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Summary

A detailed analysis of the accuracy of several techniques
recently developed for integrating stiff ordinary differential
equations is presented. The techniques include two general-
purpose codes, EPISODE and LSODE, which were developed
for an arbitrary system of ordinary differential equations, and
three specialized codes, CHEMEQ. CREKiD, and GCKP84,
which were developed specifically to solve chemical kinetic
rate equations. The accuracy study is made by applying these
codes to two practical combustion kinetics problems. Each
problem describes adiabatic, homogencous, gas-phase chemical
reactions at constant pressure and includes all three combustion
regimes: induction, heat release, and equilibration. To
illustrate the error variation in the different combustion
regimes, the specics are divided into three types: reactants,
intermediates, and products. Error versus time plots are
presented for cach species type and the temperature. These
plots show that CHEMEQ 1s the most accurate code during
induction and carly heat release. During late heat releasc and
equilibration, however, the other codes are more accurate. A
single global quantity, a mean integrated root-mean-square
error. that measures the average error incurred in solving the
complete problem is used to compare the accuracy of the
codes. Among the codes examined, LSODE 1is the most
accurate for solving chemical kinetics problems. It is also the
most efficient code. in the sense that it requires the least
computational work to attain a specified accuracy. An
important finding is that use of the algebraic enthalpy
conservation equation to compute the temperature can be
more accurate and efficient than integrating the temperature
differential equation.

Introduction

Many practical problems arising in chemically reacting flows
require the simultaneous solution of large sets of coupled
ordinary differential equations (ODE’s) which describe the
time rate of change of chemical species concentrations and
temperature. Examples of such problems include the develop-
ment and validation of reaction mechanisms, combustion of
fuel-air mixtures, and pollutant formation and destruction.

The main difficulty in using classical methods, such as the
popular explicit Runge-Kutta method (e.g., ref. 1), to solve
large sets of chemical kinetic rate equations is that of

“gtiffness.”” The property of stiffness arises in chemical
kinetics because of the widely varying time constants for
different species. For free radicals the relaxation time is on
the order of microseconds, whereas the nitric oxide formation
time is on the order of milliseconds. To satisty the stability
requirements that errors in the numerical solution remain
bounded as the calculation proceeds in time, classical methods
must use extremely small step sizes. as ilustrated in
references 2 and 3 for the explicit Runge-Kutta method in
solving combustion kinetics problems. Consequently, these
methods require prohibitive amounts of computer time to solve
a practical chemical kinetics problem.

Numerous approaches have been proposed for stiff ODE’s
to remove the stability restriction on the step size. In Part I
of this effort (ref. 2) and other recent publications (refs. 3to 5).
several techniques were examined, and detailed comparisons
of their computational work requirements for solving com-
bustion kinetic rate equations were made. The methods
examined in these studies include the general-purpose packages
EPISODE and LSODE (refs. 6 to 9). which were developed
for an arbitrary system of ODE’s, and the specialized codes
CHEMEQ (ref. 10), CREKID (refs. 11 to 14). and GCKPg4
(ref. 15), which have all been developed specifically to
integrate chemical kinetic rate equations. In the present work
the accuracy of these techniques in solving combustion kinetic
ratc equations is examined.

In general. numerical methods gencrate approximate
solutions to the governing ODE'’s at discrete points in time.
To maintain accuracy of the numerical solution. they require
that the estimated error incurred on each time step be less than
a user-specified local error tolerance. This result is usually
achieved by restricting the size of the time step. Some solvers,
in addition. adjust the order of the numerical approximation
when appropriate. In either case, only the estimated local error,
that is, the estimate of the error incurred in advancing the
numerical solution by one time step. is controlled. However,
the quantity that is of interest to the user is the global error,
which is the deviation of the numerical approximation from
the exact solution and which generally accumulates in a
nontrivial manner from the local errors.

In the present paper, a detailed study of the estimated global
error incurred by the above techniques in solving combustion
Kinetic rate equations is presented. Also presented is a study
of the variation of the global error with the user-specified local
tolerance and an examination of the computational cost,
measured by the required CPU execution time, associated with



attaining desired accuracy. The paper concludes with two
appendixes: Appendix A describes the methods examined in
this study, and appendix B describes the procedure used to
solve the algebraic enthalpy conservation equation for the
temperature, ‘

Symbols

ApA_; pre-exponential constants in forward and reverse
rate coefficients for reaction j {egs. (6) and (7)),
units depend on reaction type

local absolute error tolerance for i component,
required by LSODE (eq. (20)).

local absolute error tolerance used with LSODE
for all species mole numbers

ATOL,
ATOLSP

B

; €xponent-on-ten in pre-exponential constant for

forward rate coefficient of reaction J. where B, =
log g4, arbitrary units
Cq local error test constant used in GCK P84 (eq. 21))
constant-pressure molar specific heat of species
i, J/kmole K
d;, estimated local truncation error in ;" component
at 1,

('/7‘1'

E.

in

cumulative difference between converged and pre-
dicted values of (dY,/dr) at 1, used by GCKP84,
units depend on component

EE

pE_; activation energy in forward and reverse rate

coefficients for reaction j (egs. (6) and (7)), cal/mole

Erms mean integrated root-mean-square global error
(eq. (34))

for EPISODE and GCKP84: local relative error
tolerance for species with initially nonzero mole
numbers and temperature, and local absolute
error tolerance for species with initially zero mole
nurnbers; for LSODE: local relative error tolerance
for all components; for CHEMEQ and CREK 1D:
local relative convergence criterion for all
components.

EPS

ERMAX relative error tolerance for Newton-Raphson iteration

for temperature

EWT, local error weight for i"™ component, used by

LSODE (egs. (19) and (20))

e estimated global error in /" component (eq. (24))

i estimated global error for i species of type j
€rms root-mean-square norm of the estimated global
errors for all variables (eq. (27))

root-mean-square norm of the estimated global
crrors for species of type j (eq. (26))

Crins.j

er estimated global error in temperature (eq. (25))

1]

IERROR
ITOL

N

NN

St =

Xist
Xmin

Y

na

Y. [m]

HLn

generalized algorithm for Y, (eq. (14))

time rate of change of i component. units depend
on i

initial mixture mass-specific enthalpy, J/kg
molar-specific enthalpy of species i, J/kmole
step size used on the n' step. s

initial step length to be attempted by integrator, s
error control indicator for EPISODE

error control indicator for LSODE

forward and reverse rate coefficients for reaction
J (eqs. (6) and (7)), units depend on reaction type

total number of first-order ordinary differential
equations

temperature exponent in forward and reverse rate
coefficients for reaction J (eqs. (6) and (7))

total number of elementary chemical reactions in
reaction mechanism

total number of chemical species in reacting gas
mixture

test problems 1 and 2. respectively

pressure, N/m”

universal gas constant in cal/mole K
universal gas constant in J/kmole K

molar forward and reverse rates per unit volume
for reaction j (eqs. (4) and (5)), kmole/m’ s

local relative error tolerance for LSODE
temperature, K

maximum temperature change allowed before
reaction rate cocfficients and thermodynamic
properties are updated in CREKID, K

standard solution value for temperature, K

minimum species mole number values allowed in
CHEMEQ and CREK 1D

reaction time, s

final time (=1 ms) at which numerical solution
is generated, s

time reached on the n™ integration step, s
initial time, s

reacting gas velocity, m/s

chemical symbol for i species

mole fraction of species i

standard solution value for mole fraction of specics ¢

mole fraction value corresponding to ¢, (eq. (33))

numerical solution of the /™" component at 7,, units

depend on i

h

value obtained for Y¥,, on m' iteration, units

it
depend on i



Y,!,',“l value obtained for Y, on m™ iteration, units
depend on i

Y,F:,” predicted value of ¥;,. units depend on {

Yo, numerical solution of the i" component at f,
gencrated by using exact past values, units depend
on {

Yo local weight for i™ component, used by EPISODE
and GCKP84 (eqs. (17), (18). and (21))

¥; exact solution for the i™" component, units depend
oni

o constant in gencralized algorithm for Y, (eq. (14))

€, global error at 1, (€q. (15)

Vi sVij stoichiometric coefficients of species i in forward

and reverse reaction j (eq. (1)); number of
Kkilomoles of species i in clementary reaction j as
a reactant and as a product, respectively

p mixture mass density, kg/m3
Iof mole number of species i, kmole species i/kg mixture
O pmin mole number value at which local error control in

LSODE is equally relative and absolute (eq. (32))

Governing Differential and
Algebraic Equations

The ordinary differential equations describing homogeneous
gas-phase chemical reactions of the type

Ny Ny
e YaX gmleNe O
i=1 i=1

are as follows:

do;

flonT)  Lk=1...N, 2)

t
o;{1p) = given
T(15) = given
where f;, the total formation rate of species i, 18 given by
Ng

ﬁ=—wf'2]w;—%x&—Rﬁ) €)
j=1

The molar reaction rates per unit volume, R; and R_;. are
given by the law of mass action (e.g., ref. 16):

Ny ‘
R =k IT " @
I=1

and

Ng ,
R7;=kﬂn“"")v" )
=1

where the forward (k) and reverse (k_;) rate coefficients are
given by the modified Arrhenius expressions:

k, = A’TNI exp (—E;/RT) (6)
k_;= A_T" rexp (—E_;/RT) (N

In equations (1) to N. v,', and v,; are the stoichiometric
coefficients of species i (with chemical symbol X)) in reaction
j as a reactant and as a product. respectively: Ny is the total
number of distinct chemical species (reacting and inert) in the
gas mixture: Ng s the total number of independent reactions
in the mechanism: o; is the mole number of species i (in
kilomoles of species i per kilogram of mixture):  is the time
(in seconds): p is the gas mixture mass density (in kilograms
per cubic meter); T is the temperature (in kelvins): R is the
universal gas constant (in calories per mole per kelvin); and
A, A N, N_j Ej and E_; arc constants in the modified
Arrhenius expressions for and k_;. The reverse rate
coefficient parameters arc calculated from the forward rate
coefficient parameters and the concentration equilibrium
constants by using the principle of detailed balancing (ref. 16).

In this paper. as in the companion paper (ref. 2). attention
is restricted to adiabatic, constant-pressure chemical reactions.
For such problems, the following enthalpy conservation
equation constitutes an algebraic constraint on equations (2)
to (7):

N.S
E OA'F‘I = H()~ (8)
i=1

where &, is the molar-specific enthalpy of species i (in joules
per kilomole) and H, is the initial mixture mass-specific
enthalpy (in joules per kilogram). Equation (8) can be
differentiated with respect to time to give the following ODE
for the temperature

N
E fl Vll

ar _ _ _i=1

dt N, @)
E Ui(‘p,i
i=1



where ¢,; is the constant-pressure molar-specific heat of
species i (in joules per kilomole per kelvin). Either equation
(8) or (9) can be included in the equation set. We explore the
use of both these equations and examine their effects on
solution accuracy and computational cost.

The mass density of the mixture is given by the ideal gas
equation of state

p =p/(RTo,) (10)

where p is the absolute pressure (in newtons per square meter),
R, is the universal gas constant (in joules per kilomole per
kelvin), and ¢,,. the reciprocal of the mean molar mass of the
mixture, is given by

0= 3 0 (1

i=]

For constant pressure problems the following density ODE
can be obtained from equation (10) by differentiating it with
respect to time and then rearranging terms in the resulting
expression:

N
d, LdTl 1| < do.
—pz—p - — 4 — ﬂ (12)
dr I'dr o, py dt

Either equation (10) or (12) can be used to compute the density.
The code GCKP84, which allows the pressure to vary, solves
for p by integrating its ODE (eq. (12)). With the other codes.
however, we obtain p by using equation (10). Indeed, p is
implicitly replaced by the right-hand side of equation (10) and
does not appear as a variable. We, therefore, exclude density
from our discussion, including statement of the problem, and
restrict attention to solving for the other Ng + | quantities.

Problem Statement

The initial value problem may be stated as follows: Given
(1) at time ¢ = ¢, values for the species mole numbers, o,
(i = 1,....Ng), and the temperature, T, (2) the pressure, p,
and (3) the reaction mechanism, find, at the end of a prescribed
time interval, the mixture composition and temperature.

Methods and Codes Examined

The codes examined in this study include the general-purpose
packages EPISODE and LSODE (refs. 6 to 9) and the
specialized techniques CHEMEQ (ref. 10), CREK!ID (refs.
11 to 14), and GCKP84 (ref. 15). The methods used in these
codes are summarized below and are discussed in detail in
appendix A.

The packages EPISODE and LSODE consist of a variable-
order, variable-step implicit Adams method (suitable for
nonstiff problems) and a variable-order, variable-step backward
differentiation formula method (suitable for stiff problems:
c.g., refs. 1 and 17). Both methods use a standard predictor
and a variety of corrector formulas— from functional iteration
to a modified Newton iteration—is included. The Jacobian
matrix df/dy, where y is the vector of dependent variables
and f = dy/dt, is computed either numerically or with a user-
supplied subroutine. In part I of this investigation (ref. 2) all
options relevant to the problem of chemical Kinetics were
attempted. and the stiff method with Newton iteration and user-
supplicd analytical Jacobian matrix was found to be the fastest.
Therefore, only this option is used in examining the accuracy
of EPISODE and LSODE.

The general chemical kinetics program GCKP84 uses the
integration technique developed by Zeleznik and McBride
(ref. 18). The algorithm is essentially a revised version of the
GEAR package (ref. 19), which contains the same two integration
methods as EPISODE and LSODE and several iteration
techniques. For reasons given above we restrict attention to
the stiff method with Newton iteration using an analytical
Jacobian matrix. GCKP84 includes corrective actions if the
physically impossible situation of negative concentrations,
temperature, density, or velocity arises.

In CHEMEQ, at the start of each time step the ODE’s are
separated into two classes: stiff and normal. For equations
classified as normal, a classical second-order predictor-corrector
method, the trapezoidal rule, is used. For the stiff equations
a simple stable asymptotic integration formula is used.

The code CREKID is based on the exponentially fitted
trapezoidal rule developed by Liniger and Willoughby (ref. 20)
and Brandon (refs. 21 and 22). This code includes special
treatment of ill-posed initial conditions and automatic selection
of Jacobi-Newton iteration or Newton iteration.

Error Considerations

In this section the error controls used in the different codes
examined are discussed. In general, numerical methods replace
the differential equations with difference equations and solve
them step by step. Starting with the known initial conditions
Y (#y) at 1, numerical approximations ¥, to the exact solution
y(#,) of the ODE’s are generated at discrete points in time
(r, (n=1,2,...)), until the end of the integration interval is
reached. At each 1, the numerical method provides a rule for
generating the approximate solution Y, in terms of computed
qQuantities at one or more previous times.

For the scalar differential equation,

dy
0 W
(13)

v(ry) = given



the algorithms used for ¥, in all of the codes can be written as

Yn = aYn—l + hn EF (hannv ;I'Yﬂ—l' [T R ) (]4)
where « is a constant, Y, _; is the approximate solution at 7, _;.
h, (equal to t, — t,-,) is the step size used on the step
[t,_1.t,] and f, _; = f(Y,_ ). Because equation (14) involves
the unknown quantity Y, its solution generally requires an
iterative procedure. Starting with the predicted value (an initial
guess), denoted by Y% improved estimates yYm=12..)
arc generated until the iteration converges, that is, until the
difterence in two successive approximations approaches zero
within a specified accuracy.

During the calculation procedure, errors called discretization
or truncation errors are introduced into the numerical solution
because of the approximation of the ODE's by difference
equations. Two measures can be defined for this error, which
is a property of the numerical method (e.g.., ref. 23). The
global discretization error ¢, at any 1, is the difference
between the computed approximation Y, and the exact
solution y(1,):

€ = Yn - .)'(tn) (‘5)

It is the quantity that the user wants to know and control. The
local truncation error d, at f, is the error in the numerical
approximation Y, that is generated on the step [f,_1,7:] by
using exact past values:

dn = Y;l - l‘(tn) (]6)

It is the quantity that ODE solvers generally control. The two
discretization errors are illustrated in figure 1 for a single
ODE.

The codes examined in this study require the user to specify
values for one or more local tolerance parameters, which
control the accuracy of the numerical solution. Now, as
discussed below, the same error control is not used in all codes.
Nevertheless. for convenience, for all codes the same notation,
EPS. is used to denote the local tolerance quantity, or the
primary one if several are required. In EPISODE the local
truncation error vector d, satisfies the inequality

| N d N 172
— — < EPS 7
N E <Ymux,>

i=1

where N is the number of ODE’s, d; , is the estimated local
truncation error in the i component at ,, and for the error
control used

Ylnux,- = max Hyi‘n—li . iYi.nle for i that SaliSfY .Vt(t[]) # 0,

for i that satisfy v;(fg) =0,
(18)

= max {1, ¥,

Exact solution

@ H Numerical solution

yit)

¥itp4)

—

to v t2 -1 n t

Figure 1.—Numerical sotutions and truncations error types for the single ODE
dv/dr = f(¥). The exact solution to the ODE is denoted by v(r). The
numerical solutions obtained with the initial condition Y, = v(1y) are
denoted by solid circles. The solid square denotes the numerical solution
obtained at £, by using exacl past values. The local truncation error is
denoted by d. the global truncation error by ¢. and the step length by /.

where the vertical bars denote absolute value. The error control
selected to be performed by LSODE is given by

N o\ 172
1 < d,\
— E L <1 (19)
N EWT,

i=1
where
EWT, = EPS Yl + ATOL,; (20)

where ATOL; is the user-supplied local absolute error
tolerance for the i component.
In GCKP84 the local error test satisfies the inequality

! N E b 172
Ly (S < C, EPS 21
N Ymux,

i=1

where. E;, contains the cumulative difference between the
converged and predicted values of the derivative (dY;/dr) at
1, and where Cg is a constant. The quantity Yo« has the
same meaning as in EPISODE (see eq. 18)).

The codes CHEMEQ and CREKI1D do not control the
estimated local truncation error. The solution is accepted when
the magnitude of the normalized difference in successive



estimates (K" *11 — yl"ly iq Jess than a specified amount.
Therefore, these codes control only the error in the solution
to the difference equation of the method. In CHEMEQ each
component ! satisfies the inequality

iyﬁl[:n#— I _ Y‘m,i

Ln

< EPS (22)
min (Y11 y ey

The convergence criterion used in CREKID is given by

Ne

1:2
1 LA (AN
o ) ( 7 < EPS (23)

i=]

It is clear from the above discussion that the user-supplied
local tolerance EPS does not have the same meaning for all
codes. In LSODE it is the local relative error tolerance for
all variables and is a measure of the number of accurate
significant figures in the numerical solution. In EPISODE and
GCKP84, however, as discussed in the section *‘Computational
Procedure,™* EPS is the local relative error tolerance for only
variables with nonzero initial values, such as the temperature.
For species with zero initial mole numbers EPS is the local
absolute error tolerance and is a measure of the largest number
that may be neglected. In contrast to these three codes,
CHEMEQ and CREK 1D do not control the local truncation
error, and EPS is the local relative convergence criterion, or
error in the solution to the difference equation. However, as
described in appendix A, although CREK 1D does not test that
the estimated local truncation error is within a prescribed
bound, the step length calculation procedure attempts to
achieve this result. The step length to be attempted next is
selected such that the current estimate of the local truncation
error normalized by the solution is at most equal to EPS.
Because of these differences in the meanings of EPS it will
be referred to as simply the local tolerance.

Evaluation of Temperature

Of the codes examined in the present study, only GCKP84
and CREK 1D were written explicitly for nonisothermal chemical
reactions. These methods, therefore, have built-in procedures
for calculating the temperature. For the other codes, however,
the temperature has to be calculated along with the mixture
composition. In the present study (as in ref. 2), the temperature
was computed using one of the two methods outlined below.

In method A the temperature was calculated from the initial
mixture mass-specific enthalpy H;, and the solution for the
species mole numbers returned by the integrator by using the
algebraic enthalpy conservation equation (8). This equation
was solved for the temperature by using a Newton-Raphson
iterative technique, with a user-supplied local relative error
tolerance, ERMAX (as described in appendix B). In this
method. the temperature is not an explicit dependent variable,

so the number of ODE’s is equal to the number (Ng) of
species and the Jacobian matrix is of size Ng X Ng. The
integrator, therefore, tracks only the solution for the species
mole numbers. The temperature was also computed when the
species time derivatives and the Jacobian matrix were evaluated.

In method B the temperature was treated as an additional
dependent variable and evaluated by solving its ODE (eq. (9)).
In this method, the number of ODE’s is equal to Ng + 1, the
Jacobian matrix is of size (Ng + 1) X (Ng + 1), and the inte-
grator tracks the solutions for both the species mole numbers
and the temperature.

The following naming convention was adopted. Techniques
using method A were given the suffix A (EPISODE-A, etc.),
and those using method B were given the suffix B (EPISODE-
B, etc.).

The code GCKP84 allows for heat transfer between the
reacting gas mixture and its surroundings and must therefore
use an ODE to solve for the temperature. It also includes the
density and velocity, V, of the gas mixture as dependent variables
and evaluates them by integrating their ODE's. (For the static
test problems used in this study the velocity ODE is given
trivially by dV/dr = 0, Vity) =0.) Consequently, the number
of ODE’s solved by GCKP84 is equal to Ng + 3, and the
Jacobian matrix is of size (Ng + 3) X (Ng + 3).

CREKID computes the temperature by solving the algebraic
enthalpy conservation equation (8). However, the calculation
procedure is different from that used in method A. In CREK D
the mixed differential-algebraic system of equations (2) and
(8) is solved simultaneously, whereas method A solves
equation (8) after the species ODE’s have been integrated
over a time step. Thus, although the number of ODE’s solved
by CREKID is equal to Ns. the Jacobian matrix is of size
N+ 1) X (Ng + 1).

Test Problems

The algorithms examined in the prescnt study were applied
to the same two test problems used in our previous work
(ref. 2). Both problems describe adiabatic, constant pressure,
transient, batch chemical reactions and include all three com-
bustion regimes: induction, heat release, and equilibration.

Test problem 1 describes the ignition and subsequent combus-
tion of a mixture of 33 percent carbon monoxide and 67 percent
hydrogen with 100 percent theoretical air at an initial temperature
of 1000 K and a pressure of 10 atm. It comprises 12 reactions
which describe the temporal evolution of 11 reacting species
(CO, CO,. H, H,, H,0, N, NO, N,, O, OH. and 0O,). Test
problem 2 describes the ignition and subsequent combustion
of a stoichiometric hydrogen-air mixture at a pressure of 2 atm
and an initial temperature of 1500 K_ It involves 30 reactions
among 15 species (Ar, CO,, H, HO,, H,, H,0, H,0,, N,
NO, NO,. N,, N,0, 0, OH, and 0,), of which two (Ar and
CO,) are inert. The reaction mechanisms and forward rate
coefficient parameters for the two test problems are given in
tables T and II.



TABLE [.—REACTION MECHANISM AND FORWARD RATE
COEFFICIENT PARAMETERS USED FOR TEST PROBLEM |
[Rate coetficient &, = 10%7™ exp(—£,/RT) |

Reaction Reaction Rate coefficient parameters
number.
Y B; N E
keal/mole
1 CO+OH=CO, +H 11.49 0 0.596
2 H+0,=0+0H 14.34 16.492
3 H, + O =H + OH 13.48 9.339
4 H,0 + O = OH + OH 13.92 18.121
N H + H.0 = H, + OH 14.0 19.870
6 N+0,=NO+0O 9.81 1.0 6.250
7 N, +0 =N+ NO 13.85 0 75.506
8 NO+M=N+0+M 20060 1 —1.5 149.025
9 H+H+M=H,+M 18.00 | —1.0 0
10 O+0+M=0,+M 18.14 -1.0 0.340
I H+OH+M=H,0+M|[ 2388 | -2.6 0
12 H, + O, = OH + OH 13.00 0 43.000

TABLE I1.—REACTION MECHANISM AND FORWARD RATE
COEFFICIENT PARAMETERS USED FOR TEST PROBLEM 2
{Rate coefticient k/ = l()B“T\‘“ exp(—£,/RT).]

Reaction Reaction Rate coefficient parameters
number,
J B, N, £,
keal/mole
1 H+0,=0H+0 14.342 0 16.790
2 O+H,=0H+H 10.255 1.0 8.900
3 H, + OH = H,0 + H 13.716 0 6.500
4 OH + OH = O + H,0 12.799 1.093
5 H+ 0, +M=HO,+M 15.176 l —1.000
6 0O+0+M=0,+M 13.756 —1.788
7 H+H+M=H.+M 17919 | —1.0 0
8 H+OH+M=H.0+M 21924 | =20 0
9 H, + HO, = H,0 + OH 11.857 0 18.700
10 H,0, + M =OH + OH + M | [7.068 45.500
I H, + O, = OH + OH 13.000 43.000
12 H + HO, = OH + OH 14.398 1.900
13 O + HO, = OH + O, 13.699 1.000
14 OH + HO, = H,0 + O, 13.699 1.000
N HO, + HO; = H,Oy + O, 12.255 0
16 OH + H,0, = H,O + HO, 13.000 1.800
17 O + H,0, = OH + HO, 13.903 1.000
18 H + H,0, = H,0 + OH 14.505 9.000
19 HO, + NO = NO, + OH 13.079 2.380
20 O + NO, = NO + O, 13.000 0.596
21 NO+0+M=NO,+M 15.750 —1.160
22 NO, + H = NO + OH 14.462 v 0.795
23 N+0O,=NO+0 9.806 1.0 6.250
24 O+ N>=NO+N 14.255 0 76.250
25 N+OH=NO+H 13.602 0
26 N.O+M=N,+0+M 14.152 51.280
27 O+ N,O =N, + 0, 13.794 24.520
28 0 + N,O = NO + NO 13.49] 21.800
29 N + NO, = NO + NO 12.556 0
30 OH + N, = N;O+H 12.505 v 80.280
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Figure 2.—Variation with reaction time of temperature and species mole
fractions for test problem 1.

Figures 2 and 3 present the variations with time of the
chemical species mole fractions and temperature for test
problems | and 2, respectively. These solutions were generated
with LSODE-B using a small value (10 %) for the local
relative error tolerance. Both test problems were integrated
over a time interval of 1 ms in order to obtain near-
equilibration of all chemical species and the temperature.

Computational Procedure

For each method, global errors in solutions generated with
a certain value for the local tolerance EPS were estimated by
comparing them with results obtained with the same method
and a reduced tolerance. The solutions used as a basis for
comparison were the most accurate generated and are referred
to as standard solutions. For example, for CREK 1D solutions
used as standards were generated with CREKID and
EPS = 10 ~°. These standard solutions were used to estimate
the global errors in results produced with CREKID and
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Figure 3.—Variation with reaction time of temperature and species mole
fractions for test problem 2.

EPS=10"2 107 and 10~*. The above procedure for
estimating global errors is reliable provided the technique is
effective in the sense that reducing the local tolerance actually
reduces the global error (ref. 24). In any case, in the absence
of exact solutions the only method for assessing the accuracy
of an algorithm is to compare the solutions that it produces
with those obtained with a reduced local tolerance using either
the same algorithm or a different one. The use of solutions
generated by each technique as a standard of comparison only
for itself ensures that the accuracy comparison is not biased
in favor of any one method or code.

A typical computational run was performed by first initializing
the time (¢, set equal to zero), species mole numbers, and
temperature. The integrator was then called with values for
the necessary input parameters, including the local tolerance
and the elapsed time (equal to 1 ms for both problems) at which
the integration was to be terminated. After each step successfully
executed by the integrator, the current time and the solutions
for the species mole fractions and temperature were saved.
This procedure was repeated until the time reached by the
integrator was greater than or equal to 1 ms. The saved time



values served as input data for the output stations at which
the standard solution was to be generated. At each of these
discrete time values global errors in the species mole fractions
and temperature were estimated by comparisons with the
standard solutions as follows:

x (1)

e, (t) = -1 i=1,..., N, 24)
XI,ST(I)
T(t)
(1) = ——— — | (25)
7 Tgr(1)

where ¢, (1) and ey(1) are, respectively, the estimated global
errors in the mole fraction x; (1) of species i and the tem-
perature T(1) at time t and where x; s7(1) and Tsr(?) are,
respectively, the standard solution values for the mole fraction
of species / and the temperature at time 7. To prevent the
possibility of requiring accuracy in species with immeasurably
small concentrations, global errors were not measured for
species whose standard solution mole fractions were less than
0.1 ppm. For such species e; (1) was set equal to zero. In this
way time histories of the global errors in species mole fractions
and temperature were generated.

For each technique, standard solutions were generated with
a small value for EPS. In addition to EPS and the elapsed time
at which the integration was to be terminated, other input
parameters were required by all codes examined. In this paper
only those input parameters that affect the accuracy of each
code are discussed. A more detailed discussion of these
paramelers can be found in part 1 (ref. 2).

The user-supplied parameters relevant to solution accuracy
that are required by LSODE are the error control flag, ITOL,
which indicates the type of local error control to be performed,
and the local relative, RTOL, and absolute, ATOL, error
tolerances. Both RTOL and ATOL can be specified either as
(1) a scalar, so that the same local error tolerance is used for
all variables, or (2) an array, s0 that different values of the
local error tolerance are used for different variables. In the
present work the error control given by ITOL = 2 (for scalar
RTOL (equal to EPS) and array ATOL, see appendix A) was
used for reasons given below. Since the same number of
accurate significant figures is acceptable for all solution
components, RTOL was specified as a scalar. Now, for the
test problems examined in this study, the species mole fractions
and temperature vary widely (figs. 2 and 3), so relative error
control is appropriate and is the reason for designating the local
relative error tolerance as the primary tolerance (eq. (20)).
Pure relative error control can be achieved by specifying a
value of zero for the local absolute error tolerances. However,
since many of the species had zero initial concentrations, pure
relative error control could not be used. To make the error
control mostly relative, small values were specified for the
absolute error tolerances for the species mole numbers; for
convenience the same value (equal to ATOLSP) was used for

all species. Since the temperaturc can never be zero, pure
relative error control was used for this variable, that is, the
local absolute error tolerance for temperature was set equal
to zero. Thus, ATOL was specified as an array.

The values used for ATOLSP were those obtained in part
I of this study (ref. 2) for LSODE-B as follows: With
EPS = 107, ATOLSP was progressively decreased until the
temperature-time trace showed essentially no change with a
further decrease. The values obtained for ATOLSP by using
this procedure were 10~ and 10 "', respectively, for test
problems 1 and 2. For consistency . the same EPS and ATOLSP
were used with LSODE-A. They were, however. checked to
ensure that reductions in ATOLSP resulted in essentially the
same solutions. For reasons given in the next section ERMAX
was set equal to EPS.

To make accuracy comparisons among the codes meaningful,
the same value of EPS (i.c.. 10 %) was used to generate
standard solutions for GCKPR84, CHEMEQ-A, CHEMEQ-
B. and CREKI1D. With EPISODE. however, an EPS value
of 10~° was used because larger values produced physically
meaningless results for test problem 1—little or no change from
initial values after an elapsed time of 1 ms. The error control
to be performed by this code is selected by means of the flag
IERROR (appendix A). For the reasons given above, purc
relative error control (option IERROR = 2) could not be used
and the option IERROR = 3 was used. instead. This error
control is semirelative (see €qs. (17) and (18)). It is relative
for a variable that is initially nonzero. But for a variable that
is initially zero, it is absolute until the variable reaches unity
in magnitude, when it becomes relative. Since none of the mole
numbers attains a value of unity., the error control is always
absolute for species with zero initial mole numbers.

The solution generated with EPISODE depended on the
value specified for the initial step length (k) to be attempted
by the integrator. In generating standard solutions with this
code, h, was progressively decreased (with EPS = 1079
until the temperature-time tracc showed essentially no change
with a further decrease. The values obtained for iy by using
this procedure were 102 and 10 ¥ s, respectively. for test
problems 1 and 2. for both EPISODE-A and EPISODE-B.
However. an hq value of 102 s was used for test problem
2 because it resulted in smaller execution times. as shown in
table 11I. For EPISODE-A the savings were modest, but for
EPISODE-B they were significant.

GCKP84 uses the same error control as that selected to be
performed by EPISODE. It also requires the user to specify
hy. Since details of the integration technique used in GCKP84
were not known, a default value of hy = 107% s was used in
our previous work (refs. 2 10 5). However, Bittker and Scullin
(ref. 15) have since then set the default value for hg at
5% 10~ % 5. Nevertheless an hy value of 10 7% s was used in
this study to be consistent with part I (ref. 2). In addition, as
shown in the next section. the 10~ value generally produced
more accurate results than the new default value, while requiring
comparable execution times for all EPS used in this study.



TABLE IIL.—EFFECTS OF INITIAL STEP
LENGTH ON EXECUTION TIMES REQUIRED
BY EPISODE-A AND -B (EPS = 10 -%)
FOR TEST PROBLEM 2

Method Initial step CPU
length, execution

. time,

s b

EPISODE-A 10 # 31
10 9 3.0

EPISODE-B 10 -% 14
10-9 7.8

In contrast to EPISODE and GCKPS84, the other codes
automatically compute the 4, value to be attempted by the
integrator. In LSODE the calculation procedure for Ay, employs
the user-specified values for the first output station and the
local error tolerances. The computed initial step length can
have an adverse effect on both the computational work and
the solution generated by the code (ref. 3). The calculation
procedures used for iy in CHEMEQ and CREK 1D are based
on the problem physics (see appendix A) and the computed
hy did not cause the above difficulties.

Both CHEMEQ and CREK 1D use a relative convergence
criterion (egs. (22) and (23)). The difficulty of applying the
test when the solution vanishes is avoided by setting mole
numbers less than a suitably small value, TINY, to be equal
to TINY. In this study a value for TINY of 10 2° was used.
The only user-specified parameter required by CREK 1D that
affects its accuracy is AT, which is the maximum temperature
change allowed before the reaction rate coefficients and the
thermodynamic properties 4, and ¢p.; are updated. Use of this
parameter increases the efficiency of numerical techniques in
solving combustion kinetic rate equations (refs. 2 and 3). To
ensure that the most accurate solutions were used as standards,
a value of AT = 0 K was used for both test problems,

Results and Discussion

The procedure described in the previous section was used
to study the global errors incurred by the different techniques
in solving the two test problems. All results presented herein
were generated on the NASA Lewis Research Center's IBM
370/3033 computer using single-precision accuracy, except
GCKP84 which uses double-precision accuracy.

Both temperature calculation methods A and B were
attempted with EPISODE, LSODE, and CHEMEQ. The error
control used in method A is pure relative, and the local relative
error tolerance is equal to ERMAX (see appendix B). In
EPISODE-B and CHEMEQ-B the error or convergence
control for the temperature is pure relative and the local relative
tolerance is equal to EPS (egs. (17), (18), and (22)). For
reasons given previously in the section **Computational
Procedure’” the above remarks apply to LSODE-B also. To

10

make accuracy comparisons between the two temperature
calculation methods meaningful, ERMAX was set equal to
EPS, thereby imposing the same local accuracy requirements
on both methods. Thus, both methods A and B used the same
error control (i.e., pure relative) and the same local tolerance.

To facilitate accuracy comparisons among the different
techniques, the species were divided into three types: reactants
(R), intermediates (/), and products (P). At each discrete time
at which global errors had been computed. root-mean-square
(rms) errors, e i {0 (j = R.IP), were computed for all
three species types as follows:

N/ 172

/% Y el

=1

i=R L P (6

()rm.\,j(’) =

where e (i=1,..., N;) is the estimated global error at
time ¢ in the mole fraction of the ;™ species of type j and
where N, is the number of species of type j. The values of
N, (and the species that comprise cach subset) are as follows:
For test problem 1, Ny = 4 (CO, H;, Ny, and Oy), N, = 4
(H., N, O, and OH), and Np = 3 (CO,. H,0 and NO). For
test problem 2, Ny = 5 (Ar, CO,, H;. Ny, and 0,), N, = 6
(H, HO,, H,0,, N, O, and OH), and Np =4 (H,0, NO,
NO,, and N,0). Although Ar and CO; are inert species, so
that their mole numbers do not change during the course of
the reaction, they are classified as reactant species because
they participate in three-body reactions as catalysts and their
concentrations affect the rates of these reactions.

In addition to the rms error for each species type, a single
rms error for all variables, ¢, (1), was computed at each time
¢ by using

Ng 12

Y € + ef)

i=1 (27)
Ng + 1

‘)rms ( ,) =

Figures 4 to 9 present the variations with time of the percent
rms error in reactants, intermediates, and products and the
percent error in temperature for test problem 1. Similar infor-
mation is presented for test problem 2 in figures 10 to 17. For
brevity, test problems 1 and 2 are hereinafter referred to as
P1 and P2, respectively. Note that for clarity the actual errors
have been magnified in some of the figures. The maximum
percent rms crrors incurred and the reaction times at which
they occurred are given in tables IV and VI, along with the
values used for the input parameters discussed in the previous
section. For each code (except GCKP84) and EPS, these input
parameters, obtained in part I of this study (ref. 2) by a trial-
and-error procedure, minimized the execution time required
to solve the problem. To prevent the possibility of generating
physically meaningless results by using too large a value of

Continued on p. 29
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ATOLSP. the runs with LSODE-A and LSODE-B were
required to satisfy the accuracy criteria described in reference
2 Several of the runs with the other codes also satisfied these
criteria. For LSODE-B and EPS = 10 7*, two ATOLSP
values (107% and 107" satisfied both the accuracy and
execution time criteria for P2. Table VI includes results
obtained with both values, to illustrate the effect of ATOLSP
on the accuracy. However. the error plot given in figure 13
was generated with ATOLSP = 1072

The maximum percent errors in each species type and
temperature are given in tables V and VII for P1 and P2. For
each species type the species incurring the maximum error,
the reaction times at which the maximum errors occurred, and
the standard solution values for species mole fractions and
temperature at these times arc listed.

For test problem 1 the runs with EPISODE-A and
EPISODE-B and EPS = 5x10 ~ predicted litle or no
change in the composition and temperature after an elapsed
time of 1 ms. Hence, maximum errors of —100 percent were
obtained for both intermediates and products (table V).
Because the temperature and the more active reactants Hs,
CO. and O, display monotonic behavior (fig. 2) the
maximum errors in reactants and temperature occurred at
f,g- the final time (=1 ms) at which the solution was
generated. Both EPISODE-A and EPISODE-B required only
six steps to complete the problem, and, because a new step
size is considered after every successful step, fgqg Was
significantly greater than 1 ms. For intermediates and products
maximum rms errors of 100 percent were obtained at several
time values: hence, reaction times and standard solution values
are not given in tables IV and V for these two species types.
Also. no species name is listed in table V for cither type
because all intermediate and product species incurred the
shown maximum errors.

The solution returned by EPISODE was also found to depend
on the output stations specified by the user. For example, for
some combinations of output times, EPISODE-B (with
EPS = 1 x 10 %) predicted no change in the composition and
temperature after an elapsed time of | ms. However, by
stipulating only one output station (at 1 ms), the correct
solution was obtained. For this problem the run with GCKP84
and EPS = 1x 107 exhibited serious instability and was
therefore terminated. For reasons just discussed., no error plots
for EPISODE-A. EPISODE-B, and the run with GCKP84
and EPS = 107 are presented.

Similar remarks apply to the results obtained for P2 with
EPISODE-A and EPS = 5x10~*, and with EPISODE-B
and EPS = 5x10°%. The run with EPISODE-A and
EPS = 5x 10 ~* required only seven steps to complete the
problem and 1.,y was therefore significantly greater than 1
ms. For this EPS, for exactly the same reasons given for P1,
the following quantities are not shown in tables VI and VIL:
reaction times at which the maximum rms €rrors occurred in
the intermediates and products, intermediate and product
species incurring the maximum errors. the reaction times at

which the maximum errors occurred, and the standard solution
values.

For EPS = 5x 10 and 10 -3 EPISODE-B successtully
compieted P2 in that correct solutions were returned at 1 = 1
ms. However, during heat release they were significantly
inaccurate. For example. the run with EPS = 5X 10 " pre-
dicted little change from the initial composition and temperature
until 1 = 40 ps when heat release began. In contrast, the
standard solution shows that heat release is almost over by
this time (fig. 3). As a result, maximum errors of — 100 percent
were observed for the products (table VII). This error was
incurred by several product species at several time steps;
hence. table VII does not list the product species name.
reaction time, and standard solution value. Becausc of the
difficulties experienced by EPISODE-A and EPISODE-B,
error plots for EPS = 5% 10™* are not presented.

As discussed previously, all results with GCKP84 were
obtained with iy = 10 % s, although its current default value
is 5% 10 % 5. The effects of this change in A, on the accuracy
and execution time were studied by generating results with
hy=35X 10~% 5. The maximum errors incurred by the
solutions produced with both h values arc given in tables
VIII to XI. For this study new standard solutions using
hy = 5% 10 % s were established to bias the results in favor
of the current default value for h,. Despite this bias, tables
VIII to XI show that in almost all cases /i, = 10 ~¢ ¢ produced
more accurate solutions than i, = 5x 10 -3 . (No results are
given for P1 and EPS = 10 =2 pecause the runs with both 7
were terminated due to instability.) For Pl the results with
hy = 107% ¢ were significantly more accurate for all values of
EPS (tables VIII and IX). Surprisingly. for hiy = 5x10° Yy
the solution with EPS = 10 “*incurred substantially greater
errors than those generated with the larger EPS. For P2 the
differences in errors obtained with the two hy were small for
EPS — 10 2 and 10 . but for EPS = 10 %, hy=10""s
produced significantly more accurate results than
hy = 5x10~% s (tables X and XI). Finally. the execution
times required with the two hy are comparable for both
problems and all EPS (tables VIII and X).

Examination of figures 4 to 17 shows sudden increases in
the error plots for intermediate species and products. This
behavior is caused by species reaching values of 0.1 ppm or
greater (figs. 2 and 3) and introducing their contributions to
the rms errors. For example, for P1 the intermediate species
producing the sudden increases in the error plots are H (at
1=2us).0(atr:4us).OH(att=4us),andN(at1:
20 ps). For products the pertinent species are H,O (at 7 =
2 ps). CO, (at 1 = 4 us), and NO (at t = 15 ps).

EPISODE-A, EPISODE-B, LSODE-A, LSODE-B.
GCKP84, and CREK 1D all experienced difficulty tracking the
standard solutions during induction and carly heat release when
the species and temperature change rapidly (figs. 2 and 3).
The essentially isothermal induction period ends and heat
release begins when the temperature starts to rapidly increase
from its initial value. During induction. the reactants and
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temperature remain fairly constant. EPISODE, LSODE, and
CREKID have virtually no errors in the reactants and
temperature until heat release begins at ~9 us (P1) and 3 us
(P2). when the errors in these quantities start to increase. For
GCKP84. however, the error increases start at earlier times. The
difference, more noticeable for P1, is due to the smaller
reaction times obtained with this code for the onset of heat
release. Although, for consistency, we used EPS = 107% to
generate standard solutions with GCKP84, values of EPS as
small as 10 ™% (for P1) and 10 ~® (for P2) were found to be
necessary to achieve tolerance independence of the
temperature-time trace at early times.

During induction, the intermediate species and the product
H,0 increase rapidly from negligible initial concentrations.
The errors in the intermediates and products in this regime
are. therefore, relatively large. During early heat release
(t < 15 us for P1 and ¢ < 6 ps for P2), these errors continue
to remain large as more products are formed and the
intermediate species continue to change quickly. In this regime,
the reactants show a sharp decrease, and the temperature rises
significantly. Many of the ODE’s are unstable (ref. 2), and
so errors introduced at any step will grow as the integration
proceeds (refs. 1 and 24). For P1 the reactants and temperature
vary rapidly between 9 and ~ 15 us. For P2 the temperature
rise is not as steep, but the reactants change sharply between
3 and ~ 6 ps. Between these times, the errors in the reactants
and temperature are relatively large (figs. 4107, 9 to 14, and
17). For P2 the errors incurred at early times are less for
CREK 1D than for LSODE because of the much smaller step
lengths used by the former code in these regimes (refs. 2, 3,
and 12). During late heat release and equilibration, however,
EPISODE, LSODE, and GCKP84 incur much smaller errors.
In these regimes the ODE’s are stable (ref. 2), and so the errors
decay as the integration proceeds, provided, of course, that
the numerical method is stable.

The error plots for EPISODE, LSODE, and GCKP84
illustrate the dangers of assessing the accuracy of a technique
(or of a run with a certain value for EPS) by comparing
solutions at the final time (=1 ms for both problems). Note
that, although all these codes have negligible errors at the final
times, the errors can be significant at early times. For example,
with GCKP84 and EPS = 10~ the maximum rms error in
products is over 500 percent for P1. These plots also indicate
that if the main objective of the calculations is to study postheat
release phenomena (e.g.. NO formation), the use of large error
tolerances does not result in significant errors. The large errors
incurred at early times, however, have important implications,
especially in developing and validating reaction mechanisms.
A procedure commonly used for this purpose is to compare
ignition delay times (e.g.. time required for the temperature
to increase by a specified amount) predicted by the mechanism
with those measured in a shock tube (c.g., refs. 25 and 26).
The temperature error plots show that caution must be
exercised in using some of the codes to develop reaction
mechanisms by applying the above procedure. If, for example.

we assume that the ignition delay time is the time required for
a 25 K rise in the temperature, values of ~ 11 and 3.5 ps are
obtained for P1 and P2, respectively. At these times, the error
in temperature ranges from 10 to 25 K for EPISODE. 2 to
5 K for LSODE, 15 to 200 K for GCKP84, and 0 to 10 K
for CREKID.

In contrast to EPISODE, LSODE, GCKP84, and CREK1D,
CHEMEQ incurs virtually no errors during induction and early
heat release (figs. 7, 8, 15, and 16). Therefore, this code can
be used to generate accurate ignition delay times. CHEMEQ
is superior in these regimes because of the very small step
lengths that it selects (refs. 2 to 5). However, as pointed out
by Young and Boris (ref. 10). the continued use of the hybrid
method used in CHEMEQ results in the global errors
increasing with time. For example, with CHEMEQ-A and
EPS = 1072, the rms error in reactants has risen to almost
50 percent for P1 (fig. 7) and 25 percent for P2 (fig. 15). The
situation is worse with CHEMEQ-B (figs. 8 and 16). During
equilibration, for CREK1D, also, the errors grow (figs. 9 and
17) because the formulation used by it in this regime is based
on that used in CHEMEQ. However, CREK1D incurs smaller
errors than CHEMEQ for most of the species types and for
the temperature. For EPS = 10~ both CHEMEQ and
CREK D either are more accurate than or compare favorably
with LSODE during late heat release and equilibration.

Figures 4 to 17 and tables IV to VII show the large variations
in the maximum errors for the different techniques. EPISODE
and GCKP84 experience the greatest difficulty tracking the
solutions at early times—rms errors in excess of 100 percent
are obtained with the two codes. In contrast, the errors incurred
by LSODE, CHEMEQ, and CREKI1D are significantly less.
Comparisons of the runs with the largest EPS value show that
LSODE is the most accurate code for P1, and CREK1D for
P2. Comparing the errors in the different regimes shows that
CHEMERQ is the most accurate code during induction and early
heat release. During late heat release and equilibration,
however, the other codes are more accurate.

Examination of figures 4 to 17 and tables IV to VII shows
that all techniques are tolerance effective in the sense that a
decrease in the local tolerance generally results in decreased
global errors. We note, however, that with LSODE not all
plots show an error decrease with EPS. On the contrary, for
some runs the error increases with a reduction in EPS (figs.
4,5, 12, and 13). This behavior can be explained by examining
the nature of the error control performed in LSODE. As
discussed in the section **Computational Procedure,” the error
control selected to be performed by LSODE is mixed relative
and absolute for species mole numbers and pure relative for
the temperature. For pure relative error control, the estimated
local truncation error. d;. in species i approximately satisfies
the inequality

d,‘ < EPS ;U,': (28)

For pure absolute error control, d; approximately satisfies
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d; < ATOLSP (29)

These two inequalities are approximate because the code
controls only the rms norm of the estimated local truncation
errors in all variables and not the estimated local truncation
error in each variable.

Equations (28) and (29) show that, since o; << 1, relative
error control is more accurate for a given value of the local
error tolerance. Hence, relative error control is appropriate
for the two test problems. However, when o; = 0, relative
error control cannot be used. This problem is resolved by using
a mixed relative and absolute error control, and

d; < EPS g, + ATOLSP (30)

Equation (30) shows that for the error control to be relative,
ATOLSP must satisfy the inequality

ATOLSP << EPS ¢; 3D

If ATOLSP >> EPS |g;! the error control is absolute. In this
study, we have considered only species with mole fractions
(x;) = 0.1 ppm. This value of x; corresponds to g; = 3x 10 ~*
and 4x 1077, respectively, for P1 and P2. Hence, for the error
control to be always relative, ATOLSP must be less than
3x 107 EPS and 4x 10 ~° EPS, respectively, for P1 and P2.
Only the runs with EPS = 1072 for P1 satisfy these require-
ments. Hence, they are the most accurate at early times when
the mole numbers of many intermediate and product species
have very small values. Note that for P2 even the standard
solutions do not satisfy the requirement on ATOLSP. To ensure
their accuracy. the standard solutions generated with LSODE-
A and B were checked, respectively, against the solutions
obtained with LSODE-A and B using EPS = 1077 and
ATOLSP = 105, which satisfy equation (31). These compar-
isons showed agreement to three significant figures for all
species with mole fractions = 0.1 ppm. For LSODE-A agree-
ment to three significant figures was obtained for all species,
even those with mole fractions significantly smaller than
0.1 ppm. But for LSODE-B the agreement for mole fractions
< 0.1 ppm was not good for NO. For all other species,
however, good agreement was obtained for mole fractions
> 10 ~'". This observation indicates that LSODE-A is more
accurate than LSODE-B.

Equation (30) also shows that for given values of EPS and
ATOLSP, o; must satisfy the following inequality

ATOLSP

0; D> ————— = O, (32)
EPS

to achieve relative error control. As g; increases from zero,
the error control becomes less absolute and is equally relative
and absolute at ¢,,,;,. For 0; > 0,,,. the error control becomes
increasingly relative as o; increases. Hence, the quantity o,,;,
may be regarded as the value at which, for increasing o;, the
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error control starts to change character from being more
absolute to becoming more relative. Because x; = 0,/0,,, the
value of x; (=x,;,) corresponding to o, is given by

Xmin = ATOLSP/(EPS 0, (33)

For P1, xyin = 3%x1077 and 3x107° for EPS = 10 * and
10™* and the ATOLSP given in table IV. These values are
attained by most of the species at t = 5 and 7 us, respectively
(fig. 2). Hence, until these times the solutions with EPS = 10°°
and 10 ~* are expected to be worse than or, at best, as accurate
as the run with EPS = 102, Examination of figures 4 and
5 shows that the errors in intermediates and products for
EPS = 103 and 10 ~* are worse than those for EPS = 10 2
until t = 6 and S us, respectively, for LSODE-A, and until
t = 7 and 6 us, respectively, for LSODE-B. In addition, all
maximum rms and maximum errors, almost all of which occur
att > 7ps, exhibit reductions with decreasing EPS (tables [V
and V).

For P2 and LSODE-A, x,,;, has values of 2.5x1077,
2.5%107%, and 2.5%x 10 %, respectively, for EPS = 102,
1077, and 10™*. Some of the species never reach these values
(fig. 3). Hence, the errors do not show much sensitivity to
changes in EPS (fig. 12 and tables VI and VII). For LSODE-
B, however, the values used for ATOLSP ensure comparable
levels of relative error control for EPS = 1072 and 10 *; for
EPS = 10 *, the control is more relative in the sense that it
has a smaller value of ATOLSP/EPS. The errors, therefore,
display decreases with reductions in EPS (fig. 13 and tables
VI and VII). The sudden increases in the product errors around
t = 10 us were caused by the species NO, which LSODE-B
had difficulty tracking (table VII).

The above discussion should be regarded as strictly approx-
imate because it applies only to the estimated local truncation
errors, whereas figures 4 and 5 give the estimated global errors,
which represent the cumulative effects of the local errors. The
number of integration steps required up to the relevant reaction
time should therefore also be considered. However, the global
errors accumulate in a complicated manner from the local errors.
Other factors that must be taken into account are that LSODE
controls only the norm of the estimated local errors and that
different species reach mole fraction values of 0.1 ppm at
different times. Finally, although we have ignored species with
X; < 0.1 ppm, they do incur errors whose magnitudes are
controlled by ATOLSP and which grow with reaction time in
the initial combustion regimes, for reasons previously given. It
is therefore difficult to draw definitive conclusions about the
ATOLSP to EMAX ratios required for combustion kinetics
problems. For example, for P1, EPS = 107? is expected to
produce more accurate results than EPS = 10~ for the inter-
mediates and products at early times, especially between 5 and
7 ps (see eq. (33) and the discussion following it), but figures
4 and 5 show the opposite behavior for both LSODE-A and
LSODE-B. One conclusion that can, however, be made is that
care must be exercised in specifying ATOLSP.



The cffect of ATOLSP on solution accuracy is further
illustrated for P2 and LSODE-B by the results presented in tables
VI and VII (EPS = 107% and XII and XIII (EPS = 107%).
Note the significant error reductions obtained by decreasing
ATOLSP. Comparing the errors given for LSODE-B in tables
VI and VII with those in tables XTI and X111, respectively, shows
that for the same value (=107* or 107%) of ATOLSP.
EPS = 10 ~° does not produce significantly more accurate
solutions than the larger EPS.

Tables XII and XIHI show that, although the use of large
values of ATOLSP can result in significant errors for the
intermediate specics and products, the effect on the temp-
erature is small. Therefore, if the user is intcrested only in
femperature versus time traces at early times, as for example
in developing reaction mechanisms from ignition delay times,
fairly large ATOLSP values can be assigned.

The results obtained above indicate that the ATOLSP neceded
to achieve acceptable accuracy depends as much on the nature
of the solution as on the value specified for EPS and the mini-
mum mole fraction to be considered in the error analysis. The
estimate for ATOLSP given by equation (31) may not be small
enough, as for example, P! and EPS = 10 (table IV). On
the other hand, the estimate may be needlessly conservative.
For example, although the intermediate species increase much
more rapidly for P2 than for P1, larger ATOLSP produced

results that satisfied the accuracy criteria. Because the value.

needed for ATOLSP is a function of the problem, it can be
obtained only after the problem is solved. The major problem
associated with using LSODE to solve chemical kinetic rate
equations is therefore the trial-and-error procedure necessary
to obtain the optimal valuc of ATOLSP, that is, the value that
minimizes the CPU time while satisfying prescribed accuracy
requirements. Note that for P2, although the runs with LSODE-B
and ATOLSP = 10 * and 10 ~'* (EPS = 10 %) required the
same CPU time, the latter is significantly more accurate
(table VI). In contrast, the runs with ATOLSP = 107, 107",
and 10! required about 2.7, 1.7. and 1.7 s of CPU time,
respectively. The trial-and-error search for the optimal ATOLSP
can be time consuming, especially for large systems of ODE’s.
The use of an extremely small ATOLSP to ensure solution
reliability can result in excessive CPU times. For example,
for P2 the run using LSODE-B with EPS = 10~° and
ATOLSP = 10" required about 3.4 s of CPU time: in
contrast, the run with ATOLSP = 10 "5 required almost 20 s,
although the solution was not significantly different.

The error control used in EPISODE and GCKP84 is pure
relative for species with initially nonzero mole numbers and
for the temperature; it is, however, pure absolute for species
with initially zero mole numbers. Since most of the species
have zero initial mole numbers for both test problems, the error
control is mostly absolute. Hence, for the same value of EPS,
EPISODE and GCKP84 are not as accurate as LSODE for
solving chemical kinetic rate equations. To achieve comparable
accuracy, especially at carly times when g; 1s very small,
small values have to be used for EPS (ref. 2). The runs with

EPISODE and GCKP84 were therefore more expensive than
the ones with LSODE (refs. 2 and 3). Modifying EPISODE
to employ the same error control as LSODE produced
significant reductions in execution times. Preliminary results
with the revised EPISODE indicate that it is as fast as LSODE.
For example. for P1 the runs with the modified EPISODE-A
(EPS = 1072, 107, and 10—+ and the ATOLSP given in
table V) required. respectively. 0.35.0.41, and 0.61 s. The
execution times compare very favorably with those required
by LSODE-A: 0.37, 0.46. and 0.63 s (refs. 3 and 4). The
above observations indicate that the error control used in
EPISODE and GCKP84 is inappropriate for combustion
kinetics problems.

Examination of tables 1V to VII shows that temperature
calculation method A does not necessarily produce less accurate
solutions than method B. On the contrary, for most of the runs
method A is more accurate for all codes; this result is most
apparent for CHEMEQ and P1.

To provide a more comprehensive measure for comparing
the accuracy of the methods examined, we adopted the
following procedure: For each run, a mean integrated rms
error, &, was defined as

1 lend
grms = erm\”) dt (34)

end 0

where 7.,y (=1 ms) is the end of the integration time interval
and e, (1) is given by equation 27.

Equation (34) provides a single quantity that is a measure
of the average error incurred in solving the complete problem.
The integral in this equation was evaluated numerically using
Simpson’s rule (e.g., ref. 23), modified for unequal step sizes.
For runs requiring an odd number of integration steps. the
trapezoidal rule (ref. 23) was used on the last two mesh points.

The effects of hy on &, for GCKP84 are given in tables
VIII and X for Pl and P2. Except for the run with
EPS = 10 % for P2, hy = 10 -6 ¢ incurred cither comparable
or significantly smaller €, than hy = 5X 107% 5. Note.
further. for P1 and hy = 510 7% s the substantial increase
in &,,,, when EPS is decreased to 107 (table VIII).

The variation of &y, with ATOLSP is given in table X1
for P2 using LSODE-B and EPS = 10", This table illustrates
the increasing accuracy obtained by reducing ATOLSP. Italso
shows that ATOLSP must be chosen carefully. as discussed
previously.

The variations of &, with the user-specified local tolerance,
EPS, are shown in figures 18 and 19 for P1 and P2.
respectively. We have included the run with EPISODE-B and
EPS = 5x 10 *in figure 19 because it was successfully com-
pleted. The &, given in figurc 19 for LSODE-B and
EPS = 10 % was that obtained with ATOLSP = 10"
These figures show that all methods are tolerance effective
(i.c., decreasing EPS results in reduced &.,,). For both test
problems temperature calculation method A is as accurate as
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Figure 18.—Variation of the mean integrated rms error with the local tolerance
for test problem 1.
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Figure 19.—Variation of the mean integrated rms error with the local tolerance
for test problem 2.
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method B. In many cases it is significantly more accurate,
especially with CHEMEQ and EPISODE. For P2 and
EPS = 107, LSODE-B is more accurate than LSODE-A
because it used a smaller ATOLSP (table VI).

For the same value of EPS, EPISODE and GCKP84 are
significantly less accurate than LSODE (figs. 18 and 19)
because the error control used in the two codes is inappropriate
for chemical kinetics rate equations. For all techniques. note
the significant discrepancies between the values specified for
the user-supplied local tolerance and the errors actually
incurred. With CHEMEQ-B, a value of EPS = 102 (1 per-
cent) has resulted in an average error of almost 50 percent.
The relatively large &, incurred by CREKID and CHEMEQ
is due to the difficulties which these codes experienced tracking
the standard solutions during late heat release and equilibration.
With LSODE, especially the runs with EPS = 1072, the
correspondence between EPS and &y 18 better. These plots
show that for a given value of EPS, LSODE is the most
accurate code currently available for solving chemical kinetic
rate equations. However, for P2, especially with the smallest
EPS examined, GCKP84, CHEMEQ-A, and CREKID
compare favorably with LSODE (fig. 19).

Figures 20 and 21 present the variations of the computational
work (expressed as the CPU time in seconds) with the mean
integrated rms error for problems 1 and 2, respectively. Note
the large differences in the CPU time required by the different
codes to achieve comparable accuracy. For P1 and a ¥ percent
mean integrated global error, the CPU time varies from about
0.4 s for LSODE-A to over 40 s for CHEMEQ-A. In general,
to produce an order of magnitude reduction in & ms APPTOX-
imately doubles the computational cost. For both test problems
LSODE is the most efficient code in the sense that it requires
the least CPU time to attain a specified accuracy level.

Figures 20 and 21 show that the CPU times required by
temperature calcutation method A are less than, or compare

102 E
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o
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Figure 20.—Variation of the CPU time with the mean integrated rms error
for test problem 1.
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Figure 21.—Variation of the CPU time with the mean integrated rms error
for test problem 2.

favorably with, those required by method B. This difference
is most pronounced for CHEMEQ and EPISODE. For
example, for P2 and a | percent &,n. CHEMEQ-A required
only about half as much CPU time as CHEMEQ-B (fig. 21).
Note that for EPISODE-B the computational work increases
with increasing error.

EPISODE-A compares very favorably with LSODE for P2
(fig. 21). However, the solution generated by EPISODE can
be strongly dependent on the value sclected by the user for
h, and a poor guess can result in incorrect and unstable
solutions (refs. 2 to 5). It can also result in excessive CPU
times. For example, the run using EPISODE-A with
EPS = 10~* and h, = 10 ¥ s required about 129 s for P2; in
contrast. the run with iy, = 10 7 s required only 0.59 s.

Conclusions

The accuracy of several codes (EPISODE. LSODE,
GCKP84. CHEMEQ, and CREKID) in solving combustion
kinetic rate equations has been examined in detail. The
accuracy studies were made by applying the codes to two
practical combustion kinetics problems. Both problems described
adiabatic, homogeneous, gas-phase chemical reactions and
included all three combustion regimes: induction. heat release.
and equilibration.

During induction and carly heat release, when the species
mole numbers and temperature change rapidly. EPISODE.
LSODE. GCKP84, and CREK 1D had difficulty tracking the
solutions. The errors incurred by EPISODE and GCKP84 in
these regimes were significantly larger than those incurred by
LSODE and CREKID. In contrast, the solutions generated
with CHEMEQ displayed virtually no errors during induction
and early heat release. However, during late heat release and
equilibration, the errors obtained with CHEMEQ increased
significantly. In these regimes, the other codes were more
accurate.

Among the codes examined, LSODE was the most accurate
for solving chemical kinetics problems. This study has also
shown that LSODE is the most efficient code. that is. it
required the least execution time to attain a specified accuracy.
The major difficulty associated with its use is the trial-and-
error procedure necessary to obtain optimal values for the local
absolute error tolerances for the variables. A poor guess for
the absolute error tolerance can result in excessive execution
times or in seriously inaccurate solutions.

An important conclusion is that calculation of the temperature
by solving the algebraic enthalpy conservation equation can
be more accurate and efficient than integrating its differential
equation.

RY)



Appendix A
Description of Codes Studied

The ordinary differential equations (ODE’s) (2), (9) and (12)
describing homogeneous gas phase chemical reactions can be
generalized as follows:

——f(()k)) ik=1,.. N
a (Al

¥i(1p) = given

i =

where for temperature calculation method A (see the section
**Evaluation of Temperature’”)

vi= o; i N
(A2)
N = NS
for temperature calculation method B
Yi = 0 i= lr ’NS
ng+1 =T (A3)
N=Ng+ 1
and for the code GCKP84
Yy =o0; i=1,.. ,Ng
W+1 =V yn2=0p Ing+3 =T (A4)
N = NS + 3
In vector notation equation (A1) becomes
dy .
== —f(y) y(t3) = given (A5)

where the underscore is used to denote a vector quantity. A
matrix is denoted by a boldface letter. This notation is used
throughout this appendix. In equation (AS5) the N-dimensional
column vectors y and f contain the dependent variables and
their temporal derivatives, respectively.

The initial-value problem is to determine values for {y;] at
one or more times in a prescribed integration interval, given
{f] and the values [y,(#)] at the initial time r,. We now
describe the codes studied in the present work and how they
solve the above problem.

EPISODE AND LSODE

Both these codes use linear multistep methods of the form
(refs. 6 to 9)
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K,

ln E j.n lH j+hn E le n—j

j=0

i=1,..N

(A6)

where Y, , is an approximation to the exact solution y,(z,),
Jin (equal to f;({Y,,}) is an approximation to the exact
derivative y;(t,) (equal to £;({y(t,)])), and the |« @} and {3; )
(8o, > 0) are associated with the particular formula se]ected
by the user. The options include a variable-step, variable-order
implicit Adams method (suitable for nonstiff problems) of
orders 1 to 12, and a variable-step, variable-order backward
differentiation formula (BDF) method (suitable for stiff
problems) of orders 1 to 5. As discussed in the section
*“Methods and Codes Examined,’’ the BDF method was more
efficient for the problems examined in this study. Therefore,
the discussion is restricted to this method. For a BDF method
of order ¢, K| = q. K, =0, and equation (A6) reduces to

q
E aj,nYi,n—j + hnBO,nﬁ.n i=1..N (A7)

j=1

The step length k, can vary from one step to the next in
EPISODE but is held constant for ¢ + 1 consecutive successful
steps in LSODE. Hence, for EPISODE, {o;,} and [8;,} can
vary from one step to the next, but in LSODE they are
predetermined constants corresponding to the order used.

Both codes use a predictor-corrector process to solve for
Y,. An explicit method generates a predicted value, Yi%,
which is then corrected by iterating equation (A7) to convergence,
that is, the improved estimates Y ;m = 1,...,M) are produced
until the magnitude of the difference (_Y!,”'l — YI"=1y jn
EPISODE, or (h,Y}™ — h, Y™~ in LSODE, approaches
zero within a specified accuracy. Here, Y™ and Y™ are,
respectlvely, the approximations generated for ¥, and £, on
the m™ iteration, the integer M is the number of iterations
required for convergence, and ¥i™ is accepted as the numerical
solution at 1,, provided it satisfies a prescribed local accuracy
requirement. At each iteration m, h, Y™ is computed in LSODE
from Y™ via the relation

nj

q
= E aj nY + hnBO,n_Yr[1m] (AS)

so that the pair (Y™, h,¥!™)) satisfies the BDF method (eq.
(A7) exactly The predicted values of ¥, and A,f,, denoted
by £, Y%, also satisfy equation (AS).
The predicted quantities Y and 4, ¥!% are obtained by a
q"-order Taylor series expansion as follows: The history of
the solution is maintained in the Nordsieck array (which is



a Taylor series array) z,, of size N X (g + 1) (e.g.. ref. 1).
The i row (i =1...., N) contains the ¢ + | elements Y, .
hY . h3i20 Y. hilg! Y9 where YY) is the approximation
to (d'Y;7dr), . The (¢ + 1) columns of z, are numbered from
0 to ¢, and the /™ column (j = 0.1,....q). which will be
denoted by the vector 7, (j). contains the vector A, YY/j! of the
jM-order scaled derivatives. If z,_, has been obtained, the

predicted history matrix, z!", at 1, is given by (ref. 1)
ler()l =Z,_ lA(q) (Ag)

where A(g) is a (g+1) X (g+1) matrix, with element A (g)
given by

0 j<k
A/I\(q) = . j,l\ = O,l,...,q
() j=zk

The binomial coefficient, (4), is defined as

‘ i’

="t

k! (j—Kk)!
Thus, the predicted array z!”! is obtained by a simple g"-
order Taylor series expansion by using equation (A9). The
matrix z\” contains predicted values of Y, and its scaled
derivatives up to order g, the current method order. Note,
however, that because a g"™-order Taylor series expansion

method is used, ;z,',ol(q) = Z,-1(q).

The estimates Y and, in LSODE, h, YVl (m = 1,....M)
are generated, as described below, until the iteration
converges. The local error test is then applied and, if passed,
the Nordsieck history matrix z, is constructed by using the
relation

z, =2} +¢,0,(q) (A10)
where
()n = YI[IMI - YI[IOI
in EPISODE, and

€, = hnYlllMl —h Y‘[OI

nan
in LSODE. The (¢ + 1)"-dimensional vector /,,(g)

[n(q) = ([().n(q)’ ll.n(q) vvvv Ir/‘n(q)) (All)

contains the method coefficients for the Nordsieck history
formulation of the ¢"™-order BDF method. Because EPISODE

and LSODE use different calculation procedures. the {/; ]
values are, in general, different in the two codes. For
EPISODE, /,(¢) depends on the method order and the step
length history, satisfies ly ,,(¢) = 1 and {, , = 1/8,,,, and has
to be recomputed at the start of each step. For LSODE. /,,(g)
is a function of only ¢, satisfies { ,,(g) = 8y, and {; ,(q) = 1.
and has to be recomputed only when the method order is
changed.

To correct the initial estimate Y!"! (i.c.. to solve equations
(A7)), both codes include a varicty of iteration techniques.
For combustion kinetics problems the most efficient is the
Newton-Raphson itcration (ref. 2). which is given by the
recursive relation

q
P( Y’|lm+ I _ szml) — @ HY/ 4 hnﬁl), (Y!l’”]) _ Y,{l'”|
AL e .

i=1
(A12)

for m=0,1,....M—1. The NxN iteration matrix P is
given by

P=1- hnﬁll.nJ (AIB)

where I is the identity matrix and J is the Jacobian matrix,
with element J;; given by

Ji; = af,/dy, ij=1,...N

For this method, much computation time is required to form
the Jacobian matrix and to perform the linear algebra necessary
to solve equation (A12). To reduce this computational work,
P is not updated at every iteration. For further savings, it is
updated only when it has been determined to be absolutely
necessary for convergence. Hence, the iteration matrix is only
accurate enough for the iteration to converge, and the codes
may use the same matrix over several steps of the integration.
In any case, both EPISODE and LSODE update P at lcast
every 20th step. The linear algebra required to solve equation
(A12) is performed by the LU method (e.g., ref. 27), rather
than by explicitly inverting the matrix, which requires
prohibitive amounts of computer time (ref. 23).

Convergence of the estimates is ascertained as discussed
below. EPISODE constructs a vector Y,,,,, which depends
on the user-specified value for the local error control IERROR
as follows:

IERROR = 1 (absolute error control):
Your, = 1 i=1,..., N
IERROR = 2 (pure relative error control):

Ymu\l = ‘Y,,,,f][ I = 1,...,N
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IERROR = 3 (semirelative error control):

for i that satisfy y; (1) # 0

Ymuxj = max{ “/i,il—l ’ ‘Yi,n—ZH
for i that satisfy y; (1) =0

(Al4)

= max{l, |¥;,_ i

The test for iteration convergence is based on the successive
differences (Y"! — YI"~') as compared with Y, and the
user-supplied local error tolerance parameter EPS. Conver-
gence is said to occur if

1/2

N _ 2
! vl -y
b= Y | < C:EPS (Al5)
N ¥onax
i=1 '
In LSODE an error weight vector EWT is constructed as
follows:

EWT' = RTOL‘ |Yl‘,n—|’ + ATOL, l = l,...,N

where RTOL,; and ATOL, are, respectively, the user-supplied
local relative and local absolute error tolerances for the i
component. Both RTOL and ATOL can be specified either
as a scalar or an array, as discussed in the section *‘Computational
Procedure.’” The value of the user-supplied parameter ITOL
indicates whether RTOL and ATOL are scalars or arrays.
ITOL has four possible values which correspond to the types
of RTOL and ATOL as follows:

ITOL = 1: scalar RTOL and scalar ATOL

ITOL = 2: scalar RTOL and array ATOL

ITOL = 3: array RTOL and scalar ATOL

ITOL = 4: array RTOL and array ATOL

The convergence test is based on the successive differences
(h, Yim — b, Y~y as compared with EWT, and is given by

] N

!
6m = N E

i=1

1/2
hopim g ylm=1\? ?
( ndin EW,In\ in < CL (Al6)

The factors Cr and C; in equations (A15) and (A16) are
chosen to make the convergence tests consistent with the local
truncation error tests. In particular, Cg = 0.1 3¢(g) and
C, = 3,.(q)/2(q + 2), where 3¢(q) and 3, {q) are the test
constants used, respectively, in EPISODE and LSODE for the
local error test (egs. (A27) and (A28)) and where the variable
4 indicates the method order.

If convergence is not achieved after the first iteration, the
codes anticipate the magnitude of §,, one iteration in advance
by assuming that the estimates converge linearly. Thus, 6.,
which does not yet exist, is estimated by

6m
6'11 -1

6m+l = Bm = 6mCm'
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where C,, (=6,,/5,,_,) is the convergence rate. This assum-
ption is used to modify the convergence tests (egs. (Al5) and
(A16)) as follows:

for EPISODE
8, s) Cr EPS
where
8, = &, min (1, C,)
C, =max (0.1 C,_, C,)

and for LSODE

where
o, =38, min (1, 1.5 C})
CI;I = max (O'ZCm—], Cm)

Now, at least two iterations are required to compute C,,. For
the first iteration, C,, is set equal to 1 in EPISODE and equal
to the last value of C,, from the previous step in LSODE. For
the first iteration of the first step and after every update of
the Jacobian matrix, LSODE sets Cy, equal to 0.7.

If the corrector iteration fails to converge in three iterations,
h, is reduced by a factor of four if P is current and the step
is retried; otherwise, P is updated at y = Y!°!, and the step
is retried. The same corrective actions are taken by LSODE
if C,, > 2 after the second iteration. In the event of a singular
iteration matrix, both codes reduce A, by a factor of four and
attempt the solution with the new step length. The integration
is abandoned if either the step size is reduced below a minimum
value (both codes) or 10 convergence failures have occurred
(LSODE).

If the corrector converges after M (<3) iterations, an
estimate of the local truncation error is made, as described
below. For a BDF method of any order &, the local truncation
error, d, (k) at 1, is given by

d, (k) = €y B ¥+ Dt (A17)

where the variable k denotes the method order and the constant
C, 4 depends on the method formulation. For the variable-
step method used in EPISODE (ref. 6),

k

I1¢
@ =3Izt INE
T k1) (0 (A1)



where
(A19)

and /; , (k) is the second element of the (k + 1)*-dimensional
coefficient vector /, (k) for the k™M-order method (see
eq. (Al1)). For the formulation used in LSODE (ref. 28)

I
Crt = —
S

(A20)
The error d,(g) in the ¢"™-order method (i.e., k = ¢) used
on the nM step (i.e., (r,_.1,)) is estimated as follows: As
discussed previously, the last column of z,, z,(q) contains the
vector h¢Y 9 /q! and that of z!”!, z!"l(g) contains the vector
hiY'e), /q!. The difference of z,(g) and Ug) gives

n—1

q+|
_i0] R

2,(q) — 2 (g) = YD 4 ohgt?y (A1)

by using the mean value theorem for derivatives. From
equation (A10) the above difference is seen to be equal to
1, »(q) e,. which, upon substitution into equation (A21), gives

RV = gl a(@e, (A22)
if higher-order terms are neglected. This approximation is used

in LSODE. EPISODE, however, takes into account errors in
the past values and uses the following expression (ref. 6):

|
+ly(g+1)
hf}l an ) - €
Tn

(A23)

where

q

I1¢

j=! [+ ﬁ (——t" ~ I ) (A24)
YT gyt jo2 Nt = ey

and where £, is given by equation (A19).

By substituting the above expressions for h, YD and the
appropriate equation (A18) or (A20) into equation (A17) (with
k = ¢) and simplifying the resulting expressions, we obtain
the following estimates for d,(g):

For EPISODE

1 1+ I(II < L, — tn—j > #I() (AZS)
ll,u(q) j=2 L1 — tn-j -

d,(g) =

and for LSODE

'11( n ] n
dn(q) = 1 2 (q) €y, = L (q) €y

. (A26)
g+1 g+1

because ¢!/, ,(q) = ly.(q) for the formulation used in

LSODE (ref. 28).
The local error tests used in the two codes are as follows:

For EPISODE
l N di,n 2\'" ?
v oy < EPS
'=] n]ux,

which, upon using equation (A25) can be written as

] N ¢ 2\ 172
in
N i; <Ymu\,> 9

D, = <1
3:(q) EPS

(A27)

where the test constant Jz(g) is given by

36(9) = la(9) [1 + H < - )]
Iy - J

J—‘?

And for LSODE

1 N 31/:?
NE:(EWT) =1

By using equation (A26), the above inequality can be expressed as

1 N e A\ 172

N Z <EWT>

D, = : < |
Ji (q)

(A28)

where the test constant 3, (g) is given by

g+ 1
Il],u(q)

3.(q) =

4



If the error test fails, the following corrective actions are
taken. In EPISODE 4, is reduced so that equation (A27) is
satisfied (see eqs. (A29) and (A30)), and the step is retried.
If the results with the new step length do not pass the error
test, A, is reduced by a factor of five. After three and more
error test failures EPISODE reduces the step length by a factor
of 10 and reduces the method order by one if it is greater than
one. If an error test failure occurs with g = 1, the Nordsieck
history matrix z,,_, is reconstructed from Y, _, and f(Y, _;).
After the first error test failure, LSODE reduces A, and/or
g by one and then retries the step. If the error test is again
not satisfied, h,, is reduced by a factor of five. After three and
more such failures, the method order is reduced to one if it
is greater than one, the step size is reduced by a factor of 10,
and the step is retried with a new Nordsieck history matrix
z,_,. which is constructed from Y,_, and f(Y,_,). Both
codes abandon the integration if h, is reduced below a
minimum value. The maximum number of error test failures
allowed is seven in EPISODE and 10 in LSODE, after which
an error exit is taken.

If the error test is passed, the step is accepted as successful,
and the entire Nordsieck history array, z,, at t, is updated by
using equation (A10).

Periodically, both codes attempt to change the step iength
and/or the method order to minimize computational work while
maintaining prescribed accuracy. After every step on which
no convergence test or local error test failure occurs,
EPISODE attempts to use a larger step length at the same
method order. The new step size h'(q), where the variable
q denotes the order to be used on the next step, is chosen such
that it exactly satisfies the local error bound (eq. (A27)) by
assuming that the highest derivative remains constant. Then,
because d, varies as A% (eq. (A17)),

1
h’'(q) AW
Fame = = <—> 4+l (A29)
q

where r is the ratio of the step length to be attempted on the
next step to its current value and the subscript ‘‘same’”
indicates that the current order (g) is to be used on the next
step. To allow for inaccuracies in the error estimate, certain
safety factors are built into the calculation procedure for 2’ (g)
to produce a smaller value than that given by equation (A29).
The formula used in EPISODE for r,. is

1
Foame = 1 (A30)

g+1

(5D,)"" +10°°

To increase the efficiency, both codes consider changing
the method orderto g — 1 or ¢ + | at periodic intervals. After
an unsuccessful step or when the current order equals the
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maximum order, ¢,.,, the choice g + 1 is not considered.
Also, if ¢ = 1, the choice ¢ — | is rejected. For each method
order g’ the step size (g ') that wil} exactly satisfy the local
error bound is obtained by using the procedure outlined above
for ¢’ = ¢ (eq. (A29)).

For the case ¢’ = g — 1. d,(g—1) varies as by 4 (1,) (eq.
(A17)), which is equal to ¢'z,(g). The local error test for
q' =q — 1 is as follows:

For EPISODE

N 7 1/2
l E zi.n(q) :
N i=1 Ymux, ?

3:(g—1) EPS

where z; ,(g) is the i element of z,(g) and (ref. 6)

i(g—1
35(61—1)=L)

-1
I1¢
j=1
And for LSODE
172

- N zi,n(q) :
N EWT, 2

=1

—

)
L

]
IA

3 (g—1)

where (ref. 28)

The step length ratio, if the order is to be reduced to ¢ — 1,
is then given by

1
h'(g—1 1 7
Fdown = (q ) = g (A31)
hn Dq—l

where the subscript ‘*‘down’’ indicates that the order is to be
decreased. If ¢ = 1, ry,., is set equal to zero because ¢
cannot be decreased.

For the case ¢’ = g + 1, d,(g+1) varies as hf 2y 4+ ),
which is estimated by differencing the quantity h4*'yt+!
over the last two steps and then using the mean value theorem
for derivatives. For EPISODE equation (A23) gives
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n—1
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= pdryrd 4+ Oo(hitY)

where 7, is given by equation (A24). For LSODE, equations
(A22) and (A26) show that the approximation for Ag*'Y,¢* ")
is given by Iy, (g)e,. Because the methods used in this code
are based on a constant step size, the quantity iy ,,(q)le, — €,
gives

/(Ln(q)[en - (‘,,,‘] = h:{*%y]}‘l*h + O(hllll*—})

The local error test for ¢° = g + 1 is given by
For EPISODE

A

( Y >< h, >"*‘
ei.’! - - - ‘ll“lr—l
V-1 hu—i

i=1 Ymaxi L]

Jelg+1) EPS

where (ref. 6)

+2),(g+1 4 =ty
3}(([+1) — ((] ) 1,;(‘] ) 1 +H ( L, l, J >
E‘I‘H j=2 -y — tn—j

And for LSODE

172
1 % €in — €in-i :
N im EWT; 2
Dq+l = < 1
Ji(g+1)
where (ref. 28)
+ 2
5(g+1) = =
l().n(q)

The step length ratio, if the order is to be increased to g + 1,
is then given by

h'(g+1) 1 \49+2
Fip = =<D 1> (A%2)
+

where the subscript “‘up’” indicates that the order is to be
increased. If g = g, and in LSODE after a failed step, r,, is
set equal to zero to prevent an order increase.

For reasons given previously certain safety factors are built
into the step length ratios (eqs. (A29), (A31), and (A32)). The
formula used in EPISODE for r,,. is given by equation (A30):
the other two ratios are computed as follows:

\
Fdown = 1

(5D,_ )4+ 107°

1
up 1

2
(10D, """+ 107

The formulas used in LSODE to calculate the step length ratios
are

1

Fdown = 1
1.3 {(Dq_,)" + 10—"}
I
rsumc = l
1.2 {(D‘,)"+l + 10-61
1
AruP =

2
1.2 {(Dﬁ.)"+ + 10-"}

The order corresponding to the maximum step length ratio
r = max(Fgown» Fsame-Tup) and the step length ratio r are selected
1o be attempted on the next step if, after a successful step, r = 1.3
(EPISODE) or 1|.1(LSODE); otherwise. both changes are
rejected. After a failed step, the order is decreased in LSODE
if Faoun > Fame: hOwever, r is set equal to one if it is greater
than one. Several additional tests are performed on r before the
step length to be attempted next is selected. These tests may be
summarized as follows:
For EPISODE

. hmax
r — min ,
h,

h min
Fax. Max r, h » Tmin
n
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where the arrow denotes the replacement operator.
And for LSODE

. hmax hmin
r— min v Pgxe Max | v, —
h, h,

In EPISODE, A, and h,,,, are set equal to, respectively, h,
the user-supplied value for the step length to be attempted on
the first step, and 10(fyy — fou o) Where 1, is the current
time at which the solution is required and 1, ,q is the
previous value of 1. On the first call to EPISODE r1,,, is set
cqual to 1, the initial value of 1. In LSODE, however, A,
(default value = 0) and A,,,, (default value = co) are user-
supplied optional input parameters. The quantity r,, (used
only in EPISODE) is set equal to 0.1, and r,,,, depends on
the code. In EPISODE, r,,,, is set equal to 10 for the first
10 integration steps; thereafter, it is set equal to 1.5. In
LSODE, ry,, is normally set equal to 10; for the first step
length increase following either a convergence or local error
test failure, it is set equal to two. In both codes for the first
step length increase for the problem r,,, is set equal to 10*
if no convergence or error test failure has occurred.

After the step length ratio r has been computed, the step
length /" to be attempted on the next step is given by

h' =rh,.

Changes in method order (and step length in LSODE) are
attempted only after § successful steps with the same order (and
step length in LSODE), where S is normally set equal to g + 1.
However, if an unsuccessful step occurs, the step length and/or
order may be reduced. Following a failed error test or a failed
convergence test. if P is current, EPISODE resets S equal to
2 if it is less than two, but LSODE resets S equal to g + |
irrespective of its current value. If three or more error test failures
occur on any one step S is set equal to five in LSODE and either
g + 1(ifg > 1)or 10 (if ¢ = 1) in EPISODE. Following a step
for which the method order is not changed EPISODE sets S equal
to 2. If method order and step length changes are rejected because
r < 1.1, LSODE sets S equal to 3.

After every S — 1 successful steps, if ¢ < ¢,,,.. EPISODE
saves ¢ and vy, and LSODE saves ¢, so that ryp can be
computed. To minimize storage requirements, the vector e is
saved as the (¢p., + 1) column of z.

If the step size and/or method order is changed on the nth
stcp z,, has to be modified. For the case ¢' =g, h’ # h,,

J™ column (j = 0,1,. ..q) is multiplied by (h'/h,)’. For the
case ¢° =g — 1, b’ # h,, the last column of the old z, is
ignored because it is not needed on subsequent steps. In
addition, EPISODE adjusts the first g columns to reflect the
reduced set of data represented by z,, (ref. 6). In both codes
the above scaling by powers of (f'/h,) is performed on the
first ¢ columns. For the case ¢ = ¢ + 1, h’ # h,, EPISODE
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adds a column of zeros, representing z,(g + 1). to z,.
LSODE sets z, (¢ + 1) equal to h?*' Y{9* /(g + 1)!. which
is equal to L (@)e,/ (g + 1) (sce eq. (A22)). Both codes then
rescale all g + 2 columns of z, by powers of ' /h,, to account
for any change in the step size.

The solution values at prescribed output times 7, |, fu o
are obtained quite easily from the history array. For each
output station f,,,. the codes continue the integration until the
first mesh point n for Whl(.h 1, = t,, and then compute the
solution at 1, by a ¢, ,"-order Taylor series expansion
about 1,

v (o — Gy foo— J
— out n (/) out ny L .
Y(,"“') ; Y ,—g < h;:+l )h”(‘/)

(A33)

where g, .| and A, | are, respectively, the method order and
step size to be attempted on the next step.

Both codes start the integration with a single-step, first-order
method because information is available at only the initial
point, fy. The Nordsieck history matrix z at 1, is constructed
from the initial conditions y(t,) and the ODE’s as follows:

0(0) = Yo =y(t0): (1) = hyY, = hof(Yy)

where &, the step size to be attempted on the first step, has
to be supplied by the user to EPISODE. In LSODE, however,
hy is an optional input variable and is computed by the code,
unless the user has specified a value for it.

GCKP84

GCKP84 is a general-purpose chemical kinetics code
designed to solve a wide variety of problems (ref. 15). It uses
the integration technique developed by Zeleznik and McBride
(ref. 18). As implemented in GCKP84 the integration
algorithm is an extensively modified version of the GEAR
package (ref. 19), which is similar to LSODE. In particular,
GEAR includes the two linear multistep methods discussed
previously. The methods are based on a constant step length,
and the method coefficients {[,} (eq. (A11)) have the same
values as in LSODE. Hence, /,(q) is a function of only the
current method order g, satisfies /y, (q) = 8, (see eq. (A7))
and /; ,(g) =1, and has to be recomputed only when the
method order is changed. GCKP84 uses the same two linear
multistep methods but the maximum method order is different:
11 for the implicit Adams method and 8 for the BDF method.
The methods are also implemented differently as discussed
below. For reasons given previously we restrict discussion to
the BDF method (eq. (A7)).

As in EPISODE and LSODE, GCKP84 maintains the
solution history in the form of the Nordsieck history array,
z. The array z, at the current time 1, is obtained by using a



predictor-corrector process. The prediction step is performed
in two stages. First, an initial estimatc for 2! is computed
via equation (A9); that is, the result of the prediction step used
in LSODE and EPISODE (and GEAR) serves only as an initial
estimate for z)"' in GCKP84. Sccond. the above result is
modified by means of an expression similar to equation (A10).
as follows: The difference (z,(1) — (1) (equal to ¢, in
GEAR because /(g) = 1. eq. (A10)), that is.

ey = hnyu - hu}./!llm (A34)

may be regarded as the error in the ¢™M-order predictor relative
to the converged array z,. Equation (A10) gives the history
matrix z, by adding the remainder term associated with using
the ¢"-order predictor. Of course, since ¢, can be computed
only after the converged solution is produced at 7,,. the above
procedure cannot be used. However. since ¢, | 18 available,
it can be used to improve the initial estimate given by equation
(A9). However. for additional accuracy improvement.
GCKP84 uses the quantity E obtained by accumulating the
errors le,) (sce ¢q. (A35)). The quantity E, may be regarded
as the estimated global error in A, Y% Since E, is not known
at the start of the step, GCKP84 uses E,_; to improve the
estimate given by cquation (A9) as follows:

o h g+ 1
. L0 n
LI‘I - L/lz R En— I[n(q)

h[.‘

where h. which is normally equal to A, . is the step size
that £, _, is based on and the term (h,/hy) " accounts for
this fact: the exponent ¢ + | arises because the current order
is ¢ and the local error varies as Rt (see eq. (Al17)). On
the first step. E,_, (equal to Ey) is set equal to zero because
Yy (equal to f(¥(#y))) is known cxactly.

After the prediction process is performed, the code checks
the { Y} for negative values. Because it is physically impossible
for species concentrations, temperature, density, or velocity
to be less than zero, the results of the predictor step are rejected
if any Y!% < 0. Also, for each variable i for which the above
condition is obtained. E, ,_, is resct to zero if it is less than
zero. The step length is then reduced by a factor of two and
a new z\"! is gencrated. The above procedure is repeated until
either all predicted solution components are nonnegative or
the step length is reduced below a minimum value, Ay, in
which case an error exit is made.

To correct the initial estimate GCKP84 includes a varicty
of iteration techniques. For reasons given previously the
discussion is restricted to the Newton-Raphson method. The
procedure used to generate the improved estimates yim
(m = 1.2....) is exactly the same as that described for LSODE:
solve equation (A12). The iteration matrix P (eq. (A13)) is
only accurate enough to achieve convergence, but the same

P is used for a maximum number of 20 steps. At each iteration
the approximation h, Y"1 b, f, is computed by using equation
(A8). If any Y"1 < 0. the iteration is abandoned. The step
length is then reduced by a factor of two, and the step is retried.

Convergence of the estimates is said to occur if any of the
following three tests, which are applied in the order they are
given here. is satisfied. The first test involves the magnitude

of the successive differences (Y — Yl
1/2
N ’ ol — 1\ 2 9
1 Y[m] _ylm I ) ,
5,” = _ E < L Yt,u < 10,_
N l: 1 Yﬂhl\,

where Y. ; is given by the expression used in EPISODE for
semirelative error control (eq. (A14). The second test is based
on the size of the current estimate for ¢, relative to the size
of the current estimate for E, (see eqs. (A34) and (A335)):

N hnyi.lr’:’! - hnywl } ?

[82]

iz < 0.1

‘ h g+
=1 huyim’l - h,,Y,‘!f,” + <;”> Ei,rl*l
3

If for any i the denominator in the above summation is less
than 10, it is set equal to 10 °. The third criterion is
based on how rapidly the iteration is improving the solution
and is given by

?
< 107°}
S

m— |

}6111 - 5!!1* |

which can be applied only after two iterations. However. the
third test is applied only after five iterations and that too only
if §,, = 5.

If convergence is not achieved after four iterations, the
iteration matrix P is updated at y = YI¥ and the correction
process is retried. This procedure is repeated four times, after
which, if the estimates have not converged. the step length
is reduced by a factor of two and the step is retried. The same
corrective actions arc taken if on the fifth or subsequent
iteration 8,, > 8,,_,. The above cycle of updating P every
four iterations and then reducing /1, by a factor of two after
four such updates is repéated until either convergence is
obtained or the step length is reduced below /. in which
case an error exit is taken.

After corrector convergence the local error test is applied.
This test is based on E,, which is estimated by using

I g+ 1
Eu =€, + <IJ) Eu—l (A35)
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and can be written as

N ) 112
1 Ei,n
A” <X/ igl (Ymux,) > ?

D, = = <5 (A36)
EPS 3:(q) EPS 35(¢)

where EPS is the user-supplied local error tolerance and
I {q) (equal to 2/, (q)) is the local error test coefficient for
order g.

If the error test fails, the error vector E,_, is updated by
using equation (A35), and A is set equal to £, because E, _,
is now based on h,,. The code GCKP84 then reduces the step
size and/or the method order by one and retries the step. After
three and more error test failures, the method order is reduced
to one if it is greater than one, and the step length is set equal
10 hpin- A new Nordsieck history matrix at 7, _ | is constructed
from Y,_, and f(Y,_;), E,_, is set equal to zero, and the
step is retried. After seven such failures or if £, is reduced
below h,,,, the integration is abandoned and an error exit is
made.

If the error test passes, the step is accepted as successful,
the Nordsieck history array z,, is updated by using equation
(A10), E, is computed by means of equation (A35), and hg
is set equal to h,.

To increase the efficiency of the integration, the code
periodically considers changing the method orderto ¢ — 1 or
g + 1. Of course, if ¢ = 1, the choice ¢ — 1 is not considered.
After an unsuccessful step or if either ¢ is equal to the
maximum method order, g, or D, > 4 1;(q), the choice
g + 1 is rejected. For each method order ¢’ the step size
h'(g’) is computed from an estimate of the local error in a
manner similar to the procedures used in EPISODE and
LSODE (eqgs. (A30) to (A32)). For each method order g’
GCKP84 computes the step length ratio r(g”) as follows:

Eh’(q’)= 1

r(q’) (A37)
h, 4 !
g(z)q,D:)‘f'+ Ly107°
where
N 2\ 112
l E zi.n(q) - O’Slq,n(q)Ei.n~I
N’,_l Yﬂ\il\,
Dq—l = =
EPS 35(qg—1)
and
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Dq+l =

EPS 35(q+1)

The local error test cocfficients J5(g—1) and 3,(¢+1) for
orders g—1 and g+ 1, respectively, are given by

Iglg—1) =2

and
Jolg+1) =2(q + 2}/, (q)

The quantity D. in equation (A37) is set equal to 10, unless
A, = 107%/~/N, in which case it is set equal to 0.1. If
A, is also greater than 1072 /~/N, D. is set equal to A,/
A,_,. Finally, if D. is less than (0.25)*", it is set equal to
this quantity.

The order corresponding to the maximum step length ratio
r = max(r(g—1), r(q), r(g+1)) and the step length ratio r are
selected to be attempted on the next step if » = 1.1 after a
successful step; otherwise, both changes are rejected. After
a failed step, g is decreased if r(g—1) > r(q); however, ris
set equal to 1 if it is greater than 1. The following additional
tests are performed on r before the step length #’ (equal to
rh,) to be attempted next is selected:

. hmux . hmin
F— min v Foaxs Max { r, —
hn hn

The minimum, h,;,, and maximum, h,,,. step sizes are,
respectively, set equal to Ay, the user-supplied value for the
step length to be attempted on the first step, and 10(t,, —
Tourolg). On the first call 7, is set equal to 1. The quantity
Fmax 18 set equal to 10. For the first step length increase
following either a failed convergence test or a failed error test,
it is set equal to two. However, after three or more error test
failures, it is set equal to min (10*, ,/h,,), thereby ensuring
that the new step length equals £;,. For the first step length
increase for the problem, r,,, is set equal to 10* if no con-
vergence or error test failure has occurred.

Changes in method order and step length are attempted only
after S successful steps with the same order and step length,
where § is normally set equal to g + 2. However, if an
unsuccessful step occurs or if D, > 4 35(q), the step length
may be changed. and the method order may be reduced.
Following a failed convergence or local error test, S is set equal
to g + 2. After three and more error test failures, S is set equal




to three. If method order and step size changes are rejected
because r < 1.1, §'is set equal to 10. Finally, the successful
step counter is increased by one only if convergence is obtained
in eight or fewer iterations.

If the step size and/or the method order are changed on the
n" step, z, has to be modified. For the cases ¢" = ¢ — 1 and
¢’ = ¢. the modifications are made cxactly as in LSODE
(described previously). For the case ¢” =g + 1, z,, is first
augmented by a column containing the vector [, ,(q)
E,/ (g + 1), which is approximately equal to h¢*'yld+D
/{g+1)!, and then all (¢ + 2) columns are scaled by powers
of h'/h, to account for any change in the step size.

The solution values at the prescribed output times 1, |,
fou.2s -.. dare obtained from the Nordsieck history array by
using the Taylor series expansion method (eq. (A33)) described
for EPISODE and LSODE. The same procedure used in these
two codes to start the integration is used in GCKP84; the step
size, k. to be attempted on the first step must be supplied by
the user.

CHEMEQ

In this technique. developed by Young and Boris (ref. 10},
the species rate equation (Al) is expressed as a difference
between two positive-definite terms as follows:

dy;

=f=®
dt J

i

- D,

i

i=1... .Ng (A38)

where, for species i, the production rate @; and the destruction
rate 3; can be derived from equation (3):

NR
®=p"" Y ('R + v R)

j:

NR i=1,...,NS
ZD,Aprl (vi R_,+v/R_)

jg 2 / 4 i (A39)

When the temperature ODE (eq. (9)) is required (method B),
it can be cast in a similar form by combining equations (9)

and (A38)
Ny Ny
- Lhh - Y (- Dok
d}\',\eﬁ I g _ k=1 k=1
dr dt Ny Ny
Z '\'/\.(7,,'/\. E .Vk('p‘l\
k=1 k=1
= (?,\{\-H - S)NS+ 1
= G)',' - S)’]',

where

Ny

E Dy by

®, =
! N,
E ."k(‘/hl\
k=1
and
N
L ek
k=1
D, =
! N,
E .y/\(‘,nk
k=1

The objective of this decomposition is to enable factorization
of y; from D,

£D, = £,"\',’ = _\',‘/T,'

where £, the loss cocfficient for species 7, is obtained simply
by dividing $; by v; (i.e., £; = D;/v,). With this new
notation, equation (A38) can be written as

dy,

=@ - Ly, =®, — /7 (A40)

dt

which, for constant ®@; and £,, can be solved to give

( ) - ( — ) - : ( - ) ! p( )
\vl_ ,” .\-'. I” + h” — + )v’_ f" — — X — s:’h”
i l £ i ! £

i {

Expressed in this way, it can be seen that 1/L; ( = 7;) describes
how quickly the variable y; reaches its equilibrium value.

In advancing the solution from time 7,_, to time 7,, all of
the equations are separated into two classes, stiff and nonstiff,
according to the criterion

<1 nonstiff

where 7;,,_; denotes the value of 7; at time ¢, _,. The two
types of equations are integrated by separate predictor-
corrector schemes. For equations classified as nonstiff, the
improved Euler method (with the Euler method as predictor
and the modified Euler method (or trapezoidal rulc) as
corrector) is used. For equations classified as stiff, a simple.
stable, asymptotic formula is used.
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Nonstiff predictor:

)/Ill(l)l = Yi.u—l + hl in—1 (A4ld)
Stiff predictor:
Yil,(y)’ _ Yi\u—] (2Ti,ll—l - hn) + 2hn TI,II~l@i.ll—l (A4lb)
' 2Ti,n—l + hn
Nonstiff corrector:
[m+1] h” \m)
Yi.n = Yi‘n—l + 5 lﬁ.u—l +f;.n } (A42d)
Stiff corrector:
[m+1] h” [m)] [m}
Yi,n =3z ‘Ti,n + Tin— l] [(PI,II + G)i.n—l}
2
+ Yi,n—l VTi!;:l] + Tin—1— hul} ‘\f | Ti!:rl + Tin—1 + hn]
(A42b)

In equations (A41) and (A42), m + | is the current iteration
number. The zeroth estimate is the result of the predictor step.
Also, £I"l = £((v¥"h). Convergence is ascertained by com-

[ N

paring Y2+ 1} with ¥”! for all N components using the relative

L nn

error criterion

lm+ 1] _ ym] 2
5 = Max Dk [ i Z EPS
4 . m m+1]
min 'Yi,n l* Yi.in l

(A43)

To avoid numerical difficulties with the use of equation (A43),
each estimate is constrained by a minimum value. In the
present work, a variable that is less than 102 is set equal
to 107°%. Thus, for a species with decaying concentration,
convergence is obtained trivially once Y, = 1072, and its
equation is decoupled from the equation set.

If convergence is not achieved after ITMAX iterations, the
step length is halved and the step repeated. In this study, a
value of ITMAX =35 was used because it minimized the
execution time for both test problems (ref. 2). If the corrector
converges after M iterations (M < ITMAX), the step is
accepted as successful, and the solution is updated

Y, =YM i=1,..N.
No attempt is made either to estimate or control the local
truncation error.
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After each step n the step size i, | to be attempted on the
next step is computed from the converged integration cycle
as follows:

B,y = + 0.005]

h, | ————
(a/EPS)'"?

The step size, h;, to be attempted on the first step is
determined such that none of the variables will change by more
than a prescribed amount. The formula used for Ay is

in [ v, I ,
hy=EPS ™" [M or —  if yi(r) = 10‘-“]

fi(f()), £io

The solution at each output station f,,, was computed by
linear interpolation between the computed approximations at
1,_, and t,, where t, is the first mesh point that is =1,,:

four — Ti-1
,Y(Inm) = Yn—l + ‘_I— (Yn - Yn—])
1

"

CREKI1D

In CREK 1D, attention is paid to the distinguishing physical
and computational characteristics of the induction, heat release,
and equilibration regimes (refs. 11 to 14). This code consists
of two algorithms developed for the two distinctly different
regimes: (a) induction and early heat release, when the ODE’s
are dominated by positive time constants and (b) late heat
release and equilibration, when the ODE’s are more stable
(ref. 2). Both algorithms are based on an exponentially fitted
trapezoidal rule, but they use different iterative methods for
convergence.

The code CREKID solves a mixed differential-algebraic
system of equations: ODE’s for the species mole numbers
and the algebraic enthalpy conservation equation (8) for the
temperature. The ODE’s and algebraic equation are solved
simultaneously; however, in the following discussion the
variables y and Y refer only to the species mole numbers.

The solution method used for the species ODE’s is a gener-
alized, tunable, single-step, implicit procedure:

Yi,n = tin-1 + hn[(ji,r in + (1 - Ut’,lz)j;,ll—l] i= 1~-~'*NS

(A44)

where U , is a degree-of-implicitness factor. This parameter
is obtained by ‘‘exponentially fitting™’ it to a locally exact
solution of equation (A1) as follows: The species rate expression
Ji is expressed in a locally linearized form such that

ﬁ zﬁ.ll—] + 01‘,'1()/1 - Yi.n-l) i = 1v-~~’NS (A45)



where the choice of 8, ,, a suitable linearization constant, is
discussed shortly. Equation (A45) assumes that in the interval
[r,—1. 1] (i.e.. locally) each species mole number varies expo-
nentially. Integration of this equation gives

hg;,) —1
YIJI = y[,n—l + hl =1 ﬂ(,l% (A46)
1L,Uin

To exponentially fit U, , we first replace f; , in equation (A44)
with the expression obtained from equation (A45):

fi.u :./l‘.ll*| + ei‘n(Yi,n - Yi.u—l) (A47)

and then equate the resulting expression for ¥; , with equation
{A46). These operations give

1 1
+
hnemt 1 - cxXp (hnel,n)

U.

i

LNy (A48)

In order to maintain absolute A-stability of equation (A48)
(i.e., to keep errors introduced into the numerical solution at
any one step bounded as A, is increased indefinitely), U,
must be restricted to the interval (0.5,1.0). For values of
8;, > 0, equation (A48) gives U, , < 0.5. CREKID resolves
this problem by setting 8;,, = 0 whenever it is greater than zero.
This value of 8;, gives U, = 0.5, so that equation (A44)
defaults to the second-order-accurate trapezoidal rule. However,
for 0;,, < 0. equations (A44) and (A48) together are equivalent
to the locally exact or exponential solution, which has an
equivalent polynomial accuracy of order six to eight (ref. 11).
Thus, equations (A44) and (A48), with the constraint
(0.5 = U;,, < 1), constitute an exponentially fitted trapezoidal
rule, a method which is A-stable and has a polynomial-order
accuracy of at least two and as great as six to eight.

The linearization constants {f, ,} are obtained in one of two
ways. In the first, called functional linearization (see refs. 11
to 14), equation (A47) is solved explicitly for 8, to give

_ f;,n —ﬁ,ll—l = Zl X
Y, -7V '

in =1

= (A49)

in

In the second approach, called formal linearization (refs. 11
to 14), the net formation rate of each species is expressed as
a difference between two positive-definite terms, as described
in the previous section (see eqs. (A38) and (A40)). Comparing
equations (A47) and (A40) gives

Bi,n = - £1.u—] (ASO)
for this procedure.

At each integration step, equation (A44) must be solved for
Y; - The solution is accomplished by Newton-Raphson (NR)

iteration in regime b and Jacobi-Newton (JN) iteration (ref. 29)
in regime «.

A Newton-Raphson functional F i (i = 1.... N) for cach
species mole number is defined from equation (A44) by
Flnl = Y:‘.I;;”l — Yo -V, f {m] (A51)

LN h,, U,-',, U,_” in—1 L

)

for i = 1,...Ns. For temperature the functional F-,Iv,, is
defined from the enthalpy conservation equation (8) as

Ng
Fil= Y0 Y0 k(T = Hy(Ty) (A52)
k=1
where m is the iteration number, 7! is the m"™-approximation
to the exact value 7(t,), (7} is the molar-specific enthalpy
of species & at temperature T and Hy(7T,) is the initial
mixture mass-specific enthalpy at the initial temperature Tj,.
Newton-Raphson corrector equations with log variable cor-
rections (for self-scaling of the widely varying mole numbers)
are given by

Ng
! aF|m| N oF [m]
E l'”m] Aln YUHI + in Aln 7-,|,m+ll — _F‘,I;’,,:l
dln ¥}" dln T ‘
k=1 :
(AS53)
fOr ] =1,..., NS
Ny [m} [m]
aF aF ¥ n
E l.nm] Aln k»r’ll+ll+ Tn Aln Tl = —F},,'
hlmnwn ' oln Tl ‘
(A54)
where
Aln Yl =1n ¥l —n vl = 1N
and

Aln Tl{lm+ H— In T,l,m+ Iy In T,{,ml

The partial derivatives in equation (A53) are obtained from
equation (AS51) and are as follows (with the step and iteration
numbers suppressed for clarity):

aF, 5 o
Loy (2 _ (AS5)
3ln Y, hU, 3y,
dF, 3
L _p Y
an T aT
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where 8, the Kronecker symbol, is

=0 izk
6”:1 i=k

and 3f,/8Y, and 3f/T can be derived from equations (3) to
(8). and (10). In evaluating 3f;/dY;. the partial derivatives
with respect to o, are assumed to be negligible compared
with the other terms. The required partial derivatives are then
given by

- ‘VR

ai , b ? " r ’”

aj;, = —(p¥)"! E (v = v (R — v; R_) (A56)
% =

NR
ofi _fi 1 C L,
B_T:_T_;TTE (v — v [RJ<N.;'+—TJ‘"/‘>

i=1

where

Ny

Ng
[ ”
np = E Vij
i=1

i=1

The partial derivatives of F; are obtained by differentiating
equation (AS52) and are as follows:

aF;
dln Yk

- Ykp‘lw

aF;

Ny
Faeall) DR (AST)

i=1

where, again, the step and iteration numbers have been
suppressed. The Ng + 1 equations (AS53) and (A54) are
solved simultaneously by LU decomposition and back-
substitution (ref. 27). The resulting log variable corrections
are used to update the current estimates {Y2*'!] and 7}"* i
by the approximate equations

na N

iy (1 aln )i = 1N
(AS58)
T'|1m+l] — Tj,m] <1 + Aln ﬂ,m+ll>

The solution procedure does not use a predictor; instead, the
converged results {Y;,, ] and 7, _ from the previous step are
used to start the iteration.
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The JN iteration technique can be derived from the NR
iteration procedure by neglecting the off-diagonal elements of
the Jacobian matrix for the mixed differential-algebraic system
of equations. With this simplification, equations (A53) to (AS5)
reduce to

aij}
DR Al gl = F =N ()
n rg,
aF'}‘I.'rlll Aln T{m+ [} - _F}"ll
3In T},’”I n ]
(A60)
mj {m] |m]
ar oyl L Ofh

Ln

daln Ylli’lnl - hnUi,n ay‘l’l'nl

The iteration procedure is further simplified by approximating
af:/8Y,, (eq. (AS6)) as follows:

afi

Ny
3t Y)Y iR+ iR

Jj=1

which, when combined with equation (A38), gives

of, b

aY; Y,

With these simplifications equation (A59) can be solved

explicitly for the iterative corrections
Fi

Yl‘.l;lll/hnUi.n + ':Dll’;;l

m+1] . _
Aln Y+l =

The temperature correction is obtained by substituting equation
(A57) into equation (A60):

1o
FIJ! (A62)

+1] =
Aln TI['m | = _ NS

3 mj
rlliml Y}\,Il (./).k ( T;illnl)
k=1

where ¢, 4 ( Ty is the constant-pressure molar specific heat
of species k at temperature Ti"!. The current estimates arc
updated by using equation (AS58).

To start this iteration process, the predicted values for the
species mole numbers are given by equation (A46):

exp(hnel.n ) —1

0
Yl‘,nl = Yi.u—l + h' in—1
hnai,n



The predicted temperature is obtained by a single NR iteration
of the enthalpy conservation equation (8)

N,
Ho(Ty) = Y YU &(T, )
o _ k=1
7-;[1 - T,,,| + Ny (A63)
E Y,(],‘I)II Cok ( T,,, 1 )

k=1

For both NR and JN iteration schemes the test for
convergence of the estimates {Y”2!] is based on the magnitudes
of the log variable corrections, and is given by

N 12

Ry fe

E (Aln Yi,ulml)z
. ?
5, =\ <EPS  (A64)
Ny

This test is used only with variables whose magnitudes are
greater than 10 2% that is, the summation does not include
species with mole numbers <10 %%, At each iteration the

estimated convergence rate, C,,, defined as

5»1
5,,, -1

is also computed. If convergence is not obtained after ITMAX
iterations, where ITMAX is the user-supplied maximum number
of corrector iterations to be attempted, or if C,, > 0.8, the
step length is decreased. The new step length is calculated as
follows:

h, — h, min {0.5, max(0.1, 0.5/C,)|

and the step is retried with the new step size. At least two
iterations are required to define C,;; on the first iteration 6,, _,
is set equal to 10. A value of ITMAX = 10 was used for both
problems examined in this study.

If convergence is achieved in M iterations (M < ITMAX),
the step is accepted as successful, and the solution is updated:

After corrector convergence, the step length, A, that
would produce a convergence rate in the range (0.4,0.5) is
estimated as follows:

hyr = h,(0.4/C,)'* C, < 0.4

iter

=h 04=C,=<0.5

n

=h,(0.5/C,)\"*  C,>0.5

If convergence occurs on the first iteration, C,, is set equal
to 0.1.

At each step an average weighted local truncation error
estimate, d,, is computed by using the approximations

N N
11 & Y, — Y .
dy=- (=Y J—
6 \ N b max (Y;, .Y )

1

for the IN iteration, and

N ki 1:2
11 & Y, — Y :
(1,, — - E o N
3\ N ; max (Y, Y;.)

=1 =1

for the NR iteration. The above summations include only
neciee whag .. . . -20

species whose mole numbers are greater than 10 =", For both
iteration techniques the step length, A, that would exactly
satisfy the user-specified local relative error tolerance, EPS,
is calculated from

By = h,(EPS/d,)' "

acey
The step length A, to be attempted on the next step is
taken to be

hy v = min(hye, By 100,) (A65)

However, if convergence difficultics forced a reduction in the
step length on the current step. /1, 1s restricted to

hyoy = min(h,, h; ) (A66)

to prevent a recurrence of the problem.

CREKI1D automatically selects the linearization method and
the iteration scheme to be used for solving equation (A44).
During induction and heat release, when small step lengths
are required for solution accuracy, the JN iteration is used
to minimize computational work. During late heat release and
equilibration, when the ODE’s arc more stable and larger step
lengths can be used. the NR iteration is preferred since it has
better convergence properties than the JN iteration. The regime
identification test exploits the fact that during equilibration
many reactions achieve a condition in which the forward and
reverse rates are large but with vanishingly small differences
(refs. 13 and 30). The actual test used at the beginning of each
time step is

?

fil=< 10 (@ + D) (A67)

where ®; and D, are given by equation (A39). If any two
species satisfy equation (A67), regime b is obtained. and the
NR iteration is used for the step. If fewer than two species
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satisfy equation (A67). regime a is obtained, and the JN
iteration is used for the step. Once the NR iteration is selected
for any one step, the above test is no longer applied, and the
NR iteration is used for the rest of the problem.

Whenever the reaction rate for any species satisfies cquation
(A67), that species is considered to be in **quasi-steady state™’
and the **L-formulated”’ equation (A50) is used. For all other
species the **Z-formulated™” equation (A49) is used. To minimize
computational work, the {Z; | are evaluated only once per
step: at the beginning of the time step, using equation (A49).
However, since Y, , and f; , are not known at the start of the
step, the (Z;,] are approximated using values from the
previous step:

Zi n = Zi.n‘l = f;v"_l —ﬁ-”—:’
' Yl.ll—l - Y[,n—l

CREKID also includes an algorithm for filtering the initial
conditions that may be ill posed. These ill-posed conditions
may arise, for example, in multidimensional modeling because
of the averaging of mole numbers over adjacent grid nodes.
CREKID therefore *“filters’ the initial conditions to provide
physically meaningful initial mole numbers and net species
production rates. For purposes of this filtering CREK1D uses
the decomposition performed in CHEMEQ (egs. (A38) and
(A40)). On the first call to CREKI1D it uses this formulation

over one time step of length A, given by

hy = —— (A68)

The predictor-corrector algorithm uses equation (A46) (with

6, = — &£, as the predictor
l — ¢ _} £,‘
Y =Y0+ hifio xp (i&io) i=1,..,Ng
hlcsiv(]

An implicit Euler corrector is then iterated to convergence
[m+1] _ lm+1]
YT =Yoo+ hfih

In the above two equations, the subscript | indicates that this
is the first step. Using equations (A38). (A40), and (AS58),
together with the approximations @} *'! = @1 and £V{*'l =
£, the preceding corrector equation can be rewritten to
provide the following expression for the log variable
corrections (Aln Y+

Yoo — Y+ gl

| -
Aln Y[I.'I'H' h= ] |
Yt + h O

i=1,.,Ng (A69)

Equation (A69) is iterated until converged; that is, the criterion
given by equation (A64) is satisfied. If convergence is not
obtained after 10 iterations or C,, > 0.8, the step length is
halved, and the step retried. If convergence is obtained after
M iterations (M < 10), the step is accepted as successful, the
solution for the mole numbers is updated

Y, =YW i=1,..N

i

and the temperature T, is obtained by a single Newton-
Raphson iteration

NS
Hy(Ty) — E Y b (Ty)
k=1
T, =T, +
| 0 N
E Yo i (o)

k=1

The step size, h3, to be attempted on the next step is
determined from the maximum loss coefficient at ¢ by using
an expression similar to equation (A68). For this step, the IN
iteration (egs. (A46a) and (A61) to (A63)) is used, with all
6, , set equal to zero, so that all U, = 0.5 (see eq. (A48)).
The predictor step (eq. (A46a)), therefore, reduces to the
explicit Euler method, and the corrector (eq. (A44)), to the
trapezoidal rule. For the next and subsequent steps the step
size is adjusted according to equation (A65) or (A66), and the
iteration procedure and linearization constants are selected as
described previously. If NR iteration is used, the Jacobian
matrix for the mixed differential-algebraic system of equations
isupdated at y =Y, T=T,_,.

The solution values at the prescribed output times 7, .
fou2.-.- are obtained by adjusting the step length so that the
internal mesh points coincide with these times. Thus, the step
size h, . is given by

’ H 4
hn+l == min (hn+1- Tow — 1),

where 1., is the current value of the output time, and the
results at r,, are generated by solving the governing
equations. To continue the integration past each output time,
the procedures described above for the second and subsequent
steps are used.

To reduce the computational cost, the use of exponential
functions is minimized by replacing them with rational function
approximations. For example, the term (¢* — 1)/x in equation
(A46a) is evaluated by means of a (2.2) diagonal Padé
approximation, e(; ;. for exp x:

x X

L+ 4+

2 12
€lryy = — ' x <0

' v

P -t4s

2 12



which gives

et — 1 1

= <0
X 1 —x(1/2 —x/12)

Similarly, the tuning factor U, ,, (eq. (A48)) is evaluated by
using the approximation

U, =1-1 ¥ ]
[ 2 CXK) 12

This equation requires six operations to evaluate and does not
exhibit the singularity at x = 0 of the exact expression (eq.
(A48)).

Although log-variable corrections are used in the code.
evaluation of logarithms of the variables is not required. Also.
the use of the approximations given by equations (A58) avoids
the cost of computing the exponentials of the log-variable
corrections to obtain the new estimates.

Another technigue used in the code to reduce computational
work is to locally linearize the expressions for the thermo-
dynamic properties of the species and the rate coetficients.
In particular. during the course of iterative convergence of
the cquations. the thermodynamic propertics and rate
coefficients are not reevaluated while the current temperature
is within a local window (T, T + AT), where AT is specified
by the user. Use of this strategy has been shown to reduce
the computational work (refs. 2, 3. and 5).
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Appendix B
Description of Temperature Calculation Method A

In this method, the temperature 7, at each discrete time ¢,
is computed from the solution for the species mole numbers
returned by the integrator by using the algebraic enthalpy
conservation cquation

Ng
Y 0i,hi(T,) = Hy (8)

i=1

Equation (8) is solved for the temperature by using the
Newton-Raphson (NR) iteration technique (e.g., ref. 23). This
equation is rewritten as

N.S'
F(Tn) = E Ul,uﬂi(Tu) - Hl) (Bl)

i=1

so that solving equation (8) is equivalent to finding the zero
of F. The quantity F(7{") is the amount by which the mixture
mass-specific enthalpy at the m"™ approximation for 7, Tl
(m=12,...), fails to satisfy equation (8). A new approximation,
T+, for the temperature is obtained from equation (B1)
by locally linearizing F at T!™:

F(Tim

NS
E ai,ncp,i( 71’"')

i=1

F( T,[,m}) B
(aF/a T) T= T!{”l

mp
"

]
T’ilm+ | — T;I,’”I _

The test for convergence of the estimates is based on the mag-
nitude of the corrections 87" *'! (equal to T} — T1"ly ang
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is given by

N

5T|m+ 1] )
- < ERMAX

T[m]
"

where the vertical bars denote absolute value and ERMAX
is the local relative error tolerance. If convergence is not
obtained after MAXITS iterations, where MAXITS is the user-
supplied maximum number of corrector iterations to be
attempted, an error exit is taken. If convergence is achieved
in M iterations (M < MAXITS), the solution T is accepted
as the temperature at s,

T,=T1M

The NR iteration will converge if the initial guess (i.e.,
7%, is sufficiently accurate (ref. 23). The present work did
not utilize a predictor to generate 71”; instead, the most recently
computed temperature was used to start the iteration. Now,
the temperature was evaluated at the end of each integration
step and whenever the species derivatives and Jacobian matrix
were computed. Hence, the converged value obtained either
at the end of the previous step or from the previous estimates
for the mole numbers was used as the initial guess for the current
temperature. For the very first temperature computation for
the problem. the initial temperature, 7T, served as the predicted
value. The above procedure was found to be satisfactory in
that the iteration converged for all integration methods and
EPS values used in this study. In addition, the converged temper-
ature was not significantly different from that obtained by
integrating the temperature differential equation (ref. 2).
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