
6

NASA Technical Memorandum 105993

ICOMP-92-27; CMOTT-92-14

A Realizable Reynolds Stress Algebraic
Equation Model

Tsan-Hsing Shih and Jiang Zhu

Institute for Computational Mechanics in Propulsion

and Center for Modeling of Turbulence and Transition

NASA Lewis Research Center

Cleveland, Ohio

and

John L. Lumley

Cornell University

Ithaca, New York

(NASA-TM-I05993) A REALIZABLE

REYNOLDS STRESS ALGEBRAIC EQUATION

MODEL (NASA) 36 p

N93-16596

llnc I a s

0139889

Prepared for the

Ninth Symposium on Turbulence Shear Flows

Kyoto, Japan, August 10 -18, 1993 /',"/ * * \@.2
/ _.1 ,,.i, _,,.,©_ _ 2_

\_._,..-,=,,/oe
\%X "- _----_° /

https://ntrs.nasa.gov/search.jsp?R=19930007407 2020-03-17T09:30:13+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42809851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




A REALIZABLE

REYNOLDS STRESS ALGEBRAIC EQUATION MODEL

Tsan-Hsing Shih and Jiang Zhu

Institute for Computational Mechanics in Propulsion

and Center for Modeling of Turbulence and Transition

NASA Lewis Research Center

Cleveland, Ohio 44135

John L. Luraley

Corneli University, Ithaca, New York 14853

Abstract

The invariance theory in continuum mechanics is applied to analyze

Reynolds stresses in high Reynolds number turbulent flows. The anal-

ysis leads to a turbulent constitutive relation that relates the Reynolds

stresses to the mean velocity gradients in a more general form in which

the classical isotropic eddy" viscosity mode/is just the linear approximation

of the general form. On the basis of realizabLlity analysis, a set of model
coeffidents are obtained which are functions of the time scale ratios of the

turbulence to the mean strain rate and the mean rotation rate. These

coefficients will ensure the positivity of each component of the turbulent

kinetic energy -- realizability that most existing turbulence models fail to

satisfy. Separated flows over backward-facing step configurations are taken

as applications. The calculations are performed with a conservative finite-

volume method. Grid-independent and numerical diffusion-free solutions

are obtained by using differencing schemes of second-order accuracy on suf-

ficiently fine grids. The calculated results are compared in detail with the

experimental data for both mean and turbulent quantities. The compar-

ison shows that the present proposal significantly improves the predictive

capability of K-e based two equation models. In addition, the proposed

model is able to simulate rotational homogeneous shear flows with large

rotation rates which all conventional eddy viscosity models fail to simulate.



1. Introduction

Numerics] simulation of turbulence is a bottleneck in the development of compu-

tational fluid dynamics (CFD). The approach of direct numerical simulation (DNS)

without any turbulence models is restricted to simple end low Reynolds number

flows within the capabilities of current computers. A compromise to DNS is the

large-eddy simulation (LES) approach in which the large scales of turbulence are di-

rectly computed end the small scales are modeled. LES, though applicable for high

Reynolds number turbulence, is usually very expensive and has serious problems

with boundary conditions. Some of these difficulties also exist in DNS. Therefore,

most practical calculations at the present time are based on averaged Navier-Stokes

equations with the aid of turbulence modeling.

In turbulence modeling, unknown turbulent correlations are expressed in terms

of determinable flow quantities with the aid of empirical information. According to

the way the Reynolds stresses (the second-order moment correlations) are treated,

turbulence models may be divided into two groups: the Reynolds stress algebraic

equation models and the Reynolds stress transport equation models. The former

group includes the zero-, one- and two-equation models (Rodi, 1980) in which the

Reynolds stresses are algebraically related to the mean flow field. The eddy vis-

cosity K-e two-equation model (Launder and Spalding, 1974) in this group is one

of the most popular turbulence models used today in practical flow calculations.

In the latter group, often called second-order closure models, the Reynolds stresses

are determined by their own dynamical transport equations. Second-order closures

are attractive because they can simulate the transport of the individual Reynolds

stresses; however, it is difficult to consistently model all the higher-order turbulent

correlations appearing in these second moment dynamical equations. Inappropriate

modeling of higher order correlations (often due to lack of information about their

underlying mechanism) could result in a serious inaccuracy and unphysical results.

In the standard K-e model, all the model coefficients are constant and axe de-

termined from a set of experiments for simple flows under equilibrium or isotropic

turbulence conditions (Rodi, 1980). Numerical experience over the last two decades

has shown that this set of constents has a broad applicability, but this by no means

signifies that they are universal. Rodi (1980) found that the K-e model's ability to

predict weak shear flows can be significantly improved by using C_ as a function of

the average ratio of Pie (P is the production of the turbulent kinetic energy) instead

of a constent. Leschziner and Rodi (1981) proposed a function for C_ which takes

into account the effect of strearaline curvature and obtained improved results in the

calculation of annular and twin parallel jets. Recently, Yakhot and co-workers have



developeda versionof the K-_ model using renormalization group (RNG) methods.

Their model is of the same form as the standard K-e model, but all the model coef-

fidents take different constant values. In the latest version of the RNG based K-e

model (Speziale and Thangam, 1992), the coefficient C1, related to the production

of dissipation term, is set to be a function of 71, where 17 is the time scale ratio

of the turbulent to mean strain rate. In applying this model to a separated flow

over a backward-facing step, experimentally studied by Kim et M. (1978), Speziale

and Thangam obtained a good prediction of the reattachment length which is an

important parameter often used to assess the overall accuracy of calculations.

The standard K-_ model (including the RNG based one), like many others in the

algebraic equation model group, uses Boussinesq's isotropic eddy-viscosity concept

which assumes that the Reynolds stresses are proportional to the mean velocity

gradients. The concept usually does well for the shear stresses in two-dimensional

mean flows of the boundary-layer type, but not well for the normal stresses due to

the erroneous isotropic nature of the concept. This suggests that linear dependence

on the mean velocity gradients is insufficient and that a more general relation is

needed for more complex flows. In fact, by eliminating the convection and diffusion

terms in the modeled transport equations for the Reynolds stresses, Rodi (1980)

developed an algebraic stress model (ASM) in which the Reynolds stresses are cal-

culated by algebraic expressions. Owing to its anisotropic nature, the model does

perform better than the isotropic K-e model for certain flows; a well known example

is fully-developed flow in non-circular ducts where ASM is capable of generating

turbulence-driven secondary motions while the isotropic eddy viscosity K-e model is

not. However, ASM does not appear in a tensorial invariant form, which may limit

its generality. In addition, inappropriate modeling of higher order correlations, such

as pressure-strain correlations, will also cause deficiencies of the second-order clo-

sure based ASM. Moreover, special care needs to be taken to prevent the turbulent

normal stresses from becoming negative (Huang and Leschziner, 1985), and the nu-

merical implementation of ASM may even be more complicated than that of its

parent second-order closure model, especially in general three dimensional flows.

Recently, this numerical difficulties of ASM was first nicely resolved by Taulbee

(1992).

There are other approaches to developing Reynolds stress algebraic equation mod-

els. For example, Yoshizawa (1984) derived a relation for the turbulent stresses using

a two-scale direct interaction approximation. It contains both linear and quadratic

terms of the mean velocity gradients. A similar relation was also derived recently by

Rubinstein and Barton (1990) using Yokhot and Orszag's RNG method. An inter-

esting point in these two methods is that the values of the model coefficients can all



be determined analytically. Speziale (1987) proposed a different expression, based

on the principle of material frmne-indifference, which contains the Oldroyd deriva-

tive of the mean strain rates. However, the principle of material frame-indifference is

only valid in the limit of two-dimensional incompressible turbulence, hence it is not

an appropriate constraint for general turbulent flows. In addition, these non-linear

models are not fully realizable and have not been extensively tested.

The purpose of the present study is to develop a general and realizable Reynolds

stress algebraic equation model with the method of rational mechanics. As usual,

we assume that the Reynolds stresses depend on the mean velocity gradients, the

turbulent velocity and length scales, then a constitutive relation for the Reynolds

stresses is derived by using the invariance theory. The final form is truncated up

to tensorial quadratic terms of the mean velocity gradients. Using the realizability

conditions, the coefficients in the obtained relation are found to be at least functions

of the time scale ratio of the turbulence to the mean strain rate. In general, they

are also functions of the time scale ratio of the turbulence to the mean rotation rate.

The model validation is made on the basis of applications to the rotational ho-

mogeneous shear flows simulated by Bardina eta/. (1983) and the two backward-

facing step flows experimentally studied by Driver and Seegmiller (1985) and Kim

eta/. (1978). The latter type of flows has served as a benchmark in validating

turbulence models for complex flows. Calculations are carried out with a conser-

vative finite-volume method, and a second-order accurate and bounded differencing

scheme, together with sufficiently fine grids, is used to ensure that the solution is

both grid-independent and free from numerical diffusion. The calculated results

are compared in detail with experimental data as well as with those obtained using
standard K-e model.

2. Modeling of Reynolds Stresses

Incompressible turbulent flows are governed by the following Reynolds averaged

continuity and Nsvier-Stokes equations:

= o (1)

v',,,+ - + = _r,,2
P

(2)



where Ui are the mean velocity components (i = 1, 2, 3), p is the mean pressure, v

and p are the fluid kinematic viscosity and density, Ui,, and U_j are derivatives of Ui

with respect to time t and co-ordinate zj, respectively, uiuj is the turbulent stress

tensor which must be modeled.

The oldest and simplest proposal for modeling the turbulent stress is Boussi-

nesq's isotropic eddy-viscosity concept that assumes an analogy between the viscous

stresses in laminar flows and the turbulent stresses in turbulent flows. The general

form of this concept is

2

_iu$ = -_K 61j - 2vtSij (3)

where vt is called the eddy-viscosity and Sij is the mean strain rate defined by

1U,
Sij = _( ,j + Uj.,) (4)

Equation (3) constitutes a common basis for most turbulence models that are

extensively used today.

2.1 Constitutive relation

Does a general constitutive relation exist for turbulent correlations? Lumley

(1970) discussed this problem and found that such relations exist only under the

situation in which the length and time scales of turbulence are much smaller than

those in the mean flow field so that the effect of initial and boundary conditions

on the turbulence is not significant far from the wall. In other situations such as

rapidly developing mean flows or in the vicinity of walls, it is questionable whether

there exists such a constitutive relation for any turbulent correlation; however, from

practical point of view, we can formally derive a "constitutive" relation for any

turbulent correlation to solve the closure problem. The validity of such a formally

derived relation needs, of course, to be verified with the aid of experiments.

A turbulent constitutive relation, if it exists, is always of functional form. From

a modeling point of view and for convenience of application, we neglect the time

memory effects in the relation and consider the relationship at the present time as the

first order approximation in the time expansion of the functional form. Therefore, we

assume that the turbulent stress uluj is a function of the mean deformation tensor

Uij, the velocity and length scales of turbulence characterized by the turbulent

kinetic energy K and its dissipation rate e, i.e.,

(5)
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Note that the molecular viscosity v is not included because we restrict our attention

here only to high Reynolds number turbulent flows.

The axguments of equation (5) contain ten quantities bearing two dimensions.

According to the lr theorem of dimensional analysis, they may be grouped into eight

independent non-dimensional quantities:

By normalizing the turbulent stress as

(6)

m

uiuj

vivj- 2--K" (7)

equation (5) can be written as

= (8)

The form of the tensor valued isotropic function F_j can be determined by using

invaxiance theory (Lumley, 1978). The basic principle is that an invariant can only

be a function of other invaxiants. In determining a set of independent invariants, we

have shown in Appendices A and B (also see Shih, 1992) that only 18 independent

tensors can be formed with the tensor _,j and its transpose _,i according to the

generalized Cayley-Hamilton relations. Following Lumley (1978), let A_ and Bj be

two non-dimensional arbitrary vectors, we may form th, _. following 18 invariants:

I_,j.V_2,hA_B_, V_hVj,_.A, Bj, V_,,Vh_A, Bj, Vh2,V_.jA, Bj,

In addition, we have other invariants:

(9)

5_A_B_, A_AI, BiB, I, II, III, ...

where I, II, HI are the three invarlants of the tensor ]_j:

(10)



I "- V/,i

1 V_
Zl : _(_,d jj- _,j_,_) (11)

111 = l(_,,Vj,jVk,k -- 3_,,_,h_a + 2V,j_,_,,)
3.

and -.. represents the invaria_ts of other 17 tensors, for example, _j_j.

Note that in the above llst of invariants we do not include _,z_.kV;_jAiBj and

higher order terms of this type because they are not independent quantities according

to the Cayley-HamUton theorem:

V_.tV_.kVh.j - I. V_.kVkd + II. V_.j - IIl&j = 0 (12)

Any other possible terms, for example, Vk.iVk.lV,,,.tV,,.iAiB j, are also not indepen-

dent, hence they will not be included.

However, the invariant list can be extended by including any combination of

invariants in (9) and (10), for example,

VI,jAiBj" f1(1, 1I, III, V_aVid, ...)
(13)

V_,kV_,.jA,Bj..f2(I, II, Ill, Vi_iV_,i, ...)

where .fa and .f2 are scalar functions. Of course, these types of invariants are not in-

dependent, but they are useful in explaining why the coefficients in the final relation

(16) are, in general, functions of various invariants of the tensors in question.

As a result, the invarlant _-_jAiBj may be written as a function of the above

invariants listed in (9), (10) and ( 13):

v-_AiBj : f(Vi,jAiBj, VLIAiB j, Vi,hVhjAiBj, Vj,kVh,iAiBj,

l_,hVj,_a_Bj, VksVk,jA,B_, V_._Vj_A_Bj,

Vi2k Vj,j, AiBj, Vk,iV_jAiBj, V_iVk,jAIBj,

VI,,Vo, VlyiAIBi, Viyk_AiBj, K'.,%A, Bj,

Vk,i Vh,i Vj21Ai B j , Vh,i V_l Vj_l Ai B i , V_,_, Vlyk VI_ AI B j ,

2 2
v,,,,v,, _v,,., v_,.,A,B_, V_,V_,V,.,,,V,.a.4,_,

6_jA_B_, A_A_, B_B_, I, 11, 111, V_,jV_._, ...,



V,jA, Bjf,, •..) (14)

Because vTv'jA_Bj is biline_r in axbitrary tensors At and Bj, we must require that

the right hand side of equation (14) be also bilinear in At and Bj. Therefore,

equation (14) can be reduced to

_A_Bj = a16tjAtBj + a2VijA_Bj + asVj._A_Bj

+a4V_.h VhjAtBj + asVj.k Vk.iA4Bj + aeV_,h Vj,kAiBj

+a,V_.,V_aA,B_+ asV,._Vj_A,B_+ _.V,;_Vj,hA,Bi

+a,oVk,tV_,2_liBj + axx Y_t vc'haAtBj + aa2Vi.h Vz,h Vl_AiBj

+ax, V_2_,Vj2,I,AI B, + ax,t Vi,',tV_,b AtB , + a,s VI,., V_,.zVj2,A, Bj

+axeVh.t Vh_ Vj?tAtBj + aI,V_j, V_2_,VI_AtB j

2 2
+alsV_a, VI,J,E2,,, Vj_,,,AtBj + a_t Vi.t Vi_ V,,a V,,,.jAtB_

Noting that At and B_ are the arbitrary vectors, we obtain

(15)

= a_sq + a,v,a + _sD,t + a,v,a,v_a + ,,,,v_a,v_,,+ a_v,,_,v_a,

_t-al2Y/,ky/,hy/_ .._ al3Vi_/_ _ .31- al4Yk',tYk',j 9ff al,Yk,tYk,1521

-_- a l S gk,i V:l g_2 ! --_ G , , Vi,& gl2h Vl2 j 3v a l S gi,_, Vl,I, Vl2rn _?ra

+,,, v,:, v...,v...j (16)

where the coefficients al - an, are, due to (13), functions of the invariants I, II,

III, V_jV_j ..., i.e.,

ai = It(I, lI, III, V_iV_z, ...), i= 1,2,..-,19 (17)

Equation (16) is a general relationship between two second rank tensors.
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The normalized turbulent stresses _ have two properties

and

_;vj = vjv; (18)

v_v_ = 1 (19)

Using the properties of (18) and (19) in equation (16), we obtain the following

relations:

aS = a2_ aS = a4_ a9 : as_ Qll = QlO

where

a12 : QlS = a16 =" a17 : 0-18 "--- a19 : 0

-g 1 = [1 -- 2a,I - 2a4D - (a6 + aT)b - 2(as + alo)/_ - (als + al,)b]

(20)

D = VIjVj., , b = V_jVI.j , b = V_jVI_j , b = V_jV_d=3 (21)

After introducing equations (20) into (16) and converting to the dimensional

form, we obtain

where

n = U;,jUj,,,

K= 2 62K,_,j+ 2a2--(U_.j + V'_., _U,., ,.j)tti_t j = 3

K s 2

+2_4-_-(u,._u_+ uj.ku_.,- gnu,j)
K s 1-

÷2ae--_--(U,.kUj.k - gn6,_)
K s

÷ 2a.t--_-( Uk.iUhj - _ IISij )

K 4 2 :

+2as--_-(Ui,kU1j . q- U_hUj,k -- gIISij)

K 4

+2alo---_(Uk.,Ul5 + U_jU_., 2:-gnu, j)

_k2als_s (U_U_ _ 1:

K 4 1--

q-2al4--_-(U_,iU_, j -- giI_ij)

_I = u,,w,,j , fI = v,_v2,j , fi = u.:.u.:.,_,,_,

(22)

(23)
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Equation (22) is the most general relationship between _ and U_j under the

assumption (5). Interestingly enough, the first five terms at the right-hand side

of equation (22) axe of the same form as those derived through both the two-

scale direct interaction formalism (Yoshizawa, 1984) and the renormallzatlon group

method (Ruhinstein and Barton, 1990). The fact that the three different theoretical

analyses lead to a similax result indicates the rationality of equation (22).

In practice, however, a quadratic tensorlal form of (22) may be sufficient, espe-

clally when [JU_jJiK/e is less than unity (which is true if the turbulent time scale is

smaller than the time scale of mean flow). Therefore, from now on, we only consider

the quadratic form of equation (22).

2.2 Realizability

Reallzability (Schumann, 1977, Lumley, 1978), defined as the requirement of

the non-negativity of turbulent normal stresses and Schwarz' inequality between

any fluctuating quantities, is a basic physical and mathematical principle that the

solution of any turbulence model equation should obey. It also represents a minimal

requirement to prevent a turbulence model from producing unphysical results. In

the following, this principle will be applied to the constitutive relation (22) to derive

constraints on its coefficients.

Consider a deformation rate tensor of the form

U1,1 0 0)
0 U2,2 0

0 0 0

The continuity equation (1) gives

(24)

U2,2 -= -U1,1

and from equation (22), the normal stress _ can be written as

(25)

ulu---_ 1 KUI,_ 1 ( KUI,_ _ =2K - 3 + 2a2--e + _(2a4 + a6 + aT). /e (26)

Since the time scale ratio of the turbulent to the mean strain rate is defined by

where

KS
= -- (27)

S = (2S_jSij) I/= (28)

10



equation (26) can further be written as

2K - 3 -4-827/+ (284 -4-ae -4- aT)T/= (29)

Physically, we know that _ will decrease by a vortex stretching with an increase

in U1,1, but _ cannot be driven to negative values. Therefore, we must require

that

UI_I

2K

_1R1

> 0, if 0 < T/< oo (30)

2K
, 0, if 7/--. oo (31)

ulul
,,. _ 0, if 7/--,oo (32)

These are called the realizability conditions. They can be satisfied in various ways

of which the simplest way is perhaps the following:

2/3
2G 2

A1 +_/

284 =
/(7)

C.2
2as -

/(7)

G'.3
287 --

/(7)

where f(T/) is in general a polynomial of _/ of order higher than 2.

simplest form as

(33)

(34)

(35)

(36)

We take its

f(¢) = A2 + _s

A1,A_,G.I,G.2 and C.3 are adjustable constants, but they must satisfy

(37)

A1 > 0 , A2 > 0 ,

(38)
2C'_1 -4- C,-2 + C',-s > 0

Similar analysis on _t2u2 and _ also leads to equations (33) to (38). It should

be mentioned that equations (33) to (38) also hold for a three-dimenslonal pure

strain rate tensor

11



UI,I 0 0 1
0 U,, O (39)
0 0 Us,s

and that any deformation rate tensor can be written in the form of (39) in the

principal axes of deformation rate tensor.

It can be seen from the above analysis that realizabillty cannot be fully satisfied

if the model coefficients are taken as constant, such as those in the standard K-e

model and in the recent anisotropic models of Speziale (1987), Yoshizawa (1984)

and Rubinstcin and Barton (1990). In fact, these models satisfy reallzability only

in the weak sense, that is, they only ensure the positivity of the sum of the normal

Reynolds stresses.

Further constraints on the mode] coei_cients can be obtained by considering the

deformation rate tensor

0 UI.= 0)
0 0 0

0 0 0

which corresponds to a fully-developed channel flow. In this case, we have

(40)

UlUl

_2_2

_3_3

= 2K ,/'K C_s)
3 + 3(A, + ,f) (2C_, -

2 .'K

= ] K + 3(A_-__ s)(2C's - c.2
)

2 _'K

= _K 3(A2 +_7 s)(C_2+ C_s)

2,1K

3(A1 -I-_7)

(41)

where

Experiments indicate that

KS

E
s = = lUl,=l (42)

UlUl >

u2u2 <

which requites, from equation (41), that

2

2
(43)

12



C,_2 > 2C_s (44)

2.3 Rotation effect

The parameter _7 represents the effect of the mean strain rate, and the effect of

the mean rotation rate can be r _presented by _:

- _, 12 = f_j = (U,.j - Uj,,)/2 + 4emjlwm (45)x- ij ijJ '
t:

where w,_ represents the rotation of the frame.

In the present study, we find that it is sufficient to simply include the paxameter

only in the coefficient a2, i.e.,

2/3
2a2 -- (46)

A1 + r/+ _

while keeping the other coefficients the same. The dependance of the coefficients on

T/and _ can be easily justified by equation (17).

2.4 Realizable algebraic equation model

By introducing equation ( 33)-(37) into equation (22), we obtain

2g_ - v,(U,,j+ Uj,_)

C-rl K s-t A2 + 77a _ (U,.kUko + U.i:,Uk,, - II6,j)

U., K s 1 (47)

C.s K s 1 -

-eA,+ ,? : (Uk,iUk,_--_u&j)

Two quantities, the turbulent kinetic energy K and its dissipation rate e, remain to

be determined in equation (47). To this end, the two transport equations in the

standard K-e model are used which read:

K: + [U.iK - (!., + _)Kj]j = P - e
_r K

//t _ _2

_.,+ [u:- (v + _)_.j]._= c,-_P- c_-_

(48)

(49)

13



where
g 2 2/3 (50)

C_,= A_ +_+a_

P = --u, uiUi J (51)

The coefficients C1,C2,o'K and _ assume their standard values:

C1 =1.44, C2=1.92, ag=l, _,=1.3

and the additional coefficients assume:

(52)

C,1=-4, C,2=13, C,3=-2, A1=1.25, _=0.9, A2--1000. (53)

These values have been found to work well for both test cases considered in this

work.

3. Rotating Homogeneous Shear Flow

The present model is able to mimic the effect of the mean rotation rate on the

turbulence. A test case is the rotating homogeneous shear flow which was studied

by Bardina eta/. (1983) using the LES method. Figure 1 is the configuration of

the flow being tested. Figures 2(a - c) show the evolution of the turbulent kinetic

energy K/Ko with the nondimensional time, St, at the rotation rates of f_/S =

0, 0.5, -0.5 respectively, where K0 is the initial turbulent kinetic energy, S is the

mean strain rate and f2 is the rotation rate of the reference frame. The calculations

were performed with a fourth order Runge-Kutta scheme. The initial condition

corresponding to the isotropic turbulence used in LES with eo/(SKo) = 0.296 was

adopted for all the three cases. The results from both the present model and the

standard K-e model (hereafter referred to as s-K-e) are compared with LES results

in figures 2(a - c). It can be seen that at fI/S = 0 the present model cannot

predict the initial nonequilibrium development of turbulent kinetic energy very well

starting from an isotropic turbulence. However, it does catch up with the later

"equilibrium" development and performs much better than the s-K-e model which

highly overpredicts the data. Figures 2(b) and 2(c) show the ability of the present

model to simulate the effect of the large rotation rate on turbulence. Note that the

s-K-e model gives the same results as for the no rotation case because it cannot

account for the effect of rotation on the evolution of turbulence.

14



4. Backward-Facing Step Flows

4.1 Numerical procedure

For computational convenience, the non-dimensional form of the governing equa-

tions is solved, in which

z_ U_ p

<x'>=r,,---7' <u'>-u,,,' <P>=pu2,----7'

K _L,, l ut
< K >= _ < e >- < vt >=

u2, ' u2,t' V,,jL,,s

(54)

where < > refers to a non-dimensional quantity, and L,et, and U, et are the reference

length and velocity, respectively. Accordingly, the flow Reynolds number is defined

by

Re- L,,tU, ej (55)
12

Hereafter, all the quantities will be of the non-dimensional form so that < > will be

dropped for simplicity.

In the steady-state and two dimensional cases (zx = z,xz = y), the transport

equations (1), (2), (48) and (49) can be written in the following general form

1 v_ 1 12t

[u¢- + + [v¢ - + = s. (56)

where ¢ stands for 1, U(= U1), V(= U2), K and _. For the momentum equations,

the source term S, includes the cross-derivative diffusion and quadratic velocity

gradient terms arising from equation (47). It can be seen that the non-dimensional

equations axe all of the same form as their dimensional counterparts, except that

the kinematic molecular viscosity 12 is replaced by l/Re.

The numerical method used to solve the system of equations (56) is a finite-

volume procedure. It uses a non-staggered grid with all the dependent variables

being stored at the geometric center of each control volume (Figure 3). The mo-

mentum interpolation procedure of Rhie and Chow (1983) is used to avoid spurious

oscillations usually associated with the non-staggered grid, and the pressure-velocity

coupling is handled with the SIMPLEC algorithm (Van Doormal and Raithby, 1984).

To ensure both accuracy and stability of numerical solution, the convection terms

are approximated by a second-order accurate and bounded differencing scheme (Zhu,

1991a), and all the other terms by the conventional central differencing scheme. As
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a result, the discretized counterpart of equation (56) can be cast into the following
lineexized form

A_¢e = A_¢_+ Sc (57)
i

where the coefficients At (l = W, E, S, N), which relate the principal unknown ¢c

to its neighbours _bE(Figure 3), result from the discretization of the left-hand side

terms of equation (56). The convection scheme used ensures that AI __ 0 so that

the resulting coefficient matrix is always diagonally dominant. The strongly implicit

procedure of Stone (1968) is used to solve the system of algebraic equations. The

iterative solution process is considered converged when the maximum normalized

residue of all the dependent variables is less than 10 -4 . The details of the present

numerical procedure are given in Rodi eta/. (1989) and Zhu (1991b).

4.2 Numerical results

The present model is then applied to the two backward-facing step flows exper-

imentally studied by Kim, Kline and Johnston (1978) and Driver and Seegmiller

(1985), from here on referred to as KKJ- and DS-cases, respectively. Figure 4

shows the flow configuration and the Cartesian co-ordinate system used. Table

1 gives the flow parameters for both cases; here the experimental reference free-

stream velocity U,e! and step height H0 are taken as the reference quantities for

non-dimensionalization.

Table 1. Flow parameters

case Re $ L, L_ 11. Hd U.S
DS 37423 1.5 10 40 1 8 1

KKJ 44737 0.6 10 40 1 2 1

Three types of boundaries are present, i.e. inlet, outlet and solid wall. At the

inlet, the experimental data are available for the streamwise mean velocity U and

the turbulent normal stresses _ and b"_. K is calculated from these _-_ and _'_ with

the assumption that

1

_-_ = _(_ + _) (58)

and e by

C_I4KSl2
e = L ' L = min(0.41Ay, 0.0856) (59)
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where Ay is the distance from the w_ll and 5 is the boundary-layer thickness given

in Table 1. At the outlet, the streamwise derivatives of the flow variables are set

to zero. Influences of both inlet and outlet conditions on the solution are examined

by changing the locations Lo and Le, and it has been found that in both cases,

the distances given in Table 1 are already sufficiently far away from the region of

interest. In the earlier stage of this work, we tested severa] low Reynolds number

K-e models including those of Chien (1982), Lam and Bremhorst (1981), Launder

and Sharma (1974), Shih and Lumley (1992), and Yang and Shih (1992), but none

of them was found to be able to yield satisfactory solutions. Similar findings were

also reported in Avva eta/. (1990), Shuen (1992) and So and Lai (1988). Therefore

in this work, we use the standard wall function approach (Launder and Spalding,

1974) to bridge the viscous sublayer near the wall.

Two sets of non-uniform computational grids are used to examine the grid depen-

dence of the solution; they contain 110x52 (coarse) and 199x91 (fine) points for the

KKJ-case and 106x56 (coarse) and 201x109 (fine) points for the DS-case. Figures

5(a) and 5(b) show the friction coefficient C! at the bottom wall calculated with the

s-K-e model and the present model; also included in figure 5(a) are the experimental

data for the DS-case, but no such data are available for the KKJ-case. It can be

seen that the grid refinement does produce some differences for the results of the

present model, more noticeable in the KKJ-case, and this is also the case for the

s-K-e results. This indicates that the solutions obtained on the coarse grids are not

sufficiently close to the grid-independent stage. Recently, Thangam and Hut (1991)

have conducted a highly-resolved calculation for the KKJ-case. They have found

that quadrupling a 166x73 grid leads to only a minimal improvement. Therefore,

the present results on the fine grids can be considered as grid-independent. For the

DS-case, the fine grid computations with the s-K-e and present model required 703

and 805 iterations, and took approximately 7.1 and 8.3 minutes of CPU time on the

Cray YMP computer. In the following, only the fine grid results are presented.

The wall friction coefficient C! is a parameter that is very sensitive to the near-

wall turbulence modeling. It is Cy that the various low Reynolds number K-e models

tested predict much worse than those using wall functions. However, the influence

of the near-wall turbulence modeling is only restricted in the near-wall regions. It

is seen from figure 5(a) that both the s-K-e and present model largely underpredict

the negative peak of Cy, pointing to limited accuracy of the wall function approach

in the recirculation region.

The computed and measured reattachment points are compared in Table 2. They

are determined in the calculation from the point where Cy goes to zero. Also included

in Table 2 are the result of Obi et a/. (1989) obtained with the Reynolds stress model
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(RSM) and that of Sindir (1982) with a modified algebraic stress model (ASM). The

reattachment point is a critical parameter which has often been used to assess the

overall performance of turbulence models as well as numerical procedures. Table 2

dearly demonstrates the significant improvement obtained with the present model.

It is important to mention that this improvement is mainly due to the behavior of

O, in the present model, and that the anisotropic behavior of the turbulent stresses

only makes a marginal contribution to it.

Table 2. Comparison of reattachment points
case experiment s-K-e present model RSM ASM

DS 6.1 4.99 5.82 5.66

KKJ 7 4-0.5 6.35 7.35 6.44 -

Figures 6(a) and 6(b) show the comparison of computed and measured static

pressure coefficient C_ along the bottom wall. In both cases, the s-K-e is seen to

predict premature pressure rises, which is consistent with its underprediction of the

reattachment lengths, while the present model captures these pressure rises quite

well. The good predictions of C_ were reported in both works of Obi et a/. (1989)

and Sindir (1982), using the RMS and ASM. The results of the present model are

almost comparable to those of the RSM and ASM. Again, the improved predictions

of C_ are mainly attributed to the variation of C,.

The streamwise mean velocity U profiles are shown in figures 7(a) and 7(b) at four

different cross-sections. Here, the differences between the results of the s-K-e and

present model are not substantial, as compared to other flow variables. The present

model predicts reverse flows better than the s-K-e, but results in somewhat slower

recovery in the vicinity of the reattachment point. Interestingly enough, such a slow

recovery also exists in the RSM prediction of Obi eta/. (1989). Further downstream,

say at z-20 in figure 7(a), the results of the two models nearly coincide with each

other.

Finally, the comparisons of predicted and measured turbulent stresses u 2, v 2 and

u--Oare shown in figures 8 and 9 at various z-locations. In the KKJ-case, no ex-

perimental data for the turbulent stresses are available in the recirculation region,

and the reattachment point was found in the experiment to move forward and back-

ward continuously around seven step heights downstream of the step, leaving an

uncertainty of 4-0.5 step height for the reattachment length. This also points to

some uncertainty in the measured turbulent quantities in the recovery region. On

the other hand, the experimental data in the DS-case should be considered more

reliable because of the smaller uncertainty of the reattachment location, indicating

a smaller unsteadiness of the flow. As compared with the s-K-e results in figures
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8 and 9, it can be seen that the anisotropic terms increase u s while decreasing v 2,

leading to significant improvements in both u s and v 2 results. On the other hand,

the anisotropic terms have little impact on the turbulent shear stress _-_. These

behaviours are clearly reflected in equations (41) which also hold qualitatively for

the flows considered here. The improvement obtained by the present model in figure

8 for _T is due to the reduction in Cu.

5. Conclusions

A constitutive relation for the turbulent stresses has been derived by using invari-

ance theory. The relation is valid only for turbulent flows at high Reynolds numbers

because the influence of the molecular viscosity has not been taken into account in

the analysis. Being a second rank tensor, the general form of the turbulent stress

can be expressed as a s, ries, in terms of the mean velocity gradients, of order up

to 4, while the classical eddy-viscosity representation constitutes only a first-order

approximation. For practical calculations, it may suffice to use the quadratic ap-

proximation. The model coefficients are functions of the time scale ratios r/ and

_, which ensure the positiveness of the turbulent normal stresses - a realizability

condition that most existing turbulence models are unable to satisfy. The present

model has been applied to calculate the two different flows: rotating homogeneous

shear flows and backward-facing step flows. The calculated results show that all flow

variables are sensitive to the variation of C_, and that only the turbulent normal

stresses are sensitive to the terms containing nonlinear mean velocity gradients. The

values of the model coefficients given in this paper seem quite appropriate for both

the test cases, but the vaiue of C¢1 related to the cross-derivative quadratic terms

has little impact on the flows considered. This indicates that C_1 may be further

calibrated against other flows. The computed results have been compared in detail

with the LES data for rotating homogeneous shear flows and the experimental data

for backward-facing step flows. The comparisons show that the present model does

provide significant improvement over the standard K-e model, and this improvement

is achieved at an insignificant penalty to the computational efficiency and algorith-

mic simplicity of the latter. The present model can also be expected to work well

for simple inhomogeneous shear flows, as evidenced by its improved prediction in

the region far downstream of the reattachment point where the flow tends to be of

simple parabolic nature.

19



Acknowledgements

The authors are grateful to Dr. Aaralr Shabbir for his calculations of the rotat-

ing homogeneous shear flows and for may helpful suggestins and discussions. The

contribution of J.L. Lumley was supported in part by Contract No. AFOSR 89-

0226, jointly funded by the U.S. Airforce Office of Scientific Research (Control and

Aerospace Programs), and the U.S. Office of Naval Research, and in part by Grant

No. F49620-92-J-0038, funded by the U.S. Airforce Office of Scientific Research

(Aerospace Program).

References

.

*

.

.

m

.

.

R.K. Awa, C.E. Smith and A.K. Singhal, 1990, "Comparative study of high

and low Reynolds number versions of K-e models", AIAA paper 90-0246.

J. Bardina, J.H. Ferziger and W.C. Reynolds, 1983, "Improved turbulence

models based on large-eddy simulation of homogeneous incompressible turbu-

lent flows." Rept. No.TF-19, Stanford University, Stanford, Ca.

K.Y. Chien, 1982, "Predictions of channel and boundary-layer flows with a

low-Reynolds-number turbulence model", AIAA J., Vol.20, pp.33-38.

D.M. Driver and H.L. SeegmiUer, 1985, "Features of a reattaching turbulent

shear layer in divergent channel flow", AIAA J., Vol.23, pp.163-171.

P.G. Huang and M.A. Leschziner, 1985, "Stabilization of recirculating-flow

computations performed with second moment closures and third order dis-

cretization', Proceedings of the 5th Svraposium on Turbulent Shear Flows,

Cornell University, pp.5.19-5.24.

J. Kim, S.J. Kline and J.P. Johnston, 1978, "Investigation of separation and

reattachment of a turbulent shear layer: Flow over a backward-facing step",

Rept. MD-37, Thermosciences Div., Dept. of Mech. Eng., Stanford Univer-

sity.

C.K.G. Lam and K. Bremhorst, 1981, "A modified form of K-e model for

predicting wall turbulence", J. Fluids Eng., Vol.103, pp.456-460.

2O



8. B.E. Launder and B.I. Sharma, 1974, "Application of the energy-dissipation

model of turbulence to the calculation of a flow near a spinning disk", Letters

in Heat and Mass transfer Vol.1, pp.131-138.

9. B.E. Launder and D.B. Spalding, 1974, "The numerical computation of tur-

bulent flows", Cornput. Meths. App. Mech. Eng., Vol.3, pp.269-289.

10. M.A. Leschziner and W. Rodi, 1981, "Calculation of annular and twin parallel

jets using various discretization schemes and turbulence model variations", J.

Fluids Eng., Vol.103, pp.352-360.

11. J.L. Lumley, 1970, "Toward a turbulent constitutive relation." J. Fluid Mech.,

Vol.41, pp.413-434.

12. J.L. Lumley, 1978, "Computational modeling of turbulent flows", Adv. Appl.

Mech., Vol.18, pp.124-176.

13. S. Obi, M. Peric and G. Scheuerer, 1989, "A finite-volume calculation pro-

cedure for turbulent flows with second-order closure and co-located variable

arrangement", Report. LSTM 276/N/89, Lehrstuhl ffir StrSmungsmechanik,

Universit _it Erlangen-Nfirnberg.

14. R.S. Rivlin, 1955, "Further remarks on the stress deformation relations for

isotropic materials", J. Arch. Ratl. Mech. Anal., Vol.4, pp.681-702.

15. C.M. Rhie and W.L. Chow, 1983, "A numerical study of the turbulent flow past

an isolated airfoil with trailing edge separation", AIAA J., Vol.21, pp.1525-

1532.

16. W. Rodi, 1980, "Turbulence models and their application in hydraulics - A

state of the art review", Book Publication of the International Association for

Hydraulic Research, Delft, the Netherlands.

17. W. Rodi, S. Majumdar and B. SchSnung, 1989, "Finite-volume method for two

dimensional incompressible flows with complex boundaries", Cornput. Meths.

App. Mech. Eng. , Vo1.75, pp.369-392.

18. R. Rubinstein and J.M. Barton, 1990, "Nonlinear Reynolds stress models and

the renormalization group", Phys. Fluids A 2, pp.1472-1476.

19. U. Schumann, 1977, "Realizability of Reynolds stress turbulence models",

Phys. Fluids, Vol.20, pp.721-725.

21



20.

21.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

T.H. Shih, 1992, "Remarks on turbulent constitutive relations." to appear in

NASA TM.

T.H. Shih and J.L. Lumley, 1992, "Kolmogorov behavior of near-wall turbu-

lence and its application in turbulence modeling". NASA TM 105663, also in

Int. J. Comput. Fluid Dynamics, Vol.1.

J.S. Shuen, 1992, Private communication.

M. Sindir, 1982, "Numerical study of separating and reattachin8 flows in a

backward-facing step geometry", Ph.D. Thesis, University of California at

Davis.

R.M.C. So and Y.G. Led, 1988, "Low-Reynolds-number modelling of flows over

a backward-facing step", J. Appl. Math. Phys. (ZAMP), Vol.39, pp.13-27.

C.G. Speziale, 1987, "On nonlinear K-1 and K-e models of turbulence", J.

Fluid Mech., Vo1.178, pp.459-475.

C.G. Speziale and S. Thangam, 1992, "Analysis of an RNG based turbulence

model for separated flows", NASA CR-189600, ICASE Report. No.92-3.

H.L. Stone, 1968, "Iterative solution of implicit approximations of multidimen-

sional partial differential equation", SIAM J. Num. Anal., Vol.5, pp.530-558.

D.B. Taulbee, 1992, "An improved algebraic Reynolds stress model and corre-

sponding nonlinear stress model", Phys. Fluids A, Vol.4, No.ll, pp.2555-2561.

S. Thangam and N. Hur, 1991, "A hlghly-resolved numerical study of turbulent

separated flow past a backward-facing step", Int. J. Eng. Sci., Vol.29, pp.607-

615.

J.P. Van Doormal and G.D. Raithby, 1984, "Enhancements of the SIMPLE

method for predicting incompressible fluid flows", Num. Heat Trans., Vol.7,

pp.147-163.

Z. Yang and T.H. Shih, 1992, "A new time scale based K-e model for near

wall turbulence", NASA TM 105768.

A. Yoshizawa, 1984, "Statistical analysis of the deriation of the Reynolds stress

from its eddy-viscosity representation", Phys. Fluids, Vol.27, pp.1377-1387.

J. Zhu, 1991a, "A low diffusive and osciUation-free convection scheme",

Comm. App. Num. Methods., Vol.7, pp.225-232.

22



34. J. Zhu, 1991b, "FAST-2D: A computer program for numerical simulation of

two-dimensional incompressible flows with complex boundaries",

Rept. No.690, Institute for Hydromechanics, University of Karlsruhe.

23



Appendix A

Generalized Cayley-Hamilton Formulas

Rivlin (1955) showed that there are several generalized Cayley-Hamilton formulas

relating matrices (product of several matrices A, B, C ...) of higher extension to

matrices of lower extension. Some of them are listed here for latter use.

ABC + ACB + BCA + BAC + CAB + CBA - A(trBC - trB trC)

-B(trCA - trC trA) - C(trAB - trA trB)

-(Be + UA)trA - (CA + AC)trB - CAB + BA)trC (A.1)

-l(tt"A trB trC - trA trBC - trB trCA

-$rC trAB + trABC + trCBA)= 0

Repl_ing C with A and B in Eq.(A.1), respectively, we obtain

ABA=-A_B - BA _ + A(trAB - trA trB)

1

+_ B(trA z - trA trA) + (AB+ BA)trA + A_trB (A.2)

1

+I[trA2B - trA trAB + _trB(trA trA- trA2)]

sad

BAB=-B_A - AB 2 + B(trBA - trB trA)

+21 A(trB2 _ trB trA) + (BA + AB)trB + B_trA (A.3)

1

+X[trB'A - trB t BA +  t A(t B t B- trB )]

which i_dieate that the matrices ABA and BAB of extension 3 can be expressed

by polynomials of matrices of extension 2 or less.
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Multiplying Eq.(A.2) from the leftand the right by A and Eq.(A.3) by B, and

adding them correspondingly,we obtain followingtwo relations:

ABA 2 + A2BA = ABA trA+ A 2 trAB + A(trASB - trA trAB)

-B detA + l detA trB

(A.4)

and

BAB s + BsAB = BAB trB + B s trBA + B(trB2A - trB trBA)

-A detB + I detB trA

(A.5)

Replacing B with B 2 in Eq.(A.4) and A with A s in Eq.(A.5) give

ABSA s + AsB_A = ABsA trA + A s trAB s

+A(trA=B _ - trA trAB s)- B s detA + I detA trB s

(A.6)

and
BA2B 2 + BsAsB= BAsB trB + B s trBA s

+B(trBSA s - trB trBA s)- A s detB + I detB trA s

Replacing B with B 2 in Eq.(A.2) and A with A s in Eq.(A.3) yield

(A.7)

AB2A=-A2B s - BSA 2 + A(trAB 2 - trA trB s)

1
+_ BS(trA = - trA trA) + (ABS+ BSA)trA + A=trB s

+I[trA2B 2 - trA trAB _ + ltrB2(trA trA- trA2)]
_5

(A.8)

and

BA2B=-B=A s - A2B 2 + B(trBA s - trB trA s)

1

+2 A'(trBS - trB trA s) + (BA' + A=B)trB + B2trA s

1 2
+I[trBSA 2 - trB trBA 2 + _trA (trB trB - trBS)]

(A.9)

Eqs.(A.8) and (A.9) indicate that the matrices AB2A and BASB of extension 3 can

be expressed by polynomials of matrices of extension 2 or less. Therefore, the right

hand sides of Eqs.(A.6) and (A.7) are also polynomials of matrices of extension of

2 or less.
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Appendix B

Number of Independent Tensors Formed by Two Tensors

Let us show that the number of independent tensors formed with two general

tensor A sad B is 18.

Rivlin (1955) showed that Luy m,_trlx product in two 3 x 3 matrices may be

u a polynomial in these matrices of extension 4 or less. Suppose we have

a m_trix product II of extension 5:

This cam be written as

II = ABASB2A (B.1)

II-- ACA (B.2)

where C = BA=B=. From Eq.(A.2), II may be viewed as a polynomial of matrices

in A m_l C of extension 2 or less. C itself is a matrix in A and B of extension

3 so that II may be expressed by a polynomial in A and B of extension 4 or less.

Therefore, we only need to consider the possible tensors of extension 4 or less formed

byA ud B.

We may show that there are only two independent tensors of extension 4. The

possible tensors of extension 4 are the following 8 tensors:

ABA=B 2, BAB2A 2, A2BAB =, B2ABA 2,

(B.3)
AB2A_B, BA_B2A, A2B=AB, B2A2BA.

With Eq.(AA), A=BAB= can be expressed by ABA_B = ÷ .... Similarly, with

Eq,(A.5), B=ABA= = -BAB2A = + ...; with Eq.(A.7), AB=A=B = -ABA2B =

+ ...; with Eq.(A.6), BA2B2A = -BAB2A 2 + ...; with Eqs.(A.5) and (A.4),

A=B2AB - ABA_B = + ...; with Eqs.(A.4) and (A.5), B_A=BA = BAB=A= ÷ ...;

where ... represents L polynomial in A and B of extension 3 or less. As a result,

only two tensors of extension 4 in Eq.(B.3) are independent, and we select them as

ABA2B 2, BAB_A _ (B.4)
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Now we show that there are only four independent tensors of extension 3. The

possible tensors of extension 3 are the following 8 tensors:

ABA 2, A2BA, BAB _, B2AB, AB2A 2, A2B_A, BA2B =, B=A=B. (B.5)

Using Eqs.(A.4), (A.5), (A.6) and (A.T), we find that only four of them are

independent. Let us select them as

ABA 2, BAB 2, AB2A 2, BA2B 2. (B.6)

Furthermore, there are eight independent tensors of extension 2:

AB, BA, AB=, B_A, A2B, BA 2, A2B _, B=A= (B.7)

and four independent tensors of extension 1:

A, A s, B, B 2. (B.8)

Therefore, we have proved that only 18 tensors can be formed independently by

two general tensors.
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Figure 9. Turbulent stress profiles in KKJ-case.
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