
./

Automated Support for Experience-Based Software Management f __ /

NASA/GOddard Space Flight Center
Software Engineering Branch Code 552

Cn'eenbelt, MD 20771

interact jvalett@ gsfcmail.nasa.gov

phone: (301) 286-6564
FAX: (301) 286-9183

Abstract

To effectively manage a software development project, the software manager must have ac-
cess to key information concerning a project's status. This information includes not only data
relating to the project of interest, but also, the exp¢fience of past development efforts within the
environment. This paper describes the concepts and functionality of a softwa_m management tool
designed to provide this information. This tool, called the Software Management Environment
(SME), enables the software manager to compare an ongoing development effort with previous
efforts and with models of the "typical" project within the environment, to predict future project
status, to analyze a project's strengths and weaknesses, and to assess the project's quality. In

order to provide these functions the tool utilizes a vast corporate memory that includes a data
base of software metrics, a set of models and relationships that describe the software develop-

ment environment, and a set of rules that capture other knowledge and experience of software
managers within the environment. Integrating these major concepts into one software manage-
ment tool, the SME is a model of the type of management tool needed for all software develop-

ment organizations.

Keywords: software management, measurement, reuse of experience, management tools

1.0 Background

Good software management is generally viewed as a critical ingredient in successful soft-

ware projects. One key aspect of good management is having access to the data that are neces-

sary to understand the strengths and weaknesses of an ongoing development effort. To provide

such access, a myriad of management-oriented tools have been developed. These tools typically

allow the software manager to perform cost and size estimation, to plan a development project,

to set up work-breakdown structures, and to provide other planning needs. Such tools are eer-

_inly useful, yet they do not provide the full scope of functionality required for a manager to ef-

fectively evaluate a software project.

Ideally, an experience-based software management tool would enable a manager to observe

10006711al.

3'-11

https://ntrs.nasa.gov/search.jsp?R=19930007975 2020-03-17T09:30:57+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42809612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a project's progress, to compare that progress with other projects or with a model of how a

project "normally" behaves, to predict key project paramctcrs such as size, completion date, or

errors, to assess the project's progress pointing out its strengths and we4zkncsscs, and to analyze

the quality of the software project and the software product. In order to provide this

functionality, the tool would require access to key data relating to a project's status and to the

past experience ncccssaz'y to understand and manage the ongoing project. Included in this

knowledge and experience is a data base of software metrics, a set of models of a development

environment, a set of management rules that provide insight into a project's strengths and weak-

nesses, a set of quality dcfinitions, and a set of relationships that help to dcfinc an environment's

characteristics. Such a management tool would integrate this experience into a single environ-

mcnt providing the functionality required to actively monitor a software project.

A working model of the management tool described abovc is being developed within the

Software Engineering Laboratory (SEL) at NASA's Goddard Space Flight Center (GSFC). This

tool, called the Software Management Environment (SME) uses sofz,,varc measurement and the

experience acquired from softwazc measurement as its basis. Other tools either arc being or have

bccn developed that utilize measurement as a major component. These tools include TAME [l],

Amadeus[2], and GINGER(3]. SME is a unique experience-based tool because it focuses on

utilizing the measurement and the experience of a measurement program to automate support for

project managers in actually monitoring the progress of their projects. While the SME has been

constructed for a specific development environment, the concepts, architecture, and functionality

of the tool, which arc described in this paper, arc general enough for any organization to build a

similar tool. This paper will discuss the management activities that the SME addresses, the

components needed to build an SME, and how these components arc integrated to provide the

management functions described.

10005788L

3,12

2.0 Management Activities

In order for the SME to be an effective tool, it must automate key management functions.

While the current SME is not comprehensive in its coverage of all management functions, it does

provide support for many important aspects of software management. The SME utilizes a

measurement-based approach to software management. Within this approach reusing

management experience is viewed as an important aspect of the management process. This

experience-based approach to management includes the following activities:

Observation and Comparison: The manager monitors the progress of a project by examining

key project measures such as effort, size, and errors. The manager compares the status of the

current project with past projects and with models of these measures that represent the nominal

case within the environment. By observing and comparing, the manager is able to determine the

current project's status and the differences between the current project and the normal project

within the environment.

Prediction and Estimation: The manager estimates key project parameters such as project cost

and size. The manager also, uses various models and relationships to continually update these

predictions. These activities allow the manager to determine at-completion values for important

measures and to estimate project schedule.

Analysis: Based on the measurement data, past project experience, and subjective information

about a project, the manager identifies potential project problems.

Assessment: Using available measm'ement data and definitions of project quality, the manager

assesses the overall quality of the ongoing project. For example, these quality assessments

provide the manager with an idea of the project's maintainability, correctability, and stability.

3-,13

1001_711aL

A software tool should only attempt to avtomatc aspects of a process that arc understood

well enough to perform manually; in the ca_ of SME, all of the activities described above are

carried out on projects within this development environment. In fact, such activities are part of

the normal management process. The SME inlz:grates data and cxpeden_:e into one tool that

provides managers with functions that help them to perform these activities.

3.0 The Software Management Environment (SME)

The Software Engineering Laboratory (SEL) has actively been developing the management

concepts that are the basis for the SME for the past 15 years. A prototype of the tool was devel-

oi_e.d between 1984 ana 1987; this prototype provided a set of recommendations for developing

an act,Jal version of the tool.M| This set of recommendations" was then incorporated into _he ac-

•:aal development of the SME, which began in 1987. The remainder of this section will discuss

:Y,e SEL and the concepts that are the underlying ideas for the SME.

3.1 The Software EngineeringLaboratory

The SEL was established in 1976 and has three primary organizational members:

NASAJGSFC, Software Engineering Branch; The University of Maryland, Computer Science

Department; and The Computer Sciences Corporation, Software Engineering Operation. The

goals of the SEL are (1) to understand the software development process in the GSFC environ-

ment; (2) to measure the eff_.cts of various methodologies, tools, and models on this process; and

(3) to identify and then to apply successful development practices.[5] During the SEL's 15 years

it has collected data on over 100 software development projects. These data include such items

as software development effort, software size, er:or data, change data, and computer utilization

data and are stored in a l_u-ge repository called the SEL data base.J6] This data base has been

3-14

1OO0ff/Wt.

used throughout the past 15 years to help the SEL to accomplish its thr_ objectives. In the pro-

cess of studying and measuring this particular development environment the SEL has produced

numerous reports and papers which characterize this environment, evaluate various tools and

methods, and capture experience and lessons learned in various software development efforts.

(For a complete list of SEL documents and reports see the "Annotated Bibliography of Software

Engineering Literature".[7])

Throughout the SEL's history, this software measurement program has been used extensive-

ly in the management of actual software projects. Such use of measurement data is common

among companies that have instituted measurement programs (eg. reference [8l). As this use of

measurement as a management tool evolved, the SEL began attempts to automate the process.

Such automation is only possible through a comprehensive understanding of how to use software

measurement data within a particular development environment. Within the SEL environment,

software managers use not only the data collected on their current project, but also, the

information and experience from past projects. The studies and reports characterizing the

environment provide the manager with profiles of how particular measures behave, numerous

relationships for estimation and prediction of such measures, and lessons learned concerning

how to analyze measurement data. Automating the access to this vast corporate resource is the

goal of the SME.

3.2 SME Concepts

Understanding the SME requires a firm understanding of the three major components that

are the basis for the tool. The first is the SEL data base, it provides the historical data of past

projects, as well as the dynamic data on projects that are currently being managed. The second,

is a set of models and relationships that describe the development environment. These models

and relationships provide the profile of a normal project, as well as the necessary information to

predict and estimate key project parameters. Finally, experienced software managers analyze

100057118L

3-15

measumrncnt data to determine a project's strengths and weaknesses. The knowledge required to

perform this analysis is captured in management rules that provide the expert analysis portion of

the SME. These three SME concepts provide the experience base needed for an organization to

construct an SME-Iike tool.

An importantaspectof theseSME concepts isthatthe experiencetheyrepresentcontinually

evolves as the development environment and processchanges. The SME packages the current

levelof experience;as itchanges, the experience base isrefinedtoreflectthesechanges. The

representationof theexperience,however, does not change. Therefore,thekey aspectof the

SME, from the perspectiveof someone who wishes to builda similartool,isthe concepts and

the architectureof thoseconcepts,not theexperience itself.

Software Measurement Data

Measurement of the software development process and its products is a necessary compo-

nent of successful software management. Within the SME, data from the SEL data base is uti-
o

lized to provide the underlying measurement data. The SEL data base captures information on

all software projects within one particular development environment. This data includes such

items as the weekly effort expended on a project, the size of the ongoing software project (in

both lines of code and number of modules), the amount of computer utilization on a project, and

the number of errors uncovered as well as the number of changes made to the source code. In

addition to these basic measures, the SEL data base contains data on such items as number of

modules designed, number of open problem reports, and the amount of time spent uncovering

and repairing errors. While these lists of data are not complete, they do provide a snapshot of the

types of data available to the SME.

The SME uses the data from the SEL data base as a basis for all of its analysis, comparison,

prediction and assessment. The data provide the information that characterize and describe the

current software development project as well as past projects of interest. Having access to so

much descrit)tive data allows the SME to provide its wide range of functionality. Thus, software

100ob"tllm.

3-16

measurement isthe backbone of the SME. Measurement provides the basisfor allotherSME

concepts; neitherthe management rulesnor the models and relationshipswould bc possible

without it.

Models and Relationships

The second component of the SME isthe models and relationshipsthatrepresentthe soft-

ware development process and itsproducts. The models and relationshipsused within the SME

and presentedwithinthispaper arc derivedfrom numerous previousSEL reportsand studies.A

summary of thetypes of models and relationshipsused can be found in thedocument "The

Software Engineering Laboratory (SEL) Relationships,Models, and Management Rules".[9]

The term model isused to describea patternof how some measure or combination of

measures normally behaves withina software development environment. Measurement models

have bccn describedin numerous SEL reportsand papers,but they have generallyallbeen

developed using similarmethods. Typically,a model forsome particularmeasure isdeveloped

by examining the dataforthatmeasure over a setof similarprojects.The dataisthen combined,

usuallyusing some typeof averaging,todevelop a model of the "normal" project.Since even

withinone environment allprojectsmay not be homogeneous, differentmodels forthe same

measure arc developed forsignificantlydifferentprojecttypes. Within the SME, therearc

currentlytwo differentmodel types,depending on thedevelopment methodology used on the

projects.Other models may need tobc developed depending on such parameters as projecttype,

programming language,or development environment. Deciding what differentfactorsconstitute

a distinctmodel type isan importantresearchcomponent of developing an SME. Certainly,each

individualprojectisdistinct,but usuallyprojectswithina development environment have many

similaritiesthatresultinreasonablemodels.

As an example of a model thatisused by SME, Figure 1 shows how sourcecode grows

withinthe SEL environment. (Forthe purposes of thispaper,thereisno need todistinguish

between variousmodel types.)Itprovides a rcprcscntationof thetypicalgrowth of the number

I0006788L

3-17

of source linesof code withina project'scontrolledlibrary.The wide band indicatesa range of

what isconsidered tobe "normal" sourcecode growth. (Inthiscase therange isone standard

deviationon eithersideof theactualmodel.) As anotherexample, figure2 isthe model of error

ratefor the SEL environment. This model shows the typicalerrorsuncovered and repairedper

lineof code withinthe environment throughout aproject'slifetime.Again, the band representsa

range over which the errorram isconsidered"normal." (Inboth Figures I and 2, linesof code is

definedas physicallinesincludingcommentary and blank lines.In Figure 2,errorisdefined as a

conceptual errorinthc software.) Another kind of model used withinthe SME isof the amount

of time spent ineach phase of a project.This model isdepictedin Figure 3;itprovides a mecha-

nism fordetermining how much calendar time a projectnormally spends in each phase of the

software development lifecycle.

Relationships,on the otherhand, provide the SME with a way toestimatecriticalproject

factorsbased on otherestimates,or currentstatus.Relationshipsare typicallydeveloped by

using numerous softwaredevelopment projects'datatodetermine ifany correlationexists

between variousmeasures. Normally, such data analysisisdone totesthypotheses thatcertain

relationshipsexistbetween such measures.

As an example, withinthe SEL environment, a relationshiphas been found between linesof

code and the actualdurationof a project.This relationshipisshown as the equation:

D = 5.450 * L ** 0.203

where,

D is the duration of the project in months (from project start through acceptance test), and

L is the total delivered lines of code in thousands.

Such a relationship allows a manager to estimate the length of a project based on an estimate of

the number of lines of code for that project. Other relationships have been established between

computer use and lines of code, effort and number of modules, etc. Such relationships provide a

software manager both a mechanism for estimating various parameters and a consistency check

for sets of estimates.

3-18

lO(_TaSt.

,.'4
III

0

dP

100.

?5.

50.

25.

DIE_ QI,I

......... .°.°...°.* °°_ °°

Schedule

Figure 1 : Model of Source Code Growth

1OO. Ox

u

o
14
14
M

0.0020

0. O015

O. OO10

0.0005

D_QN COIDET I :_YSTE......................................1................................'................._:
l :::_:_:_y:_i_:

..__e::_i_::_iiii_:_::::ii:i:_:i_i_!i_iii_ii::_i!i_::_

.......................
I

0.0020

Schedule

Figure 2: Model of Errors/Line of Code

I0005788L

3-19

Management Rules

Capturing how experienced software managers use and evaluate measmcm_nt data has been

investigated by the SEL.[10] These studies show that using expert systems techniques for the

capture and use of this experience is feasible in this domain. This knowledge about software

measurement has been published in numerous SEL reports and it provides a foundation for creat-

ing an experience base for utilizing software measures in management.J9] The concept of these

software management rules is that interviewing software managers and capturing how they inter-

pret certain conditions of a project provides reusable knowledge concerning the strengths and

weaknesses of a project. These interpretations are then combined into specific management rules

that describe the possible explanations for certain conditions. For example, figure 4 shows a

graphic of a simple management rule. This figure shows how one might interpret a deviation

from the normal pattern of computer use per line of source code (again represented as a model

similar to those described in the previous section). For example, early in the project if the num-

ber of CPU hours per line of code is above normal one possible interpretation is that the design

was not actually complete. Later in a project, if the measure is below normal, the possible expla-

nations might be either low productivity, or insufficient testing. Such a figure provides a simple

representation of a management rule.

Actually, a number of simple management rules can be combined to form rules that describe

the possibilities that certain explanations are true. For example, a rule such as

If the number of programmer hours per software change is above normal and

the project is early in the code phase then possible explanations are

Good solid, reliable code (0.5)

Poor testing (025)

Changes are hard to isolate (0.25)

Changes are diff_cuh to make (0.25).

describes the possible explanations for a certain condition. This rule uses numbers to show the

3-20

\

Figure 3: Model of Project Schedule

0. 0010

0. 0008

II
14

t%

I_ 0. 0005

Im

0.0003

..... oo°ooo_ooo°ooo°° .°° o-°.o • °o°o°o°°o -o-o-°°°o°_

I/ I io.u_ioi.,t,.._,, I
t £

Schedule

Figure 4: Rule for Analyzing Computer Use

0 • 0008

10005788L

3-21

certainty that each of the possible consequcnts are u'u¢. Thus, it is more likely that good solid,

reliable code is the explanation for the deviation then poor testing, although either explanation

could bc true.This ruleisthen combined with otherrulesforothermeasure deviationsto in-

creasethecertaintythatparticularexplanationsarc correct.Using thismethod of evaluating

software measures provides a setof possibleexplanationsdescribinga project'sstrengthsand

weaknesses. By using setsof rulesinthismanner, an automated system can examine the

empiricalevidence about a projectand provide some insightintotheproject'sstatus.

4.0 Using the SME

This section describes how the SME utilizes the concepts described above to provide its

functionality. While the concepts of the SME are the most important aspect of the tool,

undcrstanding how to utilize those concepts to provide management support is also of interest.

Attempting to build an SME-like tool r_quires knowledge of how to integrate the experience into

a useful tool. The examples used arc realistic in that they show the actual functionality of the

SME, however, duc to the inability to reproduce the color SME images, the graphics images arc

in black and white.

Comparison

Onc major function of the SME is the ability to observe data and compare it to models and

previous development efforts. Figure 5, shows an example of using the SME to compare data to

a model. In this example the manager is looking at the way error rate behaves on the project of

interest. The current project is shown as the solid line and the model is shown as a band of what

is considered "normal" for error rate. The x-axis shows the expected schedule for the project.

That is, the start date and end date shown arc the manager's estimates, however, the other phase

dates shown are the expected phase dates for the project (as calculated by the SME). The tool

10(X_TaSL

3-22

03 09 05 09 02 ,

11 O" 05 15 O, _"--_b_z_."

°, °. .o .o .=

DESGH CODET $VSTE j ACC_

O. 002 O .. _ --r -.-...-_ O. 002 O

0.oo_5......................................t....................................
o oo_o......................................,................................:iii::iiii':•j.......................lo.ooo,
0 0005 _ •

03 10 05 09

11 21 12 15

89 89 90 90

Figure 5: Rate of "Reported Errors/Lines of Code" for Projec_ A

02 SNE

09 Node1

91 $ch

10005788L

3-23

also shows the manager's estimates for all the phase dates on the top of the sere,on, The Y-axis

shows the error ram in errors per line of source code in the controlled library. Note that the phas-

es represent a typical watorfall life cycle, with the major phases being design, code and unit t_st,

system test, and acceptance test. By using this comparison, the manager is able to track such key

items as error rate, productivity, and amount of computer time used. Additionally, the manager

is able to overlay other projects' error rate patterns in order to compare the behavior of those

projects to the current project.

prediction

Figure 6,providesa look atanotherfunctionof the SME. This figureissimilarto thecom-

parisonfigure,except thatitalsoshows a predictedfinalvalue forthe measure. In thisfigure,

the measure of interestiscomputer use (innumber of CPU hours).This isshown inabsolute

terms on theY-axis. That is,theactualamount of time used on the machine isshown (itisnot

normalized). Thc SME allowsthe usertopredictwhere the projectwillbe when itiscompleted.

This functionutilizesthe model and a projectionof theprogressof theprojectbased on themea-

sures in SME (eg. the project is 50% of the way through the code and test phase), to predict the

final values of the measure, and of the schedule. In this example, the number of CPU hours on

the project is predicted to be 1255, while the current estimate is 990 hours. Also, the project is

predicted to take longer then the manager has estimated. Such predictions enable the software

manager to gain another perspective on the final values of project measures and on the projected

end date of the project.

Analysis

A key component of the SME is the utilization of expert systems technology for software

management. Through experience, software managers are able to improve their ability to ana-

lyze software measurement data. Based on the measurement data and their experience, managers

are able to identify the strengths and the weaknesses of a project. The SME utilizes a rule base

10IX_TUl.

3-24

that captures managers' knowledge of how to perform such analysis. This rule base is then used

to analyze deviations from the normal project. An example of such analysis is found in figure 7.

In this figure, the error rate of the cm_nt project is lower then normal for this particular point in

the development life cycle. The SME uses this information, information about other measures,

and subjective data about the project to provide possible reasons for such a deviation. The top

two explanations are then displayed for the user. In this case, the explanations are that insuffi-

cient testing is being performed and that an experienced development team is producing a superi-

or project. Either of these two explanations might be correct, they only provide insight to the

user as to possible explanations for the deviations. Other explanations are certainly possible; the

user of the tool can obtain further data on why the system reached its conclusions and on the

other conclusions. The user can also provide the system with more subjective information about

the project of interest, perhaps leading to changes in the conclusions that arc inferred.

Assessment

A final function of the SME is to utilize software measures to provide an assessment of the

overall quality of a software project. An example of such an assessment is shown in figure 8. In

this figure the bar graph shows the SME's rating of certain quality measures as they compare to

the normal project in the environment at that point in its development. The quality factors shown

are maintainability, reliability, and stability. Each of these factors can be determined by combin-

ing various software measurement data. For example, the quality factor of maintainability is cal-

culated by adding the percentage of errors that are easy to isolate with the percentage of errors

that are easy to correct. Thus, as these percentages increase the maintainability of the project is

said to increase. For each quality factor displayed, SME has a specific definition for how to

compute that factor. These definitions, which are really a form of a relationship, use a specific

set of measures to compute the relative value of that quality indicator. Of course, SME also uses

a model of how these factors behave over time in order to display the normal band on the graph.

Quality assessment provides the software manager with an overall appraisal of how the project of

100067tmL

03 09 05 O9 02

11 09 O5 15 09 Mama_r ' •
8e-h_d_le

89 89 90 90 91
" qp qP' _ qlP

1000 I ...I 990
"/50

500

250

03 11 O_ IO

11 04 09 20

89 89 90 90

Figl_e 6: Predicted Grouth in " CPU Hours" for Pro_ec_ JL

03 SME

30 PrecLL c_ced

91 $ch

03 09 05 09

11 09 05 15

89 89 90 90

ID4E_ GII4 CODET SYSTE RCCTE

ooo-o _...o. fo_ _= _.t.!......................l_

o no_l: in_..:-:-:.:-:.::_:!:i:i:i:i:i:i::':';! .::i:i:i:!:
::::.. :-- i iii!! ii::i::i::ii! iii!iiiii!i iii::iiiil

o. 0o1_ 1. Zn..uff:L,,:Lent Cest_ng __
2. m,_=_=i,_o._...zo_t T._ .::!_i!i!ii:ii!:!:iiii!ii_i!_!i!!_:::::::.........

14

I iii M

0. 000_

03 10 05 09

11 21 12 15

89 89 90 90

Figure 7: J_alysis of "Reported Errors/Lines of Code" for Projec_ A

O2
Manager ' •09
Schedule

91

0.0020

0.0009

02 SHE

09 Model

91 Sch

10005788L

_26

Normal

Maintainability Reliability Stability

Overall Assessment for Project A

Figure 8: Overall Assessment Function

10_5788L

3-27

interest is doing compared to the normal quality measures in the environment.

5.0 SME as a Model Tool

Currently, the SME is being used by numerous software managers in the SEL software

development environment to assist them in monitoring actual software projects. The SEL, as an

experience factory [5], has provided the concepts necessary to build an SME for this particular

software development domain. Other organizations can develop an SME-like tool by beginning

to capture the experience of their environment. While within the SEL environment all three of

the major components of SME have been well developed, other organizations may have only

limited parts of the components. Such limitations should not be viewed as detrimental to the

development of an SME. Similar tools should be developed using the experience available; they

can then evolve into more complete tools as the local experience base provides additional

artifacts for reuse.

The SME is an attempt to integrate a measurement process, the results of a longstanding

software engineering research effort, and the expertise of software managers into a tool for man-

aging and controlling software projects. As such, it provides for the utilization of corporate

experience to manage ongoing software projects. An SME has been built for one particular soft-

ware development organization. Other software development organizations should use the

SME's concepts as a model for building similar tools for their environment. By providing the

user with increased project awareness, predictions of key project parameters, expert analysis of

software measures, and assessment of the overall quality of the development effort, an SME is

extremely valuable to a software manager. Such a tool provides improved project management

through the packaging of experience.

100O_/llaL

3-28

References

[11

[2]

[3]

[4]

[5]

[61

[71

[8]

[91

[10]

Basili, V. IL and H. D. Rombach, '"I'he TAME Project: Toward Improvement-Oriented
Software Environments," IEEE Transactions on Software Engineering, June 1988, pp.
758-773.

Selby, 1L W., et al., "Metric-Driven Analysis and Feedback Systems for Enabling

Empirically Guided Software Development," Proceedings of the 13th International
Conference on Software Engineering, IEEE Computer Society Press, May 1991, pp. 288-
298.

Kusumoto, S., et al., "GINGER: Data Collection and Analysis System," Technical

Report, Osaka University, Osaka, Japan, June 1990,

Valett, J., "The Dynamic Management Information Tool (Dynamite): Analysis of Proto-

type, Requirements, and Operational Scenarios," Master's Thesis, University of Mary-
land, May 1987.

Basili, V.R., et al. "The Software Engineering Laboratory - An Operational Software
Experience Factory," Proceedings of the 14th International Conference on Software
Engineering, IEEE Computer Society Press, May 1992.

So, M. et al., "SEL Data Base Organization and User's Guide (Revision 1)," SEL-89-
101, The Software Engineering Laboratory, NASA Goddard Space Flight Center, Green-
belt, Maryland, February 1990.

Morusiewicz, L. and J. Valett, "Annotated Bibliovaphy of Software Engineering Labora-
tory Literature," SEL-82-1006, The Software Engineering Laboratory, NASA Goddard
Space Flight Center, Greenbelt, Maryland, November 1991.

Grady, R., "Work Product Analysis: The Philosopher's Stone of Software?," IEEE Soft-
ware, March 1990, pp. 26-34.

Decker, W., R. Hendrick, and J. Valett, "The Software Engineering Laboratory (SEL)
Relationships, Models, and Management Rules," SEL-91-001, The Software Engineer-
ing Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, February
1991.

Rarnsey, C. and V. R. Basili, "An Evaluation of Expert Systems for Software Engineer-
ing Management," IEEE Transactions on Software Engineering, June 1989, pp. 747-759.

1001_788L

3-29

