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SUMMARY

An investigation of thermomechanical testing and deformation behavior of tubular specimens under
torsional loading is described. Experimental issues concerning test accuracy and control specific to
thermomechanical loadings under a torsional regime are discussed. A series of shear strain-controlled
tests involving the nickel-base superalloy Hastelloy X were performed with various temperature excur-
sions and compared to similar thermomechanical uniaxial tests. The concept and use of second invariants
of the deviatoric stress and strain tensors as a means of comparing uniaxial and torsional deformations is
presented and critiqued for its applicability to the present data. The hardening behavior of the torsional
specimens is also briefly presented and discussed in light of previous thermomechanical tests conducted
under uniaxial conditions.

INTRODUCTION

In most high temperature engineering applications, components are subjected to complex combinations
of thermal and mechanical loadings during service. Such thermomechanical loadings have long been iden-
tified as limiting factors in the design of structural components. In addition, certain structural alloys
display unique deformation behaviors under specific thermomechanical paths: behaviors which are not
experienced under more commonly investigated isothermal conditions (refs. 1 to 3). This potential for life
limiting behavior and unique deformation response under thermomechanical loading is clearly sufficient to
warrant careful consideration and investigation.

Despite the demonstrated need for closely controlled thermomechanical deformation (TMD) exper-
iments, such experiments are seldom performed due to numerous experimental complexities introduced
(e.g., phasing between the mechanical component of loading and temperature, dynamic temperature
gradients, and cyclic temperature control. Many of these issues are further complicated in axial strain-
controlled tests in which thermal strains have a first order effect on the test control variable: the speci-
men's total strain (refs. 1 and 4 to 6). If a specific mechanical strain range is desired, an accurate



account of and compensation for the thermal strain component must be maintained throughout the test.
Even with digital test control, this remains a complex task.

One approach to minimize or potentially eliminate the coupling between mechanical and thermal
strains is to perform thermomechanical strain-controlled tests under torsion. Under such conditions, the
strain in the loading direction (pure shear) is theoretically not affected by temperature excursions. Thus,
there is no need to account for thermal strain effects and, as a result, test control is greatly simplified
(refs. 7 and 8). Moreover, a torsion test enables the measurement of the entire mechanical strain tensor
with a single measurement, whereas two or three measurements are required to measure the full mechan-
ical strain tensor in a uniaxial test. Typically, however, only the strain in the loading direction is meas-
ured in a uniaxial test. The transverse strains are dependant upon the temperature and relative amounts
of elastic and plastic deformation, and are therefore difficult to predict.

The objectives of this investigation were, first, to develop testing capabilities and investigate testing
issues concerning closely controlled TMD experiments in torsion, and second, to make comparisons
between uniaxial and torsional TMD based on equivalent effective stresses and strains. The second objec-
tive was accomplished by conducting torsional and uniaxial TMD experiments with equivalent effective
strain limits based on the second invariant of the deviatoric strain tensor. The effective strain limits were
calculated from the first cycle of the uniaxial TMD response and subsequently used to dictate the imposed
strain values for the analogous test in torsion. By forcing the second invariant of the deviatoric strain
tensors to be identical during the first cycle of deformation, appropriate data comparisons could be made
in a second deviatoric stress-strain space. Such comparisons were designed to address the validity of the
sole use of this scalar quantity for the purposes of comparing and predicting TMD behavior.

NOMENCLATURE

aij , aij	 deviatoric internal stress and stress rate tensors, respectively

f, g, h	 material functions in the Robinson model

J 2	 second invariant of the deviatoric stress tensor

J2	 second invariant of the deviatoric mechanical strain tensor

J 25 J 2	 second invariant of the effective deviatoric stress tensor and deviatoric internal stress
tensor, respectively

K	 material parameter in the Robinson model

1,1 0	total and initial axial gage length, respectively

O1T , AIR	changes in axial gage length resulting from thermal and ratchetting strains, respectively

ro	 original mean radius of specimen

ri , r, rou	 inner, mean, and outer radius of specimen, respectively

OrT , OrR	change in mean radius of specimen resulting from thermal and ratchetting strains,
respectively

Sil	 deviatoric stress tensor



sm	 actual lateral displacement resulting from mechanical load

s 	 lateral displacement at mean test temperature resulting from initial indentation
misalignment

s	 lateral displacement measured by extensometer

sio	 initial indentation misalignment at room temperature

S i	 lateral displacement resulting from indentation misalignment

sm	 measured lateral displacement resulting from mechanical load

T,AT	 temperature and temperature change, respectively

TM	 mean test temperature

TRT	 room temperature

a	 linear coefficient of thermal expansion

ai]	 internal stress tensor

7	 total engineering shear strain

7'	 desired total engineering shear strain (error calculation)

"gym , 7i	 engineering shear strain resulting from mechanical load and misalignment, respectively

bij	 Kronecker delta

E el ) 6 P	 elastic and plastic strains axial strain components, respectively

E LR, EHR	 ratchetting strains in longitudinal and hoop directions, respectively

An
6 i	 inelastic strain rate tensor

vei, ypl	 elastic and fully plastic Poisson's ratios, respectively

Bf ,B9	 material functions (Arrhenius forms) in the Robinson model

P	 material function in the Robinson model

Eij	 effective deviatoric stress tensor

oij	 total stress tensor

T	 torque

r	 shear stress

0	 total angle of twist in gage length

Oi	 angle of initial twist in gage length resulting from initial indentation misalignment
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Om	 angle of mechanical twist in gage length

Q	 complementary dissipation potential

EXPERIMENTAL DETAILS

Test Specimens

The material used for this study was Hastelloy X —a nickel-base solid-solution-strengthened alloy
commonly used in high temperature power generation applications. The torsional and uniaxial specimens
were fabricated from separate heats of material. All of the material used in this investigation was pro-
duced in accordance with Aerospace Material Specification 5754H and was solution heat treated. The
chemical compositions of each heat are shown in table I.

The test specimen geometries are shown in figure 1. Smooth shank ends were used to allow gripping
with hydraulically-actuated collet grips. Earlier investigations with both geometries (refs. 4 and 9) have
shown the specimens to be well suited for axial and torsional deformation studies on monolithic materials.

Torsional Test Apparatus

All experiments were conducted in an air environment. Heating was provided by an audio frequency
induction heater outfitted with the coil fixture partially shown in figure 2 and described completely in
reference 10. This fixture supports three coil segments which are independently adjustable in the trans-
verse and axial directions. The three coil segments were wired in series, thereby enabling the use of a
single, closed-loop temperature controller. Since no forced cooling was employed, conduction through the
water-cooled grips served as the major mechanism for specimen cooling. An enclosure was used around
the test frame to minimize the effects of air currents.

A triangular waveform was used for both shear strain and temperature control. This allowed a con-
stant shear strain rate to be maintained throughout the cycle. Cycle periods were dictated by the ability
to cycle the specimen's temperature and maintain close control over the desired waveform. This resulted
in a 4-min cycle period. The uniaxial TMD tests used for comparison in this study were conducted with
an 8-min cycle period due to limitations related to accurate thermal strain compensation (refs. 1 and 4).
Such limitations did not arise in the torsional TMD experiments as no thermal strain compensation was
required. Previous work on Hastelloy X indicated that a factor of two difference in strain rates should
have a negligible effect on the material's deformation response in the temperatures of interest (refs. 1
and 11). Therefore, in an effort to expedite testing, the torsional cycle times were maintained at 4 min.
Load in the axial direction was maintained at zero in load control. Shear stress in the gage length was
assumed nearly constant through the wall thickness and, as such, was based upon the mean radius (r) in
the following manner:

*
Hastelloy X is a trademark of Haynes International, Inc., Kokomo, IN.
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where T is the torque, r ou is the outer radius, and r i is the inner radius. This approximation is
considered reasonable since the mean radius is six times the wall thickness.

The temperature and shear strain waveforms were time-phased with a value of either 0° (in-phase) or
180° (out-of-phase). Therefore, given that all the tests were initiated at the mean temperature of the
temperature range, the in-phase (IP) and out-of-phase (OP) torsional tests corresponded to the cases of
initial temperature increase and decrease, respectively. For example, an IP test with a temperature range
of 400 to 600 'C would initiate at 500 'C and begin loading with temperature increasing towards
600 °C. The corresponding OP test would initiate at 500 °C and begin loading with temperature
decreasing towards 400 ° C. Note that the mechanical effects of positive or negative strain are identical
in pure shear-type loading and the sign is strictly an issue of convention. Thus, the difference between IP
and OP deformation in this study rests exclusively on the condition of initially loading towards the hot
extreme of the temperature range (IP) or the cold extreme of the temperature range (OP). This is not
the case for the uniaxial TMD experiments where IP or OP implies that the maximum temperature
coincides with the maximum tensile or compressive mechanical strain, respectively (ref. 4).

A minicomputer was used to command the temperature and shear strain control signals. Tempera-
ture, torque, axial strain and shear strain were digitally recorded at a rate of one sample point per second
(with each sample point representing the average of 100 measurements over the previous second). Axial
and shear strains were measured with a water-cooled extensometer utilizing quartz probes with a gage
length of 25 mm. The probes were spring-loaded against indents of 250 um nominal depth indented on
the outside diameter of the specimen (figs. 2 and 3). The extensometer provided an output which was
proportional to the lateral displacement (s) of the lower probe relative to the upper probe. It was
assumed that s = r¢m, where r is the mean radius and 0 m is the angle of twist in the gage length.
The shear strain, 7, was then calculated as follows:

	

7 = 1	 (2)
0

where to is the nominal gage length of the extensometer (25 mm). Additional details of the axial
torsional testing facility, including additional figures, are given in references 12 and 13.

Dynamic Temperature Distribution

An early goal of the investigation was to obtain a uniform dynamic temperature response over the
specimen's gage length during the 200 °C temperature excursions. The temperature distribution was
monitored by spot welding thirteen K-type thermocouples at 12.5 mm intervals along the central portion
of the specimen as shown in figure 3. Nine of the thirteen thermocouples were located within the speci-
men's gage section (the central 25 mm parallel section), and the remaining four were located in the con-
stant radius transition region. Dynamic temperature extremes in the gage length were generally within
±1 percent of the target absolute temperatures. Figure 4 shows the triangular temperature profiles
measured by the six gage-section thermocouples during the first two cycles. All thermocouples were
initially at the same temperature and are separated here for convenience of presentation. Thermocouples
2 and 7 were near the top extensometer probe, 3 and 8 were at the middle, and 4 and 9 were near the
bottom extensometer probe. Cycle times less than 4 min resulted in excessive deviations from the
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intended time-temperature profiles near the peaks and valleys because of limitations on the thermal
response time of the system. In general, the linearity of the temperature waveforms improved at upper
positions on the specimen (i.e., thermocouples 2 and 7) due to quicker thermal responses. As a result of
this condition, temperature control was improved by locating the controlling thermocouple at an upper-
gage-section location. Additional details of the method of obtaining accurate, well-controlled temperature
distributions and phasing for tubular specimens are given in reference 4.

Sources of Apparent Shear Strain Measurements

In this study, apparent or artificial shear strain measurements are defined as shear strains detected or
indicated by the extensometer that have no real counterpart in the specimen. Two potential sources of
apparent shear strain were identified. The first is promoted by mechanical crosstalk existing in the
extensometer and the second is a result of an axial misalignment of the extensometer indentations.

Many axial-torsion extensometers indicate a small apparent strain along one axis as a result of strain-
ing along the other axis. This mechanical coupling effect is commonly referred to as mechanical crosstalk.
The shear strain output registered during a purely axial deformation is the component of particular
interest for the present investigation. This component of apparent shear strain was a consequence of the
axial strains resulting from thermal expansion during temperature cycling. The axial strains (thermal
strains) during the 200 °C temperature excursions ranged from 0.004 to 0.006 m/m peak-to-peak,
depending on the average coefficient of thermal expansion in a particular temperature regime. On a cali-
bration fixture supplied by the manufacturer of the extensometer, axial strains of this magnitude resulted
in apparent shear strains of about 10 um/m. Relative to the shear strains of 0.005 m/m envisioned for a
typical torsional TMD test, the mechanical crosstalk on the shear strain measurement due to axial ther-
mal strains was deemed negligible (see additional analysis and discussion of this topic in appendix A).

Apparent shear strains due to the axial misalignment of the extensometer indentations can result from
both an initial offset (due to indentation placement) and mechanical twist of the specimen. With chang-
ing temperature, the specimen will undergo expansion (or contraction) in the longitudinal, radial and cir-
cumferential directions. If the indents are not in exact alignment along the longitudinal axis (as would
normally be the case during any nonzero shear strain applied during a torsion test) the circumferential
change will result in a relative indent displacement and, thus, an apparent shear strain.

Investigations of the effects of indentation misalignment were carried out for cyclic temperature varia-
tions of ±100 °C at various applied torques. However, given the resulting magnitudes of the apparent
shear strains relative to the mechanical shear strains, this source of error was determined to be secondary.
A more detailed discussion of the apparent strain effects of indentation misalignment is given in
appendix A.

TORSIONAL TEST PARAMETERS AND DATA INTERPRETATION

Second Deviatoric Invariants

One common method of relating the deformation behavior of materials subjected to multiaxial loads is
based on the second invariants of the deviatoric strain and stress tensors, J 2 ' and J 2 , respectively
(ref. 14):
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Use of the deviatoric component as a basis for yield (von Mises criterion) and inelastic behavior is very
common, as the hydrostatic part of the stress is assumed to be unimportant for the onset of inelastic
behavior of isotropic, polycrystalline metals. Assuming that the deformation behavior is similar in ten-
sion and compression (for mathematical convenience) use of the third invariant of the deviatoric stress
tensor ( J 3 ) is eliminated. Consequently, many yield and general viscoplastic constitutive theories are
based exclusively on the J 2 and J 2 ' components of the stress and strain tensors, respectively.

One of the objectives of this study is to investigate the appropriateness of these assumptions under
thermomechanical loading conditions. Through the use of existing uniaxial TMD data, parameters can
be selected for the torsional TMD test which allow direct comparisons in a J 2 '- J 2 stress-strain space.
For example, conducting strain controlled biaxial and uniaxial tests at the same J 2 ' limits and J2'

rate should result in similar trends in J 2 if the material has a viscoplastic flow surface well characterized
by these parameters.

Unified viscoplastic constitutive theories developed to describe a material's viscoplastic behavior often
involve complex mathematical frameworks. The functional forms of such theories frequently incorporate
multiple internal state variables (tensors and scalars) evolving as functions of internal state, stress, and
temperature. As a result, a predicted deformation response corresponding to a specific loading condition
is not straightforward or obvious. Given a viscoplastic constitutive theory where the stress is introduced
through an effective value of only the J 2 component, it is obvious that by enforcing identical J2 values
for two different stress states (axial or torsional), the resulting J 2 ' values would be identical. However,
it is not obvious that by enforcing identical J 2 ' values for two different strain states, the resulting J2

values would be identical. Therefore, a representative J 2_ basedviscoplastic theory proposed by Robinson
(refs. 15 and 16) was used to examine this condition and result. We note that in this viscoplastic formu-
lation the flow and evolutionary laws are taken as functions of the effective (external stress minus inter-
nal stress) J 2 components. The formulation is briefly described in appendix B.

Two loading paths were used to examine the equivalence of the total J 2 paths theoretically predicted
by equating the limits and rates of J 2 ', namely, uniaxial and torsional states. When the deformations
(for any characterized material) were calculated and graphed in J 2 ' -J 2 space, the dual loops represent-
ing one fully-reversed load cycle fell exactly on top of one another (fig. 5). As the magnitudes of the
invariants are irrelevant to the objective of the example, the invariants were normalized to their respec-
tive maximum values. Since both invariants are quadratic functions, they are always positive. Conse-
quently, there are two J 2 '- J 2 loops for every one stress-strain loop—one for the first strain-half of the
cycle (7 > 0), and one for the second strain-half of the cycle (7 < 0). The results of this example demon-
strate that indeed the J 2 paths predicted are equivalent for the two J 2 ' strain states imposed. It is
reasonable to conclude that other J 2-based theories will predict identical responses in terms of J 2 when
equivalent limits and rates of J 2 ' in uniaxial and torsional states are applied.

Based on the outcome of the above exercise, it was decided to conduct the torsional experiments at
the limits of J 2 ' dictated by the existing uniaxial TMD database for Hastelloy X (ref. 1). Here the goal
was to determine whether or not the resulting deformations in the two types of tests could be correlated



in a J 2 '-J 2 space. The uniaxial TMD tests were conducted with fully reversed constant mechanical
strain amplitudes. The expression for J 2 ' under a uniaxial state of stress is given by

2
Jz = 3 (1 + veff ) 2	 (5)

where E is the corresponding axial strain component and v eff is the effective Poisson's ratio. Full strain
tensor measurements for uniaxial TMD tests were not available; therefore, the rule of mixtures expression
for veff was used to estimate the missing transverse strains required to calculate J2':

eff	
vel6el + vp1Ep1

V =	 ( 6)
E el + Epl

In equation (6), superscripts "el" and "pl" refer to elastic and plastic components, respectively. The tem-
perature dependent values used for v el were taken from reference 17. These values were generated from
the same heat of material used for the torsional specimens in this study. The assumed value for v Pl was
0.5. In calculating the J 2 ' values for any given uniaxial TMD cycle, two values for veff were used:
one for E > 0 and a second for E < 0. These two values of veff were calculated based on the tempera-
tures and E el /ePl ratios existing at the maximum and minimum strain limits of the cycle, respectively.
This method closely approximated a point-by-point calculation of veff . Note that as the material exper-
iences a change in the E el /EPl ratio (i.e., the uniaxial cyclic stress increases or decreases) under fully
reversed constant mechanical strains, veff will change and, hence, the J 2 ' limits for each cycle will
change during a constant uniaxial strain test.

The value of J 2 ' in a torsion test is given by the expression:

J , _ 72

2	 4

Clearly, there is no dependence on any unmeasured strains in the above expression. Hence, there is a
simple, proportional relationship between J 2 ' and the applied shear strain, 7. Furthermore, unlike the
uniaxial case, a constant shear strain amplitude test implies a constant J 2 ' amplitude test.

It was not desirable (or trivial) to conduct the torsional TMD experiments with variable J 2 ' limits
to mimic the uniaxial J 2 ' limits throughout the course of the test. Therefore, the torsional TMD J2'
limits were chosen to match those found in the first cycle of the uniaxial TMD data. Because the J2'
limits are matched only during the first deformation cycle, the forthcoming comparisons of J 2 and J2'
in torsional and uniaxial TMD tests are restricted to include only the first cycle.

A question remains concerning the equivalence of J 2 ' rates in the uniaxial and torsional tests due to
the variation in the Poisson's ratio in the uniaxial tests over the course of the cycle. That is, does the
triangular axial mechanical strain waveform used in the uniaxial test correspond to a triangular shear
strain waveform in the torsion test if we are trying to maintain identical J 2 ' values throughout the
cycle? The question can be addressed by taking uniaxial stress-strain data for a given cycle and comput-
ing the corresponding equivalent shear strains on a point-by-point basis. The result of such a calculation
is shown in figure 6. Superposed on the discrete values of equivalent shear strain is a triangular wave-
form representing the actual control variable during a torsional test. It is clear that the equivalent shear

(7)
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strains fall quite closely to the triangular waveform. This indicates that the triangular shear strain wave-
form will closely approximate the variation of J 2 ' resulting from the triangular uniaxial strain
waveform.

In summary, it has been shown that if we can measure or calculate limits of J 2 ' for a particular
cycle from a strain amplitude-controlled uniaxial TMD test, we can easily duplicate these values of J2'
in a strain-controlled torsion test, such that the applied J 2 ' waveforms, rates, and limits are nearly
identical for that cycle in both tests.

TEST MATRIX

The test matrix showing the limits and sequences of temperature and strain for torsional and uniaxial
specimens is given in table II. Because the shear strain limits of the torsional experiments were chosen to
match the J 2 ' limits experienced on the first cycle of the strain-controlled uniaxial TMD tests, the
shear strain limits in table II are not necessarily fully-reversed. The uniaxial mechanical strain limits
were fully reversed.

The temperature ranges for the torsional test matrix were selected based on previous experience with
uniaxial TMD of Hastelloy X (ref. 1) which revealed that the 400 to 600 °C temperature regime results
in increased hardening because it maximizes the combined strain aging effects of carbide precipitation and
solute drag. The 600 to 800 'C temperature range also provokes significant hardening at 600 'C, but
strong thermal recovery mechanisms at 800 °C lessen the hardening at the cold extreme of the cycle
(relative to that at either extreme of the 400 to 600 °C temperature regime) and induce softening at the
hot extreme of the cycle. Hastelloy X saturated immediately in the 800 to 1000 °C temperature regime
in the previous uniaxial experiments, and therefore exhibited no softening or hardening.

RESULTS AND DISCUSSION

Initial cyclic stress-strain loops (up to the third strain reversal) for the in-phase and out-of-phase
torsional tests are shown in figure 7. By the third strain reversal, the 400 to 600 °C loop is nearly
symmetric about zero stress, while the deformation responses at higher temperatures exhibit notable
mean stresses. Note the significant loss of load-carrying capability (stress relaxation) of the 800 to
1000 'C TMD specimens, particularly at the 1000 'C limit. Also evident is the decreasing slope of the
unloading path with increased temperatures. Technically, one cannot infer a shear modulus from such
slopes due to the time-dependent deformation and changing temperature during the loading cycle. How-
ever, for a fixed thermomechanical loading regime, cycle-dependent changes in the slope of the unloading
path would qualitatively indicate a metallurgical change and/or damage development in the material
being tested. This occurrence will be pointed out subsequently.

Substantial cyclic stress hardening is evident in the stress-strain loops shown in figure 8 for the 400 to
600 'C IP and OP tests, particularly at the 400 'C temperature limit as evidenced best by the longer
duration in-phase test. Specimens tested in the 600 to 800 °C range revealed substantial hardening at
the 600 °C limit and softening at the 800 °C limit (fig. 9). An interesting feature in the IP and OP
600 to 800 °C tests that was not observed in the uniaxial tests is the decreasing slope of the unloading
path from the 800 ° C limit with respect to cycles. The slope of the unloading path in the cooler half of
the cycle remained essentially constant, however. An additional 600 to 800 °C test not included in this
paper displayed similar behavior, supporting the repeatability of this result. A detailed microstructural
investigation would be needed in order to determine whether or not physical changes in the alloy
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promoted this phenomenon. No sequential stress-strain loops for the 800 to 1000 'C tests are included
herein because the material was essentially cyclically neutral throughout both the IP and OP tests.

As evidence of the repeatability of the hardening trends, duplicate 400 to 600 °C IP tests are shown
in figure 10 (ATHX1 was prematurely terminated due to a heater malfunction and therefore excluded from
the test matrix). The shear stress values have been normalized with respect to their first cycle values.
Normalized shear stresses in this comparison were measured at the point of shear strain reversal. The
agreement between the two data sets is exceptionally good. Also clearly evident by the hardening trends
is the initially higher rate of hardening at the 600 *C temperature limit up to about 100 cycles, followed
by an accelerated hardening rate (on a log scale) at the 400 'C temperature limit beginning at about 500
cycles. This behavior is similar to that observed during the uniaxial TMD testing of Hastelloy X in this
temperature range where a greater degree of hardening was found to result from the combined effects of
solute drag and precipitation hardening (refs. 1 and 10.

An interesting axial-torsional interactive effect observed in the torsional tests is axial strain ratchett-
ing. This phenomenon is often referred to as the Poynting-Swift effect (refs. 18 to 20). The maximum
and minimum axial strains of select cycles are shown in figure 11 for two extreme examples. The first
example is a 800 to 1000 'C IP test in which 0.0018 m/m axial strain accumulated within 40 cycles; the
second is a 600 to 800 *C IP test in which —0.0018 m/m axial strain accumulated after 2700 cycles. In
all tests but one, axial strain ratchetted in the positive direction. A comprehensive investigation of the
room-temperature axial ratchetting phenomenon by Wack (ref. 21) with several metallic materials in tor-
sion led to the following conclusions: the sign of the axial ratchet is theoretically positive; the amount of
ratchet per cycle seems material dependent, is highly influenced by axial forces, and is sensitive to the
loading history. Since the present experiments were conducted at elevated temperatures at which viscous
effects are significant, the relative influence of the factors cited by Wack may differ. For example, the
average rates of axial ratchetting in the 800 to 1000 'C tests were up to 2 orders of magnitude greater
than those seen in the lower temperature regimes. As the ratchetting required at least several cycles (in
the extreme case) before it accumulated to a measurable quantity, it was felt to have no influence on the
first-cycle deformation and corresponding values of J2'.

Comparisons of first-cycle thermomechanical deformations in the J 2 '-J 2 space are given for the three
temperature ranges in figures 12 to 15. In these figures, coincidental zero values of both J 2 ' and J2

exist only at the start of the test. Overall, the correlations of the uniaxial and torsional data were excel-
lent in the 800 to 1000 °C temperature range (fig. 12). The only portion of this loop where the data did
not agree exceptionally well is the initial loading. This may be a result of the slight error introduced in
the uniaxial J 2 ' calculations based on the assumptions of using veff The 600 to 800 °C data also
resulted in fairly good agreement (fig. 13). This result clearly suggests that the multiaxial TMD behavior
of Hastelloy X is well characterized by the scalar parameter J 2 at these temperatures.

In contrast to the higher-temperature correlations, the 400 to 600 *C IP and OP correlations (figs. 14
and 15, respectively) were not good, particularly during the second strain-half of the cycle. Note that the
Bauschinger effect was much more pronounced in the IP and OP uniaxial loading cases. Unfortunately,
because of the thermomechanical nature of the cycle (i.e., the continually changing elastic modulus) it is
difficult to isolate or quantify this effect.

Recall that the 400 to 600 °C temperature range is where the most hardening occurs due to the inter-
action of carbide precipitation and solute drag (refs. 1 and 11). Considering that the hardening is great-
est in this temperature range, the results suggest that the hardening mechanisms active in torsional TMD
are significantly different from those in uniaxial TMD. Deformation behaviors may be slightly influenced
by the heat of material from which the specimens were fabricated, but this is not a likely explanation for
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the significant differences seen here. In the 400 to 600 °C temperature range, a J 2-based description
of the viscoplastic deformation does not appear capable of collapsing the axial and torsional TMD. In
similar fashion, other investigators have also seen increased isothermal hardening (with a cobalt-base
superalloy) in torsional deformation versus axial deformation when the tests are compared with Von Mises-
type stresses and strains (ref. 22).

CONCLUSIONS

Techniques developed under uniaxial conditions to control mechanical strain/temperature phasing
were effectively transferred to torsional TMD conditions. The TMD tests were conducted in strain con-
trol without compensation for thermal strains. This is the primary advantage of torsional, strain-con-
trolled TMD testing over uniaxial, strain-controlled TMD testing where thermal strain compensation
introduces control complexities. However, with the extensometry employed in this study, secondary
sources of error may arise under TMD conditions relating to apparent shear strain measurements pro-
moted by indent misalignment and extensional strain ratchetting. A simple analysis revealed that the
magnitudes of these errors are negligible.

Based on the limited amount of data generated, the following conclusions can be made concerning the
hardening of Hastelloy X during TMD in torsion: (a) the 400 to 600 'C tests resulted in the most hard-
ening, particularly at the 400 'C temperature limit; (b) the 600 to 800 -C tests resulted in hardening at
the 600 °C temperature limit and softening at the 800 °C limit; and (c) the 800 to 1000 °C tests resulted
in a saturated material response at both temperature limits. All temperature ranges investigated resulted
in nonzero mean shear stresses.

First-cycle thermomechanical torsional and uniaxial deformations were compared. The experiments
were based on forcing identical values for the second invariant of deviatoric strain tensor (J 2 ') and com-
paring the resulting values for the second invariant of the deviatoric stress tensor (J 2 ). The following
results were obtained: (a) excellent correlation was exhibited in the 800 to 1000 °C TMD tests; (b) fairly
good correlation was obtained in the 600 to 800 °C TMD tests; and (c) fair to poor correlations were
experienced in the 400 to 600 'C TMD tests. The results suggest that the deformation of Hastelloy X is
well described by a classical J 2-based viscoplastic theory in the upper temperature ranges where reduced
kinematic hardening takes place and recovery effects are dominant. In those temperature ranges involv-
ing substantial kinematic hardening (e.g., 400 to 600 'C), the hardening mechanisms active in uniaxial
and torsional loadings appear significantly different: the Bauschinger effect in the 400 to 600 °C uniaxial
TMD was consistently stronger. In those cases, the deformation loops did not agree in the J 2 '-J 2 state
space.
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APPENDIX A—BASIC CONSIDERATIONS ON SHEAR STRAIN MEASUREMENT

WITH DUAL PROBE EXTENSOMETERS

Preamble

The problem at hand is to measure engineering shear strain in a thin-walled tubular specimen with a
dual probe extensometer during a pure-torsion thermomechanical deformation test. The geometric rela-
tionships between total shear strain, 7, the total length between the probes, 1, and the total lateral
displacement of the lower probe, s (hereafter referred to as the sector), are shown in fig. A1(a). Fig-
ure AI (b) shows the angle of twist, 0, in relation to the sector, s, and the mean radius of the specimen, r.
In this discussion, sources of error in shear strain measurement due to temperature change, extensional
strain ratchetting, and dimple misalignment are addressed. It is assumed that the thermomechanical
properties of the material are isotropic.

Development of Basic Equations

The total engineering shear strain, y, is related to the angle of twist by the expression

7 = ro
	 (Al)

1

The total axial gage length measured by a dual-probe extensometer can be expressed as

1 = 10 + A1T + AIR	(A2)

where 1 0 is the initial axial gage length (before thermal and ratchetting effects) and A1 T and AI R are the
changes in length due to thermal and ratchetting strains, respectively. Hereafter, a nominal value of
25 mm will be assumed for 1 0 . The two length changes can be expressed in terms of their respective strain
components as follows:

A1T = a AT10	(A3)

AIR = ELRIo	 (A4)

where aAT is the longitudinal thermal strain and ELR is the longitudinal ratchetting strain (observed
and noted in the present and previous investigations (refs. 18 to 21)). Hence, the total length becomes

1 = 10 (1 + a AT + ELR)
	

(A5)

The total values of twist angle, shear strain, and sector can be separated into components associated
with mechanical loading (subscript m) and initial dimple misalignment (subscript i).

0 = 0m + Oi	 (A6)
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7 = 7m + 7i	 (A7)

s = sm + si	 (A8)

Of the terms in the previous three equations, s m , s i , 7m , and 7i are influenced by thermal and ratchetting
strains in ways which will be described later. For example, 7m includes both mechanical shear strain and
additional (nonmechanicai) shear strain due to thermal and ratchetting effects that arise due to the pres-
ence of mechanical shear strain.

Using equation (A8) and the simple relationship between mechanical twist and mechanical sector,

sm = rom	 (A9)

we have

s = rOm + s i 	(A10)

where the radius, r, can be expressed in terms of its original value measured after specimen fabrication,
ro , and changes due to thermal and ratchetting effects, Or T and OrR, respectively.

r=ro+ArT+ArR
	 (All)

In terms of the thermal and ratchetting strains in the hoop direction (aAT and E HR, respectively), the
expression for r becomes

r=ro(1+a OT+EHR)
	

(Al2)

The initial lateral dimple misalignment is affected by thermal and ratchetting strains in a similar fashion.

Si = sio(1 + a AT + EHR)
	

(A13)

Here, sio is the original dimple misalignment due to less than ideal specimen preparation. Combining
equations (A10) to (A13), we have

s = ( r o O n + sio)(1 + a AT + EHR)	 (A14)

from which we conclude that

sm = sm(1 + a AT + E HR)	 (A15)
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7n, _

and

s̀m(1 + a AT + EHR)

10(1 + a AT + ELR)

(A18)

Oiro
7i = —

10
(A2o)

si0
7i =

10
(A21)

where the actual (excluding thermal and ratchetting effects) mechanically-induced sector, s m , defined as

sm = Omro
	 (A16)

is the quantity we desire to control in a torsional TMD test due to its unchanging value with thermal and
ratchetting strains. Substitution of equations (A5) and (A14) into equation (Al) provides the final
expression for shear strain in terms of all the stated effects.

s	 (Sm + sio)(1 + a AT + EHR)
	

(A17)
1	 10(1 + a AT + ELR)

Expressing equation (A17) in the form of equation (A7), we have

s io(1 + a AT + EHR)
	

(A19)
10(1+aAT +ELR)

Determination of Initial Dimple Misalignment and Extensometer Cross-Talk

The original dimple misalignment, s i0 , may be directly measured by inspecting the dimpled specimen
with an optical comparator or traveling stage microscope. Alternatively, sio may be found by imposing
thermal cycles onto the instrumented specimen while maintaining zero torque. In the latter method, an
additional source of inaccuracy—namely, mechanical cross-talk between the axial and torsional outputs of
the extensometer—can be accounted for in a very convenient manner. The procedure is as follows:

(a) Mount the specimen in the load frame in load control and zero both extensometer channels.

(b) Impose the mean test temperature on the specimen and measure the change in the twist angle, 0
(just O i , here). An apparent shear strain due to initial dimple misalignment, '7 i , can then be calculated
by substituting equations (A5), (A6), and (A11) into equation (Al), with the final result being:

(c) Using equation (A17), the total shear strain induced by this temperature change is theoretically
given by

14



which, importantly, is independent of AT and a. This fact eliminates concern about temperature-dependent
thermal expansion coefficients. The original dimple misalignment, s io , can now be calculated by equating
equations (A20) and (A21), with the result being:

sio = Oi 
ro	(A22)

A typical value of s io found in this manner was about f5 µm. The original dimple misalignment will
influence measured sectors when thermal and ratchetting strains exist.

Before switching to strain control and beginning the test (the specimen is presently at the mean test
temperature, Tm), the torsional strain channel must be re-zeroed, as it will now reflect the strain result-
ing from the dimple misalignment. Mathematically, the value being zeroed can be expressed as

s # — sio[1 + a ( Tm — TRT) J

	
(A23)

making the expression for the actual shear strain (A17), measured relative to the mean test temperature,

( smo + sio)(1 + a AT + E HR) — s*
7 =

10(1 + a AT + ELR)

(A24)

Note that the value of sio found via equation (A22) will also include any existing axial-torsional cross-
talk component (inherent in most dual-probe extensometers). That is, the effects of original dimple mis-
alignment and extensometer cross-talk are indistinguishable during temperature changes (with no
mechanical loading). However, the cross-talk component can be easily determined prior to the test. This
is accomplished on the extensometer's calibration stand by imposing strains (i.e., displacements) on one
axis and monitoring the cross-talk strains on the other. Having established the cross-talk strain values,
appropriate adjustments to the value of sio can be made if necessary.

Significance of Various Sources of Error in Shear Strain Measurements with Dual Probe Extensometers

As an example, suppose that the shear strain desired in a torsional TMD test, 7', is 0.005 m/m. The
resulting sector imposed on the specimen by the load frame operated in strain control is found by the
following expression:

s=7'10	 (A25)

where 10 = 25 mm in the present case. The actual value of shear strain thereby imposed on the specimen
as it undergoes temperature changes and ratchetting strains is found by dividing the actual sector by the
actual length between the probes.

7 =

	

	 7 Flo
	

(A26)
1 0 (1 + a AT + ELR)
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The percent difference between the shear strain achieved and that desired is defined as

err= 'I _1X100% 	 (A27)

71

which upon rearrangement of equation (A26) is

err =	 1	 — 1 x 100%	 (A28)
(1+a AT

+ELR

Given representative values of a, AT, and ELR for the present investigation

a=17x10'6°C

AT=±100°C

E LR = ±2000 p E

the error is ±0.37 percent—a value which is hardly consequential in practice.

Conclusion

Some basic expressions for the various factors affecting shear strain measurements in torsion TMD
tests have been presented and assessed for their importance in the present investigation. It has been
shown that the effects of dimple misalignment, thermal excursions, and extensional strain ratchetting are
secondary and can therefore be neglected. The results of this simple analysis and the clean deformation
loops measured in the laboratory all support the validity of the torsional TMD control algorithm devel-
oped in this investigation.
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APPENDIX B—MATHEMATICAL FRAMEWORK OF A UNIFIED VISCOPLASTIC

THEORY PROPOSED BY ROBINSON

The general mathematical framework used in the Robinson model evolves from a class of constitutive
equations originally derived from the gradient of a complementary dissipation potential function, fl. This
function is defined as follows.

Il = Q (oij , a ij , T)	 (B1)

	

0 = Q(F,G,T) = Of(T) f f(F)dF + 0 9(T) f g(G)dG	 (132)

where

F= J2 — 1 and G= J2

K 2	 K2

J2 — 
2 EijE U	 Eij — Sij — aij

_ 1	 1
J2  — 

2 a
ij aij	 aij — aij — 3 akkbij

Sij = or ij — 1 0,kkbij
3

Here oij is the applied stress, a ij is the internal (or back) stress, and T is the temperature. For
initially isotropic materials, Q can be taken (refs. 15 and 16) to depend upon the second invariants of
deviatoric stress quantities through scalar functions F and G. The applied stress dependence enters
through F which plays the role of a Bingham-Prager yield function; the drag stress K is taken to be
constant and plays the role of a Bingham threshold shear stress (ref. 23), below which the inelastic stain
rate vanishes. Models developed from this potential/ normality structure have been shown (ref. 24) to be
consistent with a simple thermodynamic formalism. Also, this general framework has been used (refs. 15,
16, 25, and 26) as a starting point for various viscoplastic models of isotropic and anisotropic metals.

Shown below are the flow law 
lEinl 

for the inelastic strain, and the evolutionary law for the deviatoric
J

internal stress (aij ), obtained by differentiating the dissipation potential function (Q) with respect to the
applied stress, and internal stress, respectively.

in _	 = 
9f

( 2 f(F)E ij	(B3)
aij	 K2

	a ij = —h(ak1,T)= h(G)Eii — 0,(T)p(G)aij	
(B4aaij	 )

where
	 p(G) = h(G)g(G)
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The functions of and 0  are typically taken with Arrhenius forms.

The assumed dependence of functions F and G on the second deviatoric invariants of the effective
and internal stresses implies full isotropy of the material (ref. 27). Note that in typical fashion there is
no dependence on the third invariant of the deviatoric stress tensor, J 3 . Thus, the second deviatoric
invariants of applied stress and internal stress (J 2-type quantities) clearly control the evolution of the
inelastic strain and internal stress.
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TABLE I.-CHEMICAL COMPOSITION OF
THE MATERIAL HEATS OF

HASTELLOY X

Element Torsion heat Uniaxial heat

Composition, wt.%

C 0.084 0.069
Mn .55 .58
Si .64 .48
S .001 .001
P .021 .022
Cr 20.83 21.11
W .37 .40
Ni Balance Balance
Mo 8.74 8.46
Co 1.65 1.72
Cu --------- .09
Al --------- .06
Ti --------- <.02
Fe 18.42 18.88
B .0036 .0040

TABLE II.-TEST MATRIX

Torsional Temperature'/ Temperature Engr. shear Corresponding
specimen strain sequeuce range, strain limits uniaxial

°C maximum/minimum, specimen 
m/m

ATHX10 H, C/+,- 400 to 600 0.00520/-0.00517 UHX458
ATHX11 C, H/+,- 400 to 600 .00516/-.00520 UHX448
ATHX6 H, C/+,- 600 to 800 .00537/-.00538 UHX467
ATHX15 C, H/+,- 600 to 800 .00519/-.00512 UHX484
ATHX9 H, C/+,- 800 to 1000 .00534/-.00523 UHX459
ATHX12 C, H/+,- 800 to 1000 .00517/-.00530 UHX491

°H and C correspond to Hot and Cold temperature limits.
bAll uniaxial specimens were cyclically loaded at ±0.0030 m/m mechanical strain.
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(a) Oblique View	 (b) Top View
Figure A1.—Geometric parameters established for shear strain

calculations in a thin-walled tube.
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