
L!

Bhansali

THE

 93-17502
KASE APPROACH TO DOMAIN-SPECIFIC

SOFTWARE SYSTEMS

Sanjay Bhansali and H. Penny Nii

Knowledge Systems Laboratory
Stanford University

701 Welch Road, Bldg. C, Palo Alto, CA 94304
bhansali@ sumex-aim.stan ford.edu

nii@ stmlex-aim.stan ford.edu

-5'3 -6,/

1. Introduction

Designing software systems, like all design activities, is a
knowledge-intensive task. Several studies, (e.g. [Adelson &
Soloway, 1985; Guindon, Krasner, & Curtis, 1987]) have
found that the l_redominant cause of failures anmng system
designers is lack of knowledge - knowledge about the
application domain, knowledge about design schemas,
knowledge about design processes. The goal of domain-
specific software design systems is to explicitly represent
knowledge relevant to a class of applications and use it to
partially or completely automate various aspects of the
design activity for designing systems within that domain.
The hope is that this would reduce the intellectual burden on
the human designers and lead to more efficient software
development.

In this paper, we present a domain-specific system built
on top of KASE, a "l,mowledge-assisted software engineering
environment being developed at the Stanford Knowledge
Systents Laboratory. We introduce the main ideas underlying
the construction of domain specific systems within KASE,
illustrate the application of the idea in the synthesis of a
system for tracking aircrafts from radar signals, and discuss
some of the issues in constructing domain-specific systems. _

2. Domain Specific Software Systems

using KASE

KASE is a knowledge-based software development
environment that is designed to provide active assistance in
the design of software systems. Some of the basic
characteristics of the KASE environment are: a domain-

independe,_t representation mechanism for software
architectures, a graphical interface that pernfits smooth
navigation between different views of a software system
[Guindon, 1992], an integrated editor that permits
modifications to the architecture from any view, and a
constraint checker that can help a user maintain various
syntactic and stylistic constraints between different
components of the architectnre[Nii, Aiello, Bhansali,
Guindon, & Peyton, 1991].

The construction of domain specific software systems in
KASE involves the identification of a generic problem or
task, a generic architecture suitable for the task, a model of
the application domain in temps of primitive entities (e.g.
object, relations, events), and a set of customization tools
that can be used to construct a specific system for a
particular problem.

,t:"

/

Generic problem

I

I Problem specification

Generic architecture

I Application domain model

I
Editing corn mat_ds

Problem-specific
architecture

Fig. I Customizing an architecture

11

https://ntrs.nasa.gov/search.jsp?R=19930008313 2020-03-17T09:06:16+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42809476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bhansali
1

As shown in f!gure 1, the soft_x_am design activity consists
of inslanliating the generic architcctttre with respect to a
given problem statement and the domain model using the
customization tools and results in the creation of a problem-
specific architecture. We call this process customization -
customize a generic architecture to fit an application.

A generic problem represents a class of problemsl By
identifying problem classes, one can design knowledge
representation schemes, architectures, and reasoning
processes which are appropriate for the general problem, and
reuse them for several different problem instances. The
specification of a genetic problem results in the creation of a
problem schema which specifies the high-level structure of a
problem specification. A schema has certain roles which
represent the parameters of the problem, and Cbiistrahus on
the values of the roles. Instantiating these roles with
specific values results in the creation of a specific problem
specification.

Figure 2 shows the schema for an example generic
problem: trackin G a set of mobile objects by interpreting
signals that are being continually generated by the objects.
(This generic problem can be instantiated, e.g. to the
problem of tracking aircrafts from radar and voice signals
(Brown, Schoen, & Delagi, 1986) or tracking ships from
sonar data (Nil, Feigenbaum, Anton, & Rockmore, 1982)).
This problem has three parameters: (i) the specification of
the input signal(s); (ii) the main body or functional

description of the problem in the form of an extremely high-
level program; and (iii) certain characteristics of the domain
and the environment. The constraints on the schema roles

are specified by specifying a grammar for instantiating the
roles.

Associated with each generic problem is a set of

(possibly one) generic architectures, which can be used to

create a system for solving instances of the generic probfcm.
A Generic architecture is a collection of porameterized
;nodules and inlermodtdar dependencies. A paramclerized
module is a logical collection of software entities like
procedures, types, etc. in which some of the entities are

abstracted as parameters. A parameter can be, among olhcr
things, an algorithm, a representation scheme, or a sub-
modutc. The design process is viewed as an inslantiation of

the various parameters comprising a generic architecture.
However, the paramelers can be fairly complex entities and
the design task is non-trivial.

The structure of the generic architecture detemm_es the
basic solution slralegy for solving the problem. For

example, the co,_tinuous signal interpretation problem given
earlier can bc soived using a symbolic, knowledge based
algproach, or by statistical analysis of the data and the two
solutions would have radically different architectures. A

module description includes information about the input and
OUtl}Ul data flows of the module, the
submodnlcs/sul+erfiaodules structural relations, the services it
rcquires from Other modules, the services it provides to an
external module, the precondition and postconditions for

each service provided by the module, and/or a program
template that implements each service. The most interesting
aspect of the module description is that some of its
attributes arc viewed as parameters of the module.
Associated with each parameter attribute is a method which
can be used to dctcm_ine the value of the parameter. The
complexity of the method depends on the type of the
parameter. For example, it may be a simple process of
selecting between a pre-deterrnined list of alternatives, or it
may involve sophisticated reasoning using domain
"lolowledge and heuristic rides.

Continuous-Signal-Interpretation :Generic-problem
Signal-Inputs:)<var> : (SEQ :FROM <int> :TO <int> (<fields>.)

< field-description>)]+
Body: WHILE <formula> DO <statements> ENDWHILE
Task Assumptions: <task-assumptions>
where
<fields> ::= <identifier> [<identifier> <fields>
<field-description> ::= EXIST <objects> SUCH-THAT <condition>
<statements> ::- <statement> ; <statements>] <statement>
<statement> ::= (IF <formula> THEN-DO <statement>) I

(FORALL <v,'u's> <formula> DO <statement>) [
(PRINT <terms>)

<task-assumptions> ::= (UNRELIABLE-SIGNAL <var>_l
(REDUNDANT-SIGNAL <wu'>)[
(ASYNCHRONOUS -SIGNA_L<v,'u->)[

Fig. 2. Specification of the generic problem of coutinttous signal interpretation.

12

Bhansal|

Report
Acceptor

Signal-interpreter

Situa tior_ board

Blackboard Panel

I Level'l 1

Levet-2 [

Control Panel

Tracking-component

[Ksource-1]

Ksotuce-2]

Controller

Fig. 3. A fnnctional decomposition of the generic architecture for the continuous-signal inteq)rctation problem. The architeclurt

shows the main modules comprising the architecture.

supermodule
inputs

outputs
requires

provides
calls

called-by

parameters

Signal-lnterprctcr isa module

submodules Situation-board, Tracking-component, Controller

CSI-system

?s : SEQ(signal)

?r : SEQ(report)

(print-report ?rL (read-next-signal) :signal, (start-execution)

(main)

report-acceptor, signal-feeder
nil

constraints

1) Controller

2) SituationB o,'u'd

l) Controller is instantiated to an EventDriven-Controller iff SituationBoard is

instantiated to an EventDriven-SituationBomd.

2) Only the TrackingComponent should have a dataflow into the SituationBo,'u'd.

3) Only the Controller module can call the Tracking-Component.

Fig. 4. Representation of the $ignal-interpreter module in the generic architecture.

Figure 3 shows the structural decomposition of a generic

architecture for the continuous-signal-interpretation problem

class and figure 4 shows a partial description of the signal-

interpreter modnle of the generic architecture.

The domain model provides the ontology of terms and

operations used to describe an application domain

independent of a specific task; several different problems can

be specified in a high-level language using this ontology.

The prm_ary components of the domain model are objects

and relations between the objects. An object is an

abstraction of some entity in the application domain, e.g.,

an aircraft or a signal. Associated with each object is a set of

attributes which are properties that describe an instance of an

object and operations that change tile state of an object. The

description of an operation includes pre- and post-conditions

and optionally, a code template that implements the

operation.

2.1 CUSTOMIZATION PROCESS

The customization process consists of refining a selected

generic architecture into a detailed architectural specification

based on the model of the domain and the problem

specification. In KASE, the customization process is

performed ill an interactive and nfixed-initiatJve setting. The

role of KASE in the design process is that of an intelligent

13

, Bhansall

design associate lhat provides suggestions on how to refine

the archilectt|re, c_lrries out the commands invoked by the
user, inlorms the designer of constraint violations in the
design, keeps a record of the design steps and the
dependencies between the steps so that incremental

modifications to the design can be done efficiently.
The knowledge used by KASE in providing these kinds

of assistance includes general, domain independent
knowledge about software design, architecture-specific
knowledge for the instanliation of various architectural

parameters, as well as specific heuristic knowledge about
design related to a particular domain. Most of the domain
i,_dependent design "knowledge is represented in the form of
constraints (e.g. those relating different levels of a data flow
diagram), and KASE contains mechanisms which
automatically keep track of these constraints as well as
heuristics for resolving constraint violations (Nit et al.
1991). The architecture specific kuowledge illcludes a set of
constraints o_.overnmg the relationships between different
comlgonents of the architectnre, a library of reusable modules
and schemas which can be used to instantiate the

architectural parameters, and a collection of design ndes and
procedures that can be invoked by a designer to instantiate
certain parameters and optha'dze the design.

To illustrate the customization process, consider thc
generic architecture shown in fig. 2. The parameters in the
generic architecture include the following: 1) the submodules
of the blackboard panel, 2) the type of infom_ation stored in

the control panel, 3) the submodules of the tracking
component, and 4) the scheduling and focusing strategies of
the controller. Different instantiations of these parameters
result in the creation of a widely different systems with
different perfom_ances. KASE contains a set of design rides
for instantiating these parameters, and a set of

transformation rnles that optimize the design (e.g. merging
certain kinds of control signals into one for increased

efficiency). The customization process for an implemented
example in KASE is described in [Bhansali & Nit, 1992].

2.2 REDESIGN

Software design is characterized by frequent modifications

either due to a design error or as a result of a change in the
problem requirements or the computing enviro_mlent. KASE
uses different mechanisms to support these two kinds of
modifications.

2.2] Redesign due to error in original design. KASE
automatically checks for violations of several kinds of
constraints and helps the designer modify the architecture to
resolve the inconsistencies. The constraints in KASE are

currently divided into three categories: 1) General
architectural constraints (e.g.

every data link wJust have a consumer and a producer); 2)
Specific archilcctt,ral constraints (e.g. there rnust be no data

flow or control flow between submodtdes of the tracking
cornponent); and 3) Stylistic constraints that are derived

from design principles that are considered 'good' (e.g a
module must not be decomposed into more than n
submodules at any level of abstraction).

Each constrainl in KASE is associated with a trigger, a
predicate, and an oplional resolving-action. A trigger is a
set of actions lhat can potentially cause the constraint to be
violated, a predicate is a Lisp expression that checks to see
whelhcr the constraint is actually violated, and resolving-
aclion is a set of actions that may be taken to remedy the
constraint violation. KASE monitors the design activity and
flags each co,_slraint that is triggered by a user action.
When a user indicates the completion of a design session,
KASE checks the predicates for each flagged constraint to
see whether the constraint is actually violated. Quite often, a
constraint that gels violated by a design action is resolved by
a later action, and such constraint vio'lations should be, and

arc, transparent to the designer.
When KASE reports a constraint violation, the designer

can ask KASE for a list of suggestions on how to resolve
the error. Depending on the nature of the constraint, KASE

presents a list of different actions that may be taken to
remove the constraint violation. The user can then choose
either one of the actions suggested by KASE or take some
other action.

2.2.2 Redesign due to change in requirements. KASE

provides tools that can help a designer m modifying parts of
a design to meet new requirements without having to start
from scratch. First, KASE maintains a history of all the
design steps and allows the user to go back to any previous
state of the desipn. It does this by replaying the design
history from the initial state to the desired state.

A second redesign support provided by KASE is in
localizing the effects of a design change. KASE uses
dependencies between design steps to structure a linear
design history into a lattice. When the user wants to undo
the effect of a l)articular design step, KASE uses the
position of that design step in the derivation history to
detemm_e what other design steps are affected by it
[Bhansali, 1992].

3. Discussion

In this section we briefly discuss some of the issues,
advantages, and limitations in our approach. One of the
major issue in the design of domain-specific systems is
concerned with acquiring and maintaining the extensive body
of knowledge from multiple sources. This task, also known
as domain modeling, is a manifestation of the classic

14

Bhansali

knowledge acquisition i_roblem in expert systems. One way

= of viewing generic problems/tasks and archilcctures is to
cbnsider them as providing a skelctal kuowlcdgc base or
shell which call bc instautialed for different applications. Our

long term goal is to provide a library of generic problems
and associaled architectttres, which would provide a base
from which various domain ntodcls can be instanlialed.

A second issue is concerned with the flexibility of the

resulting system. Domain specific systems utilize
specialized design techniques which arc well suited for a

particular class of applicatio,ls. However, since it is not
possible to allticipatc all snbscqucnt cha_lges i_l
requirements, the specialised design techniques may not bc
adequate for extending the system beyond lho original

intended application. A major effort in thc KASE project
has, therefore, been expended in providing a domain--
independent infrastrncture which enables a user to modify all

architecture through an integrated editor, piclorial and
symbolic visualizations of the design from various
perspectives, and a constraint maintenance subsystem that

supports opportunistic design based on insights drawn from
empirical studies of human designers [Guindon, 1990].

A third issue is concerned with the ttseftflness of tile

approach. Our approach involves a considerable investment
in terms of building the initial knowledge structure, and we

believe that tile payoff is in being able Io reuse generic
architectures to design solutions for a family of problems.
We need to identify such archileclnres al_d problem classes

and use KASE for designing software systems for problems
belonging to such problem classes.

The KASE system represents our initial attempt ill

building a prototype environment that can offer varying
degrees of assistance to a software designer by employing
diverse sources of knowledge. Our current work is focnsing
on extending the domain modeling representation to capture
the dynamic behavior of a system by modeling states,
transitions, events, and actions. We are also exploring the
issue of design rationale capture and its reuse during
redesign. KASE's current redesign capabilities were
mentioned briefly in this paper. We are interested ill
extending these capabilities so that KASE can automatically
incorporate certain Changes in problem requirements into the
design by using the design rationale.

Acknowledgements

The KASE system is a result of several people's work. We
gratefully acknowledge the contributions made by Nellcke
Aiello, Raymonde Guindon, Liam Peyton and Go Nakano
who wrote most of the code for KASE.

References

Adelson, B. & Soloway, E. (1985). The role of domain
experience in software design. IEEE Transaction on
Software Engineering, SE- 11 (11): 1351 - 1360.

Bhansali, S. (1992). Generic software architecture based

retlesign. AAAI Spring Sympositm_ on Coml_utalional
ConsidcraliOns in Sullporling lncrcmcutal Modification
and Reuse, Stanlbrd, CA.

Bhansali, S. & Nil, H. P. 11992). KASE: An inlegralcd
environment for software design. 2rid International
Conference on ArNficial Intelligence in Design,
Pittsburgh, PA.

Brown, H. D., Schoen, E., & Dclagi, B. A.(1986). An
Experiment in Knowledge-Based Signal Understanding
Using Parallel Architectures. Dcl_al'tmeut of Computer
Science, Stanford University, Technical Report STAN-
CS-86- I 136.

Graves, H. (1991). Lockheed Environment for Automalic
Progranm_ing. 6th Knowledge-Based Software
Engineering Conference, Syracuse, NY: 78-89.

Guindon, R. (1990). Designing the Design Process:
Exploiting Opportunistic Thoughts. Human-Computer
Interaction, 5:305-344.

Guindon, R. (1992). Rcquiremenls and design of
DesignVision, an object-oriented graphical interface to an
intelligent software design assislant. ACM Proceedings
ofCHl'92, Monterrey, CA.

Guiudon, R., Krasner, H., & Curtis, B. (Eds.). (1987).

Breakdowns And Processes During The Early AcNvities
Of Software Design By Professionals. Ablcx Publishing
Corp.

Nil, H. P., Aiello, N., Bhansali, S., Guindon, R., &
Peyton, L. (1991). Knowledge Assisted Software

Engineering (KASE): An introduction and stains Jl.lne
1991. Knowledge Systems Laboratory, Computer Science
Department, Stanford University, Technical Report KSL-
91-28.

Nil, P.(1989). Blackboard Systems. Ill A. Barr, P.
Cohen, & E. Feigenbaum (Eds.), Handbook of Artificial
Intelligence. New York, NY- Addison-Wesley.

OF POOR Q_JALI'Dg

15

