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IMA GE POINT
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and
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A Generali=ed lmaye Point Correspondence (GIPC) algorithm, which enables

: the determination of 3-D motion parameters of an object in a configuration
where both the object and the camera are moving, is discussed. A detailed error

- analysis of this algorithm has been carried out. Furthermore, the algorithm was
tested on both simulated and video-acquired data, and its accuracy was
determined .......

I. Introduction

Motion analysis, based on robotic vision, has widely been discussed in the

literature [I-5] in developing the lmaoe Point Correspondence (IPC) algo-

rithm. Methods used are Two-view motion analysis or monocular vision, stereo

or binocular vision, and stereo motion. However, the IPC algorithm has not

been applied to the more general problem of motion analysis involving a

situation where both the object and the camera are moving [4]. Industrial

"This research was supported by NASA Contract NAS 9-17145 and NASA/JSC (RIC[S)

Grant NCC 9-16. Thanks are due to Mr. Olin Graham. Special thanks to Mrs. Lovely K.

Fotedar ['or technical assistance.
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594 FotethJr, deFigueiredo, and Krishen

and space robots face this situation in locating and tracking various objects/
scenes when both the camera/video system and tl_e object move asynchron-
ously. In the GIPC, a generalization of the IPC algorithm, this problem of
motion analysis is discussed. The three methods of motion analysis men-
tioned before become special cases of the GIPC presented in this paper.

The accuracy of the IPC/GIPC algorithms depends on the availability and
errors in the measured input parameters. Input errors also include the

deformation of the object over time. The error propagation for various stages
of the IPC will, therefore, be described in terms of the error bounds.

II. The Generalized Image Point Correspondence

Algorithm

OR_G;_i!4L _: ,,+,..E IS

OF pC_GR QU._',LITY

2.1. THE ALGORITHM

The general case of motion analysis is illustrated in Fig. 1. For simplicity in
presentation, the equations that track a single point P on a moving object
viewed by a moving camera are considered. F_and F_are the two frames with
which the camera coordinate system coincides at two different instants of
time t_ and tj (t_ > t_), respectively. Point P moves from one position P+to
another position P_ due to the rigid-body motion of the object. We assume
(Re, T_) and (R_, Tj) to be the transformation parameters (rotation and

translation) that link the frames F_ and Fj respectively with the standard
frame S. Also, let (R o, T+i) be the transformation parameters that link the
frame F_ with the frame Fj. The object moves with the unknown motion
parameters (R, T). The image plane is assumed to be at the focal point of the
camera with its X- and Y-axes parallel to those of the camera coordinate
system, where Z-axis is the line of sight.

The desired relationship between the coordinates of the initial and the final

positions of point P (P_ and P_, respectively) recorded by the camera, with i_:
respect to the frames F+and Fj, respectively, is given by the equation [4] :

pjj = R_.i p+++ T_i. (2.1a) +

where p,p = (x,p. Y,0. Za_ ')r is the vector of 3-D coordinates of Pp relative to Jr, _'-."

at instant tp (_,, fl = i. j), and _,. _'+:

R;j=R_R, RRi +=RJRR/tand T'ij= - RjRRi TT++ RjT+Tj. (;__:
(2.1b,c) , 17:_:

Equation (2.1a) gives the expression for the generalized version of the
motion-analysis equation. Clearly, it does not matter whether the object or thd:
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OBJECT UNDERGOING RIGID-nODY MCyI'ION

x

" Z

STANDARD FRAME S

FIG. !. Geometry illustrating G[PC algorithm_

camera is moved first. R and T, the desired parameters to be estimated, are
defined as

R_- r21 /'22 /'231 and T- 'z, (2.1d,e)

L',, ,3, ,3
where r,# (_ p = 1, 2, 3) are the rotational elements and t, (_c-- 1, 2, 3) the
translations along x-, y-, and z-axes, respectively.

OF POOR QUALi]_"



596 Fotedar, deFigueiredo, and Krishen

Special Cases. If F i is standard frame S, the motion equation can 4_e

written as

R_j = R_ R = R jR and T_l = RjT + 1"1 (2.2a,b)

The IPC algorithm can be used to estimate the motion parameters

(R_i, T_j) and hence (R, T) of the moving object, assuming R e and Tij are
know_L

2.1.1. Monocular Vision

In the case of the two-view motion-analysis equation, the location of the

camera taking the pictures of the moving object, is fixed. In that case,

Ri = R i = R o = I and Tii = T i = O. (2.2c,d)

The generalized motion equation, using Eqs. (2.2a, b) and (2.2c,d), r_duces to

p_ = Rp. + T

or to the more familiar two-view motion equation

p'=Rp+T

as the frames F_ and F_ coincide with the frame S, such that p. = p, -- p and

pjj = pj = p'. where p_ = (xi, y_, z_)r and pj = (x_, y_, z_) r are 3-D coordinates

of Pi and P_ relative to S, respectively.

2.1.2. Stereo Vision�Stereo Motion

For a stereo vision/stereo motion case, the object is assumed to be
stationary. In that case,

R = I; R_j -- Rj and T = O (2.2e,!)

and the generalized motion-analysis equation, using Eqs. (2.2a,b) and (2.2e,1),

reduces to

p' = R_p + Tj.

These cases of motion analysis have been found to be equivalent [1]. The

motion of point P_ to point P_ with respect to a fixed frame Fj is similar to the

motion of frame Fl to frame F_ with respect to a fixed point P.

III. Error Analysis

Since the IPC/GIPC algorithms can be implemented using a sequence of .

object images, any error in the input data and sensor parameters becomes a _ii-(.

• '_i

oF _OoR Qu_Lrnf
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FIG. 2. Error analysisfor variousstages oi"the [PC algorithm.
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source of inaccuracy in the output data. The input data are the set of feature
coordinates of the object, and the output data are the 3-D motion param-
eters. The sources of perturbation errors have been identified in [6, 7].

In this section, we analyze the effect of changes in the input parameters on
the output parameters for the three different methods for the IPC/GIPC
algorithm [1-4"1. The two representations of the rotation matrix will also be
considered [2, 4, 81. Since various steps are involved in this algorithm, the
propagation of the error will be studied and the error bounds for each stage of
the algorithm (Fig. 2) [7-9"1.

3.1. ERROR IN ESSENTIAL ELEMENTS

The sensitivity of the essential elements (elements of a matrix Q) to the
error in input set of 2-D image coordinates of the features, common to the
three methods, will be studied in this section. By definition, matrix Q is
represented in terms of rotational and translational elements as [2, 4]

ql3 -- tzral tar21 -- t2r23 t3r2t -- tzrssl

(2 =- qzl qz2 qz3 = ± ttr31 -- tzrll tirs2-- tsrl2 tlr3s tsr:3|:

[q31 q32 q3_] t2rlt--ttrzl tzrt2--ttr22 t2r13 tlr,_j
!

(3.1a)

:... o.:

OF PC_OR Q_!A_._TY
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In our case, the equation solved'is

R_ = (-l,-I ..... -l) t

and the true equation to be solved is

,_ NQ = (-, - l ..... - !) r,

where/V = N + fiN; _ = Q + 6Q;

N = (N t, N2. N 3 ..... )T;

N,=(X,X'_,Y,,X'_,X'.,X.,Y'.,Y,,Y',Y'.,X,,Y.) (c_ = 1,2 .... ,;n
>_8);

and each element of Q is divided by q33- Let

6N_ = (6a.l, aa,2, aa,3 ..... aa.s),

where

6a.t = aX',X, + aX,.X'..; aa,2 = 6X',K + aY_X',; aa,3 = aX',;

as,4 = 6Y'.X, + 6X, xY',; aa,5 = a Y',Y, + aY, Y',; 6a, e = aY',;

6a,7 =6X, and 6a, s = aY,.

The products of errors are neglected and (X,. r,) are 2-D image coordin-

ates for the uth data point. It follows from [9"1that

N 6(2= - aN (2= -
[!t] =--[6!_t i :: a!Jsllq!* ]. (3.1b)

t/.j [aa.t aa.s j Lqnj

Thus, if the inherent errors aa.p were known, the corresponding solution

errors aq.p would be obtained by solving Eq. (3.11)). The degree of accuracy is
consistent with the assumption of neglecting product of errors. Based on

dimensions of N, we have the following cases:

Case h If N is square (i.e., n = 8) and non-singular,

[r/.I _ E. (c_ = 1, 2, .... 8), (3.1c)

(_/1 = 1, 2, 3; • and _ _ 3 ='q33 not included) (3.1d)

(cc,/_ = 1,2 ..... 8). Therefore,

OF POOR Q_!I)Y
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where ,4,_ (_,/_ = 1, 2, .... 8) are the elements ofthe/_th row of N - I. Thus, if
the elements of N- t are calculated, approximate upper bbunds on the effects
of inherent errors can be obtained from Eq. (3.1e). Sincd they were derived
under the assumption that the products of errors are negligible relative to E,,
they are not strictly upper bounds. However, they are acceptable as close
approximations to the true upper bounds.

Case II. If N is not a square matrix, we define a residual matrix by

6N ÷ = I_+ - N ÷,

where N ÷ and /q ÷ are the pseudo-inverses of N and _q respectively. Then

from [10]

11,SN+II< 116NfU + 116N_II + II/iN_[I, (3.10

where

116N_II < 116NU" IIN+U • II/_+11, U_N_II < II_NU" II/_÷11, and

II_g_ II < II6N IIg +II'.

3.2.ERROR IN ROTATIONAL ELEMENTS

The matrix Q is found in all the three methods in the same manner. But the
rotation matrix R is computed from Q in three different ways. In this section,
we shall treat these methods separately in order to investigate the propaga-
tion of error due to error in essential elements.

3.2.1. Error Analysis using the First Method

The propagation of error in the rotational elements, when the first method
for the IPC algorithm is used [2, 4]. is investigated in this section. If the
singular value decomposition (SVD) of (_, defined as

(_= Q + _2 = 0 A _T = (v + ,_U×A+ ,_A×V+6v)',

is an approximation to the true value

Q= U A I/r,

where 6U, 6A, 6Vare the error matrics, then the _th singular vector ti, of the
perturbed matrix Q in terms of the _th singular vector u, of the matrix Q can

be approximated by the first-order Taylor Series Expansion and is given by
[11]

OG. I

_. = u. + --1 ('b, - qp,) (_, #, _ = l, 2, 3). (3.20 !

t
!

i
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Therefore, ""

I I'116u.I < 0_p, li,,=¢,,I

where qpT, qpy are the entries of the matrices Q and _., respectively. The

derivatives of the singular vectors (for k = 1, 2,.. , 9), assuming the singular
vector V is known, are

i B.v, ----I (uT B_ v,)u,
O'az O"u

± ]1-. _': (ul n. v,) _ a,, u_ B. v.) u,-4- 2 2 2
,_, Lau -- a,, au(ou -- az,,) ( ' (3.2e)
7El

1, ifa +/a - 1 = _c= 3(# - 1) + _ (3.2d)[B,],., = 0, otherwise

where a,, (_ = 1, 2, 3) are the singular values of Q. The advantage of using

Taylor Series Expansion is that it provides the first-order derivative of the

principal singular subspace with respect to the essential elements, and it can
be combined with other derivatives via the chain rule to obtain first-order

perturbations in essential parameters. In this approach, the singular vectors
are considered to be vector-valued functions of essential dements. This

approach, however, works only if we have distinct singular values. The

expressions become ill-conditioned as singular values get close together.
After finding error bounds for the singular vectors, we are in a position to

find the same for the rotational elements, which are given by the equations

_t

tbr.pt_..o _ (lu,,j+tvp,I) (_.,/_ = 1, 2, 3), (3.2.e)
y=l

where u,p, o,p, and v,p are the entries of U, A, and V, respectively, and

_.,v = e, = _, = _, for -_, < 6u,p < _,, -_,, < 6a,# < _,, and -_, < 6v,_ <

eo has been assumed.

3.2.2. Error Analysis using the "Second Method"

The rotational elements in terms of essential elements, using the second .,_:
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method 1.1,4], are given as

r,.# = + [q_.p+ 2(q,+ t.p+ 2q,+ 2.p -- q,+t.#q,+z,p+z) _

-- q_.#+t(q_+ t.#q_+2.#+l -- q_+l.$+ tq_+l.p)

3 3

--+t.(q.+t.p+tq_+,.p+2 --q.+l.,+2q.+z.p+t)]/t._ _ q.,,2
affil ll=t

(3.3a)

//= 1, 2, 3, and are cyclic (for instance, for a--2, //= 3,where _,,

q.+z,p+t = qtt)- (tt, tz, G) are the translations along the x-, y-, and z-axes
respectively. Therefore, the error bounds for the rotational elements are

JIdir.,I < ,, Z _ I°'' (3.3b)
y- t , =t Idq_.

for -eq < 6q7, < eqt (_, _c= 1, 2, 3). The partial derivatives in Eq. (3.3b) have
not been computed in this paper.

3.2.3. Error Analysis using the "Third Method"

In this section, the error propagation using the third method for computa-
tion of R from Q 1"3] is presented. Defining H = QT and

W, = h, x T = W, tl + W,2I + W,31_. (3.4a)

where h. is the uth row of H, (i, j, 1_)are the unit vectors, and

W.p = (qp+ t..tp +2 - qp+2,.tp +t), (3.4b)

where _,/_ = 1, 2, 3, and are in cyclic order. Therefore, rotational elements are
given by

r_a _" 1.(qf+z.p+ t t. -- qf.p+ ttffi+ xXqf.p+ 2t,+ t - q_+ t._+ztG)

- (q_.#+ tta+ l - qa + t.l¢+ ttaXqffi+2.1n+2ta - q,.p+2ta+2)]

+ [qa+ t,#t.+2 -- qf+2,f_+ t]. (3.4c)

Hence, the bounds are defined as

, Or.,[I_r.pt = eq _ for -eq < _Sq,. < _, (_/1, _, r = 1, 2, 3). (3.4d)
y,.- t dqy.l

The partial derivatives in Eq. (3.4d) are not computed in this paper.

_. m-
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3.3.ERROR IN TRANSLATIONAL VECTOR ""

4

The translationalelementst,(-= I,2,3),interms ofessentialelements,are

givenas [2]

t, = (_ q2# + q, + t. # + q, + 2.#) (" is cyclic).
=1

The error bounds for these elements are given as

16t,I _<_,

for --gq _ _qy_ ___t:q (_, t¢ = 1, 2, 3) because

+ q#_

0t_.._,_

7.

for/_ ¢- =

for fl = _l.

3.4. ERROR IN 3-D MOTION PARAMETERS

(3.5a)

(3.5b)

(3.5c)

In this section, the errors in the motion parameters due to errors in

rotational elements, are studied separately for two representations of the

rotation matrix R [2, 7, 8].

3.4.1. Using the First Representation of the Rotation Matrix

From the definitions of the directional cosines of an arbitrary axis, and the

angle of rotation around this axis using thefirst representation of R [2, 7], the
error bounds for these motion parameters are found to be

16v,I <e, Y_ dr. and 1601<e., _ (3.6a,b)
#.7= t dr#yI ,. #=
#aT

for -g, < 6,#,< g,(u_ B, y = I,2, 3).General expressionsfor the partial
derivativesare

(r.+2.,+ 1 -- r.+ I.,+2Xr,t - rl, )

OV, [ -- d3

/ d 2

a

for #,y = !, 2, 3;/1 ¥= V and

,, is cyclic

for _8,y # a;/1, 3' incyclic order

(3.60
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and
t

O0 (r,p -- rp,) +

d-_=_- + d--v/_-'_--_ flora= 1,2,3;fl==+ 1; =, /_ are cyclic). (3.6d)

3.4.2. Using the Second Representation of the Rotation Matrix

The second representation of the rotation matrix R is used in this section

[6, 8]. The error bounds for the motion parameters in this case are:

I+11601 < _ 13r231 (3.7a)

IJ I+f00 16rt3l + 13r331 (3.7b)

I+1 f+l1601< _ 16r, tl + d-_22 16r221 (3.7c)

where

dO !
(3.7d)

dr23 x/_ -- r]3

d0 r33 dO r13
= 2 ; = 2 ; (3.7e)

63r13 1 -- r23 ¢9r33 I -- r23

0_/ r22 _/ r21
-- = , ; -- = • (3.70
tgr2t 1 -- r23 63r22 1 -- r223

IV. Experimental Results

In this section, we present experimental results for the IPC and the GIPC

algorithm tested successfully on real data. The various error plots will also be

discussed. These plots indicate the relationship between the errors in the

input set of data (coordinates of the features) and the errors in the output
data (motion parameters).

4.1. USING REAL DATA

Separate experiments, corresponding to 2-D images of the three positions

of an octbox in Fig, 3(a), were conducted. The octbox has two parallel
octagonal faces opposite to each other, and eight rectangular faces. In the first

F
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(b) (©)

FIO. 3. Experiments with realdata. (a) Octbox in its initial position; (b) first ease of motion
where Octbox is rotated through 15"around x-axis; and (c) second case of motion where Octbox
is rotated through 105"around x-axis.

experiment (Fig. 3(b)), the octbox was rotated around the x-axis by - 15*. In
the second experiment (Fig. 3(c)), the octbox was rotated around the x-axis

by 105 °. In these experiments, rotation aroudn the x-axis means that the

angle of rotation, by definition, is roll, or equivalently, the direction cosines of

the arbitrary axis, around which the octbox rotates, are given by v t = 1.0;
v2 -- 0.0; v_ = 0.0. The translation along the three axes is I unit each. The

data for these three cases of octbox rotations are shown in Figs. 4(a) and 4(b),
respectively, where coordinates of the vertices of the octbox before and after
the motion are given.

4.1.1. Data Acquisition and Digitization

A solid octbox with side dimensions 1.5" x 4.5" was constructed and

placed on a mount capable of motion in all three axes. The mount was flat

black to minimize reflection from it. A video camera was placed at the same
height above the floor as the octbox and focused on it. The illumination was -

provided by a television floodlight, also at the same height as the octbox. The _:"
octbos was videotaped in 30-s intervals with the illumination source moved rf_i_:

from being placed along the axis of the camera to a 45* angle from the camera _:!__
and finally to a right angle from the camera. These scenes were recorded on a

VHS videotape recorder on standard tape at the fastest tape speed allowed. _
The tape was taken to the Image Processing/Computer Vision Laboratory at ;_

Rice University for digitizing and processing. The tape was digitized using a _i_ |
Chorus Data Systems PC-EYE digitizer. Mounted in an IBM-XT, this "_ i

digitizer is capable of capturing a 640 (H) x 400 (V)pixel image with 6 bits _i _.ii

per pixel quantization. The images were then transferred to the main image ;.._.

_.x'?

processing computer system for enhancement and analysis, ii__i:!i)_ 2:,

OF POCR _-,JAL,/Y
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x y z X' Y"

!
#

0 - I - I 3.414214 7.595754

- 1.5 - I -0.5 -3.058409 10.654163

-2 1 I -0.585786 -0.131652

-1.5 I -0.5 -0.238625 0.584223

-1.5 l 2.5 -0.379110 -1.268983

0 1 - I 0.4.49490 0.767327

1.5 I -0.5 1.193126 0.584223

2 1 I 1357359 -0.131652

(a)

x y z X' Y"

0 - ! - I -4.44949 -I.303225

- 1.5 - 1 -0.5 -1.936348 0.633123

- 2 ! I -0.449490 0.767327

- 1.5 1 -0.5 -0.644449 2.700675

- 1.5 I 2.5 -0.136105 0.359012

0 1 - I 3.414214 7.595754

1.5 1 - 0.5 3.222247 2.700675

2 I 1 1.345469 0.767327

¢b)

FIG. 4. Real data for motion ofOctbox. (a) Data for the first case of motion, and (b) data for

the second case of motion.

OF POCR :'_At"_

4.1.2. Wireframe Extraction

Our procedure for wireframe extraction consisted of processing the digi-

tized picture for noise removal and edge detection. In both the raw pictures,

noise was removed by Wiener filtering. The transfer function is of the form

H*(u,v)

W(u, v) = IH(u, v)l2 + S.(u. o)lSt[(u, v)" (4.1)

In our experiment, we assumedthat the degradation processH(u, v) was a
low-pass filter and the noise-to-signal ratio S.(u, v)lS,,(u, v) was equal to
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w.

2a 2. The procedure for removing the noise consisted of the following steps".•

Step 1. Separate the processed picture into f9¢o regions according to its
intensity level.

Step 2. Compute the variance of each region.

Step 3. Process each region using Eq. (4.1) with these variances.

For edge detection, the Sobei edge detector was used. From edges,

information about the coordinates of the corners was obtained by comparing
the magnitudes of the gradients with a preset threshold value.

The GIPC algorithm has been applied to the first and second experiments,

and the results are shown in Figs. 5(a) and 5(b). In both the experiments, the
camera was rotated through 10° around its x-axis. With the same set of data

Estimated Translational Vector ( up to a scale factor) is:

T ,, [ 3.863706, 3.863707, 3.863717 IT

Two possible solutions of Rotation Matrix are:

,[-0"333334 0.816496 0"63325710"471405] [ 1.000000 0.000000-0.000000]R_| 0.772304-0.050319 and R'z _0.000000 0.996195

I. 0.540773 0.575154 -0.613810] [ 0.0000000.08"/156 0.9961951

The directional cosines of the axis and

axis (corresponding to R and

v I _, 0.576984: v 2 ,, 0.688845; v 3

the angle of rotation about the

R') are respectively:

= 0.438843; e - 182.886128

v 1' = 1.000000; v 2' = 0.000006; v 3' = 0.000001; e' = 354.999983

Conclusion: Choose R' and its associated parameters as the final solution.

(a)

Estimated Translational Vector ( up to a scale factor) is:

T : [ !.035277, 1.035273, 1.035283 IT

Two possible solutions of Rotation Matrix are:

rl.O00000-0.000002 0.000003] _-0.333332 0.471405-0.816496]

R'_I0.000003 -0.087156 -0.996195| and R'-- / 0.772304 0.63325"/ 0.0503211
I.0.000002 0.996195 -0.087156.1 I. 0.5407"/3 -0.613810 -0.575153J

The directional cosines of the axis and the angle of rotation about the

axis (corresponding to R and R') are respectively:.

v I -1.000000: v 2 -0.000000; v 3 -0.000002: 0 -95.000000

v 1' _ 0.431055; v 2' = 0.860937: v 3' s -0.195299; e' s 230.385837

Conclusion: Choose R and its associated parameters as the final solution.

(b)

FIG. 5. Demonstration of G[PC algorithm using real data. (a) For the first case of Octbox

rotation, and (b) for the second case of Octbox rotation.
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for these experiments for the octbox rotation (Figs. 3(b), 3(c)), the directional

cosines are found to be same. The angles of rotation are -5 ° and 95 °,
respectively, which means that the angles of rotation of the octbox are added

to by the amount of rotation by the camera, ann that indeed should be the

case. These two experiments show the success of GIPC algorithm with real
data.

V. Concluding Remarks

In this paper, a generalized expression for motion-analysis equation was
derived, and the other three cases of motion-analysis were found to be special

cases of this case. In addition, the expression for error bounds were dervied

for various stages of the algorithm.

8.

; 9.

I0.
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