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EXECUTIVE SUMMARY - FINAL REPORT

This project was a three year study at the Center for the Study of Earth from

Space (CSES) within the Cooperative Institute for Research in Environmental

Science (CIRES) at the University of Colorado, Boulder. The research was funded by

the NASA Innovative Research Program (IRP) NAGW-1601. The goal of this

research was to develop an expert system to allow automated identification of

geologic materials based on their spectral characteristics in imaging spectrometer
data such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This

requirement was dictated by the volume of data produced by imaging spectrometers,

which prohibits manual analysis. The research described here is based on the

development of automated techniques for analysis of imaging spectrometer data

that emulate the analytical processes used by a human observer. The research tested

the feasibility of such an approach, implemented an operational system, and tested

the validity of the results for selected imaging spectrometer data sets. Notable
results of the research include:

1) Development of a prototype spectral database in conjunction with

International Geologic Correlation Program (Project IGCP-264, "Remote

Sensing Spectral Properties"). The database consists of reflectance spectra

measured on 5 spectrometers for 26 common minerals with supporting

analytical information. The spectra have already been released in digital form

and results are also being published by the American Geophysical Union

(AGU) for international distribution.

2) Development of automated techniques for the extraction and characterization

of absorption features in field, laboratory, and aircraft reflectance spectra.

Individual spectra are analyzed in terms of the position of absorption

features, their depth, width, and shape.

3) Implementation of a prototype expert system and successful testing on

individual laboratory, field, and Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) spectra.

4) Development of prototype visualization and analysis software for imaging

spectrometer data; the "Spectral Image Processing System (SIPS)" version 1.0.

SIPS has been adopted by CSES and over 75 organizations worldwide as the

standard for imaging spectrometer data analysi6. Further development,

maintenance, and support has been turned over to CSES staff. CSES recently

released SIPS version 1.2 for general use.
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5) Integration of the expert system into the image processing environment as

the "General Use Expert System for Spectra (GUESS)" module to SIPS. This

is a stand-alone software module for expert system analysis of imaging

spectrometer data. It includes utilities for feature extraction, rule

specification, expert system analysis of single spectra or entire imaging

spectrometer data sets, and analysis and visualization of expert system results.
GUESS has been tested on several AVIRIS scenes. The GUESS software will

be released with full documentation as part of SIPS version 2.0 during 1993.

The digital absorption feature extraction and the expert system have been

used successfully to analyze lab and field spectra of unknown minerals and

individual spectra from imaging spectrometer data. They have been used to analyze

entire AVIRIS images (~300,000 spectra per scene) resulting in automatic

compilation of image maps showing the predominant surface mineralogy for use in

detailed geologic studies. At one test site, the expert system analysis of the AVIRIS

data is playing a major role in mapping lithological variation, and in conjunction

with field mapping, in determining the spatial relations between lithology and

faulting. The expert system results form the starting point for detailed quantitative

analysis using other techniques that require spectral endmembers (such as spectral

unmixing).

This research has resulted in an operational expert system prototype and

supporting software. Some of the software is already being used internationally and

is making positive impacts on the way organizations are analyzing imaging

spectrometer data. The expert system software itself is being used internally for both

student research and to support other projects, and will be released externally with

full documentation during 1993. Published papers summarizing research results are

listed in Appendix A.
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L BACKGROUND

INTRODUCTION

Laboratory and field studies of the visible and near-infrared spectral

properties of rocks and minerals have shown that many individual mineral species

can be identified based on their spectral characteristics. The exact positions and

shapes of visible and infrared absorption bands (low points in the spectral curves)

are different for different minerals and reflectance spectra allow direct identification

(Figure 1). Some of these characteristic spectral features are tabulated in the

literature (Hunt et al., 1971; Hunt, 1977, 1979; Hunt and Ashley, 1979; Lee and

Raines, 1984; Clark et al, 1990), however, the published data was largely collected

using analog equipment and only recently have digital reflectance spectra become

available (Clark et al., 1990; Grove and Hook, 1992; Kruse and Hauff, 1993).

With the advent of imaging spectrometers during the 1980s, it was obvious

that the spectral properties of rocks, minerals, and vegetation, were not well

understood, particularly in their natural settings. Imaging spectrometers measure

reflected visible and infrared light utilizing many narrow contiguous spectral bands

to construct detailed reflectance spectra for millions of discrete picture elements

(pixels) (Goetz et al., 1985). Analysis of a single imaging spectrometer data set

presented researchers with more reflectance spectra than they would normally see

in an entire career. It was clear that basic spectral information was required to allow

analysis of these data, and that new research was necessary to establish the

foundations on which to build imaging spectrometer analysis capabilities.

Although readily available published analog data had served as reference material

for early geologic remote sensing efforts, new instrumentation, broadening research

interests, and digital analysis capabilities mandated that new approaches to data

collection, storage, and analysis be developed. The immense volume of data

collected by these systems prohibited detailed manual analysis. The research

reported here concentrated on developing automated techniques for digital analysis

of imaging spectrometer data that emulate the analytical processes used by a human
observer.

OBJECTIVES
The primary objectives of this work were to develop a knowledge base and an

expert system approach for analysis of imaging spectrometer data. The main science

objective was to characterize and map Earth surface materials based on their spectral

properties in order to develop a better understanding of their surface distribution

and relationship to geologic processes.

IL METHODS

GENERAL APPROACH

There were two aspects to this research. The first requirement was to develop

a basic understanding of the spectral properties of Earth surface materials (the

knowledge base). Although much work has been done for rocks and minerals, there

was no comprehensive high spectral resolution digital database available, mineral



Figure 1. - Stacked reflectance spectra for selected minerals. Absorption features near

1.4 and 2.3 I_n in co2004 (calcite) and cod2005 (dolomite) are caused by
CO 3. Features near 2.2 _m in k1500, a1705, and i1107 (kaolinite, alunite,

and muscovite) are caused by AL-OH bonds. Broad features near 0.9

l.Lm in Fe2602 (hematite) and fe2600 (goethite) are caused by Fe 3+.
Spectra are offset for clarity. Reference reflectance is given at 1.6 l_"n.
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variation was not documented, and mixing was poorly understood. As part of this

research, we systematically collected and measured pure mineral standards, rocks,

and soils (Kruse and Hauff, 1993). The minerals standards used for the spectral

database were also characterized using X-ray diffraction (XRD), scanning electron

microscopy (SEM), and energy dispersive X-ray analysis (EDX). Basic spectral

knowledge bases, of which this is one of the first, are necessary to allow quantitative

analysis of laboratory, field, and imaging spectrometer data.

The second aspect of the research was to integrate the information derived

from spectral databases with the imaging spectrometer data using an expert system

approach. This work emphasized automatic extraction and characterization of

spectral features from laboratory reflectance spectra, development of facts and rules

based on an experienced analyst's interpretation of spectra, analysis of imaging

spectrometer data based on the rules, and presentation of the results in image map

format. As part of this research, we developed the interface, display, and analysis

link between spectral libraries and high spectral resolution remote sensing. We

used AVIRIS data and Geophysical and Environmental Research imaging

spectrometer (GERIS) data for sites of geologic interest to the principal investigator

to develop and test the image processing procedures.

SPECTRAL LIBRARY COMPILATION

High quality spectral libraries are the key to successful analysis of earth-

surface materials using reflectance spectroscopy. The detail and accuracy of these

analyses are limited by the extent and quality of the spectral library. The initial step

in this research, therefore, was to compile a spectral library for common geologic

materials. Materials selected for inclusion in the initial library were chosen because

they were considered to be of major importance by respondents to an international

survey conducted during 1988 as part of an UNESCO-sponsored project

(International Geologic Correlation Program, Project IGCP-264 "Remote Sensing

Spectral Properties"). The concept was to provide reflectance spectra for common

geologic materials and to insure that these spectra were representative by

characterizing the minerals using multiple analytical techniques. Each sample (26

total) was measured on a Beckman UV5270 spectrophotometer at CSES, a Beckman

UV5240 spectrophotometer at the U.S. Geological Survey in Denver (Clark et al.,

1990), on the "RELAB" spectrometer at Brown University (Pieters, 1990), on the

"SIRIS" field spectrometer in the laboratory at CSES (Geophysical and

Environmental Research, 1988) and with the prototype of a new high resolution

field spectrometer, the "PIMA Ir' (manufactured by Integrated Spectronics Pty. Ltd.).

These examples were chosen to show the effect of instrumentation and resolution

on the reflectance spectra. The IGCP-264 spectral library provides the basic

information for the expert system in the form of spectral features for specific

materials. For each mineral included in the data base, the following information

was compiled; summary information for each mineral, visible and infrared

spectroscopy, X-Ray Diffraction (XRD) (including comparison to JCPDS standards)

(JCPDS, 1974, 1980), Scanning Electron Microscopy (SEM)_ and Energy Dispersive X-

ray chemistry (EDX). These reflectance spectra have already been released in digital

form and the reflectance spectra and compiled analytical results are also being

published by the American Geophysical Union (AGU) for international distribution

(Kruse and Hauff, 1993).



EXPERT SYSTEM METHODOLOGY

Extracting and Characterizing Spectral Features

This research used numerical analysis and characterization of digital

reflectance measurements to establish quantitative criteria for identifying minerals

and mineral mixtures. The absorption feature information was extracted from each

spectrum using the following automated techniques (Kruse et al., 1988, 1993; Kruse,
1990a, 1990b; Kruse and Lefkoff, 1993).

Continuum removal (Clark and Roush, 1984) was the first step of the feature

extraction process used to characterize individual absorption features contained in a

spectrum. The continuum of a spectrum, as used in this research, is a continuous,

convex hull draped over the source spectrum at its high points (Figure 2). The

continuum is computed by first locating all of the high points. Starting from the

left-most high point, the program considers a straight line from this high point to

the next high point along the spectrum with a greater or equal reflectance value. If

this line does not cross the spectrum, the line segment connecting the two points is

added to the continuum. If the line segment crosses the spectrum, then the

program recursively backs up one point at a time, right to left, until the connecting

line segment does not cross the spectrum. This new point is then added to the high

point list and the program continues. Once the program crosses the highest

reflectance point in the spectrum, the next connecting segment is considered with

the largest remaining high point with a lower reflectance value than the previous

high point. This method assures that the resulting continuum is always convex and

does not cross through the original spectrum.

Dividing the source spectrum by its continuum spectrum results in a

continuum-removed spectrum containing normalized reflectance values from 0.0

to 1.0 (Figure 2). Absorption features, which commonly occur superimposed on a

background slope in the source spectrum, are transformed into features with a

uniform, flat background of 1.0 in the continuum-removed spectrum. This allows

each absorption feature in a spectrum to be mathematically analyzed with respect to

a consistent reference plane.

Within one of the extracted features, a number of low points may occur in the

continuum-removed spectrum. Four spectral attributes are defined for each of these

low points (Figures 3 and 4). The position attribute is defined as the wavelength of

the low point. The depth attribute is 1.0 (the continuum) minus the reflectance of

the low point. The full-width-half-maximum (FWHM) attribute is the width of the

feature at half of the depth. The asymmetry attribute, a simplistic measure of band

shape that reduces description to one parameter, is the base ten logarithm of the area

of the feature occurring to the right of the low point divided by the area of the

feature to the left of the low point. Asymmetry then becomes zero if the band is

symmetrical, negative if it is asymmetrical to the left, and positive if it is

asymmetrical to the right (Figure 4).

Defining Critical Absorption Features

For the spectral library described above, each material (26 minerals total, plus

green and dry vegetation) was analyzed using the continuum removal/feature

extraction process and the four attributes (position, depth, FWHM, and asymmetry)

were calculated for each of the low points in the continuum-removed spectrum.

The "Facts" considered by the human expert to develop rules for analysis of
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Figure 2. Example of the continuum and the continuum-removed spectrum for
the mineral kaolinite (From Kruse and Lefkoff, 1992).
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Figure 3. Plot showing the absorption band attributes position, depth, and full-
width-half-maximum (FWHM) (From Kruse and Lefkoff, I992).
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Figure 4. Schematic showin the absorption band attribute asymmetry. Note the

distribution of the areas to the left and right of the selected absorption

minimum (From Kruse and Lefkoff, 1992).
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unknown spectra consist of al__l.1of the spectral feature attributes for ever]a feature

identified during the analysis (Table 1).

The next step is for a knowledgeable user to determine which of these facts

are characteristic of a particular material and best uniquely characterize the

spectrum. These selections are made interactively based upon knowledge and

information derived from experience. Much of this information is acquired

through analysis of large numbers of reflectance spectra and from information

published in the literature (Hunt, 1977; Hunt and Salisbury, 1970, 1971: Hunt et al.,

1971; Lee and Raines, 1984; Clark et al., 1990; Grove et al., 1992; Kruse and Hauff,

1993). Figure 5 shows the interactive rule selection screen within the program

"SFW" consisting of the fact table and the corresponding spectrum with features

marked. In this case kaolinite is selected and displayed. The expert user determines

which attributes of each fact are relevant and assigns comparison tolerances to each

chosen attribute. Tolerances are based on the expert's knowledge of spectral

variance. Entire facts can be selected or deselected. If a feature is deselected, the

corresponding feature marker on the spectrum disappears, thus the expert gets

visual feedback on his choices. Additionally, the attributes themselves are fully

editable. The chosen facts become individual "rules" to be used by the expert

system. The expert user assigns a relative weight to each rule based on its

importance for identifying the material. Weights range from 0.0 (feature not

required for identification) to 1.0 (feature mandatory for identification) and are

assigned based upon the expert's knowledge of the spectral properties of materials.

Once the rules are built, then the expert system can be used to analyze

unknown spectra. An input spectrum is compared to each spectrum in the library

(endmember spectrum) to determine degree of match. Two different types of

comparisons are used; binary encoding matching and feature matching to the rules

described above. The binary encoding is added primarily to deal with spectrum

noise and is particularly important when trying to analyze aircraft spectra, which

tend to be much noisier than laboratory spectra.

Binary encoding is a matching technique in which the average of all spectral

channels is determined and then each value is compared to the mean to determine

if it is above or below the mean (Mazer et al., 1988). Individual values lower than

the mean are assigned the value zero, while individual points above the mean are

assigned the value one. The binary encoded unknown spectrum is compared point

by point to the binary encoded endmember. The result is a value between 0.0 and

1.0 representing the number of points at which the encoded values match, presented

as a percent match of the two encoded spectra.

The second comparison method applies the continuum removal/feature

extraction algorithm to the unknown spectrum. The facts extracted from the

unknown spectrum are compared to the rules for each endmember spectrum in the

library to determine how many of the facts match the rules. A match occurs when

all of the attributes of a fact from the input spectrum fall within the user defined

tolerances of a rule's attributes. The result of the rule-based matching is a value

between 0.0 and 1.0 corresponding to the sum of the weights of the matching rules

divided by the sum of the weights of all of the rules for the selected endmember.

For example, if a specific mineral was expected to have three absorption features and

the expert user specifies that it must have one of the features, should have the

second, and might have the third to be identified, then these three features could be



Table 1. FACT TABLE FOR SEVERAL MINERALS

_ F3kTIM Asvrnmetrv

ALUNITE_K_al705 (Potassium Alunite)
2.16500 0.37318 0.10219 -0.10095
2.21500 0.26392 0.11628 -1.16594
2.03500 0.05409 0.23566 1.36317

2.01500 0.04456 0.23869 1.70167

1.47900 0.29062 0.01679 -0.36046
1.42900 0.19506 0.01895 0.73380

2.32500 0.16622 0.03024 -0.18854
2.41800 0.16472 0.07263 0.05584

1.76400 0.12116 0.04991 -0.14785

ALUNITE_Na_M706(SodiumAlunite)
2.17500 0.35612 0.09881 -0.21739
2.21500 0.23707 0.13305 -0.91083
2.01500 0.06008 0.25634 1.37395

1.96500 0.01226 0.30067 2.47355

1.49800 0.20735 0.03120 -0.42705
1.43900 0.17779 0.02339 0.64841

1.57100 0.01066 0.20000 -1.65978
2.32500 0.17091 0.03303 0.01244

1.76400 0.14757 0.05292 -0.15998
2.44000 0.14594 0.08888 -0.13573

2.40000 0.11199 0.09679 0.70296

B UDDINGTONITE_nhb2301
2.12500 0.25769 0.22012 0.04708

2.19500 0.17399 0.26053 -0.52084
2.05500 0.15166 0.27398 0.61666

2.01500 0.14873 0.27505 1.07181

2:30500 0.03623 0.38287 -1.53978

1.55800 0.02821 0.06986 0.36430

1.57100 0.02648 0.07260 0.13374

1.64000 0.01275 0.13998 -0.69283
1.61200 0.01260 0.14024 -0.37493
1.90500 0.02284 0.02600 -0.16291
1.41300 0.02163 0.02163 -0.14176
0.48500 0.01378 0.03755 0.08616

0.48900 0.01273 0.03826 -0.09337
0.49900 0.01193 0.03879 -0.56465
0.49500 0.01153 0.03905 -0.35206
0.47900 0.01013 0.04030 0.32356

KAOLINITE_W_XS TAL_idS00
2.20500 0.32452 0.07185 -0.54577
2.16500 0.25838 0.07711 0.33188

2.09500 0.02138 0.15539 1.78273

1.41300 0,31686 0.04395 -0.44953

1.39800 0.29228 0.04664 -0.I1524

1.35900 0.12928 0.11835 0.43102

1.46900 0.03096 0.23356 -1.19834
1.23800 0.02490 0.03691 1.72672

2.38600 0.05952 0.02403 -0.51408

2.35500 0.03045 0.04823 0.82100
1.91500 0.04801 0.05605 0.11757

2.31500 0.04327 0.04390 -0.35566
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Figure 5. Unix screen dump of the rule selection tool for library spectra. Shown

are the mineral selection menu (upper left), the spectral plot of the

selected mineral kaolinite showing the positions of the absorption

features marked with arrows (upper right), and the attribute selection

menu allowing selection of important absorption band attributes and

weghting of rules (bottom).
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assigned respective weights of 1.0, 0.6, and 0.3 to differentiate their importance. If an

unknown material only had two of the expected features (say the 1.0 and the 0.3

features) then the probability of occurrence of that specific mineral could be
represented as (1.0+0.3)/(1.0 + 0.6 + 0.3) = 0.68. Note that this is not a true

probability, but an empirical one used for decisions regarding relative certainty of

identification; a "certainty probability".

In practice, particularly with noisy data, it is necessary to combine the binary

results and the rule-based results to accurately identify materials. The final match

for each endmember spectrum is calculated by weighting the binary and the rule-

based results with fixed weights summing to 100% defined by the user. In the typical

imaging spectrometer (AVIRIS) case, based upon evaluation of the data and

comparison of single pixel spectra to library spectra, the binary results are weighted

at 40% and the feature results at 60%. The user can also select other weighting

factors depending on the quality of the data; noise-free data would ideally use only

the absorption feature rules (weight of 100% assigned to the rules). Extremely noisy

data could potentially use only the binary encoding algorithm (weight of 100%

assigned to the binary encoding). The result of the weighted decision is a certainty

probability between 0.0 and 1.0 describing how certain the expert system is that the

given input spectrum matches a given endmember spectrum. A certainty of 1.0

indicates that all rules were satisfied and the binary encoding match was perfect.

HI. RESULTS

GENERAL

The expert system was operational for single spectra prior to the start of

NASA funding in 1989, however, limited resources prevented implementation or

optimization for imaging spectrometer data. The original expert system ran under

the VAX VMS operating system on DEC MICROVAX computers. The feature

extraction algorithms were coded in FORTRAN, while the expert itself was coded in

the PROLOG programming language. The original expert system had a limited set

of facts and rules and critical absorption band characteristics were not well defined.

Once rules were defined, they were difficult to update or change.

Significant progress was made over the first year of the project, particularly in

the area of spectral library compilation. A suite of spectra for "pure" minerals and

several vegetation types and vegetation component spectra were analyzed to

determine critical absorption bands for identification. This information was

manually entered into a knowledge base for use by the expert system. Additional

high resolution spectra (3.8 nm resolution, 1 nm sampling) were measured for 26

minerals. The mineralogy of these samples was well characterized using X-ray

diffraction and Scanning Electron Microscopy. These results have been released in

digital form and results are also being published by the AGU for international
distribution (Kruse and Hauff, 1993).

During 1989 we also examined the spectral characteristics of vegetation.

Spectra were obtained for vegetation components, different vegetation types, and

vegetation under varying degrees of stress. The component spectra and the

differences between green and dry vegetation were analyzed using the feature

extraction procedures. The absorption band parameters for these materials were

11



entered into the knowledge base and facts and rules were utilized in the expert

system to differentiate between minerals and vegetation, and between dry and green

vegetation.

We also conducted a preliminary evaluation of vegetation spectra for

quantification of biochemical variation. Results of a study of spectra from ozone-

damaged Ponderosa Pine showed a correlation of R2--0.985 between chlorophyll

content and the depth of the 0.67 _tm absorption feature and R2=0.83 between

chlorophyll content and the 0.67 _m band width (Singhroy and Kruse, 1991).

During 1989-1990, the expert system was recoded into the C programming

language for portability and speed. We also looked at quantification of

mineralogical variation using the absorption band characteristics. Our first

comparisons were for a suite of illites from around the world (Kruse and Hauff,

1989; Hauff and Kruse, 1990; Kruse and Hauff, 1991), and of mixed layer

kaolinite/smectites from the Paris Basin, France (Hauff and Kruse, 1990; Hauff et al.,

1990; Kruse et al., 1991). The results demonstrate that the absorption band attributes

can be used to quantify mineralogical variation. The kaolinite example in particular

showed a strong linear relation between the asymmetry of the 2.2 _tm absorption

feature and the percent kaolinite vs smectite in the mixed layered clays (Kruse et al.,
1991).

Additional research during 1990 consisted primarily of refinement and testing

of the rules for the expert system and preliminary implementation of full dataset

imaging spectrometer analysis using the expert system. We also added additional

materials to the spectral database. We concentrated on collection of additional high

resolution spectra (including some for multiple samples illustrating spectral

variation) and supplemental data for the spectral database. We extracted and

analyzed spectral features from the high spectral resolution spectra and used this

information to refine rules. We continued to measure and quantify spectral

variation using laboratory instrumentation and digital analysis. Additional samples

were measured that illustrated the quantification of kaolinite layers in mixed-layer

kaolinite/smectite clays. We also conducted field testing of the quantitative

spectrum analysis procedures, confirming the validity of the method on in-situ

rocks and soils and establishing reproducibility of the estimates to 5-10% (Kruse et

al., 1991). We also analyzed spectra of stressed vegetation from the Canadian boreal

forest and reaffirmed the very strong relationship between decreased absorption

band depth and width (FWHM) at 0.67 _m and stress in vegetation, in this case

caused by the presence of heavy metals (Singhroy and Kruse, 1991).

During 1991 and a no-cost extension into 1992 we implemented the feature

analysis procedures developed for analysis of the individual spectra for use on

entire imaging spectrometer data sets, typically containing over 300,000 pixels

(spectra). This included refinement of the continuum removal procedures to deal

with noisy data and improved feature extraction and feature characterization

procedures. All software was converted to the "Interactive Data Language (IDL)"

(RSI, 1992) and "C" running on UNIX platforms. The "Spectral Image Processing

System (SIPS)" was designed and implemented, initially to view expert system

results. During late 1991 SIPS was turned over to CSES programming staff and

released externally as an operational system to support general imaging

spectrometer research and analysis. The 1992 no-cost-extension was also used to

implement the expert system using IDL, to document the software, and to conduct

12



expert system analyses of AVIRIS and/or GERIS image data from several areas in

Nevada, California, and Utah (Kruse, 1992a, 1992b; Kruse and Lefkoff, 1992, 1993;

Kruse et al., 1993a).

CHARACTERIZATION OF MATERIALS

IGCP SPECTRAL DATABASE

International Geological Correlation Project (IGCP) # 264 (Remote Sensing

Spectral properties) sponsored by UNESCO was formed in 1987 to address some of

the questions arising from developments in the field of imaging spectrometry, and

analysis of spectral reflectance data in general. Under the direction of the PI who

acted as database committee chairman, a questionnaire on spectral database

requirements was initially sent out in November of 1987, in January of 1988 and in

August of 1988 to an international group of about scientists. Responses were used to

compile statistics on database requirements for geologic applications. This

information was distributed to all IGCP-264 participants in the report of the 1988

meeting. The materials in Table 2 were listed in this report as the most important

for geologic applications of spectral remote sensing. Subsequently, as many as

possible of these were used in the initial compilation of minerals for inclusion in

the IRP expert system study.

TABLE 2. COMMON MATERIALS OF INTEREST TO GEOSCIENTISTS

Amphiboles Iron Minerals

ACTINOLITE GOETHITE .

TREMOLITE HEMATITE

Carbonates Micas

CALCITE MUSCOVITE

DOLOMITE Sulfates

SIDERITE GYPSUM

"Clays" JAROSITE
CHLORITES ALUNITE
HALLOYSITE Others

ILLITES BUDDINGTONITE
2M TALC

1M Vegetation

ILLITE/SMECTITE GREEN

KAOLINITE DRY
disordered

ordered

SEPIOLITE
PYROPHYLLITE
SMECTITE

Spectral database work over the course of this research consisted primarily of

collection and measurement of samples using the laboratory spectrometer and

preparation of the initial volume of the spectral database for publication. Only the

analytical work important to development of the expert system was supported by
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this grant. Additional support was provided by CSES internal funds and IGCP-264.

Spectra were measured at high resolution (constant 3.8 nm) and analyzed using the

automated feature extraction procedures described above. Detailed X-Ray Diffraction

(XRD) analyses and energy dispersive X-Ray (EDX) measurements were made.

Additional high-quality Scanning Electron Microscope photographs were acquired.

The digital reflectance spectra and supporting basic analysis software were released

during 1991 as part of SIPS (Kruse et al., 1993b). The hardcopy database is presently

in press (Kruse and Hauff, 1993). It consists of 26 well characterized minerals of

primary geologic importance collected as part of this research. A section on spectral

variability shows numerous spectra exhibiting natural variation for selected

mineral groups. Additional material was contributed by international participants

of the IUGS sponsored IGCP-264 project (Remote Sensing Spectral Properties)

including sections on soils and vegetation. Table 3 shows the Table of Contents for

the hardcopy database. Figures 6 through 9 demonstrate analyses for one mineral

(kaolinite). The database will be published during 1993 through AGU as a special

publication.

TABLE 3. Table of Contents from the IGCP-264 Spectral Properties Database

CONTENTS

INTRODUCTION
ACKNOWLEDGMENTS

1.0 USER SURVEY SUMMARY

1.1
1.2
1.3

INTRODUCTION
QUESTIONNAIRE RESPONSE SUMMARY
DETAILED QUESTIONNAIRE RESPONSES

2.0 CHARACTERIZED STANDARDS

2.1
2.2
2.3
2.4

SUMMARY OF MINERAL SAMPLES
ANALYTICAL PARAMETERS
MINERAL SUMMARIES
REFERENCES

3.0 SELECTED CONTRIBUTED SPECTRA

3.1 INTRODUCTION

3.2 ROCKS AND MINERALS
3.2.1 MINERAL VARIABILITY
3.2.2 GRAIN SIZE EFFECTS

3.3 SOILS.
3.3.1 CANADIAN SOILS
3.3.2 CHINESE SOILS

4.0

3.4 VEGETATION
3.4.1 GENERAL CHARACTERISTICS
3.4.2 CANADIAN BOREAL FOREST VEGETATION,

SPECTRAL PROPERTIES SELECTED BIBLIOGRAPHY.
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Figure 6. Mineral summary sheet from the IGCP-264 spectral
database for Kaolinite.

PROPERTIES

KAOLINITE
(including kaolinite and halloysite)

FORMULA:
CRYSTAL SYSTEM:
HA RDNES$:
COLOR-LUSTER:

HABIT:

AI2Si2Os(OH)4
Triclinic CLEAVAGE: {001} perfect
2.0-2.5 DENSITY: 2.6-2.63
Colorless, white, can be tinted yellowish, brownish, reddish or bluish.
Transparent to translucent; pearly to dull earthy.
Thin, hexagonal platelets or scales up to 2mm in size, many times stacked in
books; as elongated plates or curved laths; usually massive, compact, friable
or mealy; twinning rare.

OCCURRENCE
A very common clay mineral formed by weathering or hydrothermal alteration of feldspars and other
aluminous silicate minerais in soils, permeable bedrock and warm, moist regions; as a diagenetic
mineral filling pore spaces in sedimentary rocks, and massive lacustrine, lagoonal or deltaic, kaolin
deposits. It is a common associate of hot springs hydrothermal ore deposits, and acid sulfate volcanic
hosted ore deposits. It is also found as an "undemlay" in coal deposits.

SIMILAR SPECIES:
Dickite, Nacrite, Halloysite

ASSOCIATED SPECIES:
Feldspar, quartz, alunite, silica, other clay minerals, iron oxides, pyrite, siderite, anatase, rutile

REFERENCES:
Brindley, G.W., and Brown, G., 1980, Crystal Structures of Clay Minerals and Their X-ray Diffraction:

Mineralogical Society Monograph No. 5, Mineralogical Society, London, 495 pages.
Deer, W.A., Howie, R.A., and Zussman, J., 1962, The Rock Forming Minerals, 3, 194-212, New York,

Wiley.
Newman, A.C.D., 1987, Chemistry of Clays and Clay Mineral_. Mineralogical Society Monograph No.

6, Mineralogical Society, London, Great Britain, 480 p.

SOURCE
Washington County, Georgia, CSES-KL500, [CMS-KGa-1], Clay Minerals Society Source Clay KGa-

1, wellcrystalline kaolinite
Cripple Creek Hydrothermal Ore deposit, CSES-KLS02, Dan Taranik, University of Colorado,

,, Mas,ters Thesis, poor_, crystalline kaolinite.
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Figure 7. Rei_.ctance spectra from the IGCP-264 spectral database for kaolinite.
The file extensions refer to the spectrometer; .sir=SIRIS, .rlb=Relab,
.cse=CSES beckman, .usg=USGS beckman, .pm2=PIMA.
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ABSORPTION BAND ANALYSIS FOR KAOLINITE KLS00

Spectra Filename: kl500.rlb Data Filename: kl500.bnd

band order

1 I/ 2

2/ 2

2 I/ 2

2/ 2

,3 I/ 2

2/ 2

4 1/ 2

2/ 2

5 I/ 1

6 1/ 1

7 I/ 1

8 I/ 2

22/

wave

2.2050

depth

0.3317

FWHM

0.0665
as_m

-0.6491

2.1600 0.2330 0.0740 0.3997

1.4150 0.3254 0.0352 -0.6249

1.3950 0.2574 0.0424 -0.0887

2.3800 0.0747 0.0239 -0.2004

2.3550 0'0407 0.0493 0.7834

2.4850 0.0555 0.0805 -0.2052

2.4450 0.0503 0.0830 0.7004

1.9100 0.0467 0.0530 0.3200

2.3150 0.0397 0.0300 -0.2576

1.8150 0.0271 0.0644 -0.0602

0.9650 0.0239 0.0228 -0.6107

0.9550 0.03080.0163 -0 .0941
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Figure 8. XRD analysis from the IGCP-264 spectral database for kaolinite

X-RAY DIFFRACTION ANALYSIS FOR KAOLINITE KL500
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dA INT.

7.170 100

4.478 35

4.366 60

4.186 45

4.139 35

3.847 40

3.745 25

3.579 80

3.376 35

3,107 20

2.754 20

2.553 25

2.495 45

2.385 25

2.338 40

KAOLINITE JCPDS # 14-164

2THETA

12.335

19.810

20.323

21.207

21.451

23.101

23.739
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26.378

28.709

32.484

35.121

35.965
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38.472

hkl I dA
I

00 1 16 2.293

0 2 0 17 2.186

1 -1 0 18 2.133

1 1 -1 i 19 1.987

1 -1 -1 20 1.974
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002 23 1.838
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MINERAL SPECTRAL FEATURES

Spectra measured for the IGCP-264 spectral database were analyzed using the

feature extraction software to build fact tables containing all of the spectral features

found for each mineral as discussed previously and shown in Table 1. These

features were interactively analyzed using the SFW program to build rules. The

rules consist of features and attributes selected by the analyst (the PI in this case) as

being representative for a specific material (Table 4). In addition, each feature was

assigned a weight from 0 (not required for identification) to 1.0 (mandatory for

identification) corresponding to its importance. The rules shown in Table 4 list all

of the selected features for the default expert system rule-base. These represent a

minimum set of rules for mineralogical mapping in geologic applications. They are

easily updated or modified as additional spectra or spectral statistics become
available.

MINERAL VARIATION - GEOLOGIC MAPPING IMPLICATIONS

MIXED LAYER KAOLINITE/SMECTITE EXAMPLE

One of the major problems and most exciting areas of research in analysis of

mineral spectra is in the area of mineral variation. Most past studies have tried to

measure one characteristic spectrum for a particular mineral. While this provides a

starting point, it is actually an unrealistic simplification, as minerals exhibit a large

amount of natural variability. This research has taken the first steps towards

quantitative characterization of mineral variability. We have begun to develop

mathematical models that can explain the spectral characteristics in terms of the

chemical and structural make up of the minerals.

Figure 10 shows pure kaolinite and smectite endmember spectra and selected

spectra of a suite of mixed layer kaolinite/smecfite clays from the Argiles Plasfiques

Formation, Paris Basin, France. Note the regular variation of the 2.2 grn absorption

feature. The proportion of the kaolinite and smectite layers were determined from

X-ray diffraction (XRD) peak migration curves calculated by Reynolds (1980) and

Brindley et al. (1983). This sequence is important because it records the conditions of

deposition and subsequent weathering environment of the basin (Thiry, 1989). The

mixed layer kaolinite/smectites generally occur in continental sedimentary deposits

developed on shales, chalk, and limestones. They often appear in the soil profile

from smectite adjacent to bedrock to kaolinite in the near-surface environment.

Recognition of the interstratified minerals can be very important to characterizing

bedrock composition, soil genesis, and paleoclimate (Shimoyama et al, 1969;
Wiewiora, A., 1971; Schultz et al., 1971; Wilson and Gradwick, 1972; Lucas et al.,

1974; Yerima et al, 1985).

Although the sequence shown in Figure 10 has been recognized through XRD

studies and field investigations, the XRD recognition and quantification is difficult

and extensive studies have not been conducted. Analysis of laboratory reflectance

spectra, and particularly of in-situ materials using a field spectrometer has produced

new insights to the occurrence and distribution of these minerals. An experienced

analyst can see immediately from Figure I0 that there is a progression in the shapes

of the spectral features from the pure kaolinite endmember to the smectite

endmember. The continuum removal and feature extraction procedures described
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Figure 10. Laboratory spectra of Paris Basin Kaolinite/Smectite Series. Note

progression in shape from kaolinitic to smectitic for the 2.2, 1.9, and 1.4

I.tm absorption bands.
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above provide a means of quantitatively characterizing this spectral progression.
Similar variation can be seen in the 1.4 and 1.9 pm bands. Figure 11 is a plot of the

asymmetry measurement for kaolinite/smectite samples from the Paris Basin,

showing the relationship between the kaolinite content and the 2.2 _m band

asymmetry. A linear regression to the data gives a correlation of R2=0.84.

A field spectrometer was used during 1990 to measure, in-situ, naturally

occurring kaolinite/smectite mixed layer clays (Kruse et al., 1991). Analyses of the

2.2 _m absorption features produced results comparable to those previously

obtained in the laboratory with about 5-10% variation between field and laboratory

measurements. This close correspondence is excellent, given the differences in

illumination; surface effects such as grain-size, packing, and surface coatings; and

atmospheric interference in field measurements. These measurements provide a

rapid means of estimating kaolinite content for weathered rocks at their field

location and have direct applicability to expert system design. These results confirm

our ability to map mixed mineralogy (in this case the kaolinite component of

mixed-layer kaolinite/smectite clays) using spectroscopic methods and open the

potential for quantitative mapping using both field instruments and imaging

spectrometer data.

VEGETATION VARIATION - ECOSYSTEM MAPPING IMPLICATIONS

GENERAL

Spectral properties of vegetation (Figure 12) are a function of leaf pigments

(chlorophyll, xanthophyll, and carotene), cell morphology, internal refractive index

discontinuities, water content, and other plant tissue constituents such as lignin,

sugar, starch, and protein (Gates et al., 1965; Salisbury and Ross, 1969; Gates, 1970;

Knipling, 1970; Thomas and Oerther, 1972. The pigments dominate the 0.30 to 0.70

pm region. A spectrum of green vegetation has major absorption features near 0.45

micrometers and 0.68 micrometers that can be attributed to chlorophyll. Healthy

vegetation typically exhibits a sharp increase in reflectance near 0.70 micrometers

and a plateau of high reflectance between about 0.70 and 1.30 pm. Minor water

absorption features occurring near 0.96 and 1.20 _ have been related to both

cellular arrangement and hydration state of the vegetation (Gates, 1970). Leaf water

absorption dominates the region between 1.3 and 2.5 pm with healthy vegetation

showing a general drop off in reflectance and strong molecular water bands at 1.4,

and 1.9 pm. Plant tissue constituents also contribute to the overall spectrum.

Figure 13 and Table 5 show features extracted from green vegetation, and wet

cotton cellulose. The green vegetation features closely match the wet cellulose

features with the exception of the visible portion of the spectrum region where

chlorophyll and other pigments dominate. The feature extraction and

characterization software provides a quantitative means of analysis of the

vegetation. Figure 14 and Table 5 show features extracted from the dry vegetation,

and cotton cellulose. The dry vegetation features closely match the cellulose

features. These results indicate that we should be able to develop rules through

analysis of spectra with the feature extraction procedures to quantitatively map

progressive changes from the wet (vigorous) to the dry (stressed) state.

Studies of plant constituents have also demonstrated that the SWIR (~1.0 - 2.5

l_m) reflectance measurements can be used to obtain quantitative information about
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Figure 11 Correlation of 2.2 pm absorption band asymmetry and percent

kaolinite (determined by XRD) in mixed-layer kaolinite/smectite clays
(From Hauff et al., 1990)

0.7

0.6

o_ 0.5
<

<m 0.4

0.3
oi

'Y KAOLINITE IN K/S INTERLAYERS

Infrared vs XRD calculaled

I " 1 " ! I

.. y = 0.65308 - 3.4246e-3× R^2 = 0.836

i - V-_._..
, . .-.._

, I i I i I i l , i

20 40 60 80 100

% KAOLINITE (XRD)

3O



Figure 12. Typical reflectance spectrum of green vegetation in the visible, near-
infrared, and short-wave infrared (From Ustin and Curtiss, 1989).
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Figure 13. Continuum-removed spectra of wet cotton cellulose and green
vegetation.
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Figure 14. Continuum-removed spectra of dry cotton cellulose and dry

vegetation.
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TABLE 5. COMPARISON OF GREEN AND DRY VEGETATION SPECTRAL FEATURES

B1

1.43

2.O3

1.92

2.10

B2

1.92

2.14

1.45

1.49

B3

0.68

2.27

2.10

1.93

BAND 4

1.16

1.49

D2.31/2.27

D2.33/2.27

B5

231

1.72

1.72

1.21

Green Manzanita Leaf (Elvidge, unpublished data)
Wet cotton cellulose (Elvidge, unpublished data)

B6 B7

0.99 0.44

1.96

1.20 0.99

1.76 1.01

Dry grass - Cripple Creek, Colorado (Kruse, unpublished data)
Cotton cellulose (Elvidge, unpublished data)

SPECTRUM

GREEN VEG (1)

WATER (2)

DRY VEG. (3)

CELLULOSE (4 _,

(1)
(2)
(3)
(4)

B8 B9

0.50 1.76

0.85 0.90
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plant biochemistry, health, and productivity (Peterson et al., 1988; Goetz et al., 1990).

Measurement of these constituents allows researchers to estimate mass and energy

exchange rates and to map subtle changes in ecosystem functioning. Although

constituent spectra do have characteristic spectral features that influence the overall

reflectance shape, the individual features typically are not readily apparent in the

composite vegetation spectra (Goetz et al., 1990). Ongoing research has concentrated

on using techniques such as derivative spectroscopy, curve fitting, and spectral

unmixing to determine relations between canopy biochemistry and reflectance. The

feature extraction and analysis software developed at CSES also provides the

potential of being able to directly detect and characterize the individual absorption

features caused by the vegetation constituents (Figure 15). Identification of these

features could potentially allow remote quantification of canopy level

concentrations using imaging spectrometers.

OZONE DAMAGE MAPPING EXAMPLE

CHLOROPHYLL BAND DEPTH/RED EDGE SHIFT

Ustin and Curtiss (1989) have demonstrated that forest decline symptoms

caused by air pollution can be detected using reflectance spectroscopy. They used the

JPL Portable Instantaneous Display and Analysis Spectrometer (PIDAS) to examine

forest decline caused by ozone pollution to Ponderosa Pine (Pinus ponderosa) in the

southern Sierra Nevada, California. They observed that moderate levels of ozone

exposure resulted in needle chlorosis, premature foliar loss, and altered canopy
architectures.

To assess the damage, pine needles were clustered according to year of

development into "whorls" and ozone damage was visually estimated based on the

presence of chloritic banding and mottling. Chlorophyll a, b, and total chlorophyll
were determined for each whorl for two sites (sites 12 and 14, Ustin and Curtiss,

1989). Both sites were rated as moderately damaged by ozone with site 12 having a

slightly higher damage rating than site 14 (75% vs 60% of branches with chlorotic

mottle or banding). Reflectance spectra of uniformly bundled packets of needles

were measured for each whorl age from 0.40 to 2.45 Bm using the PIDAS. It was

observed that ozone damage appeared to increase with the age of the whorl, and that

the position of the reflectance "red edge" inflection point near 0.70 _tm shifted to

shorter wavelengths with increasing damage (decreased chlorophyll

concentrations). Similar observations of the red edge shift have been reported by

Collins (1978), Chang and Collins (1983), and Rock et al. (1988).

Brian Curtiss (CSES/University of Colorado) provided us with the PIDAS

digital spectral data to test weather the feature extraction and absorption band

characterization software we have developed for mineral analysis would be able to

detect the vegetation spectral changes caused by the ozone damage. Figure 16 shows

the Ponderosa Pine reflectance spectra from 0.50 to 0.80 Bm. Note that in general, it

can be observed that the older whorls (higher whorl number) have higher

reflectance in the 0.67 Bm region, however, the depth of the band and the position

of the "red edge" visually appears very similar for all spectra. Previous assessments

of vegetation health and vigor have relied on detecting this very small shift in the

position of the red edge, however, it is not clear weather this shift will be observable

using imaging spectrometers such as AVIRIS and HIRIS. After applying the

continuum removal and feature extraction procedures to the spectral data, the
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Figure 15. Continuum-removed vegetation constituent spectra.
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Figure 16. PIDAS reflectance spectra of moderately ozone-damaged ponderosa

pine from site 12 and 14 of Ustin and Curtiss (1989).
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relationship between the whorl age and the reflectance spectra is much clearer

(Figure I7). The whorl age is seen to be closely related to the depth of the absorption

feature at 0.67 _tm. This feature can be directly related to the chlorophyll

concentration in the vegetation (Salisbury and Ross, 1969; Thomas and Oerther 1972;

Tsay et al., 1982; Ustin and Curtiss, 1989). This observation is confirmed by the very

high linear correlation R2=0.985) between the depth of the 0.67 _tm absorption

feature as calculated by the feature analysis software and the total dry weight

chlorophyll concentrations as measured by Ustin and Curtiss (1989( (Figure 18). The

band width at half the absorption feature depth (FWHM) is also closely related to the

chlorophyll content (R2=0.82). Although these results look promising, further study

needs to be done to assess the feature extraction procedures for other vegetation

types, for actual imaging spectrometer data, and the effects of other stresses on the

spectral feature characteristics of vegetation. We conclude from the ozone data,

however, that the feature extraction procedure does provide a means of estimating

ecosystem parameters and that rules could be developed to do this automatically

with the expert system for imaging spectrometer data.

MINERALIZATION STRESS - CCRS EXAMPLE

Chlorophyll is the major photosynthetic pigment in higher plants. Major

chlorophyll absorption features occur between 0.56 and 0.67 _tm (Figure 12). Stress

in plants can result in chlorosis (chlorophyll loss). This phenomenon has been

documented in reflectance spectra as a shift in the "red edge" (Gates et al., 1965;

Collins, 1978). Stress-induced shifts in the red edge have been reported both toward

longer (red) and shorter (blue) wavelengths, and have been attributed to changes in

chlorophyll concentration. Ustin et al. (1988) and Curtiss and Ustin (1989) indicate

that although the red edge is, in part, controlled by chlorophyll concentration, it is

also influenced by the condition of the chloroplast membranes on which the

chlorophyll is bound. They attribute broadening of the the chlorophyll absorption

bands to disruption of the membranes. It is suggested that the position of the red

edge shifts to either red or blue wavelengths depending on whether the membrane

disruption or the chlorophyll loss process dominates.

Our work with spectra of Curtiss and Ustin's ozone damaged Ponderosa Pine

indicated, that at least for that species, direct measurement of the depth and width of

the chlorophyll absorption band was an excellent means of estimating chlorophyll

content (R2=0.985, N=6). Ustin and Curtiss' correlation of chlorophyll concentration

and the red edge was considerably lower (R2=0.72, N=107). Although some of this

difference may be due to scatter caused by the difference in sample size, our research

suggests that directly characterizing the absorption band itself rather than a subtle

shift in the absorption edge may be a better indicator of the vegetation stress

exhibited as chlorophyll loss.

During 1990 we attempted to verify these direct indicators of vegetation stress

using laboratory spectra. Digital spectra for trees from the Canadian boreal forest

were obtained as part of the IGCP spectral database collection effort. Spectra were

provided by Dr. Vernon Singhroy of the Canadian Center for Remote Sensing

(CCRS) for trees growing both on non-mineralized and mineralized ground (areas

with anomalous concentrations of various metals). These spectra were analyzed

using the feature extraction procedures designed for the expert system to verify the

procedures' applicability to assessment of vegetation parameters. Based on our
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Figure 17. Continuum-removed PIDAS spectra of ozone-damaged ponderosa

pine. Note decreased absorption band depth of more severely
damaged, older growth (whorls 2, both sites).
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0.67 BAND DEPTH

VS TOTAL CHLOROPHYLL

y = 0.62080 + 9.5793e-Sx R^2 = 0.985
0.88 .
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Figure 18. Correlation of 0.67 absorption band depth with total chlorophyll for
whorls 2 through 4 at sites 12 and 14 of Ustin and Curtiss (1989).
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experience during 1989 with the ozone-damaged Ponderosa Pine needles, which

showed a high correlation between total chlorophyll and the 0.67 _m absorption

band depths and widths, we expected that we would be able to detect and

characterize any damage or stress caused by the exposure to mineralized soils.

The average of 10 spectral measurements for five species of trees were

evaluated for both non-mineralized (background) and mineralized samples. Figure

19 shows an example of both the background and mineralized reflectance spectra for

one species of trees. The red edge shift for this example is very small. When the

feature extraction procedures are used to characterize the chlorophyll absorption

feature near 0.67 _ the trend is similar to that for decreased chlorophyll shown

previously for ozone damaged Ponderosa Pine. This trend is consistent across

several species, including both evergreen and deciduous types (Figure 20a). In

addition, 0.67 _tm absorption band width (FWHM) is also a good indicator of

vegetation stress (Figure 20b). The FWHM decreases with stress for four of the five

species. Chlorophyll absorption band depth and width could be used in

combination to develop field and aircraft techniques for characterization and

quantitative mapping of vegetation stress. This example clearly demonstrates that

the feature extraction and absorption band characterization procedures developed

for analysis of mineral spectra are applicable to analysis of vegetation spectra.

EXPERT SYSTEM DEVELOPMENT

GENERAL

The final stage of this research applied the feature extraction procedure to

field, laboratory, and aircraft spectra. The expert system was operational for single

spectra prior to the start of NASA funding in 1989 (Kruse et al., 1988). The original

version ran under the VAX VMS operating system on DEC MICROVAX computers.

This research extended these procedures to UNIX-based computers and to complete

imaging spectrometer data sets.

Initially, FORTRAN was used to implement the feature extraction

procedures. Critical absorption band characteristics for a given mineral were defined

by manually analyzing the feature extraction results and comparing to published

reflectance spectra. The PROLOG programming language (Quintus Computer

Systems, 1987) was used to implement the facts and rules Prolog simplified logical

structuring of the program to model the decision processes followed by an

experienced analyst. A tree hierarchy was used to reduce analysis time (Figure 21).
A decision was made at each level of the tree based on facts and rules derived

through prior analysis of the spectral library (Figure 22).

The decision process used by the computer was designed to emulate the

logical steps followed by an experienced analyst. The strongest absorption feature for

a given spectrum was determined, and the spectrum broadly classified (eg. clay,

carbonate, iron oxide). Primary band characteristics (eg. doublet, triplet) and

secondary/tertiary absorption bands were used to progress through the tree structure

until an identification was made. If the decision process failed because there was

insufficient information to identify a specific mineral, then the last classification

was used to give the best answer possible.

Re-evaluation of the procedures and a major revision of the software was

started in February 1989 based on poor speed performance, lack of determinative
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Figure 19. A. Reflectance spectra for White Birch; B. Reflectance spectra for Black

Spruce; C. Continuum-removed spectra for White Birch; D.

Continuum-removed spectra for Black Spruce. Note position of red

edge inflection in A and B for trees growing on both background and

mineralized areas. Note differences in absorption band depth and
width in C and D.
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Figure 20a. Plot showing relationship of 0.67 pm absorption band depth to

vegetation stress. Absorption band depth for plants growing on

mineralized soil is less than that for plants growing on background soil

for all five species.
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SPECTROMETER DATA

MIXTURES

SNOW CULTURE WATER SHADOW REX3t_ DRY CLOUDS
VEGETATION VEGETATION

1
NH MINERALS FE OXIDES "CLAYS" CARBONATES FE 2+ ZEOLITES

4

l
MICAS & KAOLINITES MONTMORILLONITES PYROPHYILLITE
ILLITES

r
14TH I: -_-ClSlONI

KAOLINITE DICKITE

5TH

100%

KAOLINITE

SULFATES

ALUNITE

GYPSUM

DECISION IQUANTIFY} I

50% (7'/o

KAOLINITE KAOLINITE

Figure 21. Tree hierarchy for expert system
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- Figure 22. Example of rules: kaolinite vs. alunite.

1st Decision ( Surface class )

if not strong band near 0.67

and if not broad spectral bands near 1.4 and 1.9 _tm (vegetation)
then look for in rock class

2nd Decision ( rock level )

if it has a deep band in 2.15-2.22 _rn region

then look for in "clay" species.

3rd Decision ( "clay" species )
if it has a doublet near 2.2

and strongest band of the doublet is 2.21 _n

and weakest band of the doublet is near 2.17

and 2.21 _rn asymmetry is <<1 (Left Asymmetry)

and 2.17 _tm asymmetry is >>1 (Right Asymmetry)
an.._ddadditional smaller bands near 2.32, 2.36, and 2.38 _tm

then it is kaolinite.

if it has a broad band near 2.17 _tm
and a weak shoulder near 2.21

and 2.17 _tm asymmetry is <<1 (Left asymmetry)

and additional weaker bands near 2.32 and 2.42 _tm
then it is alunite.
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mineral identification by the prototype expert system, and the receipt of funding

from NASA for the project. We made the decision to convert all of the software to

the C programming language to increase the efficiency, portability, and speed of
execution.

It was also clear that noisy data typical of most aircraft systems was going to

present severe problems to a system that relied only on identification of specific

mineral absorption features. We were familiar with the binary encoding schemes

successfully used for analysis of NASA Airborne Imaging Spectrometer data (Mazer

et al., 1988) and so decided to try to incorporate this feature as part of the expert

system analysis. Figure 23 shows the expert system analysis procedure revised to

include binary encoding in the decision process.

I BUILD KNOWLEDGE

BASE BY ANALY]DNG

REFLECTANCE SPECTRA

(ONE TiE ONLY)

READ URKNOWN LAB, WEIGHT SINARYI u iqNA/ I I READ UNKNOWN I

_ELO.ORlUAalBPECTA_ ANOFEA_MEI--_I,oENT,_AT,ONEt"eq.,ECTRU.ANOI

:ILEal BTAm'AaAJN I

I ,..-,, I
I READ EPECTRAL

UBRARY AND

BINARY DICOOE

(ONE TllLIE ONLY) I Bp,_r,_-m.,_ JAND OTHER ALGORITHMS

Figure 23. Revised expert system analysis procedures

SINGLE SPECTRUM ANALYSIS

Example for Laboratory Spectrum

The stand-alone user interface for the expert system for analysis of individual

spectra was improved to provide a complete report on the decision process,

including justification. Figure 24 is an example of the results of the step-by-step

analysis procedure used to determine mineralogy. It shows an analysis of a

laboratory calcite spectrum using the expert system. The results of the feature

extraction procedure and absorption band parameter extraction are shown in Figure

24a. The interaction of the absorption features and the rules result in the broad

classification shown in Figure 24b. Note ambiguities caused by shared spectral

4S



Figure 24. Expert system analysis of calcite lab spectrum (From Kruse et al., 1990a).

24A. FEATURE ANALYSIS:

BAND ORDER WAVE(_m) DEPTH FWHM ASYM

1 1/1 2.340 0.3001 0.0980 0.3047

2 1/1 1.997 0.0788 0.0490 0.5154

3 1/1 1.870 0.0603 0.0490 0.6033

4 1/1 2.164 0.0452 0.0392 0.1947

24B. EXPERT SYSTEM BROAD CLASSIFICATION:

There are features from: vegetation
carbonates

clays
micas and illites

calcite

24C. BINARY ENCODING MATCHES (percentage):

Buddingtonite 85.24 Kaolinite 80.00

Montm 82.86 PyrophyUite 83.33
lllite 35.71 Muscovite 56.19

Alunite 74.76 Gypsum 65.71

Epidote 53.81 Chlorite 40.95
Ca lci te 100.00 Dolomite 86.19

Actinolite 52.38 Tremolite 84.29

Jarosite 58.10 Hema tire 53.81

Goethite 56.67 Green Vegetation 58.10

Dry Grass 73.33

24D. CALCITE FINAL RESULTS - WEIGHTED DECISION:

According to the expert system and the binary encoding

performed on the spectrum, the probability of the presence of:

Calcite is nearly certain
Dolomite is medium

Buddingtonite is medium
Muscovite is medium

24E. JUSTIFICATION - CALCITE:

The binary match to calcite is 100.00 % so

the binary match is rated very high
The carbonate feature between 2.30 and 2.35 _.m is present

The calcite feature at 2.34 p.m is present

The overall expert guess for the probability of

calcite is Nearly Certain

24F. JUSTIFICATION - DOLOMITE:

The binary match to dolomite is 86.19 % so

the binary match is rated high
The carbonate feature between 2.30 and 2.35 _m is present

The dolomite feature at 2.32 _m is not present

The overall expert guess for the probability of dolomite is Medium
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characteristics. Figure 24c shows the percentage match of the spectrum with the

binary library. Note the 100% match between the library calcite and the unknown

spectrum. This is because this particular calcite spectrum comes from the library.

Figure 24d shows the final result of the decision process when the binary encoding is

used to weight the feature extraction process. Figures 24e and 24f show the

justification for the identification of calcite versus dolomite.

Alunite, Kaolinite, Buddingtonite from GERIS data

The refined feature extraction algorithms and expert system were tested on

individual spectra from Geophysical and Environmental Research Inc. 64 channel

imaging spectrometer (GERIS) data of Cuprite, Nevada. This instrument is the first

commercial imaging spectrometer. The GERIS collects data from 0.43 to 2.5 _tm in

64 channels of varying width. The 24 visible and infrared bands between 0.43 and

0.972 are 23 nm wide, the 8 bands in the infrared between 1.08 and 1.8 _m are 120

nm wide, and the 31 bands from 1.99 to 2.5 _trn are 16 nm wide (William Collins,

written communication, 1988). Only the last 31 bands were used in this study. The

feature extraction procedures were used to extract absorption band characteristics

directly from the image data. The expert system successfully identified the minerals

kaolinite, alunite, and buddingtonite from the data. These minerals had previously

been identified manually and verified through field checking, laboratory

spectroscopy, and XRD analysis (Kruse et al., 1988, 1990b).

Hematite, goethite, sericite, calcite, and dolomite from AVIRIS data

The continuum-removal and feature extraction procedures were also used to

analyze individual spectra from AVIRIS data for a site in the northern Grapevine

Mountains, Nevada (Kruse, 1988; Kruse et al., 1988, 1993a). Individual spectra were

extracted from the AVIRIS data for known occurrences of hematite, goethite,

sericite, calcite, and dolomite. Comparison of the shapes and positions of the

absorption features with laboratory spectra made positive identification of the

minerals possible. The AVIRIS data not only allowed identification of the

carbonate-group-minerals, but permitted identification of the individual species

(calcite and dolomite) based upon a 20 nm (2 channel) difference between the

position of the main absorption feature (2.34 vs 2.32 _tm). The feature extraction

procedures successfully produced continuum-removed spectra that show this offset.

Spot checking of the imaging spectrometer data for areas of known mineralogy

showed a good match between extracted absorption features, laboratory

measurements, and the expert system's automated identification The feature

extraction procedures successfully produced continuum-removed spectra that could

be compared to laboratory spectra. The strongest absorption bands corresponded to

bands in the laboratory spectra and the prototype expert system correctly identified

the minerals hematite, goethite, sericite, dolomite, and calcite.

IMAGE ANALYSIS

The final step in developing a generalized expert system for the analysis of

imaging spectrometer data was to map the spatial distribution of the minerals using

the expert system. Because of the association of a spectrum with each pixel of the

image, implementation of the expert system consisted of applying the single

spectrum analysis to each pixel (-300,000). The analysis was segmented, with
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production of several intermediate image cubes to allow testing and evaluation of

each step. Interactive viewing of the derived cubes was used to verify results.

The expert system as described above was tested on several imaging

spectrometer data sets including images from northern Death Valley, California;

Paradise Peak, Nevada; and the Drum Mountains, Utah. It has been proven as the

first, automated step in a complete scheme for quantitative analysis of imaging

spectrometer data (Kruse et al., 1993a; Kruse and Lefkoff, 1993).

AVIRIS is the first of a second generation of imaging spectrometers

measuring near-laboratory quality spectra in 224 10 nm-wide channels in the

spectral range 0.41 to 2.45 pm (Porter and Enmark, 1987). The AVIRIS is flown

aboard the NASA ER-2 aircraft at an altitude of 20 km, with an instantaneous field

of view of 20 m and a swath width of about 10 km. It utilizes four linear arrays and

four individual spectrometers to collect data simultaneously for the 224 bands in a

scanned 614 pixel-wide swath perpendicular to the the aircraft direction. The second

dimension of the images is provided by the forward motion of the aircraft, which

moves the ground field of view along the terrain.

The expert system requires that the imaging spectrometer data be calibrated to

reflectance because the rules are built using laboratory reflectance spectra. Once the

data are properly calibrated, the expert system analysis proceeds in the same fashion

as for a laboratory spectrum. Each pixel in the image is in effect a single spectrum.

The procedure then is to treat each pixel individually and sequentially to remove

the continuum, extract the features, and compare the features to the feature rules

built from the spectral library. A match occurs when all of the attributes of a fact

from the input spectrum fall within the user defined tolerances of a rule's attributes.

The result of the rule-based matching is a certainty probability value between 0.0 and

1.0 corresponding to the sum of the weights of the matching rules divided by the

sum of the weights of all of the rules for the selected endmember. For example, as

described previously, if a specific mineral was expected to have three absorption

features with respective weights of 1.0, 0.6, and 0.3 (must-have, should-have, and

may-have) and it only had two of the features (say the 1.0 and the 0.3 features) then

the probability of occurrence of that specific mineral could be represented as

(1.0+0.3)/(1.0 + 0.6 + 0.3) = 0.68. The value "0.68" would be assigned to a pixel in the

output image for that mineral. The result of these analyses for the imaging

spectrometer data is a new "information cube" consisting of the certainty probability

displayed as a single gray-scale image for each endmember contained in the spectral

library (Figure 25). These images contain the certainty probability value for each

pixel (between 0.0 and 1.0) indicating the degree of match to the feature rules.

In practice, as described previously, because present imaging spectrometers do

not have adequate signal-to-noise (SNR) performance, a perfect match to the rules is

rare. Implementation of additional noise-tolerant techniques is usually required to

assist the feature based methods. Binary encoding was used here in the same

fashion as for the single spectrum case to provide additional spectral information.

The result of the binary encoding analysis for the imaging spectrometer data is a

new information cube consisting of the degree of binary match displayed as a single

gray-scale image for each endmember contained in the spectral library (Figure 26).

With noisy data, it is necessary to combine the binary results and the rule-based

results to accurately identify materials. The final match for each endmember
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spectrum is typically calculated by weighting the binary results at 40% and the rule-

based results at 60%. The user can also select other weighting factors depending on

the quality of the data. Noise-free data would ideally use only the absorption feature

rules. The result of the weighted decision is a certainty probability between 0.0 and

1.0 (again presented as an information cube) describing how certain the expert

system is that the given input spectrum matches a given endmember spectrum.

Figure 27 shows a schematic of the final information cube combining the combined

binary/feature expert system analysis. The final expert systems results cube also

contains a "best endmember" image assigning the expert system's best guess of the

predominant mineralogy for each pixel based upon the highest certainty probability.

Saving of additional image cubes containing the continuum-removed spectra and

the absorption feature attributes (facts) are optional as is the automatic calculation of

average spectra for the endmembers identified (an endmember spectral library)
(Kruse, 1992a)

Although this expert system concept has been under development for some

time, a recurring problem was the lack of software tools to display the results and

evaluate them in the geologic context. Several tools were therefore developed as

part of this research for general viewing and analysis of imaging spectrometer data

and specifically for viewing the expert system results. The Spectral Image Processing

System (SIPS) is one example of this software that has already been released to

organizations outside CSES (Kruse et al., 1993b). Another tool, the "General Use

Expert System for Spectra (GUESS)" is a tool more specifically designed for analysis

of the expert system analyses described above (Lefkoff and Kruse, 1993). It provides

interactive capabilities for evaluating expert system performance. Figure 28 shows

the results of the expert system analysis of AVIRIS data for the area in northern

Death Valley, Nevada, for the mineral dolomite. This tool displays an AVIRIS

image with all pixels matching the dolomite binary encoding and feature rules color

coded as black. These pixels represent 20 m x 20 m areas on the ground where

dolomite is the predominant mineral and generally correspond in location and

pattern to field-mapped geology and field spectral measurements (see Kruse, 1988).

Also displayed are two AVIRIS spectra extracted for the 87 and 75 percent certainty

probability levels (16 and 791 pixels respectively) for dolomite showing the

characteristic absorption features near 2.32 jim. The similarity of pixels displayed on

the image can be controlled using the slider to change the certainty probability level.

As the certainty is decreased, more pixels are displayed, however, the spectra are less

similar to the dolomite lab spectrum used to derive the rules. Figure 29 shows an

endmember spectral library extracted from the imaging spectrometer data based

upon the results of the expert system analysis. These spectra form the starting point

for other, quantitative techniques requiring spectral endmembers such as spectral
unmixing (Boardman, 1989).

IV. CONCLUSIONS

An expert system has been developed that allows automated analysis of

imaging spectrometer data. The key elements consist of automated extraction of

spectral features from a spectral library, automated determination of facts from the

extracted features, interactive selection of rules for each mineral, and automated

decisions concerning mineralogy based on the rules. The result of these analyses is

an information cube containing a measure of the certainty of occurrence for each
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Figure 28. Unix screen dump showing a software tool for analysis of the expert
system results. Black pixels (normally red on the CRT monitor) in the

lower center of the image (13704 total) represent areas identified as
dolomite using the combined binary encoding and feature based rules.

Spectra shown are averages for different certainty probability levels.
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Figure 29. Expert system-derived endmember spectral library from the northern

Death Valley AVIRIS data. From top to bottom these spectra represent

average image spectra of muscovite, dolomite, and calcite at the 50%

certainty level (From Kruse and Lefkoff, 1992).
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mineral in the library at each pixel of the image. Individual images from this cube

can be displayed and analyzed using graphically-based software tools to produce
thematic image maps showing the distribution of materials at the surface. The

results described here and other ongoing studies indicate that the expert system in

its present state is a viable system for automated mineralogical mapping. Continued

testing and refinement, and improvement of SNR characteristics of imaging

spectrometers promise improved performance. Preliminary work with other

materials indicates that these techniques should be extensible to areas other than

mineralogy.

The feature extraction procedures and the expert system have been

successfully used to analyze lab and field spectra of unknown materials and

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The expert system
has successfully identified and mapped areas of the minerals kaolinite, alunite, and

buddingtonite at one site using 63 channel imaging spectrometer data and areas

containing the minerals hematite, goethite, sericite (fine grained muscovite), calcite,

dolomite, halloysite, kaolinite, and alunite at other sites using the 224 channel

AVIRIS data. The feature extraction and absorption band characterization

procedures have been successfully tested on entire AVIRIS cubes.

It is clear that efficient use of automated techniques simplifies the task of

extracting information from imaging spectrometer data. The expert system

developed as the result of this research brings within reach automated, quantitative
analysis of data sets such as AVIRIS.

V RECOMMENDATIONS FOR FURTHER RESEARCH

This and similar research is important to the future of NASA'S imaging

spectrometer program. One key point is the fact that this type of research is

impossible without adequate spectral databases. Future efforts should concentrate

on acquiring additional well-characterized high-spectral' resolution measurements.

Extension of the databases to include a variety of materials both naturally occurring

and man-made is essential. This should also include detailed studies of spectral

variability. Interdisciplinary studies involving scientists with spectral properties

expertise for a variety of materials is recommended.

Further testing of the expert system capabilities is required. Merging the

feature-based techniques with other noise-tolerant techniques should be of

particular interest. This would require acquisition of additional imaging

spectrometer data sets, implementation of new algorithms, and testing of the expert
system for specific surface classes and conditions.

Finally, the expert system results demonstrate that operational imaging

spectrometers such as AVIRIS are providing spectral data of sufficient quality to

perform detailed quantitative mapping. Further improvement of these capabilities

is dependent upon continued development and support of high quality imaging

spectrometers providing data with near-laboratory-quality signal-to-noise ratios.
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