View metadata, citation and similar papers at core.ac.uk

L=
T

brought to you by .. CORE

provided by NASA Technical Reports Server

A Classification Procedure for the Effective Management of Changes
during the Maintenance Process <)

[N -

. . . egs 1 o >
Lionel C. Briand and Victor R. Basili yETAE e

Computer. Science Department and Institute for Advanced Computer Studies ~

University of Maryland Ao | T
N95-17139

College Park, MD, 20742 -
To be published in the proceedings of the IEEE Conference on software
maintenance, Orlando, Florida, USA, November 1992.

Abstract

During software operation, maintainers are often faced with numerous change requests.
Given available resources such as effort and calendar time, changes, if approved, have to
be planned to fit within budger and schedule constraints. In this paper, we address the
issue of assessing the difficulty of a change based on known or predictable data. This
paper should be considered as a first step towards the construction of customized
economic models for maintainers. In it, we propose a modeling approach, based on
regular statistical techniques, that can be used in a variety of software maintenance
environments. This approach can be easily automated, and is simple for people with
limited statistical experience to use. Moreover, it deals effectively with the uncertainty
usually associated with both model inputs and outputs. The modeling approach is
validated on a data set provided by the NASA Goddard Space Flight Center which shows
it has been effective in classifying changes with respect to the effort involved in
implementing them. Other advantages of the approach are discussed along with additional
steps to improve the results.

Key words: maintenance process, change difficulty, change request management.

' Research this siudy was supported in part by NASA grant NSG 5123 and the Vitro Corporation (IAP Member)

4-49
10005788L

https://core.ac.uk/display/42809607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Given the limited resources (i.c. effort and calendar time) available to the maintenance
activity within software organizations and the number of change requests proposed,
difficult decisions need to be made. These decisions include: which changes to implement,
how much optional functionality to provide in enhancements. A large amount of total
software effort is spent on maintenance [LS80, GRA87]. Changes in the form of
corrections, enhancements or adaptations effect the software source code and/or the
documentation. Some of these changes are crucial, others are less important. Therefore,
when one considers the global cost and variety of maintenance activitics, management of
changes becomes an important and complex task. It requires the support of models so we
may perform Systematic comparison of the cOsts and benefits of changes before
implementing them [RUV92]. One approach is to build such models based upon past

project experiences.

To this end, effort models have to be designed to predict resource usage and optimize the
cost-effectiveness of the maintenance process. Well defined modeling procedures need to
be established so they can be repeated and refined, allowing the model to evolve
consistently as new data are collected.

This paper describes a modeling procedure for constructing a predictive effort model for
changes during the maintenance phase. This technique is intended to handle small data sets
and the uncertainty (i.e. for cost or technical reasons) usually associated with model inputs
and outputs (i.c. is this particular predication believable?). We assess the feasibility of
building such a model using a data set that describes several projects in the SEL
environment at the NASA Goddard Space Flight Center. Based upon the results of the
analysis, we also make recommendations for improving the data collection process.

2 Context of Study and Experiment Design

In this study, we use a data set consisting of 163 changes collected on four different
maintenance projects. Each change is represented by a vector consisting of a variety of
metrics associated with the change. The four projects are referred to in the paper as projects
pl, p2, p3, p4. These projects are from the same application domain: satellite ground
support software written in FO

The change process in the SEL environment has two main phases: an ‘“understanding”
phase where the change is determined and isolated in the system and an “implementation”
phase, where the change is designed, implemented and tested.

The effort associated with both the understanding and implementation phases is collected
on discrete scales (i.e. ordinal) in order to facilitate the data collection from a maintainer’s
perspective. The effort range is divided into five intervals: below one hour, between one
hour and one day, between one day and one week, between one week and one month,
above one month. For each change performed, the appropriate understanding effort and
implementation effort intervals are recorded by the person making the change. These effort
intervals are indexed from 1 to 5 and will be referred to as difficulty indices in the paper.

All the change-related data used in this paper was collected on a standard form (see
Appendix). The merrics collected range from measures on a continuous scales (e.g.,
number of components added, number of lines of code added) to categorical measures
(e.g., source of the change, technical description of the change). Some of these metrics are
predictable before starting the design of the change, others can only be assessed after the
implementation of the change has begun.

In this paper, we focus exclusively on the effort spent to implement (i.e design, code, test)
a change. There are two reasons for this: 1) Almost no information is available to the

4-50
100067881

maintainer before the understanding phase. Therefore, no prediction model can be built. 2)
In this environment, the effort expended in the understanding phase is generally somewhat
smaller than the effort expended during the implementation. It is thus more essential to use
a predictive model for the implementation phase.

The available merics are defined as follows:
« Type of modification (correction, enhancement, adaptation).

« Origin of the error in the software life cycle. This is referred to as source in the text
(requirements, specifications, design, code, previous change).

« Software products effected by the change (code only, code and design). This is referred
to as objects in the text.

. Nurnbcr of components added, changed, deleted. They are referred to as comp.add,
comp.ch., comp.del., respectively. _

« Number of lines of code addcd, changed, deleted. They are referred to as loc. add.,
loc. ch., loc. del., respectively.

« Change technical description (initialization, logic/control structure, user interface,
module interface, data structures, computational) . This metric is referred to as ch.desc.

During the understanding phase, estimates can be made of the first three metrics. The
number of components involved in a change can also be approximated since the change is
isolated in the system architecture. But any prediction in terms of lines of code to be added,
deleted or changed is still complex at this point and can only be predicted at a coarse level
of precision.

3 The Modeling Approach

Considering the discrete nature of the effort data reported during maintenance, the
predicdon issue becomes a classification issue, i.e. in which effort class will the change
probably lie? The maintainer can only predict values for most input metrics with a certain
degree of uncertainty. It is important that the modeling process takes this constraint into
account. This help to make the generated model easy to use. Also, our data set is small and
contains discrete explanatory variables. Therefore, we need a modeling approach which is
both effective on small samples and which handles discrete and contnuous explanatory
variables in a consistent way.

3.1 The Modeling Process Steps
A high level view of the model construction process can be defined as follows:

1- Identify Prediciable Merrics. Identify the metrics, among those available, that are
predictable before the implementation phase. For ratio and interval metrics that are
predictable early but only with a certain degree of uncerntainty, the range is recoded as an
ordinal range with a set of ordered classes. These classes reflect a reasonable level of
prediction granularity. For example, 2 ratio level metric range like “number of
components added” could be divided into three intervals forming the three metric classes

low, average, and high.

2- Identify Significant Predictable Merrics. Identify-a subset of the predicable metrics that
appear to be good predictors of the difficulty index, using a consistent evaluation
technique for all candidates.

4-51
10005788L

3- Generate a Classification Function. Associate the resulting metrics in a classification
function which has the following form:

Predicted_Difficulty = Classification_Function (Significant_Predictable_Metrics)

where Pi':dicted__Difﬁculty = some classification scheme based on the difficulty indices,
c.g., {easy, difficult} and Significant_Predictable_Metrics = {some of the predictabie
metrics collected on the Maintenance Change Report Form which appear as good

predictors)

4 Validate the Model. Conduct an experiment on a representative (i.c. in terms of size
and quality) set of data. Two measures that can be used to validate the model are: Average
Classification Correctness (i.e. ratio of number of correct classification / total number of
performed classifications), and Indecision Rate (i.e. ratio of number of undecidable cases
/ total number of changes to be classified). The latter reflects the need for such a model to
deal with output uncertainty, therefore warning the user whenever a certain level of

confidence is not reached for a specific prediction.

3.2 An Implementation of the Modeling Process

This section presents a possible implementation of the previously described process. Our
goal in defining such a procedure can be described by the following points:

« We want the generated model to be as simple to use as possible.

« The uncertainty associated with the model inputs at the time of prediction must be taken
into account by the model, i.e., intervals rather than values should be used as model

inputs.

« The model should be able to provide some estimated risk of error associated with each
classification. Thus, the user would be able to select a minimal level of confidence (i.e.
maximum fisk) that would differentiate the model classifications as believable or non-

believable.
» The steps of the procedure are:

1- Identify Predictable Metrics. The input is a set of available metrics. The output is a set of
metrics whose values are either known or predictable, with a certain degree of accuracy,
before the change implementation phase.

There are several processes for selecting the set of predictable metrics. The determination
of predictability can be either based on interviews with people with a good knowledge of
the maintenance process (and then refined with experience) or observed through controlled
experiments [BSP83, BW84]. Both help to determine the average estimation accuracy that
can be reasonably expected for a given metrics.

The range of each continuous / ordinal predictable metric is divided into intervals (c.g.,
percentiles, natural clusters [DIL84]). The more accurately predictable the metric, the more
numerous and narrow the intervals can be. We recode the metric ranges according to their
respectve predictability so the maintainer can easily select the right interval and use some
of the predictive power of metrics not measurable before the implemenzation phase. These
intervals are called merric classes in the paper.

Our need to define these merric classes for predictable metrics stems from the impossibility
of relying exclusively on measurable (at the time of prediction) metrics, ¢.g. building an
accurate model for predicting change effort is likely to require measures of change size that
are not available before the implementation phase. We have no choice other than taking into
consideration metrics that cannot be measured but only approximated with a certain degree

4-52
10005788L

of precision-by the maintainer after the understanding phase of the change process.

2- Identify Significant Predictable Metrics. The input to the second step is the set of
predictable metrics from the first step and the outputs are a subset of significant predictors
and their corresponding association table. This associaton table distributes the difficulty
indices across the metric classes defined on each predictor value domain.

Consider as an example Table 1 which shows the association table of the metric number of
lines of code added across the four difficulty classes (class 5 has so few changes that we
merge it to class 4). This table is calculated based on the actual distributions in the data set
considered for modeling. Each column represents a metric class (e.g. > 30 implies that the
number of loc added is more than 30) and each row an index of difficulty. With respect to
each predictable metric and using its calculated distribution of difficulty indices, an average
difficulty index (i.c ADI) is calculated for each metric class (shown in the bottom row of
Table 1). The calculation of a meaningful and statistcally significant ADI requires us to set
up the metric classes in a way that guarantees a minimum number of changes in each of
them.

Loc added
DI <10 {10 30} > 30
1 7% 0% 0%
2 48% 36% 9.5%
3 42% 60% 40.5%
4 3% 4% 50%
ADI 2.40 2.68 3.40

Table 1: “number of lines of code added” distribution

Taking the association table Table 1 as an example, the calculated index averages look
consistent with what was expected. The ADI seems to increase substantally with the
number of lines of code added. In general, with respect to the ratio and interval level
metrics whose the value domains have been recoded in successive metric classes (see step
1), significant differences should exist between class ADIs. Based on a F-test, a one-way
analysis of variance (ANOVA) can be performed and the statistical level of significance of
the metric class ADI differences may be estimated [CAP88]. Whenever the 0.05 level of
significance is not reached, the boundaries should be recoded in a way that minimizes the
level of significance. Since all the continuous metric ranges have been recoded into an
ordinal scale, we have to calculate the degree of association between the difficulty indices
and the metric classes in order to assess the predictive power of each metric. One approach
consists of computing the Chi-Square statistic (which is valid at the nominal level
[CAP88]) for each metric association table. A statistical level of significance characterizing
the association between the difficulty indices and the metric classes is calculated based on
the generated Chi-square value. Thus, the top ranked metrics showing sufficient degree of
association are selected as parameters potentially usable to build a multvariate prediction
model. Some more sophisticated measures of association (i.c. PRE-measures of
associations [CAP88]) can provide more intuition/information about the associations and -
therefore allow an easier selection. However, this issue is beyond the scope of this paper.

3- Generate a Classification Function. The input 10 the third step is the set of association
tables of significant predictable metrics and the output is a classification model that predicts
an expected difficulty index associated with changes. Note that although five difficulty

indices are defined on the change form, a small minority of the changes (5%) actually lie in
the exeme intervals (i.c. intervals 1,5).

4-53
10005788L

This makes classification into these intervals extremely difficult. Also, since 80% of the
chances belong to classes 2 and 3, we will first build a classification model intended to
differentiate these two classes: less than one day (i.c. referred as easy), more than one day
(i.e. referred as difficult). In section 4.2, we will refine our classification by dealing with a
“more than one week” class (i.c. indices 4 and 5). Thus, based on the generated
classifications the user wil] be able to make decisions with respect to the requested
implementations of changes.This is done by comparing the predicted difficulty to both the
available resources and the expected gains.

The process of building a classification function is composed of two steps:

1- Perform a regression: Based on all the available association tables and the corresponding
ADIs for each change in the. data set, we perform a stepwise linear regression [DIL84] of
the following form.j

Actual_difficulty __indcx =W1 * ADI_metricl +... + WN * ADI_metricN

Due to interdependencies between metrics, only a subset of the preselected metrics remains
in the generated prediction function (i.. only the one showing, based on a F-partal test, a
level of significance below 0.05). In order to make the model easier and less costly to use,
the number of parameters in the regression equation can be minimized. In this case, one or
several parameters are removed (especially when they show a statistical significance close
to 0.05) and the resulting models are evaluated. Then, the user has to assess the loss of
correlation against the ease of use gained by removing parameters from the model. If the
tradeoff appears reasonable, then the new model is adopted. Weights are calculated for cach
remaining parameters and the resulting optimized linear function allows us to calculate an
difficulty index expected value. This may be used to classify the change based on the
realistic assumption that: the closer the expected value of the difficulty index to an actual
difficulty index, the more likely the corresponding change belongs to the matching effort
class. Therefore the following interval-based decision rule is used to make classifications.

2- Define a decision rule for classification: the predicted difficulty index range is divided
into three intervals (i.e. easy change predicted, undecidable, difficult change predicted) in a
way that guarantees a maximal average classification correctness. For example, the
boundaries for classifying a change as either less or more than one work day can be
defined as in Figure 1. The classification of future changes will be performed according to
the interval in which their calculated difficulty index will lie.

EASY Undecidable DIFFICULT

I] T
1 2.4 2.6 5

e

Predicted Difficulty Index Range

Figure 1 : Example of decision intervals

4-54
10005788L

The process for creating these decision boundaries can be described as follows:

1- The user defines a risk / loss function having the following form:
Expected_loss = Weight1*MR1 + Weight2*MR2

where MRn is the misclassification rate calculated for changes actually in class n.

The loss function weights can be defined according to the respective costs of
misclassification associated with each class. Most of the time, this weight will be set to
one. A search algorithm can then be used to determine the interval between two
neighboring changes on the predicted index range that provides the best decision
boundaries (i.c. that minimizes the risk / loss function). These two neighboring changes
form the boundaries of the smallest possible undecidable interval on the range.

2- In a stepwise manner, this interval can be widened on both sides of the index range
according to some automatable process. For instance, the interval can be expanded in a
stepwise manner, including one more change at a time on each side of the interval, until a
maximal expected loss value (i.e. predefined by the user) is reached. Based on this
process, the user will be able to determine the boundaries of the decidable intervals
corresponding to the desired level of risk.

4 A Validation Study

According to the procedure defined above and based upon the previously described four
project data set, the significance of each available metric as a predictor is assessed. Table 2
shows the Chi-square-based levels of Significance. Then, in order to build the needed
classification models, the metrics yielding a good level of significance are selected. First,
we build a general model usable for any project in the same environment. This model is
intended to be useful at the start of a maintenance process when not enough data are
available to create a project specific model.

Then, we build an independent classification model for each project which is expected to be
more accurate with respect to future changes for each specific system, respectively. The
various results will be compared in order to assess the validity of cross-project models in
this environment. The ranges of the continuous metrics were recoded according to the
previously described procedure. Two or three metric classes were defined for each of the
metrics, according to the predictability level of the metric and the distribution of the
changes on their respective range. In other words, the interval boiindaries were chosen in a
way that reflected their predicability, optimized the classification power of the metric (i.e.
optimized the chi-square) and guaranteed, to the extent possible, 2 sufficient number of
changes within each metric class.

4-55
10005788L

Metric Lavel of significance Metric classes
Type 0.004 Correction, enhancement,
adaptation
. 0000 Requirements, specificatons,
Source 0. decgugn. code, previous change
0000 initialization, logic, interface,
Ch.desc. 0. data structure, computational
Loc. add. 0.0000 <10, [10, 30] ,>30
Loc. Ch. 0.0000 <10, [10, 25} ,>25
Loc. Del. 0.0006 ,[2,15],>15
Comp. add. 0.0002 0,>0
Comp. ch. 0.0000 <2,[2,5].>5
Objects 0.0005 code only, code and design

Table 2: Level of significance and class boundaries / categories of metrics

4.1 A General Model

This model is intended to be specific to the NASA SEL environment. It has been built
based on systems belonging to the same application domain and therefore may not
represent necessarily other domains accurately. Table 3 shows for each selected metric, the
class ADIs and the corresponding result of the one way analysis of variance [CAP88] that
assessed the statistical significance of the ADI variations across metric classes. They all
appear below 0.05 and we can therefore say that the metric classes with respect to
continuous metrics have been adequately defined because they show significant ADI

differences. :

Table 4 shows two distinct regression-based classification functions (PI stands for
Predicted difficulty Index). Note that the parameters of the regression equations are the
metric association table-based ADIs and not the metric values themselves. For the sake of
simplification, the names of the metrics are.shown in the equations. For each function, the
calculated regression equations are given with the respective level of significance of each
metric (i.e.shown between brackets above the equations and based on partial F-tests).

If the metric does not appear significant at a 0.05 level, then they are excluded of the

equation. The global coefficient of determination R? is also given. The first one was
obtained by performing a stepwise regression using the class ADIs of the significant
predictable metrics. Only one of the lines of code (i.c. loc) based metrics was retained in
the equaton: loc.ch. Then, in an attempt 10 avoid the use of this metric (i.e. which is stll
the most difficult to assess despite the coarse defined metric classes), we recalculated the
equation parameters when ignoring it. The coefficient of correlation did not appear much
affected by the change. This can be explained by the higher significance of the remaining
parameters and their stronger calculated coefficients that show a strong interdependence
with loc.ch. In other words, they partially compensated the loss of explanatory power due
to the removal of loc.ch.. Thus, the generated model becomes even easier to use and does
not loose much of its accuracy (ses Table 3).

4-56
10005788L

Metrics Level " | ADIs for each category
of significance .

Type 0003 | 1256.2.36,295)

Source 0.0000 [3.04,3.29 242, 2.33,227)
Ch.desc. 0.0000 [22,2.9,3.0,3.1,24,29, 2.8]
Loc. add. 0.0000 [2.4,2.68,34]

Loc. Ch. 0.0000 {2.4,2.8, 3.14]

Loc. Del. o 0.0001 [2.6,2.8,34]

Comp. add. 0.0000 [2.64, 3.63]

Comp. ch. 0.0000 [2.41,3.0,3.31]

Objects " 001 [2.63,3.03]

Table 3: Metric class ADIs

Description of the Models R-sq

Mode! 1 (0.0) (0.0 {0.0) {0.0008) (0.04) {0.004)
Pl = - 4.22 + 0.59 Source + 0.62 Ch.desc + 0.58 loc.ch + 0.38 Comp.add + 0.36 Comp.ch

0.50

(0.0) (0.0) (0.0) (©.01) 0.0)

0.46
P! = - 3.95 + 0.68 Source + 0.69 Ch.desc + 0.49 Comp.add + 0.56 Comp.ch

Model 2

Table 4: General models

Table 5 shows the classification correcmess (i.e. rate of correct classification) obtained
when using the above models (Table 4). The decision boundaries have been optimized to
yield the best results. First, they have been selected to yield a 0% indecision rate (column
IR = 0% in Table 5). Then the undecidable interval has been widened in order o
demonstrate the possibility of selecting decision intervals that fit the user’s need in terms of
classification correctness (column IR > 0% in Table 5). In this case, the selected interval
boundaries are arbitrary and are shown for the sake of example. The row “classification”
indicates the classification performed (i.e. easy changes = [1-2] or [1-3]). Each cell
contains, for all models, the undecidable interval boundaries between brackets and the
corresponding classification correctness. Whenever the undecidable interval has been
widened (i.e. IR > 0%), the corresponding indecision rate is given.

Despite the mediocre coefficient of determination, a particularly good correctness has been
obtained when the interval [1-3] represents easy ctianges. However, the results appear
much less satisfactory for the other classification performed. Nonetheless, this can be
substantially improved by widening the undecidable interval. Thus, the model appears
usable for at least a subset of .the changes. However, when possible (i.c. enough project
data are available), project specific models should be used as demonstrated in the next

4-57
10005788L

paragraphs.
4.2 Project Specific Models

Table 6 shows optimal equations resulting from stepwise regressions performed
independently for each of the four projects. The format used is ﬂ{i: same as in Table 5.
Differences between models are observable with respect to the variables selected. This does
not necessarily mean a real variation in the impact of the explanatory variables across
projects. It may be ductoa lack of variation of a variable within a project specific data set.

Description of the Models R-sq
Model P1 (0.03) (0.0023) (0.0002) 0.68
P} = - 1.56 + 0.71 Source + 0.80 Comp.ch
Model P2 (0.0) (0.004) (0.003) 0.4
e Pl - - 3.62 + 0.65 Source + 0.80 Ch.desc 45
Model P3 (0.001) (0.0001) {0.0016) (0.008) 0.75
Pl = - 1.34 + 0.59 Ch.desc + 0.50 Loc.add + 0.44 Comp.ch :
Model P4 (0.002) (0.003) (0.001) 0.50

Pl = - 2.95 + 0.65 Loc.add + 1.02 Loc.ch

Table 6: Project specific regression equations

The correctness is shown to improve substandally (see Table 7), compared to the general
model results whenever easy changes = [1-2] (except for project P2). The results are only
presented for a minimal undecidable interval. However, the interval could be widened as
shown in the previous section in order to get even better correctmess in the decidable
intervals. :

PROJECT MODEL RESULTS
Indecision R=
Klassification | clas. [1-2)/ [3-5) | clas. [1-3]/[4-5] |
Model P1 1[2.392.80] : 88%| [3.35 3.74) : 88%

Model P2 |[2.31 2.52): 74%] [3.423.61]:93%

Model P3 |(2.45 2.54]: 87%f (3473.55]:92%

Model P4 |[2.45 2.54):819 [3.473.55]:89%
. . —

Table 7: Classification results

4-58
10005788L

5 Conclusions, Lessons Learned and Future Research

This modeling approach provides a simple and flexible way of classifying changes Huring
the maintenance process. The classification power of continuous explanatory variables can
be optimized by changing the class boundaries until the chi-square statistic reaches a
maximum (this can be automated). This is performed while minimizing the number of
metric classes and thereby facilitating the prediction process. It allows for an optimal use of
the available explanatory variables by considering the uncertainty associated with each of

them at the time of prediction.

A user defined loss function (Le. risk model) can be minimized while selecting the decision
boundaries on the predicted index range until a predefined expected loss is reached.

This allows the construction of a classification model optimal and customized, for specific
user needs. Thus, by tuning the undecidable interval, he / she can handle in an appropriate
and simple way the uncertainty associated with the model output. Also, the modeling
process has shown many opportunities for a high extent of automation that would help
optimize the metric class definitions and select the most suitable decision boundaries.

Despite the fact that collecting change effort data on a discrete range (i.e. ordinal level)
makes the data analysis more difficult and the usable statistical techniques less powerful,
valuable information can still be extracted from the data while taking into account the
constraints associated with a software development environment. As presented, effective
classification has been performed among three effort classes with respect to changes within
the maintenance process.

Despite organizational issues and data collection accuracy problems, it would be better to
collect effort data at a ratio level. This would allow the use of more effective statistical
techniques. The gains in terms of management efficiency are likely to be substantal.
However, if effort data are collected in a discrete manner, each class should contain, to the
extent possible, the same number of changes. When the distribution is not uniform,
classification for small proportion classes may be difficult.

Sub-system and component characteristics that are collectible in an automated way through
code static analyzers (i.e. data binding between components, code complexity, ...) .are
likely to help refine the classification models. Maintainer skills and experience with respect
to the maintained system should also be considered in the analysis in order to better select
the required level experience for minimizing the cost of maintenance. Despite encouraging
average results in the above experiments, a more complete data collection process is
" required in order to refine these change difficulty prediction models.

6 Acknowledgements

We would like to thank Jon Valett from the NASA Goddard Space Flight Center, Adam
Porter and Chris Hemmanski for their suggestions that helped improve both the content and
the form of this paper.

7 References

- [BSP83] V. Basili, R. Selby and T. Phillips. “Metric Analysis and Data Validation across
FORTRAN Projects”. IEEE Transactions on Software Engineering, SE-9(6):652-663,
November 1983

[BW84]V. Basili and D. Weiss. “A Methodology for Collecting Valid Software
Engineering Data”. IEEE Transactions on Software Engineering, SE-10(6):728-738,

4-59
10005788L

November 1984

[1(9:.2588] J. Capon, “Statstics for the Social Sciences”, Wadworth publishing company,

[DIL84] W. Dillon and M. Goldstein, “Multivariate Analysis”, John Wiley & sons, 1984,

[GRAS7] R. Grady, “Softwarc Metrics: Establishing a C Wi .
Prentice-hall, 1987. g a Company-Wide Program”,

[LS80] B. Lientz and E. Swanson, "Software maintenance " P
Wesley, 1980. management '_Addxson

[RUV92] D. Rombach, B. Ulery and J. Valett, "Toward F'ull cle Control: i
Maintenance Measurement to the SEL", Journal of systems and softcv?r'arc. M:r;' 1919? dding

10005788L

