99% of the stream's transitions have past without a change). The stream then "locks

in" on twice this maximum, uniformizing all subsequent windows at that rate. There is a provision

to increase the lock-in rate, provided the fraction of windows that rate fault rises above 5%. The

philosophy of this mechanism is to observe the stream's behavior for a long enough period of time

so that the highest transition rate it is likely to see and return to is observed. We uniformize at

twice this rate as a means of insurance. Once in the second phase, rare surges of the transition rate

past the uniformized rate are accommodated via rate-faults and resimulation, but the default rate

remains unaltered because the probabifity of exceeding that rate is very low.

Experiments with ACA-PUCS (reported in [10]) showed that it could indeed accommodate

situations where non-adaptive PUCS failed. In the next section we present data that also shows

this advantage. To complete our comparison of the influences that aggregation and adaptivity

have on performance, we recently developed ACP-PUCS--an adaptive version of CP-PUCS. ACP-

PUCS retains all the features of CP-PUCS; in addition, it handles adaptive uniformization in the

same fashion as does ACA-PUCS. Windows are defined solely for the purpose of checking for and

recovering from rate-faults. Prior to the adaptive mechanism locking on, the initiating end of a

stream notifies the receiving end of the initial uniformization rate for the window. However, if

that rate does not change between windows, then no such communication is needed. Consequently,

once all the streams have locked in on their effective uniformization rate, the additional overhead

associated with a window becomes negfigible.

A final advantage of adaptivity is that it releases the simulation modeler from the burden of

having to determine uniformization rates. For this reason adaptive methods seem to offer the most

hope for automating the parallelization of a CTMC simulation.

11

4 Experiments

In this section we present the results of experiments performed on the lnte] Touchstone Delta

multiprocessor[7], using 16, 64 and 256 processors. The Delta is an MIMD architecture based on

the Intel i860 processor chip. Its processors are connected in a mesh network. Comnmnicatiou is

based on circuit switched message passing.

The simulation model we study is that of a fully connected network of central server queueing

clusters [1]. A single central server is illustrated in Figure 1. A job entering the cluster always

visits tile CPU queue first. After receiving service there, the job is routed to one of twenty I/0

servers, chosen uniformly at random. Upon entering service, the job chooses a "fast" service rate

of/_f with probability pf; it otherwise acquires "slow" service rate of 1. The job receives an

exponentially distributed amount of service, with mean 1/#] or mean l, depending on whether the

job is fast or slow. Upon its service completion the job returns to the CPU server with probability

p_. Otherwise, some other central server cluster is chosen uniformly at random, and the job is

routed to that cluster's CPU queue. Throughout our study of PUCS we have used this model, or

another one related to it (where multiple local clusters are attached to each central server). Even

though the model is too simple in and of itself to warrant treatment by parallel simulation, we

use it because it is capable of parametrically representing more complex models. For example, the

model parameter Pc can be used to adjust the computation/communication ratio. The performance

of the synchronization protocol is largely independent of the specifics of the simulation workload.

However, the frequency with which the model communicates and synchronizes obviously affects

performance, and p_ is a simple parametric means of varying workload intensity. Similarly, the

number of jobs circulating in the system is another parameter that affects the workload intensity.

W_ can control the level of uniformization by adjusting #y--the higher it becomes, the faster the

uniformization rates on external streams.

Our study sets p_ = 0.99. This implies a healthy computation/communication ratio proportional

to 200 (an average of 100 visits to the CPU and some I/O device before exiting the cluster) -

but only in an "optimal" parallel simulation whose only communication costs are those of moving

jobs. The actual ratio will be degraded from this level by uniformization. Because of the relatively

high cost of message-passing, any application running on a machine such as the Delta must have

a respectable computation/communication ratio to achieve respectable speedups. We also fix the

probability of a fast job (p]) to be 0.01. This selection places stress on our algorithms, because

strict uniformization rates must assume that every server is always busy with a fast job, when in

fact, fast jobs rarely appear. Our study fixes the nunlber of central server clusters at 256. This

selection gives us a moderately large simulation model, and also enables us to examine the effects

of managing many LPs (up to 16) on a processor. Finally, we set the CPU service rate to 20, and

the slow I/O job rate at 1. This ensures that in steady-state the distribution of jobs will be more

or less uniform among all queues.

The parameters we vary are

• Number of jobs: We examine lightly loaded scenarios, where there are 10 jobs per cluster

12

Pc

from other central
server clusters CPU queue

to other central
server clusters

I/0 queues

Figure 1: Central server model. Pc is the probability that a job departing an I/O device will return

to the CPU queue.

(about 0.5 jobs/queue), and heavily loaded scenarios where there are 1000 jobs per cluster

(about 50 jobs/queue).

#]: We examine a fast job rate of 1 (so there is no distinction between fast and slow jobs),

and a fast job rate of 8. The latter selection, coupled with with p/= 0.01, induces high rates

of uniformization relative to actual stream transition rates.

• Number of processors: We study our models on 4 x 4, 8 x 8, and 16 x 16 submeshes of

the Delta.

Every experiment was run long enough so that every processor executes approximately 0.5

million events. Our primary metric of interest is the event execution rate, which measures the rate

at which useful events are executed (per second). We specifically exclude from this rate pseudo

events and optimistically executed events that are later rolled back. The rates we present are from

single runs; this is justified, as in our experience there is very little variation (perhaps 1%) in these

execution rates between runs of the same model.

While simple, the model we study presents _ challenge to any performance oriented study,

especially of a conservative synchronization algorithm. There is virtually no locality; a cluster is no

more likely to communicate with a co-resident one than it is to communicate with an off-processor

one. Every cluster communicates with every other cluster--there are approximately 21(_ distinct

communication paths to manage! Using P processors, every time a communication occurs there is

a (P- 1)/P% chance that the communication is between different processors. Furthermore, the

model uniformization is consistent with a queueing policy where newly arriving fast jobs to t)reempl

slow jobs. The only benign assumption made is that p_ = 0.99, an assumption needed to ensure

13

a sufficientcomputation/communicationratio. Finally, the maximalprocessorsize,P = 256, is

significantly larger than that used in most studies, and may be as large as any previous study

using MIMD processors. The fact that we do achieve significant performance over optimized serial

execution on a difficult problem proves the validity of our methods.

Before analyzing the results of our experiments, we address the issue of "speedup". Speedup

is intended to measure the user's benefit of running the parallel algorithm. For this reason, one

ought to compare parallel performance to that of an optimized serial algorithm. Some difficulties

arise, however, when the serial algorithm which is optima] changes as the problenl parameters of

interest change. To illustrate the point, Table 1 below gives serial execution rates as a function

of problem characteristics, for an optimized serial direct Markovian simulation, and CP-PUCS run

on one processor. While PUCS on one processor is faster by almost 20% on one set of parameters,

(load,#f) Optimized Serial PUCS on

Algorithm One Processor

(light,l)

(heavy, l)

(light,8)

(heavy,8)

6211

6563

6219

6554

7014

7706

4166

6469

Table 1: Execution rates (events/sec) of the optimized serial algorithm and PUCS running on one

processor.

it is slower by 33% on another. By comparison, the optinlized serial algorithm varies by only a

few percent over these problems. A user is far more likely to choose a serial algorithm that is

consistently good over one whose performance varies so widely.

Table 2 presents the results of our ext)eriments. Without resorting to a definition of speedup,

we can say that on the heavily loaded problem with #I = 1 using 256 processors, CP-PUCS is

260 times faster than the particular serial simulator we used, and is 221 times faster than its

own one processor implementation (and 14 times faster than its 16 processor implementation). In

either case, it is clear that a very substantial improvement over serial execution is being achieved.

As an additional point of comparison, we measured the execution rate of the commercial queueing

network simulator RESQ [3], executing on an IBM 3090 mainframe. The model simulated by RESQ

is actually substantially smaller than this one, having only 16 clusters. The RESQ execution rate

is only 1,781 events/sec. Of course, one must take into account that RESQ is an industrial quality

simulator able to handle a wide range of problems, whereas the PUCS code is handcrafted and

optimized, with a much more restrictive domain. Nevertheless, this comparison illustrates parallel

simulation's tremendous potential for accelerating solution times.

We next analyze this data with an eye towards addressing the issues of aggregation, communi-

cation costs, optimism, and adaptiveness.

14

16Processors 64Processors 256Processors
light heavy light heavy light heavy

FastJobRate= 1
CA-PUCS
CP-PUCS
Opt-PUCS
ACA-PUCS
ACP-PUCS

80,032 102,504
109,585 122,186
103,707 121,609
79,711 102,329
78,942 100,877

301,765 411,362
378,329 393,418
343,510 353,873
311,168 403,380
256,138 327,559

FastJob Rate= 8

985,327 1,575,146
1,043,609 1,709,567

874,617 855,737
989,351 1,567,038
808,621 1,357,975

CA-PUCS
CP-PUCS
Opt-PUCS
ACA-PUCS
ACP-PUCS

53,339 76,580
58,753 90,708
57,314 89,642
74,580 90,857
63,738 88,156

181,785 299,660
202,205 31t,920
167,382 328,711
258,018 352,763
203,168 282,835

668,323 1,147,282
457,252 934,120
445,880 802,732
851,204 1,304,502
547,770 926,403

Table2: Executionrates(events/sec)of fully connectedmodelof 256centralserverclusterswith
Pc = 0.99, p/ = 0.01. Fast job service rate is varied between 1 and 8; average number numt)er of

jobs per cluster is varied from 10 (light) to 1000 (heavy). Simulation is executed on 16, 64, and

256 processors of the Intel Touchstone Delta.

4.1 CP-PUCS vs CA-PUCS

Our earher studies of CA-PUCS and CP-PUCS (on an Intel iPSC/2) indicated that the CP-

PUCS overheads of managing multiple LPs and of internal pseudos between on-processor clusters

outweighed the advantages of increased opportunity for parallelism and avoidance of synchronous

appointment generation. Yet the data in the present study shows that this is not always true.

Consider Table 3 which gives the ratio of CP-PUCS rates to CA-PUCS rates, as a function of

problem characteristics and architecture size.

The overall trend is for CP-PUCS to outperform CA-PUCS, but there are still instances where

the reverse is true.

(load,#f) 16 Processors 64 Processors 256 Processors

(light, 1)

(heavy, 1)

(light,8)

(heavy,8)

1.37

1.19

1.10

1.18

1.25

0.95

1.11

1.35

1.05

1.08

0.68

0.81

Table 3: Ratio of CP-PUCS/CA-PUCS execution rates.

15

CP-PUCSandCA-PUCSdifferbothwith respectto aggregation,andwith respectto message
handling.As such,it is difficult to separatetile influencesof aggregationandcommunicationcosts.
Furthermore,the communicationcostswill dependon the underlyingarchitecture,aswell asthe
operatingsystem. Thereare at least four factors to take into consideration,whichsometimes
interact in a complexmanner.

An LP's executiontime-sliceis delimitedby communicationinstants. When#f = 8 the
uniformizationrate iseighttimeslarger,sothat thereareeighttimesasmanycommunication
instantsperunit time. An LP'sexecutiontime-sliceis muchshorter,sothat theoverheadof
switchingbetweenLPs issufferedeighttimesasoften.

In the lightly loadedexperiments(and thosewhere#] = 8), most communicationsreport
pseudoevents. Thus, whenCA-PUCSblocks,it usuallywaits for a communicationthat
doesn'taffectits state. Thereis thusnousefulpurposegainedby blocking,other than the
assuranceof logicalcorrectness.CP-PUCSis better ableto find and executeusefulwork,
whensuchworkexists.

As weincreasethe numberof processorswedecreasethe numberof clusterson a processor.
This increasinglylimits CP-PUCS'ability to find usefulworkthat CA-PUCScannotfind. Of
course,at 256processors,both CP-PUCSandCA-PUCSeachhaveoneclusterperprocessor,
andthusbehaveidenticallywith respectto synchronization.

CA-PUCShas a global step wheresynchronizationappointmentsare generatedand ex-
changed. Its performancewill thus be affectedby the efficiencywith which an all-to-all
exchangecan be performed, and by the frequency of this exchange. CP-PUCS has no corre-

sponding cost.

Let us examine performance with these factors in mind. On these experiments CP-PUCS tends

to perform better. Apparently, on this model, the scheduling and appointment generation advan-

tages outweigh CA-PUCS advantages. The difference between the two tends to diminish as the

number of processors increases, which is consistent with the fact that (i) the CP-PUCS scheduling

advantage gets smaller as a processor has fewer and fewer clusters, and (ii) in a CA-PUCS ap-

pointments exchange, essentially the same communication workload is spread over more network

hardware, reducing the frequency of collisions and blocking. Thus, as the number of processors in-

creases the CA-PUCS advantage diminishes and the CP-PUCS disadvantage diminishes. However,

there are clearly other factors at work, as the performance differences change neither smoothly nor

monotonically as the number of processors increase.

Our earlier comparison of CP-PUCS and CA-PUCS found CA-PUCS to be clearly superior.

One explanation is that the models studied are different in an important way. The earlier model

appends 10 "local clusters" of queues to every central server queue. In those studies, p_ = 0.0, and

a job leaving an I/O device can be routed either to another central server cluster (with probability

p_) or to one of its local clusters. Upon leaving the local cluster the job returns to the same

16

(load,tu) 16 Processors 64 Processors 256 Processors

(light, 1)

(heavy, 1)

(light,g)

(hea.vy,8)

1.0,5

1.00

1.02

1.01

1.10

1.10

1.20

0.90

1.19

1.99

1.02

1.16

Table 4: Ratio of (:I:'-PU(_S/OI)t-PU('S execution rates.

central server. This model provides another way of boosting the computation/conlnmnication

ratio, t)ecause a local cluster is always mapped to tile same processor as its parent central server

cluster. Our previous study varied tile probability pc_ of routing a jolt from one central server to

another one, on a different processor. As pc_ increases, CP-PUCS performance drops faster than

that of CA-PUCS, because CP-PUCS suffers increasingly from internal pseudo transitions between

a central server and its local clusters. The present set of experiments are somewhat kinder to

C,P-PUCS, as the level of interaction between co-resident LPs is much lower. It seems then that

the level of internal nniformization is the deciding factor between (;A-PU(_S and (:P-PU(?S. This

implies that close attention nmst be paid when partitioning a simulation model into LPs for PI,7(:S,

perhaps deciding which style of synchronization to use as a function of uniformization rates.

4.2 Whither Optimism?

These experiments offer clear insight into the potential of exploiting optimism in PI!(:S, because

the only substantive difference between CP-PUCS and Opt-PU('S is the optimistic processing.

Towards this end, Table 4 computes the ratio of CP-PUCS to Opt-PU('S execution rates.

The first thing we notice is that ('P-PU(?S tends to do a little better than Opt-PU(?S. Next

we notice is that the degree to which CP-PUCS does better tends to increase a.s the number of

processors increases. Indeed, for all practical tmrposes tile performance on 16 processors is identical;

yet at 256 processors, in one case CP-PUCS was nearly twice as fast a.s Opt-PUCS.

Explanations for this behavior are found by looking at tile costs suffered by executing ol)timisti-

tally, primarily event re-execution and state-saving. Table 5 computes the ratio of the number of

total events (excluding pseudos) executed to the number of events (excluding pseudos) committed.

One can also view this as the average number of times a non-pseudo event is executed. The table

also computes the average number of state-saves per committed non-pseudo event.

One thing clearly shown is that, in this example, the cost of saving the state of one central

server cluster (about 3000 bytes) is usually amortized over many events. Its effect on performance

must be negligible. Any significant differences between (:P-PUCS and Opt-PU(:S are related to

the cost of rolling back and re-executing events. Indeed, there is a direct correlation between high

event execution ratios and significant gaits between CP-PU(:S and Opt-PU(:S.

Since re-execution costs define the difference between CP-PU(:S and Opt-PlT(:S, it is si pie

17

Total/Committed Events Average State Saves/Event

(load,#f) 16 64 256 16 64 256

Processors Processors Processors Processors Processors Processors

(light,l)

(heavy, l)

(light,8)

(heavy,8)

1.11 1.19 1.68

1.03 1.40 2.10

1.01 1.06 1.34

1.01 1.04 1.27

0.008 0.010 0.027

0.001 0.002 0.007

0.060 0.100 0.017

0.004 0.015 0.041

Table 5: Overheads associated with Opt-PUCS.

to explain why the gap between them increases as the number of processors increases. On only 16

processors, many LPs are assigned are assigned to the same processor, and thus Opt-PUCS has a

good chance of being able to schedule a sure cluster. However, for a large number of processors there

are relatively few LPs on a processor. Without a large number of LPs, a processor quickly executes

its sure workload and is left to forge ahead optimistically. Apparently its optimism is frequently

misplaced, and significant fractions of events end up being resimulated. This effect is somewhat

lessened when there are many pseudo events, since in such cases the optimistic assumption that

the event is a pseudo event is in fact correct.

4.3 Adaptivity

Pseudo-events are the largest source of performance degradation in all versions of PUCS. Many

CTMC models have characteristics that cause the best upper bound on an external event stream's

transition rate to be very far from the stream's average transition rate. In our experiments fast

jobs appear infrequently, and one almost never sees more than 3 simultaneous fast jobs in a central

server cluster. Yet the uniformization bound must be based on the assumption that all servers are

busy with fast jobs.

Table 6 illustrates the sensitivity of each method to increased uniformization, by computing

the ratio of its execution rate using #f = 1 to its rate using #f = 8. This data shows clearly

that ACA-PUCS and ACP-PUCS are more tolerant of increased uniformization than are the other

methods (with the exception of ACP-PUCS using 256 processors). Similar observations held in

our previous study of ACA-PUCS that varied #f more widely, up to #] = 1024. Even at levels of

#f = 256, ACA-PUCS gives respectable performance while CA-PUCS performance has thoroughly

degenerated. We believe that any standardized version of PUCS must include adaptivity if it is to

work on a wide range of problems.

The relatively weak performance of ACP-PUCS surprised us, as we expected it to gain the

advantages of both scheduling flexibility, and adaptivity. We have reason to believe that its failure

to do so rests somehow with the Delta architecture and NX operating system, because these expec-

tations are meet using the Intel iPSC/2. Execution rates taken from a 16 processor configuration

18

Light Load HeavyLoad
Algorithm 16 64 256 16 64 256

Processors Processors Processors ProcessorsProcessors Processors
CA-PUCS
CP-PU('S
Ot)t-PUCS
ACA-PUCS
ACP-PUCS

1.50 1.66 1.47
1.86 i .87 2.28
1.80 2.05 1.96
1.07 1.20 1.16
1.23 1.14 1.26

1.34 1.37 1.37
1.34 1.25 1.g3
1.35 1.07 1.06
1.12 1.14 1.20
1.16 1.47 1.46

Table6: Ratio of #f = 1to #1 = 8 executionrates.

CA-PUCS
CP-PUCS

ACA-PUCS

ACP-PU(JS

light heavy light heavy

Fast Job Rate = 1 Fast Job Rate = 8

10,637 13,431

13,149 15,329

10,679 13,212

12,975 15,148

7,788 11,216

9,258 13,224

8,118 10,553

11,276 13,935

Table 7: Execution rates on 16 processors of Into] iPSC/2

are given in Table 7. We see that when #] = 1 ACP-PUCS gets very nearly the performance of

CP-PUCS (whose performance is best), while ACA-PUCS does not do as well owing to its basis in

CA-PUCS. Then, when #f = 8, ACP-PUCS becomes the best method over all.

Regardless of whether ACP-PUCS meets our expectations or not, it is evident that adaptiveness

offers performance gains for #f = 8, when the gap between the maximum and average external

transition rates increases.

5 Conclusions

This paper looked at the problem of parallelizing the simulation of continuous time Markov chains.

We showed how the notion of uniformization can be applied so that the simulation can be con-

ducted by essentially pre-computing an inter-LP synchronization schedule, and then simulating a

mathematically correct sample path through that schedule. This basic method is called PUCS.

We described five different PUCS variations, and examine performance on a parameterized model

designed to illustrate their respective strengths and weaknesses. The experiments were conducted

on the Intel Touchstone Delta multiprocessor, using 16, 64 and 256 processors.

The results of these experiments, taken in conjunction with others previously conducted, sug-

gest that an optimized PUCS algorithm ought to incorporate conservative synchronization, and

19

adaptiveuniformizationrates.Issuesof aggregationandcommunicationseemto bedependenton
thesimulationmodel,andunderlyingarchitectureand/or operatingsystem.Morework is needed
to fully understandthe complexrelationshipsbetweenthesefactors.Theperformanceweobserve
can often be quite good, depending on the problem characteristics. However, PUCS performance

is inescapably dependent on the number of pseudo-events, and every effort must be made to reduce

these.

While our experiments prove the promise of PUCS, some important issues remain open. We

have not yet addressed automated partitioning, nor automated load balancing, nor the effect one

has on the other. We intend to investigate these issues.

Acknowledgements

This research was performed in part using the Inte] Touchstone Delta System operated by Cal. Tech.

on behalf of the Concurrent Supercomputing Consortium. Access to this facility was provided by

the NASA Langley Research Center.

2O

References

[1]

[2]

[31

[41

[,5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

J.P. Buzen, "Computational Algorithms for Closed Queueing Networks with Exponential

Servers," Commun. ACM, vol. 16, no. 9, pp. 527-531, September 1973.

R.M. Fujimoto, "Parallel Discrete Event Simulation," Commun. ACM, vol. 33, no. 10, pp.

31-53, 1990.

K.J. Gordon, R.F. Gordon, J.F. Kurose and E.A. MacNair. "An Extensible Visual Environment

for Construction and Analysis of Hierarchically-Structured Models of Resource Contention

Systems," Management Science, vo]. 37, no. 6, pp. 714-732, June 1991.

D. Gross and D.R. Miller, "The Randomization Technique as a Modeling Tool and Solution

Procedure for Transient Markov Processes," Operations Research, vol. 32, no. 2, pp. 343-361,

March-April 1984.

P. Heidelberger and D.M. Nico], "Conservative Parallel Simulation of Continuous Time Markov

Chains Using Uniformization. IBM Research Report RC16780, Yorktown Heights, New York,

1991. To appear in IEEE Transactions on Parallel and Distributed Systems.

D. R. Jefferson, "Virtual Time," ACM Trans. on Programming Languages and Systems, vol.

7, no. 3, pp. 404 - 425, July 1985.

S.L. Lillevik, "The Touchstone 30 Gigaflop DELTA Prototype", Proceedings of the 1991 Dis-

tributed Memory Cbmputer Conference, IEEE Press, pp. 671-677, April 1991.

D.M. Nicol, "Parallel Discrete-Event Simulation of FCFS Stochastic Queueing Networks,"

Proceedings of the A CM/5"IGPLA N PPEA LS' 1988. Parallel Programming: Experiences with

Applications, Languages and Systems. ACM Press, pp. 124-137, 1988.

D.M. Nico] and P. Heidelberger, "Optimistic Parallel Simulation of Continuous Time Markov

Chains Using Uniformization", IBM Research Report RC17932, Yorktown Heights, New York,

1992. Submitted for publication.

D.M. Nicol and P. Heidelberger, "Parallel Simulation of Markovian Queueing Networks Using

Adaptive Uniformization", IBM Research Report RC18403, Yorktown Heights, New York,

1992. Submitted for publication.

R. Righter and J.V. Walrand, "Distributed Simulation of Discrete Event Systems," Procecdings

of the IEEE, vol. 77, no. l, pp. 99-113, January 1989.

S. Ross, "Stochastic Processes", John Wiley and Sons, New York, 1983.

D. West, Lazy Rollback and Lazy Reevaluation, M.S. Thesis, University of Calgary, January

1988.

21

| I _ O "_" _-f'._ "_'_ " 7

I REPORT DOCUMEI_ZT£,T1ON PAGE I _,,_ ,.. v-'.:,_._
I i.,

I ' } 2 _f#DlqT [_T_ [S REPORT TYPE AND D_,TES C.OVERED
r I AGENC_ USE ONLY ;,e,_v4 DiP,q* I

i November 1992 Contractor [eDqg _

i4. TITLE AND SUBTITLE

PARALLEL ALGORITHMS FOR SIMULATING CONTINUOUS

TIME MARKOV CHAINS

6. AUTHORIS)

David M. Nicol

Philip Heidelberger

7. PERFORMING ORGANIZATION r_AM_[S} AND ADDRESSIIS}

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S)AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

5 FUNDING NUMBERS

C NAS1-18605
C NAS1-19480

WU 505-90-52-01

E PERIORM_NG C.)RGANIZATIC)N

i REPORT NUMBER

fICASE Report No. 92-60

10. SPONSORING MONITORING
AGENCY REPORT NUMBER

NASA CR-189729

IICASE Report No. 92-60

11, SUPPLEMENTARY NOTES

Langley Technical Monitor:

Final Report

Michael F. Card

Submitted to the 7th Annual

Workshop on Parallel and Distri-

buted Simulation

12a. DISTRIBUTION,AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 61

12b. DISTRIBUTION CODE

1.t. ABSTRACT (Maxrmum 200 words]

We have previously shown that the mathematical technique of uniformization can serve

as the basis of synchronization for the parallel simulation of continuous-time

Markov chains. This paper reviews the basic method and compares five different

methods based on uniformization, evaluating their strengths and weaknesses as a func-

tion of problem characteristics. The methods vary in their use of optimism, logical

aggregation, communication management, and adaptivity. Performance evaluation is

conducted on the Intel Touchstone Delta multiprocessor, using up to 256 processors.

14. SUBJECT TERMS

Markov chains; parallel simulation; parallel algorithms;

queueing networks

17. SECURITY CLASSIFICATION l
OF REPORT IUnclassified

NSN 7S40-0 _ -280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

23
16. PRICE CODE

A03
19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF ABSTRACT

Standard Form 298 (Rev 2 89)
Pr_'scrqbed D_ _N_,_ CJlCl Z_-T_
29_ 102

NASA l,a.gley,]992

