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The fagstbility of recovering helium (He) from the Moon as a source of fusion energy on Earth is
currently being studied at the University of Wisconsin. Part of this study is selection and evaluation
of potential sites for lunar He mining. Selection and etgduatlon of potential mining sites are based
on four salient findings by various intestlgators of lunar samples: (1) Regoliths from areas underlain
by highland materials contain less than 20 wppm He; (2)Certain marla regoliths contain less than
20 uplzra He, but others conta,'n 25 to 49 wplm_; (3) The He content of a mare regolith is a function
of its composition; mgoliths rich in 71 are relatively rich in He; and (4) He is concentrated in the <100-
pm size fractions of regoliths. 7he first three fimlings suggest that maria are the most promising mining
sites, spedfically, those that have high`77 mgoliths. Information on the regional distribution and extent
of high` Ti regoliths comes mainly from two sources: direct sampling by various Apollo and Luna
mggsions, and remote sensing by gamma.ray spectroscopy and Earth`based measurements of lunar
spectral reflectance. Sampling proddes essential control on calibra#on and interpretation of data from
remote sensing. These data indicate that Mare Pranquillitatls is the pn'ncipal area of high,71 regolith
of the eastern _, but large areas of high. 7I regoh'th am indicated in the lmbrtum and tMocellarum
regions. Recovery of significant amounts of He-3 u_ll require mining billions of tonnes of regolith. Large
tna_'t_lual areas suitable for mining must therefore be delineated The concentration of He in the finer
size fractious and considerations of ease of mining mean that mining areas must he as five as poss_le
of sizable craters and blocks of rock. Peruh'ng ada_'tional lunar missions, infortmtaon regarding these

features must he obtm'ned from lunar photographs, pbotogeologic maps, and radar surveys. 7he present
study is decidetfly preliminary; available information is much too limited to permit even a close approach
to flnal evaluation. As a prelude to recovery of He from the Moon, systematic exploration and sampling
of high.71 maria regoliths should therefore have a high prion'Cy in future lunar missions.

INTRODUCTION

Part of the University of Wisconsin study of the feasibility of

recovering He-3 from the Moon is the selection and evaluation

of potential mining sites. First it is necessary to identify areas in

which the regollth is enriched in He, preferably those containing

30 wppm or more. The occurrence of He in the regolith must

then be examined, and consideration given to physical character-

istics of terrain and regolith that could affect the feasibility of

mining in the areas selected.

This paper summarizes the information pertinent to site

selection and evaluation that is currently available from Apollo and

Luna lunar samples and from remote sensing of the lunar surface.

The use of this information in locating minable He-rich areas of

the Moon is discussed, and preliminary conclusions as to favorable

sites for mining are presented. Further work needed for site

selection and evaluation is outlined.

BASIS OF SITE SELECTION

Of prime importance to site selection and evaluation are the

following salient findings by the various investigators of lunar

samples:

1. Regoliths from areas underlain by highland materials contain

less than 20 wppm He, and many contain less than 10 wppm.

2. Regoliths of some maria or parts of maria contain less than
20 wppm He, but others have He contents ranging from 25 to

nearly 50 wppm.

3. The He content of a mare regolith is a function of its

composition. In particular, the He content appears to be a

function of the Ti content of the regolith.

4. Helium is concentrated in the <100-_tm size fractions of

regoliths.

These findings are used directly in site selection. Moreover, they

serve for calibration of data from remote sensing and as controls

on interpretation of such data.

TITANIUM AND HELIUM
IN LUNAR REGOLITHS

The relationship between the He contents of regoliths and their

Ti contents is shown in Fig. 1, in which He content is plotted

against TiOz content for samples of highland and mare regoliths.

Highland regolitlxs are all low in both He and "13. Mare regoliths

fall into two groups, one with high He and Ii contents, the other
with low contents of the two elements. It is generally accepted

that the compositions of mare regoliths are controlled by the

nature of underlying basaltic rocks. More than a dozen different

types of basalts have been described from various maria, being

distinguished on the basis of mineral and chemical composition

(Basaltic Volcanism Study Project, 1981a, W'dhelms, 1987). In

terms of Ti content, however, these basalts are assigned to three

principal groups: (l)very-high-Ti basalts (VHT) sampled by

Apollo 11 and Apollo 17; TiO 2 content 8 to 14 wt%; (2)low-Ti

Ti basalts (LT) sampled by Apollo 12, Apollo 15, Apollo 17, Luna
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Fig. 1. Relation between He contents and TiO2 contents of lunar regolith
samples. Data from Bogard and Hirsch (1978a), Bogard and N).rlu/st

(1972), Criswell and Waldron (1982), Cuttitta et al. (1971, 1973),
BM,r/mn/t et a/. (1972), Eugster et al. (1985), Funkhauser et at'. (1970),

Haskin et al. (1973), Heymann et al. (1970, 1972a,b, 1973, 1978),
Hintenbe_er et al. ( 1970, 1971, 1974, 1975), Hintenberger and Weber

(1973), Habner et aL (1973, 1975), Kirsten et aL (1972), Lau/et a2

(1974), Laul and Papaee ( 1980a, b ), Lau/and Schm/tt ( 1973 ), ma et aL

(1978), Marti et al. (1970), Nava (1974), Pq0in et a_. (1970), P/eters

et a/. (1980), Pteters and McCord (1976), Rose et aL. (1974), Wak/ta
and Schm/tt ( 1971 ), W'dnke et al. ( 1971 ), Wi/helms (1987), and Wi/l/s

eta&. (1972).

16, and Luna 24; TiO2 content 1.5 to 5wt%; and (3)very-low-

Ti basalts (VLT) sampled by Apollo 17 and Luna 24; TiO 2 content

less than 1.5 wt%.

In Fig. 1, th e rrmre regolith samples fall into three distinct
clusters corresponding rather closely to the above groupings of

basalts on the basis of Ti content_ The gap between VHT regoliths

and LT regoliths is conspicuous. The diagram shows a broad
con:el_ion_of He content with Ti c0ment, but there is a

considerable scatter, especially at the high TiO2 end of the range.
me _ples-highest in _0_21_o_i_t_a__ not _ c0_espondingly

high in He content. This is not unexpected. In lunar ba_s_alts, much

in volcanic, pyroclastic Ti-rich glass particles. The latter particles

in Apollo II regolith have been shown by Kirsten et al. (1970)

to carry higher concentrations of He than associated particles of

olivine, pyroxene, and plagioclase, but are less enriched than

ilmenite grains. Finally, the He content of regolith is a function

of the length of time of exposure to the solar wind, the ultimate
source of lunar He.

Considering all the factors that have affected the absorption of

He by regolith, a linear relation between TiO2 content and He

content is not to be expected. However, it seems clear that the

Ti content of regolith can be used as a general guide in selection

of areas where the regolith contains at least 20 wppm He and

hopefully areas where the regolith contains at least 30 wppm. This

is of critical importance in site selection. Only minute fractions

of a few maria have yet been sampled. For information on the

extent and distribution of the more He-rich maria and portions

of maria, we must presently rely on information from remote

sensing of the 1] contents of mare regoliths.

INFORMATION FROM REMOTE SENSING

Broad reviews of both methods and results of remote sensing

have been given by Moore et al. (1980) and the Basa/t/c

Volcanism Study Project (1981b). Two general types of remote

sensing have furnished information on the Ti contents of lunar

regoliths, namely, ganuna-ray spectroscopy performed by Apollo

15 and Apollo 16 orbiters, and Earth-based telescopic measure-

ment Of lunar reflectance. The results of both types of

measurements have been calibrated, as far as possible, against

returned lunar samples of known Ti content, but Fig. 1 indicates

that there can be no calibration for the intermediate range, i.e.,

for the gap between VHT and LT basalts. Whether this gap is real
or is due to incomplete .sampling of the maria is discussed in a

subsequent section of this _r.

Gamma-ray spectroscopy makes use of radiation produced

mainly by cosmic-ray bombardment of the lunar regolith. Its

advantage is that it me_es a property that is uniquely related

to Ti content. However, there are serious deficiencies in gamma-

ray data presently available. Resolution is very low, about

100 × 100 kin. Coverage by the Apollo orbiters is limited to two

bands lying between 30°N and 15°S. There are problems in

interpreting the data, in part due to interference with 1] lines by

Fe and O in the gamma-ray spectra. Nonetheless, the gamma-ray

surveys are valuable because they indicate broad variations in 15

content of regolith over the equatorial region of the lunar

nea_ide.

Figure 2 shows variations in the Ti content of lunar regolith

as interpreted by Metzger and Parker (i980) from gamma-ray

spectroscopy. Two principal areas of high-Ti regolith are indicated,

one the area of Mare Tranq_tatis, with its extension northward

into Mare serenitatis (_pied at the Taun_-Littrow region of

Apollo 17), the other a part of Oceanus Procellarum. Two smaller

areas are _also shown; Certain areas are shown as having

of the "Ii is in the form of_e_te, _d ilmenite fractions from intermediate Ti content (2.0-2.5% Ti), but none of th_ has been

_ilo ;J_l_;_Ap61Jo i_7_m_tre_r@oli_'have been f6tmd_t0 _ samp]e_by_unar missions, except possibly the one in Mare

enriched in, e (bYaer!_dt et al:, !970' 1972; Hintenbe__ ere t al.,

1974). However, ilmenite grains in high-'I] basalts rangefrom a

millimeter to less than a micrometer in size (see, for example,

Cameron, 1970, Figs. 1 and 2), and variations in grain size are

bound to affect the degree of exlx)sure of ilmenite to the solar

wind even in particles of the finer size fractions of regoliths.

Moreover, ]]02 can be dissolved in part in agglutinate glass or

Fecunditat_Asoil_ple recovered by Luna 16 contains 3.53%
"1102 (Criswell and Waldron, 1982), but the He content of the

bulk sample can 0nly be @ro_irnated from data of V/nogradov

andZadorozhny (1972) for the <83-#m fraction, and it may be

as high as 30 wppm In view of this uncertainty, the sample is

not plotted in Fig. I. Dav/s (1980) has used the orbital gamma-

ray data to produce a map on which variations in 1] content are
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Fig. 2. Map of the "iq content of the lunar regolith covering nearside

regions overflown by Apollo 15 and 16. From Metzger and Parker (1980),

by permission of the authors and EIsevier Publishing Company.

shown in image format. There are differences between his map

and that of Fig. 2, but the broad picture of Ti variation is much

the same.

There is a considerable variety of measurements of lunar

reflectance. Figure 3 is a map of the entire lunar nearside prepared

from superposed ultraviolet negatives and near-infrared positives.

It shows the color groups of basaltic regoliths, with TiO 2 values

thought to be indicated by the colors. Again, the only sizable area

of high-'l] regolith shown in the eastern hemisphere is that of

Mare Tranquillitatis, with its extension northward into the Apollo

17 area, but the map shows large areas of high-Ti regolith in the

western hemisphere. Like Fig. 2, Fig. 3 shows large areas thought
to be of intermediate 1] content.

Figure 3 is actually based on one form of spectral ratio mapping.

Quantitative spectral ratio mapping is based on use of the

0.38 #m:0.56 #m ratio, the 0.38 #m:0.58 #m ratio, or the 0.38

#m:0.62 #m ratio, all of them UV:VIS ratios, or on the 0.38

1_m:O.95 #m ratio (UV:IR). Compared to gamma-ray spectroscopy,

spectral ratio mapping has the advantage of higher resolution (1

to 3 kin) and broader coverage of the lunar surface. Johnson et

a/. (1977) prepared a map of a large part of the lunar nearside

using the 0.38 #m:0.56 #m ratio. On it, Mare Tranquillltatis

appears once again as a high-Ti area, but the higher resolution

of this method shows that the mare is not uniform in Ti content.

Spectral ratio mapping appears to be a good indicator in the high-

1] and low-'I] ranges, but it is ambiguous in the intermediate-Ti

range, as indicated in Fig. 4. This is unfortunate, because it is in

this range that sampling of the lunar surface is lacking.

Figure 3 is actually a version of a remarkable color difference

photogeaph (Fig. 5)prepared by Whitaker (1965). High-Ti

regoliths appear dark in this photograph, and it shows that high-

"l] regolith in Mare Tranquillitatis is mainly in an irregular belt

extending northward along the west side of the mare and thence

eastward across it as shown in Fig. 6. The area south of the belt

is a complex of high:fi and lower-Ti regoliths, whereas the area

north of the belt is apparently one of low-_ regolith. Comparable

variations in Mare Imbrium and Oceanus Procellarum are also

suggested by the photograph.

Figure 7 shows the distribution of a number of petrographic

types of basaltic regoliths as recognized by/_ters (1978) on the

TiO 2 %
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Fig. 3. Color groups of mare regoliths and TiO2 values tho_ t to be

represented by the groups. From Basa/t/c Volcanism Study Project

(1981a), by permission of the Lunar and Planetary Institute, Houston.

Modified to show blue areas in solid black.
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Fig. 4. Relationship between percent 1102 in lunar mare regoliths and

the 0.40:0.56-#m reflectance ratio for telescopic spectra relative to MS2

(after (3mrette et o.1., 1974, and tYeters and McCord, 1976). The stippled

area is the estimated range of TiO2 that can be derived from a 0.40:0.56

#m ratio measurement of mature mare regions. Shown above the plot are

the ranges of 0.46:0.56 #m ratio observed for each of the basalt types

discussed by P/etem (1978). The heavy lines indicate unsampled basalt

types. From Basa/t_" Volcanism Study Project (1981a), by permission of

the Lunar and Planetary Institute, Houston.
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Fig. 5. Color difference photograph (from Whaaker, 1966), made by subtracting a photograph taken at 0.31 #m from one taken at 0.61 #m. Courtesy

of E. A. Whitaker.
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Fig. 6. Broad variations in TiO2 content of regolith in Mare Tranquil-

litatis. Based on W'dheims ( 1987, plate 4A).

basis of albedo, UV:VIS ratio, strength of the 1-/_m band, and

strength of the 2-vm band. Only Tranquillitatis and the Flamsteed

area are regarded as occupied by high:If regolith.

There is considerable agreement among various maps that are

based on reflectance measurements. There is agreement on

certain high-Ti areas. There is also agreement that regoliths of

intermediate or low.Ti content occupy considerably more area

than those identified as high-Ti regoliths. However, there is

disagreement on the location and extent of Iow-Ti and

intermediate-Ti areas. Metzger et al. (1979) compared the results

of gamma-ray spectroscopy with the work of Pieters expressed

in Fig. 7. They found agreement for 10 of 14 map regions.

However, this required a rather liberal intepretation of the data.

In addition, they assume a uniformity of maria that probably does

not exist and is, in fact, contradicted by the spectral ratio map

of Johnson et al. (1977) and the photograph of Fig. 5. As noted

above, there is a lack of intermediate-'I_ samples that have been

analyzed for both He and Ti. Given the poor resolution of most

reflectance measurements, intermediate-Ti areas shown on maps

may therefore be due to averaging high-Ti and low-'Ii regoliths.

The gap between the two suggested by Fig. 1 may therefore be

a real one, not an apparent one that is due to incomplete sampling

of the maria. Lack of samples from areas that are indicated as

intermediate in Ti content is particularly unfortunate inasmuch as

those areas occupy a substantial fraction of the total area of the

maria.

It is important that there is substantial agreement among the

maps on the locations of certain areas of high-Ti regolith, Mare

Tranquillitatis in particular. Tranquillitatis has an area of at least

190,000 sq km and seems likely to contain substantial amounts of

UNIT TYPE

DESIGNATION AREA

No#u, [] FLNUTEI[D (RING)

HOWA [] APOLLO 11

hDmA [] INmllUtl (BLUE)

hOW- [] LUNA 11

hDIIP [] MARE

hOG- [] NUIIJUN

mlllP [] $1mENITA'ml

mlO- [] APO(.LO 12

W°

LJO- [] AIN2(.LO li

LinG. [] IK)(W¢K)MUM -20-- _

N

E

Fig. 7. Major basalt types for the front side of the Moon as derived from the current spectral reflectance data. The unit designations represent

values for four mea._drable parameters (UV:VIS ratio, albcdo, strength of the 1-pm band, and strength of the 2-pm band). By permission (ff
the Lunar and Planetary Institute and Basaltic Volcanism Study Project.
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regolith with 30 wppm or more He. If only 30% of the total area

is ruinable at 30 wppm He, if mining is carried to an average depth

of 3 m, and if recovery from mining and processing is 60%,

roughly 1700 tonnes of He-3 could be recovered from this mare.

In summary, remote sensing has yielded a substantial amount

of information on the location and broad distribution of high.Ti

regoliths. The information serves as a general guide to the

selection of potential mining areas. Beyond this, however, the use

of remote sensing is limited by the low resolution of the methods.

REQUIREMENTS FOR MINING AREAS

The mining scenario envisioned by the University of Wisconsin

group calls for the schedule of production shown in Table 1. in

Fig. 8, line A shows the area in square kilometers having the

amount of He-3 necessary to match the requirements for

successive periods between 2015 and 2050, assuming a mining (n

depth of 3 m, an average He content of 30 wppm, and 100%

recovery of He. Line B shows square kilometers that must be

mined to a depth of 3 m to meet the schedule if recovery from

mining and processing is 80%. Line C shows square kilometers

that must be mined to a depth of 3 m if recovery is 60%, probably

a more realistic figure. At 10% recovery, the mined area would

be 123 sq km by the year 2030, and 8110 sq km by the year 2050,

when the full production rate of 20,000 kg He-3/yr would be

achieved. Thenceforth, the mining area required per year would

be 665 sq km Thus, large mining areas must be delineated if the

mining scenario is to be fulfilled.

The He content of regolith, recovery percentage, and depth of

mining are not the only factors determining the areas over which

mining operations will have to be extended. Knowledge of the

maria, including Mare Tranquillitatis, is far from complete, but it o

is enough to indicate that there will be areas that cannot be

mined, at acceptable costs, owing to the presence of large craters

or abundant large blocks of rock. It is therefore to be expected

that mining will have to extend over larger areas than indicated

by Fig. 8, and that the pattern of mining will be complicated by

the necessity of avoiding unminable areas.

Regolith high in Ti w_s found in the mare.filled valley of the

Apollo 17 landing site. However, the site is one of complex _j

geology and marked heterogeneity. It does not appear attractive

as a potential mining site, but photogeologic maps (Scott et al., Or)

1972) suggest that there may be ruinable areas in the Taurus- Z

Littrow region west of the landing site. IJJ

DISTRIBUTION OF HELIUM IN "1-
IJ.

MARE REGOLITHS 0

As indicated earlier, investigations of lunar samples have shown o_

that He is concentrated in the <100-pm size fractions of regoliths. LI.I

This stems from the fact that absorption of He from the solar wind

is proportional to particle surface area per unit of mass. The

distribution of He in Apollo 11 regolith is indicated in Fig. 9,

which is based on weight percentages of various size fractions

given by Cti_well and Waldron (1982) for sample 10084,853, and

on He contents of a series of size fractions given by Hintenberger

etal. (1970) for sample 10084,18. The latter authors did not give

the weight percentages of the bulk soil represented by the various

fractions, and the percentages had to be estimated from a size

distribution curve plotted from the data of Criswell and Waldron.

Calculations show that not all the He content of the bulk soil

is accounted for in the size fractions, hence Fig. 9 should be taken

as indicating only the pattern of He distribution in Apollo 11

regolith in relation to particle size.
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Fig. 8. Relation between required mining areas and cumulative require-

ments for He-3 for a mining depth of 3 m. See text for explanation.
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TABLE 1. Schedule of He-3 production.

Average annual Cumulative
Period production (mt ) production (mt) (_

2015 -2020 0.014 0.070
2020-2025 0.066 0.400
2025-2030 0.656 3.680
2030-2035 4.572 25.540

2035- 2040 9.312 73.100
2040-2045 14.880 147.500
2045-2050 19.300 244.000
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Fig. 9. Percentage of total He in Apollo 11 regolith in relation to grain
size. Based on data of Criswell and Waldron (1982) and Hintenberger

eta/. (1970).
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The significance of the above relations for site selection is that

coarse material in the regolith is not important as a source of

He. This and considerations of ease of mining and processing

mean that mining areas should be as free as possible of blocks

of rock and sizable craters. Information on these and other

physical features of the regolith must be obtained from lunar

photographs and photogeologic maps, and from radar surveys that

indicate surface roughness at various scales (Basa/t/c Volcanism

Study Project, 1981b; Moore eta/., 1980; Zisk et al., 1974, 1987).

Photogeologic maps should also aid in studying variations in the

composition of lunar regoliths and in delineating suitable mining

areas.

DARK-MANTLE MATERIALS AS AN

ALTERNATIVE SOURCE OF HELIUM

Dark-mantle materials, distinguished on the basis of their radar

and spectral reflectances, occupy certain areas of the lunar

nearside. The largest such areas are along the southwest and south

sides of Mare Serenitatis, including the Sulpicius Gallus and

Taurus-Littrow regions, and in the Rima Bode region (Lucchitta_

1974; Head, 1974; Lucchitta and Scbrm'tt, 1974; Wilhelms, 1987).

Dark-mantle materials typically occur along the margins of maria,

extending over parts of adjacent highlands. The deposits range up

to tens of meters in thickness. Consisting of glass droplets with

a mean size in the neighborhood of 40 #m, dark-mantle materials

could be mined and processed for He much more easily that

normal mare regolith.

From studies of spectral reflectance, Adams et al. (1974)

concluded that droplets of black glass are the essential ingredient

of dark-mantle material associated with Mare Serenitatis. The black

glass has formed by devitrification of droplets of orange glass, now

considered to be of pyroclastic origin. Haggerty (1974) and

Heiken and McKay (1978) have shown that black ash droplets

consist of ilmenite and olivine with varying amounts of residual

glas,s.

Orange glass was sampled at the Apollo 17 site in the trench

at Shorty Crater and in drive tubes put down beside the trench.

Orange ash is reported to contain 8.09% to 8.9% TiO2 (Wi_dee

et al., 1971; Nava, 1974). Its He content is reported as 2.6 wppm

(Hintenbo,ger et al., 1974). The drive tubes show a progression

downward from nearly pure orange glass at the top to material

with 73.4% black glass at the bottom (Heiken andMcKay, 1974).

In view of the ilmenite content of the black #ass, it might be

expected to show a higher He content than the orange glass, but

Bogard and Hirsch (1978b) found He contents of 0.9 wppm or

less in the black #ass. However, petrographic studies of the drive

tube section show that only the top 5.5 cm of the section has

been gardened, and it has been exposed to the solar wind for

only the past 10 to 30 my. We still do not know, therefore, the

He potential of black glass in areas where it has been gardened

and exposed to the solar wind over long periods of time. Such

areas might prove to be important sources of helium. Sampling

them should be a part of future missions to the Moon.

CONCLUDING COMMENTS

The study now in progress and reported here is preliminary.

Study of photographs, photogeologic maps, and radar surveys of

the lunar nearside should advance the process of site selection,

but final selection of mining sites will not be possible with data

presently available. Only very small fractions of a few of the maria

have been sampled, and no area has been systematically sampled.

Information on thickness of regolith and on variation of He

content w_th depth is limited. Remote-sensing maps, both those

based on gamma-ray spectroscopy and on reflectance measure-

ments, have insufficient resolution for purposes of site selection.

All remote-sensing maps show large areas of intermediate-Ti

regolith, but no such regolith has yet been sampled. The He

potential of dark-mantle materials cannot currently be appraised.

These significant deficiencies in present information must be

remedied by systematic exploration and sampling of regolith,

definition of minable portions of regolith, and estimation of

tonnage and He content. Given the enormous potential of lunar

He as a source of energy, such work should have a high priority
in future lunar missions.
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