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Introduction

For the first quarter of this research contract, we are going to report progress on the

following four Tasks (as described i:a the contract):

1. Fuzzy set-based decision making methodologies;

2. Feature Calculation;

4. Clustering for curve and surface fittin G

5. Acquisition of images.



Fuzzy set-based decision makin_ methodologies

In this section, we describe the general structure for networks based on fuzzy set

connectives which we are using for information fusion and decision making in Space

Applications. We describe the structure and training techniques for such networks

consisting of generalized means and "voperators. We are currently examining the use of

other hybrid operators in multicriteria decision making.

In complex computer vision systems, several sources of information (such as multi-

spectral color sensors, range sensors, stereo views, different algorithms, multiple expert

systems) are commonly employed in order to reduce the uncertainty and to resolve the

ambiguity present in the information derived from a single information source (such as an

intensity image). The advantages of multi-source fusion lie in redundancy,

complementarity, timeliness and cost of the information . Thus, there is a need for

methodologies that can aggregate inexact and incomplete information obtained from

multiple sources in order to make decisions. The decisions may be of various types. For

example, in segmentation based on region growing, one needs to decide if a homogeneity

criterion is satisfied; in edge-based segmentation one needs to decide whether an edge is

present or not; in object recognition, one needs to assign a class label to each object.

One can also formulate this problem as a multi-criteria decision making problem as

follows. The support for a decision may depend on supports for (or degrees of satisfaction

of) several different criteria, and the degree of satisfaction of each criterion may in turn

depend on degrees of satisfaction of other sub-criteria, and so on. Thus, the decision

process can be viewed as a hierarchical network, where each node in the network

"aggregates" the degree of satisfaction of a particular criterion from the observed support.

The inputs to each node are the degrees of satisfaction of each of the sub-criteria, and the



output is the aggregated degree of satisfaction of the criterion. Thus, the decision making

problem reduces to i) determining the structure of the network to be used, ii) the nature of

the connectives at each node of the network, and iii) computing the input supports (degrees

of satisfaction of criteria) based on observed features.

Fuzzy Aggregation Connectives

Fuzzy set theory provides a host of very attractive aggregation connectives for

integrating membership functions representing uncertain and subjective information. These

connectives can be categorized into the following three classes based on their aggregation

behavior: i) union connectives, ii) intersection connectives, and iii) compensative

connectives. Compensative connectives can be further classified into mean operators and

hybrid operators. In addition to these, there are also other types of operators such as the

OWA operators proposed by Yager, which are capable of modeling linguistic quanfifiers

such as "at least" and "at most". These will not be discussed in this report.

The Union Connective

The union connective has the property that the aggregated value is high whenever

any one of the input values representing different features or criteria is high. The most

popular union operator is the "max" operator. However, the max operator is the most

pessimistic of all union operators. If we want to be more optimistic, we need to consider

one of the many generalizations of the max operator. One such operator is the union

operator defined by Yager, and is given by

U(Xl,X 2 ..... x n) = min(1,(XlP+x2P+...+xnP)l/P). (1)

It can be shown that the range of this operator is between max(xl,r 2 .... ,Xn) and 1, and by

varying the value of p, we can achieve the required degree of optimi.qrL



The Intersection Connective

The intersection connective has the property that the aggregated value is high only

when all of the inputs are high. Several fuzzy intersection operators can be defined,

depending on the conditions that we would like the intersection to satisfy. The "min"

operator is by far the most popular intersection operator. However, the rain operator is the

most optimistic of all intersection operators. To allow for different degrees of pessimism,

one could choose any of the generalizations to the rain operator. For example, the

intersection operator due to Yager is given by

i(xl ,x2 ..... Xn) = 1- min[1,((1-Xl )-P+( 1-x2)-P+...+( 1-Xn)-P)-l/P)] . (2)

Varying the value ofp between 0 and _oo, we can achieve various de_,_es of pessimism.

Connectives with Compensatory Behavior

In many decision-making situations one is likely to take a position between the two

extremes of no compensation characterized by the intersection operators and of full

compensation characterized by the union operators. In applications such as multifactorial

evaluation (decision making based on several criteria), a certain amount of compensation is

desirable. In other words, one might be willing to sacrifice a little on one factor, provided

the loss is compensated by gain in another factor. For example, intensity and range

information may be mutually compensatory in some situations. Several compensative

operators have been proposed in the literature. These can be classified into two groups

depending to their origins: mean operators and hybrid operators. Mean operators are

defined through an axiomatic approach. Hybrid operators are defined as the weighted

arithmetic or geometric mean of a pair of conventional union and intersection operators.



Mean Operators and the Generalized Mean

As pointed out in, the mean operators are very effective in decision making when

the criteria are mutually compensable in nature. A mean operator m is a mapping m: [0,1] x

[0,1] _ [0,1] such that

i. m(a,b) > m(c,d) if a ___cand b _>d {monotonicity}

ii. min(a,b) _<m(a,b) < max(a,b).

Among the mean operators that satisfy the above properties are the weighted arithmetic

mean and the geometric mean. Another effective mean operator is the generalized mean first

proposed by Dujmovic and later by Dyckhoff and Pedrycz. It is def'med by

g(xl,x 2..... x ;p,w,,w 2..... ,,v) = t/___lW_X_/) . (3)

The wi's can be thought of as the relative importance factors for the different criteria where

Wl+W2+...+w n = 1. (4)

The generalized mean has several attractive properties. For example, the mean value always

increases with an increase in p. Thus, by varying the value ofp between -,,_ and +_, we

can obtain all values between min and max. Therefore, in the extreme cases, this operator

can be used as union or intersection. Also, it can be shown that p=- 1 gives the harmonic

mean, p=0 gives the geometric mean, and p=l gives the arithmetic mean. We have

suggested that one can also use the generalized mean to simulate linguistic concepts such

as "at least" and "at most" by choosing appropriate values for the parameters.



Hybrid Connectives and the _,-Model

The _,-model devised by Zimmermann and Zvsno is an example of hybrid

operators, and it is defined by

y = 1- (1- . where _=n and0<y_<l (5)
i=1 i=1

In (5), the x i _ [0,1] are the n inputs to be ag_megated, _3i represents the weight associated

with xi, and yis a parameter that controls the deglee of compensation between the union

and intersection parts. The dependence of v on the x i _.d the S i has been omitted for

convenience of notation. The _-model has been observed to v,rovide a close match to human

decision makers.

The _model has some very. attractive properties. I_ is a monotonically increasing

function with respect to xi and _, and hence (Xmin) n < y _< 1 - (1 - Xmax) n, where

Xmin = min(xl .... Xn) and Xmax = max(x: .... Xn). It is :o be noted that these limits

correspond to the "algebraic product" and the "algebraic sum" respectively. Since n _>2,

this property shows that the 7--model can behave boN as a union operator and an

intersection operator in addition to being a compensator?, operator, and its range will suffice

for many applications.



Learning the Structure and Parameters of Networks

Although two-layer networks (with one level aggregation functions) perform well

in simple situations, in more complex settings it becomes necessary to use a multi-layer

aggregation scheme. The aggregation and propagation of degrees of satisfaction of criteria

in hierarchical networks is not a difficult problem if the structure of the hierarchy is known

and if the type of connective to be used at each node in the hierarchy is known. Sometimes

this is the case. For example, in medical applications, the hierarchy of the symptoms and

the diagnoses are fairly well known. However, in most situations we may have only an

approximate idea of the structure of the hierarchy, the nature of the connective associated

with each node, and the relevant criteria (features) to be used. We show that optimization

procedures such as the gradient descent and the backpropagation algorithm can be used to

determine the proper type of aggregation connective at each node and its parameters, _ven

only an approximate structure of the network and given a set of training data that describe

the desired behavior of the agm-egation network in terms of inputs at the bottom-most level

and the outputs at the top-most level.

In a particular situation, the type of aggregation function to be used depends on the

(conjunctive, disjunctive or compensative) nature of the problem as well as the desired

(pessimistic or optimistic) attitude. In a previous paper, we described a method to

determine the nature and parameter values of the aggregation functions in a hierarchical

network when a mixture of all three classes of connectives are desirable. However, in this

report, we confine ourselves to networks that are entirely made up of either the generalized

mean or the ),-model. We believe that the flexibility and range of these two connectives

suffices for the type of applications we wish to consider. We now briefly describe the

learning procedure for these two cases.



Let usassumethattherearen inputs to the node, and the training data for this node

consists of N sets of inputs Xlk, •. ,Xnk with N corresponding desired outputs Yk (where

k= 1 .... N, and k denotes the set number). Each set represents a known situation (i.e., the

degrees of satisfaction of criteria and the corresponding decision made in that case). The

problem is to determine the best type of aggregation function and its parameters for this

node in such a way that the discrepancy between the desired and actual behavior is

minimized. One measure that is commonly used as discrepancy is the sum of squared

errors defined by

N

E = Z (fk- Yk )2" (6)
k=l

In the above equation, fk is the aggregation function evaluated at (xlk. • • ,Xnk).

t
Learning Using the Generalized Mean

In this case, From (3) and (4) we see that thefk can be written as

W

4+....

1/p

(7)

fk is written in this form so that the wi can be chosen free of the constraints in (4). We

initially set p and wi to 1. One can also choose them randomly. Then, we update the

weights using the following equations based on gradient descent. It is to be noted that the

generalized mean is well-behaved everywhere except at p=O where the derivative is inf'mity.



N ¾,_w oN _E oN X-"__
W i = W i - 1"_-- = W i - 2rl _---,(fk- Yk ) --

Owi k=l Owi
, i = i.... n, (8)

N ¾
p = p - rl" p - p -2rf2...,(fk-Yk)k=l _P

where r/and 77' are suitable positive constants and

(9)

bw i p _.,w_
(10)

)--- i_=l_w _klr_ik-f_"lnfP (11)ap p2

This process is repeated until there is no change in wi and p. This happens when bFlOwi = 0

and 3E/bp = 0, i.e., when a minimum of E is reached. We have shown that the solution is

unique under practical conditions, and hence the gradient descent procedure should

converge to the global minimum_ The choice of _ and 7/' is very important and it determines

the speed and reliability of convergence. Since we start with a mean aggregation function,

if the training data is better described by a union (intersection) operator, then the value ofp



will keep increasing (decreasing) and will not converge (i. e., will converge at +oo).

However, the procedure presented here can be modified to deal with such situations.

Learning Using the y-Model

The y-model can behave like a union operator or an intersection operator or a

compensation operator, depending on the value of )'. Since the y-model is continuous and

differentiable with respect to )'and _', we can again use gradient descent methods to arrive

at the values of ),and t$i that best match the given inputs and the corresponding desired

outputs. To eliminate the constraints on y and t_i in (5), we first modify the definition of )'

and _ as follows.

2 9
a nd7

t

}' - 2 b 2 and 5 i - ,,, d_. (12)
a + Z k

k=l

In (12), we can choose a, b and d i without any constraints and stii! satisfy the constraints

on ?" and ai" It is easily verified that

-- - v In ; -- - (13)
Oa 2" 2y In ,

a2+ b 2



- Y J (1-7) ln(xj/xt +7, [ Y2 t=l t

where

Y1= xi ; Y2=l- (1-x i) . (15)
i=1 i=1

Using the above partial derivatives, we can update the values of 7and Si to minimize the

discrepancy that reflects the error between desired values of aggregation Yk and computed

values fk =f(xlk, •. ,Xnk; ?',dl .. ,dm). We first update a, b, and d using

[
ot,¢ 3E _ a - 2 i, (16)

bneW= b °ld_ 71._O_g_= b °la_ 2 -Yk) , and (17)

ob _]



amw = _d r/' 0E
,I J _d.

J

= _Id_ 2r/' - Yk) .
g

(18)

new bnewThe partial derivatives in (16)-(18) are given in (13) and (14). From a , and

dfl ew, we can update the new values of 7and 8j using (12).

This training procedure can be extended to a general situation where there are

several nodes arranged in a hierarchical network. In this case, the training data normally

consists of input values at the bottom-most layer and the desired outputs at the top-most

layer. The extension can be done by using the backpropagation algorithm_

The time required for convergence of this algorithm tends :o be ve W large if it is

implemented using the simple backpropagation technique. There are several ways to

improve the speed of convergence. Also, a common disadvantage of all _adient descent

methods is that they may get trapped in a local minimum. However. we would like to note

that our training scheme does not necessarily have to use _adient des_nt methods. We

intend to use other optimization techniques such as the random search method or the

differential equation method to overcome the problems mentioned above.

Our goal in subsequent quarters is to design appropriate hierarchical decision

networks for segmentation, recognition, and pose estimation of Space Objects. These

networks will be fed by membership values generated from relevant featm'es and outputs of

low level vision algorithms mn on the images. They will be trained on sample images, and

tested with "unknown" data.



F¢at_re Calculation

Since we are in the early stages of collecting digital images of Space Objects, it is

somewhat premature to discuss the features which will be used in the aggregation networks

for object recognition and pose estimation. We have implemented numerous classical

features on image regions such as:

Gray level statistics;

Edge and curve primitives;

Texture measures from the cooccurance matrix;

Size and Shape parameters.

In addition, we have pioneered the use of several fractal geometric features which

may have a considerable impact on characterizing "cluttered" back_ound, such as clouds,

dense star patterns, or some planetary surfaces. Should range imagery become available,

we have also introduced several features (and algorithms) which utilize differential

geometric models.

As a natural result of using fuzzy clustering algorithms, we will be able to derive

experimental measures of the "goodness" of a particular feature set toward the problem at

hand. These experiments will be described in detail in a future report.



Clustering for Curve and Surface Fittin_

The best way to describe the new work in this task is to include a copy of a

manuscript recently submitted by Dr. Krishnapuram and two of the graduate students

supported by this contract to the IEEE Transactions on Neural Networks

The title of the paper is:

"The Fuzzy C-Shells Algorithm: A New Approach".

We are currently extending this work to clustering edge data into general quadratic

curves, as well as extending this approach to 3-Dimensional data sets( ie, surfaces).



Acqlfi_itign of Images

In June, the PI traveled to Houston (in conjunction with a joint trip with Bob Lea to

the MCC Fuzzy Systems Conference in Austin). While at NASA, meetings were held with

Drs. Lea, Pal, and Cleghorn about the availability and type of imagery to be used in the

project. This group also visited Dr. Richard Juday to discuss possible collaboration or at

least a sharing of data.

NASA personnel are in the process of acquiring suitable simulation data and

hopefully videotaped actual shuttle imagery. We have the capabifity in the Computer Vision

Lab. at MU to digitize directly from a standard VCR. While we are waiting for this real (or

simulated real) imagery, we have been digitizing photographs to use in our algorithms.

Also, we have assembled a model of the shuttle, and are constructing a mechanism to orient

this model in 3-D to digitize for experiments on pose estimation. Absolute perfection of

details for this work is less important than the knowledge of the actual pose parameters to

compare with the calculated estimates. As with the section on feature selection, more

detailed exposition of this task will be included in subsequent reports.



The Fuzzy C-Shells Algorithm:

A new Approach

Raghu Krishnapuram, Olfa Nasraoui, and Hichem Frigui

Department of Electrical and Computer Engineering

University of Missouri, Columbia, MO 65211

Abstract

The fuzzy C-Shells (FCS) algorithm is specially designed to search for clusters that can be

described by circular arcs, or more generally by shells of hyperspheres. In this paper, a new

approach to the FCS algorithm is presented. This algorithm is computationally and

implementationally simpler than other clustering algorithms that have been suggested for this

purpose. An unsupervised algorithm which automatically finds the optimum number of clusters is

also proposed. This algorithm can be used when the number of clusters is not known, and uses a

new cluster validity measure. Experimental results on several data sets are presented.



1. Introduction

Many fuzzy (andhard)clusteringalgorithmshavebeensuggestedandusedin theliterature

to partitiondataintoclusters.Thereis a wholeclassof clusteringalgorithmsin whichanobjective

function basedon a distancemeasureis iteratively minimizedto obtain thefinal partition. The

distancemeasurechosenand theobjective function beingoptimizeddependon the geometric

structureof theclusters.Differentdistanceshavebeeninventedto searchfor clustersof specific

shapesin the featurespace.For example,theK means algorithm, using the Euclidian distance,

looks for clusters that are hyperspherical in shape. Until recently it has been difficult to detect

clusters that can be described by circular arcs, or more generally by shells of hyperspheres. Dave's

[1,2] Fuzzy C-Shells (FCS) algorithm has proved to be successful in detecting such clusters, and

several impressive examples involving two-dimensional data sets are _ven in [1,2]. This algorithm

has also been generalized to the case of elliptical shells [3,4]. However the FCS algorithm is

somewhat implementationally complex since it requires the use of Newton's method to solve two

coupled nonlinear equations for the center and radius of each cluster in each iteration. Bezdek et al

have suggested a modification to this algorithm to reduce the computational burden due to the use

of Newton's method [5]. In this paper, we propose a new FCS algorithm to overcome this

problem. Unlike Dave's method, our method does not involve nonlinear equations. This makes

our algorithm straightforward, and more importantly, computationally more attractive. In addition,

we also propose an unsupervised algorithm to determine the optimum number of clusters C, when

this is not known. This unsupervised algorithm involves minimizing a new validity (performance)

measure called the total average shell thickness.

In section 2, we present the hard and fuzz3' versions of our C-Shells algorithm. In section

3, we introduce our new cluster validity measure and describe an unsupervised algorithm which

can be used to determine the optimum number of clusters when this is not known a priori. In

2



section 4, several examples of clustering using the proposed unsupervised algorithm are shown.

Finally, section 5 gives the summary and conclusions.

2. The C-Shells Algorithms

Let xj be a point in the feature space. We assume that each cluster resembles a

hyperspherical shell. Therefore, the prototypes ,i./consist of two parameters (c i, ri), where c i is the

center of the hypersphere and ri is the radius. We define the distance from xj to a prototype _i =

(Ci, ri) as

dij 2 = d2(xj,Zi) = (ll xj - c i II2- ri2) 2" (1)

Note that the right hand side of (1), when equated to zero, also gives the equation of the

hypersphere. In general, the closer xi is to the specific hypersphere, the smaller the distance will

be. Based on this distance measure, we now defme the hard and fuzzy C-Shells algorithms.

2.1 The C-Shells Algorithm : The Hard Case

We define the objective function to be minimized in this case, as

J (L) = Z Z d 2 ,
i=1 xfi ),i I

(2)

where L = (_1 ..... 2K), and K is the number of clusters. In order to minimize the objective function

in (2), we rewrite the distance in (1) as

4 =PT_ pi+vTpi +_'

where

b.= (x xj) 2 vj =2(x xj)yj, yj= ,

E

-2 c i

Mj T T 2=yj yj, and pi = ci ci_ri

Therefore,

(3)



K

J (L) = _-_ ___ (pT h_ Pi + T Pi + bj ). (4)
i=I xje _i

We may assume that the vectors Pi are independent of each other. Hence, the vectors Pi that

minimize (4) must satisfy

]_ (2MjPi + 0.xj_ Zi _ ) =
(5)

If we define

Hi= xj_2i Mj, and wi= xj_;t't _' (6)

from (5) we obtain
1 -1

Pi = 2 (Hi) wi (7)

The resulting Hard C-Shells (HCS) algorithm is summarized below.

THE HARD C-SHELLS (HCS) ALGORITHM:

Fix the number of clusters K;

Set iteration counter l = 1 and initialize the hard K-partition;

Repeat

Calculate H. (1) and w. (!) for each cluster using (6);
l l

Compute pi (l) for each cluster using (7);

Classify xj into cluster 2i if d2zj < 2dkj, for all k _ i;

Increment l;

Until ( IIp(l-I ) p(l) [I < e);

2.2 The C-Shells Algorithm : The Fuzzy case

For the fuzzy case, we minimize the following objective function:
K N

= _J1 _'_ (JZiJ)m d2"J (L,U) i= j=l iJ"
(8)

In (8) N is the total number of feature vectors, and U = [/,t/j ] is a K x N matrix called the fuzzy

K-partition matrix [6] satisfying the following conditions:

4



K N

#/j e [0,1] for all i and j, _1 _ij = 1 forallj, and0< _1 btiJ <N foralli.i= j=

_ij is the grade of membership of the feature point xj in cluster &i, and m e [1,oo) is a weighting

exponent called the fuzzifier. As in the hard case, it is easy to show that the vectors Pi that

minimize (8) are given by (7), where
N N

Hi= _1 (#iJ )m = _1 (11iJ )mJ= Mj, w i J= vj, (9)

and vj and Mj are given by (3). Following Bezdek's theorem for the fuzzy C means [6], it can

be shown that the memberships will be updated according to

where Ik

Jlik =

E I] ¢ ;*--*
K 2

! j= 1 _djkl

0 i_ I_ if I_¢

_1 i e Ik if I_: _ _ (10)

= {i I 1 < i _ K, 4k = 0 }. The resulting Fuzzw C-Shells (FCS) algorithm is summarized

below.

I

THE FUZZY C-SHELLS (FCS)ALGORITHM:

Fix the number of clusters K; fix m, 1 < m < 0%

Set iteration counter I = 1

Initialize the fuzzy K-partition U(°);

Repeat

Calculate Hi(l ) and w.(l_) for each cluster )Li using (9);

ComputePi(l) for each cluster )4 using (7);

Update U (!) using (10);

Increment 1 ;

Until ( II U (I-1) - U (l) II < c);

Both the hard and fuzzy C-shells algorithms require the inversion of the matrix H/. This is quite

trivial when the feature space is two-dimensional or three-dimensional. In the hard case, the

inverse will exist if there are at least n+l non-collinear points in each cluster, where n is the

5



dimensionality of the feature space. In the fuzzy case, theoretically the inverse will always exist as

long as N > n+ 1 and the feature vectors am not colliner.

3. Determination of the Optimal Number of Clusters

The algorithm discussed in Section 2 assumes that the number of clusters K is known,

when this is not the case, one method to determine the optimal number of clusters is to perform

clustering for a range of K values, and pick the K value for which a suitable performance measure

is minimized ( or maximized ). We define a new performance ( or cluster validity ) measure called

the total average shell thickness as follows.

In the hard case, the total average shell thickness is defined as
K

_1 1 _ (llxj- c i II- ri)2 (11)
Th(K): i: -_i xj ;-i

where N i is the number of points in cluster Ai • In the fuzzy case, the total fuzzy average shell

thickness is defined to be

K

Tj(K) =
i=1

Z #_(llxj- cill - ri) 2
j=l

N

Z
j=l (12)

Thus, to find the optimum number of clusters, one can start with K = 1, and keep

incrementing K while calculating T(K) after each run of the FCS algorithm, and stop as soon as a

local minimum of T(K) is found (or K reaches Kmax). However, this simple method sometimes

finds a solution in which some of the circular or hyperspherical shells are split into two or more

subclusters (usually when K is larger than the actual number of clusters). Therefore, merging back

all compatible clusters into one cluster is necessary. Two clusters _.i and Xj are considered

compatible if

IIc i-_ll<e 1 and IIr i-rjll<_2 (13)

When minimizing the validity measure for a range of K values, sometimes the algorithm

finds a few small spurious clusters. These spurious clusters frequently arise due to noise points.

6



Suchtiny clustersarenotcompatiblewith anyof therestof theclusters,andhencemergingcannot

correct this problem.To eliminatesuchspuriousclusterswhich containtoo few points,we just

discard the prototypes for the small clusters, and rerun the algorithm (after decrementing K by the

number of tiny clusters), using the remaining prototypes as the initial guesses (i. e., skip the first

two steps inside the Repeat loop of the C-shells algorithms). This forces the points belonging to

the spurious clusters to be reassigned to the best-fitting clusters. This procedure is repeated until no

more elimination takes place. The unsupervised algorithm that finds the optimum number of

clusters taking into account the problems mentioned above, is summarized below.

THE UNSUPERVISED C-SHELLS ALGORITHM:

Set K= 1; fixm, 1 <m <o%

local rain = false;

While K < Kmax and local min = false do

Initialize the fuzzy K-partition U(°);

Perform the C-Shells algorithm with the number of clusters = K;

Store the final K prototypes;

Calculate T(K) as given by (11) or (12);

If T(K-1) is a significant local minimum Then

local rm'n = true;

K_optirnal = K- 1;

Else

K=K+ 1;

End If

End While

Merge compatible prototypes among the K_optimal protot-ypes and update K_optimal;

Update U using new prototypes and (10)

Do

Eliminate tiny clusters and decrement K_optimal accordingly;

Perform the C-Shells algorithm with the new K_optimal;

Until No More Elimination Takes Place

7



4. Experimental Results

Although the algorithms presented in the previous sections are applicable to feature spaces

of any dimension, we present only results of two-dimensional data sets here. We found that the

HCS algorithm is much faster than the FCS algorithm, but performs well only when the data set is

"clean". This is because the HCS algorithm has a higher tendency to get stuck in local minima, and

sometimes it terminates abruptly due to the occurrence of singular matrices. Therefore, the HCS

algorithm is not very robust, and we do not present the results of the HCS algorithm in this paper.

In all the examples shown in this paper, the FCS algorithm was applied with the fuzzifier

m = 5. Smaller values did not yield good results. This may be because we initialize the fuzzy

partition matrix U with the fuzzy C means algorithm [6] which does not yield a good partition of

the clusters, particularly in the case of overlapping or concentric circles. By malting the partitioning

as fuzzy as possible, it is possible to disentangle the overlapping clusters from each other using the

FCS algorithm. The value of el and 62 used was 2 (see Eq.(13)).

The data sets were artificially generated, and had between 50 and 200 feature points.

Uniformly distributed noise with an interval of 3 was added to the feature point locations so that

they do not always lie exactly on the ideal circles. In addition, noise points were added at random

locations to some of the data sets. Any cluster with less than 5 points was considered a spurious

cluster.

The first example consists of two concentric circles contaminated by a few noise points.

This is an example where conventional clustering methods fail miserabIy. The unsupervised FCS

algorithm stops at K = 3, after finding a local minimum in the total fuzzy average shell thickness

performance measure Tf(K) at K = 2. The plot of Tf(K) versus K is shown in Fig. l(a). In this

case, no merging or small-cluster elimination was required, and the final result is shown in Fig.

1(b). The values of T/(K) beyond K = 3 were obtained by expressly letting the algorithm run, even

though it actually stops at K = 3. The bold line in Fig. l(a) depicts the actual running path of the

8



algorithm. It canbeseenthatthereareotherlocalminima atK = 5, 7, and 9. At these values, the

partition is still acceptable and a final value of K = 2 would have been obtained after merging

compatible clusters and eliminating tiny clusters. However, the algorithm is designed to stop as

soon as the first local minimum is detected to eliminate unnecessary running time. As seen in Fig.

l(b), the two concentric circles are correctly classified, and the noise points are assigned to the

closest cluster.

Fig. 1(c) shows T/(K) versus K for the data set in Fig. l(d) ("the crying baby"). This is a

very difficult example because the clusters have wide-ranging radii, and the outer cluster

completely encloses all the remaining clusters. Thus, a truly global search for clusters is required,

which can be achieved only by a relatively large m (=5). Again, the bold line in Fig. l(c), depicts

the actual running path of the algorithm which sto_s at K = 8 (as soon as it detects a local minimum

at K = 7). At this point, the algorithm merges two compatible clusters into one cluster, and

reclusters the data set using the protot3_es obtained after merging as the initial guesses. In this run,

one tiny cluster is eliminated, and the remaining 5 prototypes are used as the initial values. This

forces the few points belonging to the tiny cluster to be assigned to the remaining clusters. The

final result is K = 5, as shown in Fig. 1(d).

Four more examples are shown in Fig 2. Fig 2(a) shows the result of clustering two

semicircles contaminated by noise. This example shows that the algorithm is successful even when

only parts of circles are present. Fig. 2(b) shows the results of clustering three overlapping circles

contaminated by noise, and Fig. 2(c) shows the clustering of five sparsely sampled overlapping

circles. These are both very difficult cases, because the circles are truly entangled, and the initial

partition is quite wrong. Fig. 2(d) shows the result of clustering the face of "Smiley". The CPU

time required on a Sun 4 workstation to run the unsupervised algorithm ranged from 8 s to over

100 s, depending on the complexity of the data set. The plain FCS algorithm typically takes only a

few seconds.

9



5. Conclusions

In this paper, we introduced a new approach to the Fuzzy C-Shells algorithm, which seeks

clusters in hyperspherical shells. This algorithm does not involve solving coupled nonlinear

equations, and hence is implementationally more attractive than other clustering algorithms that

have been suggested in the literature for this purpose. We also presented an unsupervised C-shells

algorithm which automatically finds the optimum number of hyperspherical clusters when this

information is not known. The unsupervised algorithm is based on minimizing a new validity

measure called total average shell thickness. Experimental results on a variety of data sets

demonstrate that the algorithms are effective.
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List of Figures

Figure 1:

(a) Plot of total fuzzy average shell thickness vs number of clusters for two concentric

circles, (b) result of the Unsupervised FCS Algorithm, (c) Plot of total fuzzy average shell

thickness vs number of clusters for "the crying baby", and (d) result of the Unsupervised

FCS Algorithm.

Figure 2:

Results of the Unsupervised FCS Algorithm (a) for two semicircles, (b) for three

overlapping circles, (c) for five sparsely sampled circles, and (d) for "Smiley".
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