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Continuous filament grid-stiffened structure I 1] is a stiffening concept that combines struc-
tural efficiency and damage tolerance, ttowever, finite element design of such structures against
buckling is expensive due to the complexities of the structure. An analytical model of such a
structure is developed using a penalty method (artilicial springs) with a First Order Shear De-
formation theory. The buckling analysis under combined loading is done using Energy method
with a penalty/Rayleigh-Ritz technique. The penalty/Rayleigh-Ritz approach is computationally
less demanding when compared to the finite element solution and mesh generation.

Apart from the published research works on buckling of stiffened plates and shells by finite
element and finite strips, research works on buckling of stiffened plates and shells utilize three
different approaches, smeared, column, and discrete approaches, The discrete approach [21
considers the discrete effects of the stiffeners in the buckling behavior by modeling stiffeners as
line of bending (El) and torsion (G J) stiffnesses on panel skin. Some local deformations are lost
when stiffeners are modeled as (El) and (G J) stiffeners. This approach becomes difficult in the

ease of plate stiffened in more than two directions. Most of the work done using the discrete
approach involved the Classical Plate Theory (CLPT) rather than the FSDT. In the remaining
part of this abstract we report on our formulation of a discrete approach coupled with a penalty
formulation and FSDT.

The displacement field for a cylindrical shell according to First Order Shear Deformation

theory (FSDT, also called Reissner-Mindlin Plate Theory ) are

u = uo + z¢_, v = v. + z¢_, w = wo(x,y)

where uo is the membrane axial displacement, v0 is the membrane circumferential displacement.
w is the out of plane displacement. ¢_, q/y are the cross-sectional rotations.

The critical loading is determined on the basis of the principle that during buckling the
elastic strain energy stored in the structure is equal to the work done by the applied loading. The

internal strain energy, the external work done and the total potential energies are expressed as
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The following approximate representation of the displacement field are used.
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The approximating functions satisfy simply supported boundary conditions. General boundary
conditions are realized by intrcxtucing a low order global finite element shape functions.

The discrete form of the internal elastic energy and external work done are expressed as
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We verified our curved panel code by analyzing the stability of an anisotropic cylindrical
panel. The cylindrical panel is not stiffened. The panel is 30.0 in, long and 28.82 in, wide
in the circumferential direction with a radius of 40.0 in. This panel was sized by VICON to

carry 1000 labs/in axial load. The analysis of this panel using our code gave a buckling load
of 900.12 labs/in while the stability analysis by VICON predicted a 984 lbs/in for the buckling
load. Our conservative estimate stems for the fact that we have included shear deformation in

out energy formulation above ..................

We introduce the penalty formulation to connect generally oriented stiffeners to the skin of

a given fuselage. The internal elastic energy of each stiffener is added to the internal elastic
energy of the skin of the fuselage. The skin and stiffeners compatibility is enforced by using
stiff springs (penalty functions). The total potential energy of a generally stiffened structure can

be written symbolically as

where II, [li, oq, and fi are the total potential energy, potential energy of each structure, penalty

functions (artificial springs), and functional constraints, respectively. The total potential energy
is then minimized for a specific value of the m's. The approximate stability load is obtained

by minimizin_ the total potential energy after choosing a suitable functional expansion of each
component ot the displacement field.
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