
A Classification Procedure for the Effective Management of Changes
during the Maintenance Process d

.- /

Lionel C. Briand and Victor R. BasiU ' /:_-_ _/ /_ _.

Computer. Science Department and Institute for Advanced Computer Studies

University of Maryland /,_._. /
College Park, MD, 20742 _ 9 _ " li_:?" IO 9

To be published in the proceedings of the IEEE Conference on software

maintenance, Orlando, Florida, USA, November 1992,

Abstract

During software operation, maintainers are often faced with numerous change requests.
Given available resources such as effort and calendar time, changes, if approved, have to
be planned to fit within budget and schedule constraints. In this paper, we address the
issue of assessing the difficulty of a change based on known or predictable data. This
paper should be considered as a first step towards the construction of customized
economic models for maintainers. In it, we propose a modeling approach, based on
regular statistical techniques, that can be used in a variety of software maintenance
environments. This approach can be easily automated, and is single for people with
limited statistical experience to use. Moreover, it deals effectively with the uncertainty
usually associated with both model inputs and outputs. The modeling approach is
validated on a data set provided by the NASA Goddard Space Flight Center which shows
it has been effective in classifying changes with respect to the effort involved in
implementing them. Other advantages of the approach are discussed along with additional
steps to improve the results.

Key words: maintenance process, change difficulty, change request management.

' Research this study was supponeA in part by NASA grant NSG 5123 and the Vitro Corporation (IAP Member)

4-49

10005788L

https://ntrs.nasa.gov/search.jsp?R=19930007980 2020-03-17T09:31:46+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42809607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Given the limitedresources (i.e.effortand calendar time) availableto the maintenance

activitywithin software organizations and the number of change requests proposed,

difficultdecisionsneed to be made. These decisionsinclude:which changes toimplement,

how much optional functionality,to provide in enhancements. A large amount of total
software effortis spent on maintenance [LS80, GRA87]. Changes in the form of

corrections,enhancements or adaptations effectthe software source code and/or the

documentation. Some of these changes are crucial,others are lessimportant.Therefore,

when one considersthe globalcostand varietyof maintenance activities,management of

changes becomes an important and complex task.Itrequiresthe support of models so we

may perform systematic comparison of the costs and benefits of changes before

implementing them [RUV92]. One approach is to build such models based upon past
projectexpcnences.

To thisend, effortmodels have to be designed to predictresource usage and optimize the

cost-effectivenessof the maintenance process.Well defined modeling procedures need to

be established so they can bc repeated and refined, allowing the model to evolve

consistentlyas new dataare collected.

This paper describesa modeling procedure for constructinga predictiveeffortmodel for

changes duringthe maintenance phase.This techniqueisintendedto handle small datasets

and the uncertainty(i_e.forcostor technicalreasons)usuallyassociatedwith model inputs

and outputs (i.e.is thisparticularpredicationbelievable?).We assess the feasibilityof

building such a model using a data set that describes several projects in the SEL

environment atthe NASA Goddard Space FlightCenter. Based upon the resultsof the

analysis,we alsomake recommendations forimproving the datacollectionprocess.

2 Context of Study and Experiment Design

In thisstudy,we use a data set consistingof 163 changes collectedon four different

maintenance projects.Each change isrepresented by a vectorconsistingof a varietyof

metricsassociatedwith the change.The fourprojectsarerefcn'edtoin thepaper asprojects

pl, p2, p3, p4. These projectsarc from the same applicationdomain: satelliteground

support softwarewrittenin FORTRAN.

The change process in the SEL environment has two main phases: an "understanding"
phase where the change isdetermined and isolatedin the system and an "implementation"

phase.,where thechange isdesigned,implemented and tested.

The effortassociatedwith both the understanding and implementation phases iscollected

on discretescales(i.e.ordinal)in order tofacilitatethedata collectionfrom a maintaincr's

perspective.The effortrange isdivided intofiveintervals:below one hour, between one

hour and one day, between one day and one week, between one week and one month,

above one month. For each change performed, the appropriateunderstanding effortand

implementation effortintcrvalsarerecorded by theperson making the change. These effort

intervals are indexed from 1 to 5 and will be referred to as difficulty indices in the paper.

All the change-related data used in this paper was collected on a standard form (see
Appendix). The metrics collected range from measures on a continuous scales (e.g.,
number of components added, number of lines of code added) to categorical measures
(e.g., source of the change, technical description of the change). Some of these metrics are
predictable before starting the design of the change, others can only be assessed after the
implementation of the change has begun.

In this paper, we focus exclusively on the effort spent to implement (i.e design, code, test)
a change. There are two reasons for this: 1) Almost no information is available to the

4-50

Iooo678m.

maintainer before the understanding phase. Therefore, no prediction model can be built. 2)
In this environment, the effort expended in the understanding phase is generally somewhat
smaller than the effort expended during the implementation. It is thus more essential to use
a predictive model for the implementation phase.

The available metrics are defined as follows:

• Type of modification (correction, enhancement, adaptation).

• Origin of the error in the software life cycle. This is referred to as source in the text
(requiremems, specifications, design, code, previous change).

• Software products effected by the change (code only, code and design). This is referred
to as objects in the text.

• Number of components added, changed, deleted. They are referred to as comp.add,
comp.ch., comp.del., respectively.

• Number of lines of code added, changed, deleted. They are referred to as loc. add.,
loc. ch., loc. del., respectively.

• Change technical description (initialization, logic/control structure, user interface,

module interface, dam structures, computational). This metric is refen'ed to as ch.desc.

During the understanch'ngphase, estimates can be made of the first three metrics. The
number of components involved ina change can alsobe approximated since the change is

isolatedinthe system architecture.But any predictioninterms of linesofcode to be added,

deletedor changed isstillcomplex atthispoint and can only be predictedata coarselevel

of precision.

3 The Modeling Approach

Considering the discrete nature of the effort data reported during maintenance, the
prediction issue becomes a classification issue, i.e. in which effort class wiU the change
probably lie? The maintainer can only predict values for most input metrics with a certain
degree of uncertainty. It is important that the modeling process takes this constraint into
account. This help to make the generated model easy to use. Also, our dam set is small and
contains discrete explanatory variables. Therefore, we need a modeling approach which is
both effective on small samples and which handles discrete and continuous explanatory
variables in a consistent way.

3.1 The Modeling Process Steps

A high level view of the model construction process can be deftned as follows:

1- Identify Predictable Metrics. Identify the metrics, among those available, that are
predictable before the implementation phase. For ratio and interval metrics that are
predictable early but only with a certain degree of uncertainty, the range is recoded as an
ordinal range with a set of ordered classes. These classes reflect a reasonable level of
prediction granularity. For example, a ratio level metric range like "number of
components added" could be divided into three intervals forming the three metric classes
low, average, and high.

2- Identify Significant Predictable Metrics. Identify a subset of the predicable metrics that
appear to be" good predictors of the difficulty index, using a consistent evaluation
technique for all candidates.

1000571181.

4-51

3- Generate a Classification Function. Associate the resulting mewics in a classification

function which has the following form:

Predicted_Difficdty = Classification_Function (Significant_th'edictable_Metrics)

where PredictedDifficulty = some classification scheme based on the difficulty indices,

e.g., {easy, difficult} and Significant_Predictable_Metrics = {some of the predictable
metrics collected on the Maintenance Change Report Form which appear as good

predictors}

4- Validatethe Modal. Conduct an experiment on a representative(i.e.in terms of size

and qual/ty)setof data.Two measures thatcan be.used tovalida_ the model are:Average
ClassificationConv_tncss (i.e.ratioof number of correctclassification/totalnumber of

performed classifications),and IndecisionRate (i.e.ratioof number of undecidablecases
/totalnumber of changes tobe classified).The latterreflectstheneed forsuch a model to

deal with output uncertainty,thereforewarning the user whenever a certainlevel of

confidenceisnot re.achedfora specificprediction.

3.2 An Implementation of the Modeling Process

This section presents a possible implementation of the previously described process. Our
goal in defining such a proccdm'c can be described by the following points:

• We want the generated model m be as simple to use as possible.

• The uncertainty associated with the model inputs at the time of prediction must be taken
into account by the model, i.e., intervals rather than values should be used as model

inputs.

• The model should be able to provide some estimated risk of error associated with each
classification. Thus, the user would be able to select a minimal level of confidence (i.e.
maximum risk) that would differentiate the model classifications as believable or non-
believable.

• The steps of the procedure are:

1- ldemffy Pred/ctab/e Merr/cs. The input is a set of available metrics. The output is a set of
metrics whose values are either known or predictable, with a certain degree of accuracy,
before the change implementation phase.
There are several processes for selecting the set of predictable metrics. The determination
of prexiictability can be either based on interviews with people with a good knowledge of
themaintenance process (andthen refinedwith experience)or observed through controlled

experiments [BSP83, BWg4]. Both help todetermine the average estimation accuracy that
can be reasonably expected for a given metrics.

The range of each continuous / ordinalpredictablemetric isdivided into intervals(e.g.,

percentiles,naturalclusters[DIL84]).The more accuratelypredictablethe metric,themore

numerous and narrow the intervalscan be. We recede the metricranges accordingto their

respectivepredictabilityso themaintainer can easilyselectthe rightintervaland use some

of the predictivepower of metrics not measurable beforethe implemeraarionphase. These

intervals are called metric classes in the paper.

Our need to define these metric classes for predictable metrics stems from the impossibility
of relying exclusively on measurable (at the time of prediction) metrics, e.g. building an
accurate model for predicting change effort is likely to require measures of change size that
are not available before the implementation phase. We have no choice other than taking into
consideration metrics that cannot be measured but only approximated with a certain degree

4-52

I0005788L

of precision-by the maintainer _ the understandlng phase of the change process.

2- Identify Significant Predictable Metrics. The input to the second step is the set of
predictable metrics from the first step and the outputs arc a subset of significant predictors

and their corresponding association table. This association table distributes the difficulty
".radices across the metric classes defined on each predictor value domain.

Consider as an example Table 1 which shows the association table of the metric number of

lines of code added across the four difficulty classes (class 5 has so few changes that we
merge it to class 4). This table is calculated based on the actual distributions in the data set
considered for modeling. Each column represents a metric class (e.g. > 30 implies that the
number of loc added is more than 30) and each row an index of difficulty. With respect to

each predictable metric and using its calculated distribution of difficulty indices, an average
difficulty index (i.e ADI) is calculated for each metric class (shown in the bottom row of
Table 1). The calculation of a meaningful and statistically significant ADI requires us to set
up the metric classes in a way that guarantees a minimum number of changes in each of
them.

DI < 10

'1 7%

2 48%

3 42%
,,i

4 3%

ADI 2.4O

Loc added

[10 30]

0%

36%

60%

4%

2.68

>311

0%

9.5%

40.5%

30%

3.40

Table 1: "number of lines of code added" distribution

Taking the association table Table 1 as an example, the calculated index averages look
consistent with what was expected. The ADI seems to increase substantially with the
number of lines of code added. In general, with respect to the ratio and interval level

metrics whose the value domains have been recoded in successive metric classes (see step
1), significant differences should exist between class ADIs. Based on a F-test, a one-way
analysis of variance (ANOVA) can be pea'formed and the statistical level of significance of
the metric class ADI differences may be estimated [CAP88]. Whenever the 0.05 level of
significance is not reached, the boundaries should be recoded in a way that minimizes the
level of significance. Since all the continuous metric ranges have been rceoded into an
ordinal scale, we have to calculate the degree of association between the difficulty indices
and the metric classes in order to assess the predictive power of each metric. One approach
consists of computing the Chi-Square statistic (which is valid at the nominal level
[CAP88]) for each metric association table. A statistical level of significance characterizing
the association between the difficulty indices and the metric classes is calculated based on
the generated Chi-square value. Thus, the top ranked metrics showing sufficient degree of
association are selected as parameters potentially usable to build a multivariate prediction
model. Some more sophisticated measures of association (i.e. PRE-measures of
associations [CAP88]) can provide more intuition/information about the associations and.
therefore allow an easier selection. However, this issue is beyond the scope of this paper.

3- Generate a Classification Function. The input to the third step is the set of association
tables of significant predictable metrics and the output is a classification model that predicts

an expected difficulty index associated with changes. Note that although five difficulty
indices are defined on the change form, a small minority of the changes (5%) actually lie in
the extreme intervals (i.e. intervals 1,5).

4-53

1001_7_L

This makes classificationintotheseintervalsexn'cmely difficult.Also, since80% of the

chances belong to classes2 and 3,we willfirstbuild a classificationmodel intended to
differerdiatethesetwo classes:lessthan one day (i.e.referredas easy),more than one day

(i.e.rcfcrr_ as difficult).In section4.2,we will refineour classificationby dealingwith a
"mor_ than one week" class (i.e.indices 4 and 5). Thus, based on the generated

classificationsthe user wil_be, able to make decisions with respect to the requested

implementations of changes.Thisisdone by comparing the predicteddifficultytoboth the
availableresourcesand theexpccmd gains.

The processof buildinga classificationfunctioniscomposed of two steps:

1-Perform aregression:Based on allthe availableassociationtablesand the corresponding
ADIs foreach change in the.dam set,we perform a stcpwise linearregression[DIL84] of

the followingform:

Actual_difficulty_index= Wl * ADI_mcu'icl + ...+ WN * ADI_meu'icN

Due toinm_lepcndcncies between metrics,only a subsetof the presclectcdmetricsremains

in the generatedpredictionfunction(i.e.only the one showing, based on a F-partialtest,a

levelof significancebelow 0.05).In order tomake the model easierand lesscosilyto use,

thenumber of parameters inthe regressionequationcan be minimized. In thiscase,one or

severalparamemrs arcremoved (especiallywhen they show a statisticalsignificanceclose
to 0.05) and the resultingmodels arc evaluated.Then, the user has to assessthe lossof

correlationagainstthe ease of use gained by removing parameters from the model. Ifthe

u-adcoffappearsreasonable,thenthe new model isadopmd. Weights arccalculatedforeach

remaining parameters and the resultingoptimized linearfunctionallows us tocalculatean

difficultyindex expected value.This may be used to classifythe change based on the

realisticassumption that:the closerthe expected value of the difficultyindex toan actual

difficultyindex,the more likelythe corresponding change,belongs to_e matching .effort
class.Thereforethe followinginterval-baseddecisionrule _sused to maze ctassmcauons.

2- Define a decision ruleforclassification:the predicteddifficultyindex range isdivided

intothreeintervals(i.e.easy change predicted,undecidable,difficultchange predicted)ina

way that guarantees a maximal average classificationcorrecmess. For example, the
boundaries for classifyinga change as eitherlessor more than one work day can bc

definedas inFigure 1.The classificationof futurechanges willbe performed according to
theinm'valinwhich theircalc_ difficultyindex willlie.

EASY Undccidable DIFFICULT

I I I I
1 2.4 2.6 5

Predicted Difficulty Index Range

Figure 1 : Example of decision intervals

1OOO57881

4-54

The process for cre.ating these decision boundaries ear, be described as follows:

1- The user defines a risk / loss function having the following form:

Expected_loss = Weightl*MRl + Weight2*MR2

wher_ MRn is the rr/isclassification rate "_culated for changes actually in class n.

The loss function weights can be defined according to the respective costs of
misclassificationassociatedwith each class.Most of the time,thisweight willbc setto

one. A search algorithm can then be used to determine the interval between two

neighboring changes on the predicted index range that provides the best decision
boundaries (i.e.that minimizes the risk/ lossfunction).These two neighboring changes

form theboundaries of thesmallestpossibleuadeddabte/nterva/ on the range.

2- In a stepwise manner, thisintervalcan be widened on both sidesof the index range
according to some automatable process.For instance,the intervalcan be expanded in a

stepwisc manner, includingone more change ata time on each sideof the interval,untila

maximal expected loss value (i.e.predefmed by the user) is reached. Based on this

process, the user will bc able to determine the boundaries of the decidable intervals

corresponding tothe desiredlevelof risk.

4 A Validation Study

According to the procedure defined above and based upon the previously described four

projectdam set,thesignificanceof each availablemetricas a predictorisassessed.Table 2

shows the Chi-squarc-based levelsof Significance.Then, in order to build the needed

classificationmodels, the metricsyieldinga good levelof significancearc selected.First,

we builda generalmodel usable for any projectin the same environment. This model is

intended to be usefulat the startof a maintenance process when not enough data arc

availabletocreatea projectspecificmodel.

Then, we buildan independentclassificationmodel foreach projectwhich isexpected tobc

more accurate with respecttofurorechanges for each specificsystem,respectively.The

variousresultswillbc compared in order toassessthe validityof cross-projectmodels in

thisenvironment. The ranges of the continuous metrics were recoded according to the

previouslydescribedprocedure. Two or threemetricclasseswere defined for each of the

metrics, according to the predictabilitylevelof the metric and the distributionof the

changes on theirrespectiverange.In otherwords, theintervalbofindarieswere chosen in a

way thatrcflecwA theirpredicability,optimized the classificationpower of the metric (i.e.

optimized the chi-square)and guaranteed,to the extentpossible,a sufficientnumber of

changes withineach metricclass.

1000S78OL

4-55

Metrlc

Type

Source

Ch.desc.

Loc. add.

Loc. Ch.

Loc. Del.

Comp. add.

Comp. ch.

Objects

IJvel of Idgnificance

0.004

O.(XX)O

O.(_(X)

O.(XXX)

0.0(_0

0.0006

O.(XJ02

O.(X_

0.0005

Moutc c_usos

Cor_ction, enhancement,
adaptanon

Re,qutremcnts, specifications,
design, code, previous change

irdda]izadon, logic,interface,
datasuucum:,computational

<I0,[I0,30],>30

<I0,[10,25],>25

<2,[2, 15],>15

0.>0

<2, [2, 51,>5

code only, cod= and design

Table 2: Level of significance and class boundaries / categories of metrics

4.1 A General Model

This model is intended to be specific to the NASA SEL environment. It has been built

based on systems belonging to the same application domain and therefore may not
represent necessarily other domains accurately. Table 3 shows for each selected metric, the
class ADIs and the corresponding result of the one way analysis of variance [CAP88] that
assessed the statistical significance of the ADI variations across metric classes. They all

appear below 0.05 and we can therefore say that the metric classes with respect to
continuous metrics have been adequately def'med because they show significant ADI
differences.

Table 4 shows two distinct regression-based classification functions (PI stands for
Predicted difficulty Index). Note that the parameters of the regression equations are the
metric association table-based ADIs and not the metric values themselves. For the sake of

simplification, the names of the metrics areshown in the equations. For each function, the
calculated regression equations arc given with the respective level of significance of each
metric (i.e.shown between brackets above the equations and based on partial F-tests).

If thc metric does not appear signifcant at a 0.05 level,then they arc excluded of the

equation.The global coefficientof determination R 2 is also given. The firstone was

obtained by performing a stcpwisc regression using thc class ADIs of the significant

predictablemetrics.Only one of thc linesof code (i.e.loc)based metrics was retainedin

the equation:Ioc.ch.Then, in an attempt to avoid the use of thismetric (i.e.which isstill
thc most difficultto assessdespitethe coarsedefined mctricclasses),wc recalculatedthe

equation parameters whcn ignoring it.The coefficientof correlationdid not appear much
affectedby the change. This can be explained by the higher significanceof the remaining

parameters and theirstrongercalculatedcoefficientsthatshow a stronginterdependence
with loc.ch.In other words, they partiallycompensated the lossof explanatorypower duc
tothe removal of loc.ch..Thus, the generatedrnodclbecomes even easierto use and does

not loosemuch of itsaccuracy (sc_Table 5).

I00067_$L

4-56

Metrics

Type

Level
orsi_,niflcsnce

O.0O3

i! I

b_)][s for e_h catqory
I

[2.56,2.36, 2.951

i

Source 0.0000 [3.04, 3.29 2.42, 2.33, 2.27]

Ch.desc. 0.0000 [2.2, 2.9, 3.0, 3.1, 2.4, 2.9, 2.8]

0.000(3

0.0000

Loc, DeL 0.000! [2.6, 2.8, 3.4]

Ill i

Comp. add. 0.0000 [2.64, 3.63]

0.0000 [2.41, 3.0, 3.31]Comp. oh.

i

Objects 0.01 [163.3.03]

Table 3: Metric class ADIs

Moded 1

ii i

Mode; 2

I e • iii

Description of the Models

(o.o) (o.o) (o.o) (o.oooa) (o.o4) (o.oo4)
PI -, - 4.22 ÷ 0.59 Source ÷ 0.62 Ch.desc ÷ 0.58 Ioc.ch ÷ 0.38 Comp.add ÷ 0.36 Cornp.dl

i,, i i i

(o.o) (o.o) (o.o) (o,ol) (o.o)
PI - - 3.95 + 0.68 Source ÷ 0.69 Ch.desc ÷ 0.49 Comp.add .,. 0.56 Comp.ch

R-sq

0.50

0.46

Table 4: General models

Table 5 shows the dassification correctness 6.e. rate of correct classification) obtained
when using the above models (Table 4). The decision boundaries have been optimized to
yield the best results. First, they have been selected to yield a 0% indecision rate (column
IR = 0% in Table 5). Then the undecidable interval has been widened in order to

demonstrate the possibility of selecting decision intervals that fit the user's need in terms of
classification correctness (column IR > 0% in Table 5). In this case, the selected interval

boundaries are arbiwary and are shown for the sake of example. The row "classification"
indicates the classification performed (i.e. easy changes = [1-2] or [1-3]). Each ceU
contains, for all models, the undecidable interval boundaries between brackets and the

corresponding classification correctness. Whenever the undecidable interval has been
widened (i.e. IR > 0%), the corresponding indecision rate is given.

Despite the mediocre coefficient of determination, a particularly good correctness h_ _cn
obtained when the interval [1-3] represents easy changes. However, the results appear
much less satisfactory for the other classification performed. Nonetheless, this can be
substantially improved by widening the undecidable interval. Thus, the model appears
usable for at least a subset of the changes. However, when possible (i.e. enough project
data are available), project specific models should be used as demonstrated in the next

4-57

100_7eSk

paragraphs.

4.2 Project Specific Models

Table 6 shows optimal equations resulting from stepwise regressions performed

independently for each of the four projects. The format used is _e same as in Table 5.
Differences between models arc observable with respect to the variables selected. This does

not necessarily mean a real variation in the impact of the explanatory variables across
projects.Itmay be due toa lackofvariationof a variablewithina projectspecificdata set.

Model P1

Model P2

Model P3

Model P4

Description of the Models
II

(o.o3) (0.0023) (o.o0o2)

PI - - 1.56 + 0.71 Source + 0.80 Comp.ch

(0.0) (0.0o4) (0.0o3)
PI - - 3.62 + 0.65 Source + 0.80 C_.desc

(0.001) (0.0001) (0,0016) (0.009)

]:)1- - 1.34 + 0.59 Ch.desc + 0.50 Loc.add + 0.44 Comp.ch

(0.0o2) (o.oo3) (o.ool)

PI - - 2.95 + 0.65 Lot.add + 1.02 Loc.ch

R-sq

0.68

0.45

0.75

0.50

Table 6: Project specific regression equations

The correctness is shown to improve substantially (see Table 7), compared to the general
model results whenever easy changes = [1-2] (except for project P2). The results are only
presented for a minimal undecidable interval. However, the interval could be widened as
shown in the previous section in order to get even better con-ecmess in the decidable
intervals.

PRO, ECT MODEL RESULTS

Indecision

31assiflcatiou

Model P1

Model P2

clas.[]-2] / [3-5] c_. []-3] / [4-5]

[2.392°80]:88% [3.353.74]:88%

[2.31 2.52]:74q_ [3.423.61]:93%

Model P3 I[2.452.54]: 87q_

Model P4 [2.45 2.54] : 81c_

Table 7:

[3.47 3.55] : 92%

[3.47 3.55] : 89%

Classification results

10o_796t.

4-58

5 Conclusions, Lessons Learned and Future Research

This modeling approach provides a simple and flexible way of classifying changes "luring
the maintenance process. The classification power of continuous explanatory variables can

be optimized by changing the class boundaries until the chi-square statistic reaches a
maximum (this can be automated). This is performed while minimizing the number of

metric classes and thereby facilitating the prediction process. It allows for an optimal use of
the available explanatory variables by considering the uncertainty associated with each of
them at the time of prediction.

A user defined loss function (Le. risk model) can be minimized while selecting the decision

boundaries on the predicted index range until a predefined expected loss is re.ached.
This allows the construction of a classification model optimal and customized, for specific
user needs. Thus, by tuning the undecidable interval, he / she can handle in an appropriate
and simple way the uncertainty associated with the model output. Also, the modeling
process has shown many opportunities for a high extent of automation that would help
optimize the metric class definitions and select the most suitable decision boundaries.

Despite the fact that collecting change effort data on a discrete range (i.e. ordinal level)
makes the data analysis more difficult and the usable statistical techniques less powerful,
valuable information can still be extracted from the data while taking into account the

constraints associated with a software development environment. As presented, effective
classification has been performed among three effort classes with respect to changes within
the maintenance process.

Despite organizational issues and data collection accuracy problems, it would be better to
collect effort data at a ratio level This would allow the use of more effective statistical

techniques. The gains in terms of management efficiency are likely to be substantial.
However, if effort data are collected in a discrete manner, each class should contain, to the

extent possible, the same number of changes. When the distribution is not uniform,
classification for small proportion classes may be difficult.

Sub-system and component characteristics that are collectible in an automated way through
code static analyzers (i.e. data binding between components, code complexity, ...)axe
likely to help refine the classification models. Maintainer skills and experience with respect
to the maintained system Should also be considered in the analysis in order to better select
the required level experience for minimizing the cost of maintenance. Despite encouraging
average results in the above experiments, a more complete data collection process is
required in order to refine these change difficulty prediction models.

6 Acknowledgements

We would like to thank Jon Valett fi'om the NASA Goddard Space Flight Center, Adam
Porter and Chris Hetmanski for their suggestions that helped improve both the content and
the form of this paper.

7 References

" [BSP83] V. Basili, R. Selby and T. Phillips. "Metric Analysis and Data Validation across
FORTRAN Projectg". IEEE Transactions on Software Engineering, SE-9(6):652-663,
November 1983

[BW84]V. Basili and D. Weiss. "A Methodology for Collecting Valid Software
Engineering Data". IEEE Transactions on Software Engineering, SE-10(6):728-738,

4-59

10005788L

Nov_'nber 1984

[CAP88] J. Capon, "'Statistics for the Social Sciences", Wadworth publishing company,
1988.

['I)13.,841 W. Dillon and M. Goldstein, "Multivariate Analysis", John Wiley & sons, 1984_.

[GRA87] R. Grady, "Software Metrics: Establishing a Company-Wide Program",
Prentice-hall, 1987.

['I.,$80] B. Lientz and E. Swanson, "Software maintenance management", Addison-

Wesley, 1980.

['RUV92] D. Rombach, B. Ulery and J. Valett, "Toward Full Cycle Control: Adding
Maintenance Measurement to the SEL", Journal of systems and software, May 1992.

10011671181-

4-6O

