
The Software-Cycle Model for Re-Engineering and Reuse

John W. Bailey*
Victor R. Basili

The University of Maryland

Department of Computer Science

CollegePark,Maryland 20742 N9 -]+::

*also consultant with Rational. 6707 Democracy Blvd.. Bethesda, Maryland 20817

_ +?/ . .

+

p5/5
/

Abstract

This paper reports on the progress of a study which will

contribute to our ability to perform high-level.

component-based programming by describing means to
obtainusefulcomponents, methods for the configuration

and integrationof those components, and an underlying
economic model of the costsand benefitsassociatedwith

thisapproach toreuse.One goalof thestudyistodevelop

and demonstrate methods to recover reusable components

from domain-specific software through a combination of

tools, to perform the identification, extraction, and

re-engineering of components, and domain experts, to

direct the application of th6sc tools. A second goal of the

study is to enable the reuse of those components by

identifyingtechniquesforconfiguringand recombiningthe

re-engineered software. This component-recovery or

software-cyclemodel addressesnot only the selectionand

re-engineeringof components,butalsotheirrecombination

intonew programs. Once a model of reuseactivitieshas

been developed,thequantification of thecosts and benefits

ofvariousreuseoptionswillenablethedevelopment ofan

adaptableeconomic model ofreuse,which istheprincipal

goal of the overallstudy. This paper reports on the

conceptionof the software-cyclemodel and on several

supportingtechniquesof softwarerecovery,measurement

and reusewhich willleadtothedevelopmcm of thed_sired
economic model.

Motivation and Scope

Motivationfor the development of an expcn-assistcdbut

highlystructuredand highlyautomatablcmodel ofsoftware

informationcapture and reuse stems in part from the

permission to cony _,itb.outfee pllor part of [.hisma,,'ria[
15 er_nt:d p,rovi0"cU that the coples Itrenot made or .
di_'lnmq_.d for d=rcc; commerce.'[advantage, the AC-M
copyrizht qo;_cq and the t+tlc o! the p ublt_almn and its date
a=?car, ano nouce is gwen thatcoo'ring=sby Eerrnission
O_.the Assoclatlov__Ol_'Cornpu|m_._sc,ZLqcr_'.TO I:?py
OU'ler'.,t' _ Or r_[_uD,h_, rc,_u_rci • lec _/Io.'or Ipcc,ID_

perr_zss=on.

¢1991 ACM 0-89791-.445-7/91/1000-0267 S1.50

recognitionof the difficultyof usingpurelyprogramming

component-based approachestoreuseLibraries.For certain

kinds of objectsand components a strictprogramming

component-based Libraryis adequate. The success of

object-orientedand object-basedapproaches have been the

most notableinthisregard.However, theinabilityforsuch

libraries to capture a sufficient amount knowledge to

dramatically reduce subsequent software development costs

in a general and problem-independent way has also been
obsexved. On the other hand, models of software reta.sc

which utilizedomain expertsin pervasiveand undirected

ways am alsounlikelyto providea complete solutiondue

to the largeamount of responsibilityand effortwhich is

centralizedinthecontributionof such experts.The present

work provides a structm_ mod_l of information
identificationand reusewhich isboth feasibleand suitable

forfurtherdevelopment and refinement.

Using the Ada language,thispaper provides examples of

techniques for choosing, re-engineering, and recombining

components into programs. It also describes rudimentary

methods for quantifying the effort to extract reusable

components from existing programs as well as the effort to

recombine them into new programs. It does not include the

cataloging and retrieval of components, nor does it include

a mechanism to quantify reusability based on

empirically-derived frequency-of-use m_sures. It does
model a proposed cycle of software development, use,

re-engineering, and reuse, but it does not attempt to model

other aspects of reuse within a software development

environment, such as pure knowledge and experience.

Other recent research papers and technical reports have

covered this larger scope [Basili and Rombach], [Basili and
Caldiera].

Introduction

Any component of software is seen to be composed of

many functionad and declarative details, some of which

pertain to the specific problem being solved by the program

containing that component, some of which pertain to the

general application domain of the containing program, and

some of which pertain to neither the problem nor the

IO0_TUL

4-3

PRECEDING PAGE _LAhlK i_C_" FiLIV/.ED

https://ntrs.nasa.gov/search.jsp?R=19930007976 2020-03-17T09:31:26+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42809611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

domain, but rathcr dcfinc the essence of the component's
function in the abstract. Therefore. to direct the selection

and re-engineering of components of software, three Icvcls

of functional stP..cifichy of thc software which constitutes

any component arc defined: 1) problem-specific details

which would be likely to diffcr between this and another

similar application in the same domain, 2) domain-specific
details which arc not likely to differ between this and

another similar application in thc same domain but which

would bc unlikely to be appropriate outside of this domain,

and 3) essential aspe.cts which comprise the abstract
functional core of the componcnt and without which the

component would be meaningless.

The three levels cannot be absolutely defined, nor can a

given detail be determinisfically assigned to a level, since
from different points of view, a given detail could be

thought of as belonging to different Icvels of specificity.

Two analyses of a given component could possibly identify
different sets of details at each of the three levels.

However, an analysis of a candidate component for the

purpose of dizecdng the re-engineering and reuse processes

must assign each identifiable detail to one of the three
levels.

Once specificity levels have been assigned to all details of
a candidate component, a measurement of the effort

required to remove each of the problem-specific details is

obtained in order to estimate the total effort to generalize

the component for reuse within its domain. Fttnher, a

measurement of the effort required to remove each of the

domain-specific details is obtained in order to estimate the

total effort to generalize the component for muse in other
domains. If these measurements show the

cost-effectiveness of either of these generalizations, then

the candidate component is suitably generalized and placed

in either a domain-specific or domain-independent
repository, as is appropriate.

In order to assign specificity levels to all the constituent

details of a candidate component, domain experts may have

to be consulted. However, automation to support the

identification of the details and to support the component

generalization through their removal can be used to
streamline the process. Further, there may be ways to

capture the domain experts' decisions and the reasons for

them, in order to partially automate or support any

subsequent decision making which follows similar patterns.

To support the generalization process and its quantification,

three styles of software component reuse which are

currently being practiced are identified and examined for

their adaptability to the model. These reuse styles are

termed layered, tailored, and generated reuse. Examples

illustrating them, and demonstrating how they are related

by an underlying dimension of gene:-ality, are shown.

100(_788L

Along with these examples, proposals are given for how to
measure the amount of re-engineering required to derive

components suitable for the different methods of reuse, as

well aS the amount of effort required to recombine

components using the different methods. As effort is

expended to make a component more general, more

opportunities to reuse it become available. However, each

of those reuse opportunities will have to resupply the

specifics required for the reusable component to perform its
function in the new context, implying an amount of reuse

effort which is proportional to the degree of generality of
the componenL

""'" "Ther"cfor¢, an economic equation presents itself, which is

how to optimize the sometimes competing factors of

generalization effort, reuse effort, and breadth of utility.
The solution to this equation will have to wait until more

work is done on the probability of reuse for a given
generalization, and other factors. Rather hard questions
figure in to this equation, such as the cost-benefit of

constraining a soludon to take advantage of an available

component (which amounts to establishing and following
standards) as opposed to developing a more suitable one,

and even the cost of classifying, storing and retrieving
components. Developing a framework for an economic

model which captures these factors is the first step to a
greater understanding of these issues. The last section

relates the activities defined in the software-cycle process
model to this economic model of reuse.

The Software-Cycle Model

This section describes the model of software development

which underlies this study. The model proposes the
recycling of exisdng software into components which can

be combined into new programs. This proposed software

cycletakes place in the context of a software development

organization and allows effort already applied to the

creation of previous programs to be recaptured and used to

reduce the effort needed to create new programs. This
software-cycle model is consistent with models of

experience capture and flow within a development
organization as described by t'Basili and Rombach] and

['Basili and Caldiera]. It describes in detail, and proposes

an implementation for, one aspect of the more

comprehensive experience factory described in those
studies.

The software-cycle model is so-named to describe the flow

of information and experience, in the form of software, into

newly developed programs where it can be recovered and

packaged for efficient reuse in subsequently developed

software programs. The capture and reuse of information

at the delivery point of the conventional software lifecycle
is clearly not the only time at which such information is

4-4

Ic_ssible. However, this approach is chosen because at

11_ nine that software is delivered, the information is

packaged in a concre_ form (software programs) which
can bc analyzed and manipulated. Also, a substantial

amount of information may be available from

previously-developedprograms which is not recorded in

any form other than the deliveredsoftware. Further,by

institutingan approach which appliescffon to capture

reusable information at this stage, the software

development organizationhas the choice to separatethe

informationrecovery and repackagingfrom the effortto

develop the software, and to conduct those activities
independently and in parallel. So, for pragmatic reasons,

the present model of information flow in a software

development organizationuses developed softwareas the

"main source for recoverable information. (Scc also

[Caldieraand Basfli].)

'_ Coe_eae¢_ rem_e_/:

SlOte _mefml _a.

(levo;d of 1_Olotem-spe_i[_

dllllii, litlfibM10@ wi|h

inlormition ! --

/_ I t ic')-J \ s._,,,:s,_,, i --

.......)-''"-" i'----
pfoOrmml

----+m Fllmovo l_rO_lem. -- ! ---- ',

ill I I_ SGer.dlC OOtllill. I -- I
in 01o11+ to

il llliiP..lln©ili. 01 li<llllbly I -- _ II

I / IO! _1_ _lomlin-l@11citi iilllllll

iltocqlll _i @Ollil Iompollnll # lillllll I

llillllll

I F#II/ I0+ _e _+

u_Mnl _ U_l JW_#1+l Or

non.llll+_oI Ill O@tli,_

F_p,_e 1 Th41 I_OCI'II41S _ +,n I1_ S_lwwe-Cyctl 1100411

As shown in Figure I,existingprograms areexamined for

candidatereusablecomponents. For the purpose of this

study,a component can be any dcf'inableportion of

software.Obvious examples are individual,or sets of,

subroutines,subprograms,functions,paragraphs,packages,

or otherstructuringfeaturesof the softwarelanguage in

use.-A re-engineeredcomponent can be .anyof these,

althoughitcan alsobe nothingmore than a templateor a

setofinstructionsfora softwaregenerationroutine.

A re-engineeredcomponent can bc intended eitherfor

reuseonly withina particulardomain or reuseacrossmany

1000STtmL

4-5

domains. Ifa component is only intendedforreuse within

a domain, its re-engineeringseeks to remove any

problem-specificdetailsfrom it, but to allow any

domain-specificdetailsto remain. Such components ate

termed domain-specific components. If a component is
intended for reuse across domains, however, then its

re..enginccring would atlcmpt to remove all

domain-specificdetailsas well as the problem-specific

details,leaving only essentialfunction. This kind of

component is termed a domain-independent component.

l.e,aving a component insufficiendy general to be used
across domains obviously Limits the number of

opportunities it might enjoy for reuse. However, there are

significant compensating advantages. A domain-specific

component retains more details which then do not have to

be resuppliedby the reuseclient Also, the generalization

efforttoreach only problem-independence isusuallyless

than the generalization effort required to reach

domain-independence. So,by accepting a constrained

reuse scope,a component can be easierto generalizeas

wellaseasiertoreuse.

A candidat_component forre-engineeringisone which has

identifiableproblem-specificordomain-specificdetailsand

which can be feasiblyre-engineeredto eliminate the

presenceof some or allof thosedetails.A domain expert

may be nee,ded to differentiatebetween problem-specific

and domain-specificdetails,and measurement of the

estimatedgeneralizationeffortisneeded to determine the

feasibilityof there-engineering.Some components may bc

candidates to yield a domain-specificcomponent aftex

re-engineeringbut not a domain-independent component.

Other components may be candidams to yield

domain-independent components (possiblyin additionto

domain-specificcomponents),while stillothersmay not be

good candidates m yield eithe_ category of reusable

component.

The goalof reusere-engineeringistobe abletoisolateand

then to replace the problem-specific and/or the

domain-specificaspectsof a component so thatitcan bc

made toopcram indiffercntcontexts.A component might

be viewed asa blendof generalfunction,which definesits

essence,and specificfunctionwhich relatesto the current

contextor declarationson which the generalfunctionis

performed. This isshown graphicallyin Figure 2a. The

general function,shown in lightgrey, is that which is

essentialtothecomponent orthatwhich defmes the nature

of the component. The specificfunction,shown, in dark

grey, can eitherbe problem-specificor domain-specific.

As mentioned, it may bc necessaryto consult domain

expertsto distinguishbetween a problem-specificdetail

and a domain-specificdetail.However, given a sufficient

body of experience, it may be possible to predict the

SlX_ificity of a detail via a predictive function that is
tailored by previous expert decisions, or by statistical

analyses of several similar components in the same domain.

F_uce2e.

essential lu#_ction whiCh 4efines the compo_a_ and pro_am-specihc

or domain-specific detsils which *'in poNmlielly be geneceXzed m

¢_'_gef IO te-er_gunoe¢ the ¢om@ondml iculo a mole (eusobdo one,

I One possible Inptmfltletlon

Re-engineered component

Figure 2b.

After re-engineering, the essential functionah|y remains in the

reusable componlnt but probtem-speci|i¢ or context-specific details

m'e eliminete¢l and become the responsibitily of me (euser Io prov_le.

One possii_le instarniahon could result in the ong, nal component aga*n

b_ many driver instentcations ere now possible

Figm= 2b shows an imaginarycandidatecomponent which

containsboth essentialfunction,which is general,and

specific details which, if alfred, could allow the

component to contribute its functionality in different
contexts. These specific details, shown in dark grey, have

been removed from the body of the component to signify

that they are now viewed as only one of potentially many

possible inslantiations Of the remaining, general
component. The re-engineering process of the

software-cycle model seeks to locate and remove these

non-general aspects (either only the problem-specific

aspects or, possibly, the domain-specific aspects as well)

and to relegate them to the responsibili_ of the reuser as

part of the component's insmntiation.. The techniques for
the removal of thesedetailsarc discussedas pan of the

sectionon re-engineeringtechniqueswhich follows.Itwill

be shown therethatthere-engineeredcomponent does not

n__..zito be expressed in the programming language of the

originalcandidatecomponent which was used toproduce

it. It might bca pre-processablccomponent or a

component generator which can be used to produce

I00057_L

components when necessary. In these cases, it is the

template or the gencrator that is reusable,since any

aubse,quentlyrequiredcomponents would bc produced on

demand and would not,themselves,be consideredreusable.

Separated and re-engineered (generalized) components are

stored in a repository to bc made available to the

developers of new software. Similar to the process of
consulting domain experts when categorizing the details

which ne,cd to be generalized out of candidate components.

repository experts may have to b¢ consulted to assist in the
location and institution of required components in the

repository. Repository experts could possibly choose from

among variousschemes tosadsfytheneeds ofa developer.

Certainchoicesmight providemore utilitybut might come

with more restrictionsor limitationsof options. Also,the

repository expert might choose from different methods to

arrive at functionally the same result to the requesting
developer, for example by either generating the software or

by providing a tailorable component.

Components in the repository arc attributed with

measurement information describing the cxpectexl effort to
instantiat¢ them for reuse. In many cases, this instantiation

becomes the responsibility of the reusing developer, for
example when the component is already a structural

component in the developer's language of choice and

simply must be supplied with actual parameters to serve the

developer's need. In other cases, the instantiation can be

the responsibility of the repository expert, who might have

to produce components for the developer from templates,
rules, instance specilacations,and generatorprograms. In

eithercase,themeasurement attributeof a component will

guide itsuserswhen decidingwhether toselectitor not,

and how much efforttoexpecttoexpend configuringitfor

re,use.

A re.quest for software components might be unreliable

given the current state of a repository. In this case, the

repository experts can work with the d_veloper to design

and create a new component which will not only serve the
current need but which will become an instant candidate for

insertion into the repository,with a minimum of

re-engineering. Or, gaps in the capabilitiesof the

repository can be identifiedby the experts prior to a

specificneed, and specialdevelopments can bc guided,

specificallyforthepurposeofsupplyingcomponents tofill

those gaps. In the software-cyclemodel, any new

development isdone with reuse inmind, specifically,with

an eye towardfurtherpopulatingthecomponent repository.

Neither of these last two topics, the selection of

components from a repository and the direct development

of components rather than through re-engineering, are

currently part of the study, They are mentioned here in

order to complete the software cycle depicted in Figure 1.

4-6

The major emphases of the study arc the identificationof

candidate rensabl¢ components from among exisling

mftware, the r_.engineering of tho_ components to
improve their generality, the maasu_mant of those

processes, and the devdopment of an econom_
which can assist an organization in optimizing its soRwa_

cycle costs.

Reuse Modes and Methods

By studying the dependencies among software elements, a
determination can be made of the reusability of those
elements in other contexts. For example, ff a component of

a program uses or depends upon another component, then

the fu-st component would not normally Ix: reusable in

another program where the second component was not also

present.On the other hand, a component of a software

program which doe.snot depend on any othersoftwarecan

bc mused inany context(ignoringforthemoment whether

ornot itperforms any usefulpurposeinthatcontext).The

issueofsofrwareindependenceisat theheart ofthisstudy.

It will be seen that increas_ independence of a software

component often comes at the cost of functionality. The

ideal software reuse re-engineering process would provid_

a means of preserving all of the function or utility of a

component while also making it independent of

pmblem-sp_ific or domain-specific details. However, this

is not possible in most cases since some of the desirexl
functionality is likely to be captttred by those specific

details, and removing the detaiis will remove that

functionality. This study describes a compromise solution,

which is first to generalize a component, and then to

systematize the means to configure it in order to restore tbe

specific function required in a particular context of reuse.

A scheme to maintain generalized, reusable components in

a repository, in addition to a means of configuring them in

different ways for different domains or contexts, enables a
repository with a manageable number of components to be

described. Without the ability to instantiate a given

component in different ways for different usages, a

repository would have to contain many times as many
assets in order to serve the same need. In order to avoid

this problem, this work recommends storing fewer

components, each of which is sufficiently general to be

able to operate in various contexts, and then providing

methods to instantiate them to provide functionality in
thosecontexts.

By examining existing successes in software reuse, it can

be sccn thattherearc threedifferentbut relatedways of

making software components which are gcncral and

independent,and yet which remain capablc of being

instantiated with problem-specific details. An important

premise of this work is that software which is general in
these ways does not necessarily need to be developed

directly. Instead, it is often poss_lc to re-engineer existing
software so that it -,thieves the necessary independence.

For this study, the thr_ modes are termed layered,

tailored, and generated. Each mode describes components
which can be combined to develop larger programs.

However, a tailored component can be made more flexible

and genwal than a layered component and a generated

component can be the most flexible and general of all. On
the oth_" hand, a layered component is the easiest to reuse,

r_luiring the least effort on the part of the client to
incorporateitintoa program, whilea generatedcomponent

is the most difficult to muse.

What all of these techniques sgive for is the absence of

dependence from the reused software on external
declarations, which would hamper the generality of the

software. In other words, a component of reusable

software should ideally not be expectc, d to "know" about

declarations and other components which are

problexn-specific. A reusable resource which requires the
rouser to also include other common denominator

components, which contain needed declarations, is not as
reusable as one which Jms no such requirements.

Within the confines of a singledomain, however, certain

dependencies can be tolerated,since the users can be

expect_ to guarantee the minimum required declaration

space acrossalloccurrencesofreuseof a component. This

resultopens up vastnew rangesof possibilities,sinceth_

generalityof a component need no Ibngerbe absolutebut

ratherneed onlybe generalwith respecttoacertaindomain

or domains. No expectationof generalitywithin other

domains is maintained. Domain-specific reusability

impliesa certainamount of built-inde15cndencewhereas

wide-scale reusability or generality precludes this

possibility.By allowing domain-specificconstraints,the

possibilitiesfor identifyingreusablecomponents expand

enormously but the breadth of applicabilityfor each

component islimitedtothatdomain.

Layered Reuse

Layered reuse is used to describe the case where reusable

functions or operations are viewed simply as abstract

primitives which are callable from within the language of

the client. A math library, probably the most commonly

cited example of reuse, and one which is often viewed as

an ideal, is an example of layered reuse. Analogous to a

math package, other common examples are packages of

utilities which operate on universal types or concepts, such

as string handling utilities and time utilities. Other

successes in layered software reuse include user interface

4-7

1000S788L

or I/O toolkits,graphicaldisplaytoolkits,runtimekemeis,

and layerednctworkprotocolsoftware.

bc prodded with data setsand programs to achievethe
desiredresults.

Layered rdusabilityisoftcnviewed asthe goalfora library

of reusablecomponents, where a sufficientlyrich set of

abstractoperationswould be availnblcto an applications

programmer in order to minimize the effortrequiredto

generate a new system. In addition to the previously

mentioned independence from other components, an

additionalrecommendation for the successof a layered

component is that the dam on its interface be expressed in
terms of standard types. This restriction allows the client

software to communicate with the reusable component
without the additional complexity of adhering to specific

non-standard types. One mason that a math library is so

inherently reusable, for instance, is that real numbers arc a
universal way of expressing the values used by and

returned by the mathematical /unctions in a library. Any

language which supports real numbcrs can make available

a corresponding set of mathematical funcuons.

However, unlikethe portabilityenjoyed when restricting

one'sdomain toa universalconceptsuch asmal numbers, a

considerableamount ofsoftwarewhich might otherwisebe

availableforreuseiswrittentooperateon problem-specific

types and data structures.This is the case whether those

types are named and d_ctared as in Pascal or Smalltalk, are

common dam areas as in Fortran, or are merely locations in

memory asinassembly language. Components can stillbe

writzenina layeredmanner butinthesecasestheytypically

depend so heavilyon specificdata structuresthatthey arc

limitedtobeingreusedonly whom identicaldatastructures

or otheroperands arc present.Itisnot always possibleto

parameterizc a component with respect to all of its

assumptionsabout context.Because of theselimitationson

the applicabilityof a layered component, constructing

comprehensive reusablelibrariesofthem inlanguagessuch

as Ada has been harderthanmight have been expected.

Tailored Reuse

Another category of successfulreuse is tailoredmuse,

where configurauonof thereusablesoftwareisrequiredin

order to allow itto interopcratcproperlywith the client

software.A familiarexample of such reuse isseen with

database management systems which requiretailoringin

order to handle records of the user-definedstructures.

Simpler examples of tailoredreuse arc genetic data

structureswhich allow the clientsoftwareto createstacks,

queues,lists,etc.,of application-specifictypesor tosee.a-ch

through or sortobjectsofthosetypes.Stillotherexamplcs

of tailoredreuseare forms management systemswhich are

customized by paramet_rization,expert systems which

must be initializedwith rules,spreadsheetswhich must be

suppliedwith formulas,ar,d statisticspackageswhich must

Tailoring in this way is accomplished before the

component is called,but it happens automaticallyat

executiontime as partof the language behavior.Whereas

inlayeredreusea clientsimplycallsa component withthe

proper parameters, tailored reuse implies a two-step

process where a component is first molded to the specific

configuration required by the currcnt context and is then

called to perform its function.

The genetic feature of Ada allows certainkinds of

tailoring,in the form of genericparameterization,to be

accomplished. Because of the staticchecking enforcedby

Ada, however, only a limitedamount of parametcrizations

are possible.Other languages have differentmechanisms

for accomplishing this paramcterization.Most no_bly,

assembly languages employ very flexible macro

expansions which can be quite powerful. However,

object-orientedlanguages have traditionallyused a more

flexible form of layering (full inheritance) while

overlooking the possibility for component

parameterization.(Futurerevisionsto C++, however, are

expected to include a template mechanism to allow

within-languagetailoring[Ellisand Stroustrup].)

Generated Re_e

The thirdcatego.ryof muse, generatedmuse, occurs when

thereusablesoftwareisused as a generatorprogram rather

than being incorporatedclirecdyintothe finalapplication.

The requi.md software is emitted as a result of the generator
program operating on input tables or files. TypicalJy, only

the generator and not the generated software is reused. The

generated software is regenerated, as opposed to being
modified directly, if changes are required. Whereas

layem,d and tailored reuse take advantage of

language-supportedfeatures(subprogramsand genericsin

the case of the Ada langunge) generamd reuse requires

additionaltoolingtoaccomplisha kind oftailoringwhich is

externaltotheimplementationlanguage.

A common example of generated reuse, which perhaps
stretches the definition somewhat, is a compiler, which

accepts files of a high-order language and emits software in
a machine-executable form. One reason that it may seem

unconventional to think of a compiler as reusable softwa_

is that its output is not directly manipulated or even

observed by the compiler's users. Nevertheless, it fits the
definition here for generated reuse (which could be thought

of as a batch form of tailored muse).

Other common examples, where the generated output is

more likely to be manipulated or at least observed by the

4-8

100067NIL

•users of the generator, an: fourth-gencmnon languages.

user interface generators, test case generators, parser

generators and table-driven forms management sysmms.
At least one large Ada development is making substantial

use of generated reuse in an MIS system development,

d_ough the use of a spcciaJly-developed gencrat_ [AIC].

Table 1 is a summary of the modes of software reuse

described and the examples mentioned for each.

Layered:
_,_th libraries

Common utilities packages
User interface or I/0 tooLldts

Graphics kernel systems
Runtime kernels

Network layered software

Tailored:

Database management systems
Forms management systems (runtime configured)

Expert systems

Spreadsheets

Statistics packages
Generic data structures

Generated:

Forms management systems (file driven)

User interface generators

Test-case generators

F,.igh_ordcr languages
Fourth-generation languages

Parser generators

.'_IS systems

Table 1. Reuse Modes and Examples

software. In this case, the run-time efficiency is traded off
for the flexibility of being able to alter the

"pm-ametm-ization" (the inte.rprcted program) quickly and

easily.

A Simple Example

As a simple example of how a low-level component can be
viewed as a generalizablelayerof function,considerthe

followingerror-reportingroutine.

with Text_Io;
l:m:ced_e Gyro_Speed_F..rroris
t_gt.

Text_Io.Put_l..ine ('Error. The gyros ere not up to spee.d."):
endGyro_Speed_Error;

This highly specific routine represents one end of the

generality scale. It is easy to use, requiring a simple
parameterless call, but might not be likely to be widely

called upon within a program. There are three observable
details within this unit: 1) the use of Text_Io.Put._Line to

report the error message, 2) the use of the standard output

device to display the error, and 3) the choice of the literal

string to be displayed.

PrO© ed url* Report.Error

Pul_Line

Prepend an lntro

trent OUtpUt

USe lilerat siring *Erro¢: "

Figure 3a

In Ihe example Item Ihe rex1. procedure Repo*'l_Erro_ was seen 1o

be composeO o/ Iouf clects_ns Two are cons_e,e_ pa_ o_ the essemsal

funct_onallty an¢l Iwo are constdere¢l to be proDlem-speci/ic Oeta*is

The disdncfions between these categories can sometimes
become blurred. For example, whether a reusable package

is configured at run time by parameterization (tailored) or

• in advance by tables such that it emits a separate program
(generated) may not be of any real consequence. In fact,

the examples given in one category oRen have analogs

which exist in the other category. For example, forms

management systems already exist in both generated and

tzilored versions. Although parser generators are typically

generated components, since they arc s_.nd-alone

grammar-driven programs which emit desired software,

they could instead be incorporated into the end-product and

re-emit their parsers on the fly. The obvious reason not to

do this is for efficiency of repeated use of the same output.

However, an interpreter for a language can be thought of as

a compiler which is configured to perform as tailorable

100057118L

Re-engineered p¢ocedur* Reporl Error

some lilsrsI siring

end aft In|ro

PutLine

Figure 3b.

The re.engineerecl version of Report Error shows the fwo problem-

specihc Oefa,ls removed from the componenl, to be supphed Oy me

re.user The intlins)c funchonat aspects of the componem remain

Other mterprefalions of me re-engineering aecisions fo be apphea

coula poss,b_y remove one of mese. as we_t

4-9

A consultation with a domain expcn might re.suit in our

choice to pnr3mcterizc thc exact error mcssagc to be

reported, which might yicld thc morn sensiblc reporting
routine, shown bclow.

with Tcxt_lo;
procedureReport_Error (M_r, agc : String) is
begin

Text_Io.Put_Line ("Error. " & Messttg¢);
end Report Error:

This version of the unit is depicted in Figure 3a. Had we

performed the transformation without expert consultation
we might have simply paramcterized the entire message.
However, in o_r hypothetical problem domain we will

assume that the expert recommended retaining a

hard-coded standard prefix in order to facilitatethe

post-processingof the log file.Also, thisgeneralization
has cost us the part of the originalfunctionalitywhich

spelledout theexacterrormessage. Since theclientmust

now supply thisstring,we have increasedthe efforttouse

the unitby making itmore general.

The generalizationof a value(astringvalueinthiscase)is

theeasiestkind oftransformationsinceitcan be performed

with a simplevalueparameter.Since theparametertype is

language-defined (type String) there is no further

complexity to exposing thisparameter in the procedure

interface.Also, the effortto configurethe component

amounts to simply definingthe errormessage stringas a

parameter.Again,thiskind ofreuseistheeasiest.

The procedureabove stillassumes thattheuserintendsthe

message tobe writtento the currentoutputdevice using

Put_Line. That constitutespartoftheretainedfunctionality

of thiscomponent. In theprocess,we have alsoadded the

detailthatthestandardprefix"Error:"willalwaysappear.

Additionalconsultationwith a domain expertmight reveal

that the assumed use of the standard output device is

another problem-specificdetail.A laterrouser of this

component who was working on a differentproblem inthe

same domain might not want to be bound by that

assumption. Again, Ada provides a simple way to

pararneterizcthe component so that userscan specify the

outputdevice. Again, however, thisgeneralizationcomes

stthe costof functionality.In thiscase,the functionality

which is lostisthe assumption isthatthe currentoutput

device isto be used. Default parameterscan sometimes

provide an opportunityto restoresuch assumptions while

retainingthe gene.,'ality,as will be shown later.The

paramcterizedversionof the unitwhich followsremoves

the assumption of using the currentoutput device but

retains the function of writing the Literal string "Error. "

followed by the caller's message.

withTcxt_Io;
procedmcReport_Error

(Message:String;
On_Device:Tcxt_Io.File_Typc)is

begin
Text..Io.Put_Line(On_Device."Error:"& Message);

mzl Report_Error,

Nodc¢ that the user is now required to do additional work.
Instead of simply providing the error message, the dcsi:cd

output device or file must be provided. That decision has

shifted from the component to the (re)user. Again, this is a

form of valuc paramcterizadon, the easiest form of both

generalization and reuse configuration.

An additional part of the functionality of the component is

the literal string prepended to the caller's message. As

shown below, this could also be parameterized, again
removing that specific functionality but generalizing the

component on that behavior. This requires yet one mort

piece of information from the user as part of the
information needed for this component to perform its work,

however once again it is a low-cost value parameterization.

withText_Io;

procedureReport_Error
(Message: String;
In,to : String;
On_Device:Text..Io.Filc_Type)is

begin
Text_Io.Put_Lin,(On_Device.l.ntro& Message);

end Rq)ort_Error;

This gcneralize.,d component is depicted in Figure 3b. This

might constitute a domain-independent version of the

reporting routine, according to our domain experts,

although the only way to be certain that a component is

compatible with all domains is to ensure that it does not

depend on any other components. In Adz any such

dependencies are revealed by the conmxt clause. A lamr
transformation will eliminate the dependence on Text_Io.

As note.d, Aria affords us an opportunity to restore the

assumption of using the specific string "Error:. " and the

standard output device through the use of default

parameters without reducing the generality. This is shown
below.

with Text_Io;
procedure Report_Error

(Message : String;
I.n=o : String := "Error. ";
On Device : Text_Io.File_Type :=

Text_Io.S tandard_Oul:put) is
begin

Text Io.Put_Li.rm (On Device, Inn-o & Message);
end Report_Error;

At this point, two details remain (the use of

1001_imSL

4-10

Text_Io.Put_Lineand theprependingofa userstring).The

use of Put_Line could be removed through tailoring

(below)but the removal of the choice to concatenat_an

introductorystringcould not be done withinthe language.

For thatdegree of flexibility,generatexlr_use would be

required.Once a generalizationis needed which is not

language-supportexl,thecostsare considerablyhigher.One

way toreduce thosecostsistoprovidetoolsupportforthe

generalization,a processwhich amounts to establishinga

new language to accomplish the generlization. The MIS

systemdescribedin [AICI has reduced their soRwam

generation costs in this fashion.

This points out the obvious conclusion that the cost of a

gcn,ralization depends on the level of language or tool
support for it. One way to estimate cost is to begin with an

ordinal scale of difficulty and then to move to a more
detailed scale after more analysis has been done. For

example, it was noted that value parameterization is

relatively straightforward. This would be at the lowest end
of an ordinal effort scale. Above that would be tailoring

parametcrizadon such as Ada's generic formal type and
subprogram parameters. At the hardest6nd of the scale

would be software generation, with tool,supported

generationbeing easierthan custom-builtgeneration.A

more detailedapproach toeffortwould be torelatethecost

to the number of lines of code that must be written,

changed,oradded.

It can require a judgment call to choose what detailsto
remove and what function to leave in the component. For

example, in the above example, the fact that the original
literal string was broken up into a standard prefix and a

user-supplied message was only one possibility for

generalization. One guideline is to leave operational parts

of a component intact and to allow the operands to be

supplied by the reuser. A discussion of the separation of

operations from operands can be found in ['Bailey and
Basra].

The simple error-reporting example from before can also

be re-engineered into a tailored component using the Aria

language. The difference between this result and the

layered result is that the reusers will have to perform

slightly more work in order to instantiate the component,

but then subsequent calls can be simpler. As suggested,

tailoring in Aria through the use of generics is seen as a

harder process than value parameterization but easier than

software generation. A tailored example of the component
follows.

with Text_Io;
genetic

Intro : String := "Error:. ";
On_Device : Text_Io.Filc_Type := Text_Io.Current_Out]xtt;

procedure Report_Error (Message : Su'ing);

tamc,_ua_ Report_Error fMes,agc : St='ing) is
begin

Text Io.put_L.ine (On_Device. l,mro & Message);
md Rq_ort_Ermr.

Unfommately, this is illegal in Ada since a limited type

(Text_Io,Filc_Type) is not permitted as a generic value

parameter. This is an example of where strong static
checking can be at cross purposes with generalization and

re.use.Ifitwere legal,nevertheless,the user would have

theresponsibilityforprovidingthe introductorystringand

the output device one time (at the time of the generic
instandation) thus tailoring the component for further

reuse. From then on, the component would be no more

difficult to use (from the standpoint of parameterization)

than the original non-general version.

To avoid this limitation of generic parameters, a solution

could be obtained by generating the specific component

desired, using tools outside of the Ada language. The

generated component could look exactly like the original

component but the reusable software would no longer be
considered the component itself, but rather the generator

which creams it. In this case, the generator would emit a

Report_Error procedure which was hard-coded to write the

error message on a given device. The value of that device

would be given as a parameter to the generator. More

examples of generation are shown later.

A different tailoring would also bc possible. As mentioned

earlier, the dependence on Text_Io can be eliminated by

requiring that the client tailor the component to use a

particular string-processing routine. This makes the

component completely independent, with the persistence of
'IP

the use of a standard prefix as the only detail whmh is

retainedfrom the originalversion.

ge=-teric

Intro : Sn'ing := _ ";
with la'Oc_tne Put (S : String);

procedure Report_Error (Message : String);

procedure Report_Error ('Message : String) is
begin

Put (1taro & Message);
end Rc.port_Ermr,

Note that this most general version is also the least
functional. Nevertheless, the ability to tailor the

component once within a program and to then use it with

the same level of effort as the first layered transformation
makes it of some value. The reuser has additional work to

do with this solution, as well. For example, unless the error

messages are to be written to standard ourput, the

subprogram to be passed to the generic formal Put

10005788L

4-11

procedure has tobc written.This means thatthe cffortto

reuse a tailoredcomponent could bc grcatcrthan theelfon

toreusea component generator.So, theefforttogeneralize

is not _dways proportionalto the correspondingeffortto

reuse.

By examining existingsystems and by observing the

opportunitiesto generalizetheirpartsaccording to these

diSfercntmethods ofreuse,choicesbecome availableinthe

ways inwhich thesoftwarecan be re-engineeredforfuture

reuse. The nextsectiondescribesa simplemail system in

texrnsof itsconventionalconfigurationas a custom-built

applicationand theninterms of the variousways the parts

ofitcan be generalizedusingtheabove methods.

Re-Engineering a Simple Electronic Mail System

This secdon takes a simple electronic mail system through

transformations to yield components which can be

combined using the three methods described above. In the

interestsofspace,partsoftheexamples and some identifier

names have been abbreviated,and no bodiesare shown.

Complete listingsof the examples are availablefrom the

authors.

In a conventionaldesign,one comi)onent,orpackage,of a

mail system could be used tomanage themailboxesof the

users and a second could manage the messages, or the

constituentsof a mailbox. This would represent a

conventionalencapsulatedor "object-based"design of the

system where themailbox package would allowoperations

such as create,add a message, deletea message, returna

message, and perhapsdisplayinga directoryof messages,

maintainingthe statusof each message, and so on. The

message package wou/d allow message creation and

display,and possiblyreplyconsn'uction,forwarding,etc.

In a typical arrangement, using either Ada or an
object-oriented language such as Smallta/k, the mailbox

package (or object) would depend upon the message

package to obtain the use of the declaration of message

objects, in order to arrange those objects into mailboxes. In

Ada, the specifications for each of these two packages

might reasonably be:

p_kage Messagesis
typeUsemarne is...
typeLineis...
ty_ Textis...
typeMessageispriw,e;
procedure Set Sender (M : in out Message; To : Username);
procedure SetReceiver (M : in out Message; To : Userrtame);
procedureSet.,.Subject(M :LnoutMessage;To :Line);
procedureSetBody (M :inoutMessage;To :Text);
functionSenderOf (Msg :Message)returnUscrname;
functionReceiver_el(Msg :Message)returnUsernarne;

1000671mL

function Subject_Of (Msg : Message) return Line;
function Body_Of (Msg : Message) return Text;

p_vate

ty_ Message is
rncord

Sender : Oscmame;
Rcecivc_ : Usemarne;
Subject : Line;
Msg...Body:Text;

mad record;
end Messages;

with Messages;
psckage Mailboxes is

ty_ Message is new Messages.Message;
- d_ve an equivalenttypeMessage
Max_Mailbox_Size : Natural := 1000;
subtypeBox_SizeisNaturalrange0 ..Max_Mailbox Size;
typeMailbox(Size:Box_Si_ :=0)isprivate;
procedure Store (Box : Mailbox; Owner : Swing);
procedure Retrieve (Box : in out Mailbox; Owner : String);
fimction Size (Of Box : Mailbox) return Box Size;
function Msg...At (Position :Namrai; In_Box : Mailbox)

return Message;
procedure Remove (Num : Positive; InBox : in out Mailbox);
procedure Append (Msg : Message; ToBox : in out Mailbox);
procedure Mark_Read (N : Natural: InBox : in out Mailbox);
procedure Mark_Unresd ...
procedure Mark_Answered ...
procedureMark_Delemd ...
procedureMark Undeleted...
functionIs_Read

(Msg..Number : Natural; In_Box : Mailbox) return Booleam;
function Is_Answered ...
function Is_Deleted ...
No_Msg..At..Position : exception;

type Am'ibutes is (Deleted, Read, Answered);
ty_ Am Setsisarray (Amibute.s)ofBoole-.n;
typeMail_It,'mis

re.cord

Item:Message;
Status : Am_Sets;

end re.cord;
typeImm_Afray is may (Positive r_ge o) ofM__Itcm;
typeMailbox(Size:Box_Siz_:=0)is
record

Items:Item_Array(I..Size);
end record;

endMai.lboxes;

These packages are depicted in Figure 4a. As shown, the

Messages package is an example of an independently

reusablelayer,and the Mailboxes package constitutesa

layex on top of the Messages package. (Since the

constituenttypes of Username, Line, and Text are nee

shown, it might be the case that they would be comprised

of user-det-med types, making the Messages package

dependent on other client software.) Realizing that the

decision of how to implement the constituents of a message
represents one of the opportunities for generalization of this

package, the components of a message could be supplied as

parameters to a generic version of this package. This
would constitut_ a tailored version of the package:

4--12

|mc:'ic
U_rnzme is _-iv_e:

type Line is Priva-,;
type Text is Priv-tm:

_,,-ksge Gen Mc_sages is
ypcMessage is pdv;
.. - is before

md Gen_Messagcs;

Thisgeneralizationis shown in the top part of Figure 4b.

The effortto perform thistailored generalizationis in line

with other tailoring efforts discussed in the previous

section.The declaradon of three generic formal parameters

is one measure of the work performed. Also. the reuse

effortimplies the declaration of actual type pararnet_rs to

bc associated with these genetic formal types. One way to

quantifythe effortto generalize,then, is to claim thatthree

declarations are required. Three doclarations are also

rr,quL, vxl of the client reuser.

__ p,ck,oa Me.boxes

,-oo=po-ot ,,o,,-,yp. ab.t,,tto.

Mailbox. I/0 array

Exports type xn

depends on external type Messages.Message

Figure 4a.

.s.".; the conventions st_vn previously, this del_S the I_ocess of tailor)rig me

v_ssages and MadOoxes packages from Ins text

tailorad package Messages

....---.- types for uaernsme, etC.

(supplied by faucet}

tallofed psekage Mellbo/ee

......... o. ,yp. ,,....

_ Mesi_)_sa Measege soars)

Figure 4b

"_ s:)eoftc comoonenl woes ol a Message have been rernoveO as well as the

:"t-_Oency of U,a)lOoxes on Messages The ;euset w*ll fe-estabhsr_ m=S hnk

Going Ix:yond this somewhat _or_ version, notice that

even the structure of a message could bc a candidate

generalization. In thiscase, tailoringwould b¢ difficultor

impossible within the confines of the Ada language so

generation is required. Generation is feasible since the

contents of the Messages package could be

demrministically described ff one were to specify the

constituent components of a message. For example, if no

subject line were wanted, the original package could

instead have bccn written:

package Messages is

typeUsemtrne is...

typeText is...

typeMessage isprivate;
--proceduresSet_Sender. Set_Rec, iver. Set_Body
-- functions Scmder_Of. Receiver_Of. Body_Of

privam
type Message is -- no Subject component

record
Sender : Uscrrutme;
Receiver : Use_ume;
Msg_Body : Text;

end rezord;

end Messages;

Or, ifa message with a date and time stamp were desired,

the abstraction could be augmented with an additional

component, such as with the standard type Calendar.Time:

with Ctlend_,

p*,"kage Messages Ls

type Uscrnmlneis ...
type I.,ine is ...
typeText is ...
typeMessage is private;
-- procedures Set_Sender. Set Receiver,Set_Body,

-- Set_Subject, and Set_Time
-- functions Smder_Of, Receiver_Of, Body OL

-- Subject_OL Th'ne_Of

typeMessage is
record

Sender :Usernmme;

Receiver :Usernamc;

Time_Stamp :Cxlendar.Time; - new

Subject:Litre;

Msg..Body :Text.;
end record;

end Messages;

Although the genetic feature in Ada is not powerful enough

to allow these variations as tailoring of a single common

package, all of the Message package examples (as well as

their corresponding bodies) could have been generated

automatically, given the desired set of components for

objects of type Message. This, therefore, becomes an

example of generated reuse, where the.generator is the

reusable software and not the actual message package

software. For example, a simple editor-substitution

generator has been constructed which accepts input such as

10(XI6788L

4-13

the following and emits Ada equivalent to the example
shown above.

Generate Package
(Context => "",

Locad_Dccts=>
"subtypeuscraame is string(l..lO);" &
"subtype line is string(1..60);" &
"subtype text is string(1..80);',

Package_Name => "messages",
PrivateType => "message",
Set_l => "set_sender',
Set_2 => "set_receiver',
Set_3 => "set_subject",
Set..4 => "set_body",
Get_l => "sender_oC',
Get_2 => "receiver of",
Get3 => "subject_oF,
Get4 => "body_of',
LocaJ_Tyl__l => "username',
Local_Type_2 => "username",
Loc_1_Type_3=> "line",
Local Type_4 => "text");

The effort to construct this generalization amounted to the

writing of about 20 fines of software and the building of

templates from the original unit. The effort to muse the

component is the construction of the above call. This could

be seen as effort equivalent to declaring 17 string constants.

Note that, at this level of generality, which came at

considerably higher cost than the previous tailoring, more

than just a message package for a mail system could be

generated. Any private type implemented as a record of
components with set procedures and access functions could

be generated with such a program. Therefore, this

represents a domain-independent form of the component,
where any mail system details are supplied by the reuser.

So, the benefit of applying this substantial generalization
effort is that the component can now be used by many

domains. In fact, we will see that this same generator can

be used to replace part of the Mailbox package, as well.

Although the style of the Mailbox package is not as general
as the Messages package, there are several opportunities to

make it more general and therefore more reusable in other

contexts. For example, it could be tailored by making the

constituent type Message and the maximum mailbox size

generic formal parameters:

generic
type. Message is privaLe;
Max_Mailbox_Size : Nanaal := 100(>,

pmkage Genera.l_Mailboxes is
... -- same _ package Mdlboxes. above

end General_Mailboxes;

This arrangement of the Mailboxes packzge is shown in the

bottom part of Figure 4b. Fortunately, no operations on the

Lvpe Message were needed by the package Mailboxes,

otherwise those operations would have had to have been

passed as generic parameters.*' Therefore, following the
convention suggested above, the generalization effort here

is the effort to write two generic formal parameter

declarations. Reuser effort is the choice of a type and a

value to perform the instantiation.

Beyond the relatively, simple generalization shown above,

it can be observed that the Mailbox abstraction is actually

composed of a four-component record-type abstraction and

an array. Reusing the previously described example of
private record type abstractions, the package Mailboxes

could be divided into two separate abstractions as follows:

gl_leric

type Message _¢private;
p_kage General_Mail..Iterns is

type Mail_Item is private;
procedure Set_Message

(An.Item : in out Mail_Item; To : Message);
procedure Set_Read

(A.n_Item : in out Mail..Item; To : Boolean);
procedure SetAnswered ...
_ocedt_e Set_Deleted ...
function Get..Message (An Item : Mall_Item) return Message;
fimction Is_Read (An_Item : Mail_hem) return Boolem;
fm'_tion I.$_AnswereA (An Item : Mailhem) return Boolem;
function h Deleted (An_hem : Mall Item) return Boolean;

private
type Mall Item is -- a modified implementation

record
Item : Message;
Read : Boolean;
Answered : Boolean;
Deleted : Boolean;

end record;
end General_Mall_Items;

gmeric
type Mail..Item is private:
MaxMailbox_Size : Natural := 10CK);,

package General_Mailboxes is
subtype BoxSize is Natural range 0 :. Max_MailboxSize;
type Item_Array is array (Posidve range _.) of Mail_Item;
type Mailbox (Size : Box_Size := O) is

reword
Items : Item_Array (1 .. Size);

end record;

*ff Aria supported full inheritance, it would be possible to
write the Mailbox abstraction so that it relies on certain

operations to be defined for the generic formal type

Message. The user would then guarantee that any expected

functions would be available for any actual type paramet_

associated with the formal type Message, eliminating the

syntactic complexity of passing them vie. additional generic

formal subprograms. This illustrates one of the advantages

of late binding, something that Ada disallows in order to

ensure that required operations are available prior to the

compilation of any instantiadons of the generic.

4-14

10006788L

pr_edureStore('Box : MLilbox: Owner : Suing);
proccd_c Rcu'ievc (Box : in out Mailbox; Owner : Su'i._);
functionSiz_(Of_Box:M-;Ibox)re.xurnBox_Size;

_ur¢ Remove
(Mai]_I=m_At : Positive; In_Box : in out Mailbox);

-!:..oceAur©Append
(A_M,;I_Msg:M_._1,._n;To_Box :inoutMailbox);

No_Msg_At Position:cXCClX]On;
G_cral_M.;Iboxes;

These packages arc depictedby Figures5b and 5c. In the

_c>ovecase,theclientcould obtainthefuncdonalequivalent

Io the original mailbox package via the following

instanuadons:

pa.:kagcMail_Items ix
new General_Mail Items (M,'ssages.Measage);

p_:kageMailboxesis
new Gcn_al _Mailboxes (Mail_Iu_ms.MLil..,I_n);

tailored package Messages

[_..'-" '_'._. : _ . P._.(..--_'types for usernsme, etc.

___ d-c_expo:i:::;:n, ;:_2;_-fype abafrscfion

Figure 5a.

a<_'_onal changes are made (ludng the secon_ pass at tailoring the two

_ad_es. Only by generating the Messages package can the decisions about

_=ure of 1he abstract data lype be generalized, since such a fun-time

I_ ks not possible within the Ads language.

tsllored, factored package Mall llama

__:_"-J -- _.,<--_ .o,,. masaeg..y,. (,.,..
._ra.'.-_':" - "J 7V-'_,,._*_'__:...;,:..._ Td_" u,.u g, .bo,.)__._._.:_y,_ ,,,.

_d,-¢omponsnt record-fyps ebstrecllon

FigureSb.

The Mailboxes package is broken i_o two componems, one wnicl_ ,motements

Mc_,_ttem.s as a fecor(l-type (lafa abstraction, above.

tsllored, factored package Mailboxes

V Ex rls lyps Mailbox, in IlO ilfrly

Figure $c

The c':n_ package lactoreO from the original Mailboxes package ,mplements

,, L Iksl of mail items. This no longer conlmns any problem- spec_c

f',:,_n olher than ,mplemenl hsls. SO tt can be replaced wilh a general

t".';=.,_s_, lislabstraction, as shown in the text

Two tradcoffs in this example arc observed. First, the

specific way in which package Mail_litre was sn'ucmred

originally was modified into lhe more gencrai

multi-component record shown here. This n-adeoff was

accepte.d in order to allow this implementation of
Mail_lwJns to b¢ similar to the implementation of

Messages, which was previously shown m bc highly

generalizable.This isan example of how standar_on

limitsthe choices availableto the implementer while

increasingthe generalityof the resultingprograms. For

e,xamplc, by adoptingthisapproach,thegeneratorprogram

mentioned beforecould b¢ used to generatean equivalem

package toMail_Ictus throughthefollowinginput,thereby

allowingthegencranon of both the Message.spackage and

the Mail_Items package from the same reusable

componen_

Gcr_rs_e_Package
(Conmxt=> "with messages;".
Local_Decls =>
"t_p¢ massage is new me, sages.message;",

P.ckaga_Nama => "mafl_iu_m._",
Privam_Typ¢ => "mail_imm".
Se_I => "sat_message',
Set..2=> "sat..t=ad",
Set..3=> "set_muwued',
Se_4 => "sct_d_lat_d',
Get_l=> "gat..messaga",
Get..2=> "is_read",
Get_3=> "is_mswu=d',
Get...4=> "is_dalere._l".
LocLl_Ty-pe_l => "message",
Local_Type..2 => "boolem",
Loc_d_Typ__3 => '"ooolem",
Loc__Typ__4 => "boolem");

@

The second _'adeoff was to make the typ_ Mailbox visible.

This was necessarysincethe clientsoftwarewillhave to

gaindirectaccesstoa Mail_Item withina mailbox arrayin

orderto perform the operauons from package Mai1_ILe,ms

on iL Simply returninga valueofMail_hem viaa funcnon

callwould not allow the use_ to setthe components of a

Mail_Item in a mailbox. An altcrnadvesolutionwould

have bccn toimplement the items ina mailbox as access

values,each designanng a Mail_Izm. In this way, a

function,returningan access value would provide the

capabilityforthe clientto modify thedesignatedobject,a

Mail_Item. This situationsoccurs frequently when

factoringcomposite abs_actions into their constituent

absn-acdons,and suggests that by presenting objects

directlyon the interfaceto an abswaction,ratherthanjust

theirvalues,an absLracuoncan be made more ge.ncraland

reusable.

Further gencr'alizadonsarc not shown in derailin the

interestsof space. However, noz that the above

General_Mailboxes abstractionis the only remaining

custom-made applicationcodc inthe example. Itamounts

I0005788L

4-15

to an ordcrcd listof items of disccrniblcsize,to which

items can bc appended and from which items can be

deleted,and which can bc storedto and retrievedfrom

t'dcs.Except for the abilityto storeand retrievethe lists,

such an abstractionwould probablybe availablcina library

of generic data structures.Assuming the constituent

objectsare privateand not limitedprivate,itwould bc

possibletopcrfonn binaryinput/outputon them. So, itis

not unreasonabletoaugment an existinggcncricabstraction

toincludestorageand retrieval.Such an augmcntntionofa

listresourcecould bc accomplishedby layeringsomething

likethefollowingonto iL

- Layeringon allstabstraction:
withSimple_Liar.s:
g-'neric

Imm iaprivate;
_pc Item AccessisaccessImrn;

psckageGeneral_Mailboxesis
packageItem_Listsisnew Simple_Lists(Item.hem_Access);
typeMailboxisnew Item_Lists.List;
procedureStore(A_Box :Mailbox;To_File:String);

procedure Retrieve
(A_Box : in outMailbox;From_Fi.lc: Swing);

end General_Mailboxes;

To obtainthe equivalentfunctionalityas was prodded by

instancesof the earlierpackage General_Mailboxes, the

followingdeclarationswould now be required:

packageMall_Itemsis
new General_Mail.Imrn.s(Messages.Message);--same

typeMail_Item_Accessis access Mail_hcms.Ma.Ll_Item;
packageMailbox_ isnew General_Mailboxes

(Item=> Mail_hems.Mail_It,'rn.
Item_Access=> Mailhem_Access);

The clientcan treatthe above package Mailboxes similarly

tothe earlierversion;itwillhave allthe same operations

due to the derivabilityof those alreadyimplemented by

Simple..Lists.Also,note thatthe mailbox implementation

has been made privateagainby usingdesignatedobjectsto

hold mail items.This would allow an Item_At functionto

returnan accessvalue to the actualmall_item and not just

the value of thatmail_item. This allows updates of the

item via the o.vcrationsthat were definedin theMail_Item

package (Set_Message,Set_Deleted,etc.).

Measurement Summary

Measurement is required at two points of the software

cycle. When candidate units are being ident.i.fied, and

domain-specific details are being distinguished from

problem-specific details, estimates of the generalization

effort necessary to remove any give derail are required. At
the m'ne of reuse, estimates of the configuration effort

necessary to adapt a component for reuse are required.

100(_788L

4-16

Observationsfrom conductingseveralgeneralizationshave
shown that an initial estimate based on an ordinal scale is

possible. This scale has value parametcrization as the

easiest to perform for both generalization and reuse.

Harder than this is type or operation parametedzation,
which requires tailored generalization in Lhe case of Ads.

The hardest form of generalization is building s

special-purpose component generator. This can be made

easier through the use of code-generation support tools.

After an initial evaluation of the generalization effort has

been made and an approach to generalization has been

determined,a more accurat_assessmentof the effortmay

be possible.The most directindicatoroftheeffortrcquked

isthe number of linesof code thathave to be written,

changed or added. In many cases,a generalizationcan be

accomplishedwithjusta few linesofnew orchanged code.

However, in the case of unsupported component

generation,theentiregeneratormay have tobc written.

Reuse effort is easier to quantify since the component in

qucsuon is already known. The effort to configure a

generator or to instantiate a generic can be estimated based
on the number of inputs or parameters required. In most

cases, the usage of a tailored or generated component is

similar regardless of whether the component was developed

from scratch or obtained from a repository. However, even

this step can be complicated by the fact that a development

might choose to be constrained in some way in order to
take advantage of an available component. The costs of

such a d_ision can be especially difficult to estimate. In

the long run, however, it is expectexl that the adoption of a

component, similar to the adoption of a standard, is a
cost-effective choice.

Another measure that is needed isan estimate of the furore

value of a unit in a repository. It may not be the bes_

approach to populate a repository with many units which

were inexpensive to gene,-'alizcif they will rarelybc

n__-.Acd.Itwould bc bettertospend the time performings

di.fficultgencrali.zationiftheresultingunitwillmore than

returnthatinvestment.Here again,domain expertswill

have toassistinmaking thisdetermination.

Future Work

Progress is n_ded on metrics to quantify generalization
and reuse effort. Effective metrics will open the way to

establishing an economic model of reuse that could enable

an organization to choose its optimzi approach to reuse,

engineering. Note that the same approach or even the same

specific model would not necessarily be best for two
different organizations. One obvious reason for this is tl'_

one organization may concen=ate in a single application
domain while another organization may do work in many

domains with very little mpetioon. The i'u'st organizaUon

may find its optimal approach to reuse is to develop a
mature repository of domain-specific components while the

second organization may find that only
domain-independent components are likely to be cost

dfccfive.

In addition to the costs of generalization and r_use, an

_:onomic view of the software cycle suggested in this

paper would have to deal with repository maintenance.
• component retrieval, component probabilities of reuse and

cost savings, and the effort required of domain experts and

repository experts. Current progress is being made in some
of these areas by interviewing experts at one branch of the

NASA Goddard Space Flight Center where reuse has been

practiced for many years, originally with Fore-an and more
recently with Ada. The results of these interviews will

asset us in formulating a more quantifiable model of the
costs and benefits of reuse at that organization. It is hoped

that this experience can then be extrapolated into a broader

model of reuse engineering that can be adapted for use at

other organizations.

John W. Bailey is a Ph.D. candidate at the University of

Maryland Computer Science Department. He has been
consulting and te..aching in the areas of Ada and software

measurement for nine years, and is currently consulting to

Rational. He has an M.S. in computer science from the

University of Maryland, where he also earned a bachelor's

and a master's degree in cello performance. He is a
member of the ACM.

Victor R. Basili is a professor at the University of

Maryland's Institute for Advanced Computer Studies and

Computer Science Deparanent. ta2s research interests

include meastn'ing and evaluating software development

and is a founder and principal of the Software Engineering

Laboratory, a joint venture of NASA, the University of

Maryland, and Computer Sciences Corporation. He
received a B.S. in mathematics from Fordham College, an

M.S. in mathematics from Syracuse University and a Ph.D.

in computer science from the University of Texas. He is a
fellow of the IEEE Computer Society.

References

[Bailey and Basili] J. Bailey and V. Basil.i, "Sofxware

r=larnation: Improving Post-Development Reusability," in

Proceedings Eighth Annual Conference on Ada

T_hnology, Atlanta, Ga., 1990.

[Basili and Caldiera] V.R. Basili and G. Caldiera, "A
Reference Architecture for the Component Factory,"

Computer Science Technical Report Series, University of

Maryland, College Park, MD, March 1991,
UMIACS-T'P,-91-24 or CS-TR-2607.

['Basili and Rombach] V.R. Basili and H.D. Romb_h,

"Support for Comprehensive Reuse," Software Engineering

Journal, July 1991, (also, Computer Science Technical

Report Series, University of Maryland, College Park, MD,

February 1991, CS-TR-2606 or U'MIACS -TR-91-23).

[Caldiem and Basili] G. Caldiera and V.R. Basili,

"Identifying and Quali.fying Reusable Software

Components," IEEE Computer, Vol.24, No.2, Feb.1991,

pp.61-70.

_llis and Stroustmp] M. Ellis and B. Stroustrup, "The

Annotated C++ Reference Manual," Addison Wesley,

1.eg0, p. 341.

[MC] Aria Information Clearinghouse. "STA.NF'LNS-R -

COBOL and C Programmers Moving Successfully to Ada."

Ada lnform.ation Clearinghouse Newsletter 8, 2, June 1990.

10005 7118L

4-17

