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1. Introduction:

Since its launch on April 5, 1991, the Burst And Transient Source Experi-

ment (BATSE) has observed and recorded over 500 gamma-ray bursts (GRB). The

analysis of the time profiles of these bursts has proven to be difficult. An example

profile is shown in Figure 1. Attempts to find periodicities through Fourier analysis

have been fruitless except in one celebrated case (Mazets et al., 1979). The only

meaningful results that have been derived are some general rise and fall times of

the pulses. However, even these studies fail to show any significant trends or consis-

tent classifications (Barat et al., 1984). The only definitive, agreed-upon, statement

is that the positions and heights of the pulses in a gamma-ray burst time history

appear to be completely stochastic in nature.

12

11'

o

6
-10 0 1'0 20- 3'0 40 50 60

Time since trigger (seconds)

Figure 1. Time Profile of GRB #404

In a recent paper (Lestrade et al., 1991), we showed that a robust quantitative

measure of a profile's structure is given by a count of the number of occurrences

of monotonic "runs", similar to the standard "run test" (Eadie et al., 1971). This

parameter (Sp) has several properties that make it attractive as a statistic: linearity

with changing structure, independence from background fluctuations, independence

from trigger time, and most importantly it is based upon a well-defined numerical

recipe. The nominal recipe is 1) smooth the profile with a 5-point moving average,

2) choose a spike "size" a[b, and 3) scan through the profile counting "spikes". A
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spike is defined as b + 1 successive bins with the first a + 1 counts monotonically

increasing and the following b- a monotonically decreasing.

Our goal is to be able to quantify the observed time-profile structure. Before

applying this formalism to bursts, we have tested it on profiles composed of random

poissonian noise. This paper is a report of those preliminary results.

2. Spikiness:

The probability of observing x counts in a BATSE 64-msec bin is given by the
normal p.d.f., viz,

1 _(z__,)2/2,,2
P(x)= , [11

where # is the mean (about 600 counts for BATSE discsc data) and a is the standard

deviation (_ v/-fi). The probability of finding n monotonically increasing bins is

F L LPn = P(Xl) P(x2)... P(x)dxdx,_l ...dxl.
O0 1 n--1

[2]

Fortunately, we can avoid the integral in Equation [2] and use the algebra of per-

mutations and combinations to calculate Pn.

As a test, we generated 10 artificial profiles of 3900 bins each from normal

deviates (Press, 1986). Table 1 presents the observed number of spikes in these

profiles as a function of spike duration. It should be kept in mind that a spike is

recorded, if the minimum criterion is met. For example, an observed rising slope of

7 consecutive bins followed by 3 monotonically decreasing bins, would be counted

as a spike for all criteria of sizes a]b where a < 6 and b - a < 3.

Table 1: Number of Spikes in Random Profile

As a function of Spike Size.

Size (ab) 12 24 36 47 57 67 77 88 99

N_/39k pts. 9545 2462 787 514 516 259 98 34 8

Figure 2 shows the distribution of spikes binned by their position in the profile.

Since the possibility of a spike occurrence is equally likely in any of the ten intervals,

any observed fluctuation is statistical (e.g., compare the 1 [2 curve (/_ = 1000) and
the 9[9 curve (# = 0.8)).
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Figure 2. Distribution of Spikes in Normalized Duration.

Figure 3 presents a comparison of the total number of spikes versus spike size

for the random data as well as for several real background profiles taken from BATSE

data.

3. Conclusions:

We next plan to apply this program to the BATSE GRB profiles. At first, we

will limit the analysis to long bursts which show a lot of structure. In addition, we

have given the program the flexibility to include 1) a threshold, so that we count only

spikes whose heights are greater than some number of sigma, 2) negative slopes,

so that a peak criterion of 618, in addition to the normal spikes, would count 7
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monotonically decreasing bins followed by two increasing bins as a spike, and 3)

different smoothing criterion.

Furthermore, we will eventually look at higher resolution data, especially for

the short bursts. We can apply these same criterion to the TTE data for those

GRB's which show no structure on the 64-reset time scale.

In this way, we may find a characteristic of bursts that allows us to determine

classes. This then could lead to a better understanding of the underlying physics.
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Figure 3. Number of Spikes versus Spike Size.
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