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1 Introduction

MARSYAS is a computer-aided control system design package for the simulation and analysis of dynamic

systems. In the summer of 1991 MARSYAS was updated to allow for the analysis of sampled-data systems
in terms of frequency response, stability, etc. This update was continued during the summer of 1992 in order
to extend further MARSYAS commands to the study of sampled-data systems. Further work was done to

examine the computation of 0PENAT transfer functions, root-locii and w-plane frequency response plots.

2 Sampled-data systems with feed-forward coefficients

Consider a sampled data system whose state-space equations are

z¢(t) = Acx_(t) + Bodyd(kT) + B_u(t)

y(t) = Ccxc(t) + Dcuyd(kT) + Dcu(t)

,,u(t) = cuo o(t) + Dduyu(kT)+ Duou(t)

(2.1)

(2.2)
(2.3)

with corresponding discrete time subsystem

zd(kT + T) = Adzd(kT)+ Buud(kT) (2.4)

yd(kT) = Cdzd(kT) + Ddud(kT). (2.5)

(Purely discrete time inputs ra(kT) to the discrete time system may be incorporated into the above equations
by augmenting the input vector u(t) and the feed-forward matrix Ddc.) The feed-forward coefficient Dd

causes the states z¢(t) to depend not only on their continuous values through the coefficient matrix A¢, but
also on their sampled values through the coefficient matrix BcaDdCd_. As of MARSYAS version 6.0.5, this

dependence is dealt with by creating a matrix ZX = BcdDdCdc in the linearized continuous time dynamics.

Unfortunately, MARSYAS version 6.0.5 does not correctly treat the case where there are feed-forward
coefficients in both the continuous time and discrete time blocks (i.e. Dad ¢ 0 and Dd # 0). In this case,

MARSYAS infers an algebraic loop where there is none. For example, consider the sampled-data system

with continuous time block

y(t) = yu(kT) ud(t) = u(t)/2- yd(kT)

and discrete time block

yd(kT) = kdud(kT).

The code has no (explicit) states, yet because of the direct feed-forward gains (i.e., the "D" matrices) in the
discrete and continuous time blocks of the linear system, a "hidden state" associated with the A/D converters

in the system manifests itself at sampling times. The MARSYAS-6.0.5-generated system equations are

W [ 1] = (2.S00000Z-01) * U [ 1]

while the simulated output values display "spikes" at sampling times and the values between sampling times

incorrect. There is a specific order in which the simulation updates must occur at each "scheduled" run of the

discrete time systems: (1) Evaluate the continuous time system states and algebraic outputs. (2) Update the

discrete time system states and algebraic outputs. (3) the algebraic outputs of the continuous time system to
reflect the discrete time system changes. Once these three steps are completed, the simulation may proceed

with the next integration step. Similarly, the analysis of discrete time systems must be modified as follows.

Lemma 2.6 Let a sampled data system be defined by the equations (_.I)-(_.5) with sampling time T given.

Then

ud(kT) = Cdczc(kT) + Detcu(kT) + Detdyd(kT - T);

that is, the discrete-time output yet becomes a system state when Ddd # O.
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Figure1: OPENATlinearized system

Based on the above operation, the vector y_(t) can be used as a vector state that replaces the "ZX" input

used in MARSYAS version 6.0.5 as follows. Let z_y(kT) = yd(kT -- T). Then the overall system simplifies
to

xc(t) = Acz¢(t) + Bcdyd(kT) + B¢u(t)

y(t) = Cezc(t) + Dcayd(kT) + Dcu(t)

u_(t) = cdoxo(t) + D_¢u(t)

x_(kT + T) : Adr_(kT) + B_ud(kT) + BdDdaxdy(kT)

xdy(kT + T) = Cdczd(kT) + D_Dddxdy(kT) + Daud(kT)

yd(kT) = C_z_(kT) + D_Dd_x_u + D_ud(kT).

3 OPENAT analysis: options and an example

The 0P_.liAT command allows MARSYAS users to examine system robustness with respect to an individual

parameter by breaking a specified signal path in a closed-loop system model and examining the poles/zeros
of the newly created open loop system.

The current MARSYAS implementation (and the original MARSYAS implementation) treat the 0P_-NAT

command as a special case of the IN0trr command. The manual for the original MARSYAS implementation

describes an alternate technique for computing the 0PENAT transfer function; this alternate technique forms

the basis of the root locus calculation, and is thus of interest in both of these calculations. The two techniques

are described below. A simple numerical example is given that indicates that algebraic loops (i.e., a non-zero

D matrix in a linearized OPENAT system) can render the alternate algorithm inaccurate; it is advised that
the Ill0trr approach be used in both 0P_.NAT and root locus calculations.

The 0P_.liAT command can be summarized as follows. Given a closed loop continuous time system
= f(x, w) with algebraic constraint 0 = g(x, w), 0PEIqAT k selects a gain value in the system and linearizes

about an operating point in order to obtain the SISO system shown in Figure 1. The 0P_.IlAT command

identifies the poles and zeros of the transfer function n(s)/d(s). The IN0trr algorithm computes the poles

and zeros by computing the matrices (A, B, C, D) that characterized a state-space realization of n(s)/d(s)

and then computing the (finite)generalized eigenvalues of the matrix pencil ([-A-B ] [I 0])C D -A 0 0 "

The alternate closed-loop matrix method is as follows For a fixed linearization, let A(k) be the system

Jacobian matrix evaluated with K = k; i.e. A(k) = (A + k/(1 - Dk)BC). Then det(sI - A(k)) =
a(k)(d(s) - kn(s)) where a(k)-1 is the leading coefficient of (d(s) - kn(s)). Clearly, the poles of the 0PEllAT

system are the eigenvalues of A(0), since det(sI - A(0)) = a(O)(d(s) - O. n(s)) = d(s).

In order to obtain the zeros of the system, it is required to compute the algebraic gain D and the closed

loop matrix A(1) = (A(0) + 1/(1 - D)BC). Let/}, C be a column and row vector, respectively, such that

/}C = (D - 1)(A(1) - A(0); then the zeros of the 0PENAT transfer function may be obtained by computing
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INOUTmethod Closed-loop matrix method

I I I Ib -Dli
1 _l.Oe-13 1.9984e-14 1 l.Oe-13 2"1.9984e-14

0.I000 ,_,l.Oe-14 1.1102e-14 0.I000 _l.Oe-12 2"I.II02e-14

0.0100 _1.0e-12 9.9920e-15 0.0100 _l.0e-lO 2"9.9920e-15

1.0000e-03 _,1.0e-12 9.9920e-15 l.O000e-03 _1.0e-09 2"9.9920e-15

1.0000e-04 ,_I.0e-ll 9.9920e-15 1.0000e-04 _,1.0e-07 2"9.9920e-15

1.0000e-05 _1.0e-ll 9.9920e-15 1.0000e-05 _1.0e-06 2"9.9920e-15
1.0000e-06 _1.0e-10 9.9920e-15 1.0000e-06 _1.0e-04 2"9.9920e-15

1.0000e-07 _1.0e-09 9.9920e-15 1.0000e-07 _,1.0e-03 2"9.9920e-15

Figure 2: Resultsoftestsofopenat algorithms

the finite generalized eigenvalues of the matrix pencil C D 0 0 "

matrix method discussed in the manual for the original MARSYAS implementation.
The discussion of the closed-loop matrix method in the original MARSYAS manual did not correctly

treat the case of D ¢ 0. If D ¢ 0, in particular, if D _ 1, then the Ii0trr method is clearly superior to the

closed-loop matrix method, as shown in the following example.

Example 3.1 Let the OPENAT linearized system have coefficient matrices A =

C= [ 2 1 ],andD=l+e. The exact system zeros can be found to be

± 1+y4- -

-I -I ' 2 '

Observe that as e --_ 0, the zeros coincide at A = 3.

A computed linearization (.4, ]_, C, D) = (A, B, C, D) will typically have roundoff noise in each matrix in

the matrix norm; i.e., ,,[i_ -All < tt IIAI] where tt is a function of machine precision and theproportion to

algorithm condition. The example was selected so that matrix entries were "balanced;" that is, the matrix

entries were of approximately the same magnitude so that round-off effects on problem condition would be
reduced. For the purposes of a numerical experiment, small error (_ 10 -14) was deliberately introduced into

the problem in order to examine algorithm sensitivity. Since the computed value of Ab is near to the correct

computed value, this method yields good results.
The closed-loop matrix method involves computing A(0), A(1), and the open-loop D-matrix. it was not

assumed that the gain D involved in computing A(1) = A-1/(D - 1)BC is exactly the same as that gained
from an IIOOT linearization; i.e., IHolrr computes (A, B, C, D1) - (A, B, C, D), while A(1) was computed as

A(1) = A + 1/(/9_ - 1)BC. The respective results are shown in Figure 2. It is clear that the IiOtrr method

yields superior accuracy; it is important to recognize that the difference in these two methods is a result of

the difference between 1/(D1 - 1) and 1/(D) - 1); since the estimated values of/} and C in the closed loop
matrix method will be scaled by the ratio (DI - 1)/(192 - 1) from their "correct" values, it is to be expected

that the closed-loop matrix method will yield poor results when D _ 1.
E]

On the basis of the above example and analysis, it is recommended that both 0PENAT and root locus

calculations be performed on the basis of the matrices (A, B, C, D) obtained from an IlIotrr linearization of

the appropriate system. FORTRAN code for the mvzero routine and the associated numerical balancing

procedure [2] have heed delivered to John Tiller, BCSS, this summer for use in MARSYAS.

XXI-3



The calculationof OPE]IATtransferfunctionsand root locus data become much more complicated in a

sampled-data system. Ifthe OPENAT operation isperformed on a gain k in the discretetime portion of the

system, then the OPEIIATfunction may be executed in the normal fashionon the equivalentdiscretetime

system. However, ifthe OPENAT isperformed on a gain k inthe continuoustime part ofthe system, then the

OPENAT function ceasesto have a clearmeaning. Ifan artificialcontinuous time input u and output y are

placed around the gain,then there isno rationaltransferfunctionfrom u to y because of the time-varying

dependence on the discretetime subsystem. Instead,discretetime input-outputpair isinsertedabout the

continuous time gain element K.

This system is not amenable to an OPEIAT style analysis, since the transfer function varies in a transcen-

dental (non-algebraic) fashion with the gain value K; closed form perturbation analysis of the equivalent
discrete time system is intractable since the matrices A and BC do not commute in general. (eAsc =

eAe Bc = eBCe A _ A(BC) = (BC)A.) Hence a single "open-loop" 0PENAT transfer function calculated

with K = 0 is not meaningful to the user. However, a "transcendental root-locus" from u to y may be

computed by computing the poles and zeros of an equivalent discrete-time plant for various values of k.

Closed-form analysis of transcendental root-iocii is hindered by the property that e(Ac+KBcD°)t cannot

be computed from eA_t and e(Bcc¢)t except when Ac commutes with BcCc; this is clearly not the case

in practice. It may be possible to gain some norm-bounds on the closed-loop eigenvalues of the overall

discrete-time system in terms of the feedback gain K, but this is an open question.

4 W-plane analysis

MARSYAS currentlyprovides z-planefrequency response plotsof discrete-timesystems, w-plane analysis

isoften used in practice to allow designersto employ continuous time design techniques to discrete-time

systems; see, e.g., [1]. G(z) --_ G(w) by w = _ _ . s-plane, z-plane, and w-plane frequency response

2 e'r-I 2 tanh (_) So as s = jw follows the imaginary axis,plots are related by z -- e aT and w = Te,-rrW-T+l= Iv

z = ej'°T follows the unit circle (periodic with period 2_r/T), and

w = _ tanh = -_ tan

follows the entire imaginary axis each time z = ej"T rotates about the unit circle The inverse bilinear
1 + wT/2

transform from w to z is z = 1 -wT/2; hence the Nyquist plots in the z and w plane will be identical.

Magnitude and phase information in the z and w-planes will he the same except for a "warping" of the

zx tan(wT/2).w-plane frequency variable u =
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