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Abstract

The operational and research aspects of a subscale,

radio-controlled model flight test program are pre-
sented. By using low-cost free-flying models, an ap-

proach was developed for obtaining research-quality ve-

hicle performance and aerodynamic information. The

advantages and limitations learned by applying this ap-

proach to a specific flight test program are described.

The research quality of the data acquired shows that

model flight testing is practical for obtaining consistent

and repeatable flight data.
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Introduction

For the design of a new aircraft, data from many
hours of wind-tunnel testing and computational anal-

ysis are required before a basic configuration can be
defined. While these data are required, flight-derived

aerodynamic data acquired early in the design pro-
cess can add useful information about the configura-

tion, especially for unconventional configurations. In

the past, studies performed using free-flying subscale

research models to obtain aerodynamic data provided

flight data with limited success.

Previous subscale unmanned research vehicles have

been either large, heavy, unpowered aircraft (Refs. 1
through 4) or small models that were usually very

lightweight and could takeoff and land under their own

power (Refs. 5 through 8). The larger vehicles have

usually been equipped with standard aircraft flight
test data acquisition systems, while the smaller models

have typically been minimally instrumented because of

weight considerations. As a result, most prior studies

using the smaller models have focused on qualitative re-

sults such as pilot comments on general handling and

flying qualities.

Recent advances in technology concerning light-

weight composite structures, efficient miniature

ducted-fan propulsion systems, and reliable uplink

flight control systems have made small model flight

testing practical. In particular, the availability of in-

expensive, lightweight, research-quality data acquisi-
tion systems makes it easier to instrument the smaller
models.

Recently, a flight test program using a subscale,
radio-controlled research model of a low lift-to-drag

(L/D) ratio vehicle was completed at the NASA Dry-

den Flight Research Facility. The program objectives



includeddemonstratingpoweredflight for the land-
ing configurationof thevehicleanddocumentingthe
measuredvehiclelow-speedflightcharacteristicsusing
anonboard,research-quality,dataacquisitionsystem.
Off-the-shelfmodelaircrafthardwarewasusedwher-
everpossibleto reducecost,time,andoverhead.An
effortwasalsomadeto operatewith a minimalflight
crewandto eliminatetheuseof dedicatedtestrange
andcontrolroomfacilities.

Thisreportdescribesthe operationalandresearch
aspectsof the modelflight testprogram.Presented
alsoareexamplesof test resultsto helpevaluatethe
researchvalueof the approachandtestmethodsob-
tainedusingalow-costfree-flyingmodel.Thisreport
documentstheadvantagesandlimitationslearnedby
applyingasubscalemodelapproachto aspecificflight
testprogram.A typicalflight operation and research

flight plan are described.

Vehicle Description

The vehicle tested was a subscale model of a classi-

fied, advanced hypersonic configuration with an unusu-
ally low subsonic L/D ratio (Fig. 1). This L/D char-

acteristic, coupled with a requirement for the vehicle
to takeoff under its own power, forced the design of a

light model with a powerful internal propulsion system.

The resulting aircraft was 104 in. long and weighed

approximately 28.2 lb (Table 1). It was powered by
two model aircraft ducted-fan systems, which produce

about 10 static pounds of thrust each. It also employed

a pneumatically operated, retractable landing gear sys-
tem for conventional takeoff and landing capability.

Table 1. Component weights of model.

Component Weight, lb Percent of total

Baseline structure 9.5 33.69

Propulsion system 7.0 24.82

Flight control system* 2.1 7.45
Fuel 3.1 10.99

Landing gear 3.5 12.41
Instrumentation* 3.0 10.64

Total 28.2 100.00

*Includes batteries.

Construction and Materials

Because of the size and shape of the aircraft,

fiberglass construction techniques used in aircraft or

sailplanes were considered too heavy to produce a

suitably stiff fuselage shell. A slightly different tech-

nique, therefore, was developed. Several sample layups
of fiberglass, polystyrene foam, Kevlar TM (DuPont,

Inc., Wilmington, Delaware), and combinations of the

three were produced. The sample layups were then

weighed and examined by hand for relative stiffness, h

sandwich of Kevlar, expanded bead polystyrene foam,
and Kevlar was found to produce the desired stiffness

at low weight for the fuselage outer shell (sample 1

in Table 2). The material selected maintained good

formability and fabrication characteristics.

The fuselage load-carrying bulkheads were built from
a sandwich combination of fiberglass and end-grain
balsa wood that resulted in components of sufficient

strength and low weight. At high-stress locations such
as landing gear and wing spar attach points, pre-

impregnated carbon fiber strips were used to reinforce
the bulkheads.

The fuselage shell was constructed from two half-
shells bonded together after the bulkheads were bonded

in place. At locations where the bulkheads were ad-

hered to the fuselage shell, the shell had to be prepared

during the molding process. Bulkhead locations were

determined before molding the fuselage. At these lo-
cations, foam material was left out of the sandwich,

allowing the inner layers of Kevlar to come into con-
tact with the outer layers while maintaining outer sur-
face contours. A 2-in. wide strip of Kevlar tape was

added to the inner surface to add stiffness to the joint.

The bulkheads were then bonded to the fuselage shell.

These fabrication Steps successfully prevented delam-

ination of the sandwich material. Figure 2 shows a

detailed cross-section of a typical bulkhead joint.

Wing and tail surfaces were constructed of expanded

bead polystyrene foam, cut to shape with a hot-wire,

sheeted with balsa wood, and finished with heat-shrink,

iron-on Mylar TM (DuPont, Inc., Circleville, Ohio).

Spars were of plywood, balsa, and carbon fiber. The

wing and tail surfaces were removable for repair and
maintenance.

Propulsion System

To properly model the vehicle geometry of many jet-
or rocket-powered aircraft, it is necessary to use an in-

ternally contained propulsion system, such as a ducted
fan. The ducted-fan propulsion system eliminates the

flow-field disturbances induced by the protruding pro-

peller blades typical mounted propeller systems. Re-
cent advances in ducted-fan technology (Ref. 9) have

yielded substantial increases in performance that en-
abled this flight test program to be successful. For

this vehicle, propulsion was provided by two high-

performance model aircraft ducted-fan systems (Fig. 3)
that were mounted internal to the fuselage to simu-

late jet engines. Each 4.6-in. diameter fan rotor was

driven directly by an alcohol-powered, single cylinder,
two-stroke model airplane engine of 0.82 in 3 displace-

ment. To minimize the pressure-reducing effects of air-

flow blockage by the cylinder head, these fan units in-

corporated area ruling into the fan shroud and proper

streamlining around the cylinder heads.



Table2. Structuraltestspecimens.

Layer Sample Relative
Sample location Material weight, oz/ft 2 stiffness

1' Inner Kevlar 1.85 Stiff

Core 0.10-in. expanded foam
Outer Kevlar

2 Inner Kevlar 1.85 Stiff
Core 0.10-in. extruded foam

Outer Kevlar

3 Inner Kevlar 2.45 Stiff

Core 0.10-in. extruded foam

Outer Kevlar (2 layers)

4 Inner Kevlar (2 layers) 3.00 Stiff
Core 0.10-in. extruded foam

Outer Kevlar (2 layers)
5 Inner Fiberglass (2 oz/yd 2) 2.45 Flexible

- Kevlar

- Fiberglass (4 oz/yd 2)

Outer Fiberglass (2 oz/yd 2)

6 Inner Fiberglass (6 oz/yd 2) 1.55 Flexible

Outer Fiberglass (2 oz/yd 2)
7 Inner Fiberglass (10 oz/yd 2) 2.27 Flexible

Outer Fiberglass (2 oz/yd 2)

8 Inner Fiberglass (3 oz) 2.26 Stiff
Core 0.10-in. extruded foam

Outer Fiberglass (3 oz/yd 2)

9 Inner Fiberglass (3 oz/yd 2) 2.17 Stiff
Core 0.10-in. extruded foam

Outer Kevlar

10 Inner Kevlar 2.54 Stiff

Core 0.10-in extruded foam

Outer Fiberglass (6 oz/yd 2)

*Selected for fuselage outer shell.

Note: Expanded bead polystyrene foam was 1.0 lb/ft 3 density.

Extruded polystyrene foam was 1.5 lb/ft 3 density.

Kevlar cloth weight was 1.8 oz/yd 2.

In addition, streamlining was incorporated behind the

engine crankcases. The engines could be throttled and

produced approximately 10 lb of static thrust per en-
gine. Limitations in available fuel capacity restricted

flights to no more than 5 min duration.

The propulsion system was calibrated for thrust

in a low-speed wind tunnel using a rounded-lip inlet

and a tailpipe assembly representative of the vehicle's

tailpipe assembly. Thrust was measured as a func-

tion of dynamic pressure and differential static pres-
sure across the rotor fan blades. A correlation was

developed for thrust, dynamic pressure, and differen-

tial fan pressure that allowed for the calculation of the

estimated in-flight thrust. Angle-of-attack and sideslip

effects were not incorporated into this calibration.

Uplink Flight Control System

The flight control system used for uplink control of

the vehicle was a commercially available nine-channel,
digital pulse code modulation radio control system with

10-bit resolution. The radio control system was consid-

ered highly reliable in contrast to systems used previ-
ously. No redundant control system was used, since

the loss of the model was considered an acceptable

risk. The transmitter employed a software-controllable
flight control system that greatly simplified vehicle

operation. Multiple control surface gain schedules

incorporating both linear and exponential stick gear-

ing were available to tailor the handling characteristics

as required. Servo actuator deflection limits were in-

dependently adjustable within the control system in

both positive and negative directions. Power for both



theuplinktransmitterandtheonboardflightcontrol
systemwasprovidedby rechargeablenickle-cadmium
batteries.

Thesystemsoftwarepermittedmixingofseveraldif-
ferentcontrolfunctionsbeforetransmitting.Forexam-
ple,theprojectaircraftusedelevons(combinationof
elevatorsandailerons),soanoptionin theflight con-
trol systemsoftwarewasconfiguredto mixbothpitch
androll stickcommandsinto individualservoactua-
tor commandsfor right andleft elevons.Rollstick
commandwasalsomixedto commandasmallamount
(10percent)of coordinatingrudderdeflectionto min-
imizeadverseyawandto helpincreasethe vehicle's
turn rate.Figure4 showsadiagramof theflightcon-
trol lawsusedfor thisvehicle.

Thetransmitteroutputpowerwasboostedwith an
externalamplifierfrom500mWto 5W to ensureade-
quatereceiverperformance.Theexternalamplifierwas
poweredwithanautomotive-type,12-Vleadacidbat-
tery. Additionally,theonboardflight controlreceiver
featuredanautomaticfail-safesystemusedto disable
thedataacquisitionsystemin theeventof internalor
externaluplinkinterference.Thefail-safesystemwas
configuredsothat if theuplinkreceiverdetectedamo-
mentarylossofsignal,thereceiverwouldremovepower
fromtheinstrumentationsystemuntiltheuplinksignal
wasrestored.Figure5showstheground-basedportion
oftheuplinkflightcontrolsystemhardware.

Miniature Data Acquisition System

A miniature data logger system (described in Ref. 10

and shown in Fig. 6) recorded data onboard the vehi-

cle during flight. The system has eight analog data

channels operating at 25 samples/sec with 10-bit res-

olution (Table 3). A total of 150 kilobytes of onboard
memory allowed up to 6 min of data acquisition during

each flight. The data were filtered with a three-pole,

low-pass, antialiasing filter with a rolloff frequency of

10 Hz. The data acquisition system contained a small

lithium backup battery so that recorded data would

not be lost. Primary data system power was provided

by small, rechargeable nickle-cadmium batteries. After
the flight was complete, the data were downloaded to a

personal computer for conversion to engineering units

and postfiight analysis.

Flight Operations

A minimum flight crew was required to conduct a re-
search flight, along with portable equipment and sup-

plies necessary to support test activities at a remote

test site. A flight test plan also was needed to pro-
vide an efficient and structured flight test sequence.

The following sections describe these elements of flight

operations.

Test Personnel

A typical research flight was staffed with a minimum

crew of five: the pilot, flight test engineer, instrumen-

tation engineer, vehicle crew chief, and video camera
operator. Because of the classified nature of the model,

the flights were conducted at a remote location where

manpower and other available resources were scarce.
Each crewmember was skilled in more than a single

discipline, and added staffing would be necessary to
conduct a flight operation if a less experienced flight
crew were used. Job functions were frequently com-

bined to allow for a successful flight operation.

The pilot was responsible for operating the model

and performing the test maneuvers. The flight test en-

gineer coordinated the sequencing of flight maneuvers

from a predetermined flight plan and verbally commu-

nicating this information to the pilot. The instrumen-

tation engineer maintained the data acquisition system
and postflight data handling and processing. The vehi-

cle crew chief conducted preflight and postflight vehi-

cle operations and maintenance. The camera operator

videotaped every flight for documentation purposes.

Test Setup and Procedure

A typical flight operation involved traveling to the
location where the flight tests were to be conducted.

The flight tests were scheduled for just after dawn when

Table 3. Sensor specifications.

Variable Model number Range Resolution Accuracy

a, deg NASA-Dryden noseboom -5 to 40 0.04 0.25

_, lb/ft 2 SenSym 142SC01D* 0 to 55 0.058 0.144

5_, deg; 5_, deg NASA-Dryden CPT -40 to 20 0.06 0.20

Ap_, lb/in2; Ap_, lb/in 2 SenSym 142SC01D* 0.0 to 0.6 0.0006 0.001
ax, g IC Sensors 3110-002'* -1 to 1 0.002 0.015

an, g IC Sensors 3110-005'* -0.5 to 2.5 0.003 0.02

*SenSym Inc., Sunnyvale, California

**IC Sensors, Milpitas, California



atmosphericturbulencewasleastlikely.Becauseofthe
remotenessofthetestsite,a traveltrailerwasacquired
andequippedwithtoolsandsuppliesneededformain-
tenanceand repair of the test model onsite. The trailer

transported the test model to and from the test site
and provided the support for efficient preflight prepa-

ration of the vehicle and rapid postflight turnaround

of the vehicle between flights. Upon arrival at the site,

a camp was setup along one edge of the dry lakebed

that served as the runway. The vehicle was unloaded,

preflighted, and fueled. If the vehicle configuration had

been changed since the previous flight, a weight-and-

balance survey of the vehicle was performed. Finally,

the instrumentation system was evaluated for function-

ality and initialized for flight. Preflight checklists were
used in all critical areas to ensure that all vital systems

and functions were operational and fully configured for

flight.

When the crew chief was satisfied the vehicle was

suitably prepared for flight, a brief review of the flight
plan, programmed on a preplanned set of detailed flight

cards (Table 4), would take place. A review of the

flight sequence on the cards was conducted by the flight

test engineer to ensure that all crewmembers were fully

aware of their particular responsibilities during each

phase of the flight. Once the flight card review was

complete, the flight test engineer would instruct the
pilot and the crew chief to start the propulsion system

and prepare for taxi onto the runway. After engine

start, the flight cards were followed until the flight was

complete and postflight inspections were underway in

preparation for the next scheduled flight. The flight

cards provided a structured flight test sequence to op-
timize the time available for research maneuvers. The

cards also included emergency procedures to follow if

a landing approach was missed or an engine stopped.

The pilot and the flight test engineer were stationed

at the center edge of a runway on the dry lakebed.

The lakebed used for the flight tests is approximately
1000 ft in diameter, providing flexibility in orienting

the takeoff and landing direction into the wind to min-

imize the takeoff roll, and for emergency landings. A

figure-eight ground track produced the longest possi-

ble useful steady, straight-flight segment between the

turns at each end of the visual test range. During these

straight-flight segments the flight test maneuvers were

performed. As the flight endurance capability of the

model was limited to 5 min, only three or four maneu-

ver sequences could be executed per flight. After the

flight was complete, the recorded test data were down-

loaded to a personal computer for postflight conversion

to engineering units and initial analysis.

Program Results

Several operational constraints were realized during

the early portion of this flight test program. These

constraints included an inability to accelerate to fly-

ing speed and transition to flight, the effects of limited

visual range, uplink interference caused by the data

acquisition system, and structural vibration from the

reciprocating engines saturating the instrumentation
accelerometers.

Taxi Tests

The first constraint encountered was that the origi-

nal vehicle was unable to accelerate to flying speed and

rotate into a lift-producing attitude for takeoff. As

the early flights were flown uninstrumented, a hand-

held radar gun measured the vehicles ground speed
as the vehicle traveled down marked intervals of the

runway. These high-speed taxi tests were performed

with the vehicles control surfaces configured in a range

of positions from full trailing-edge up to smoothly

faired for minimum drag. From this the vehicle was
found to reach its maximum ground speed at approx-

imately a 300 ft distance and the maximum velocity

was achieved in the faired control surface configura-

tion. When noseup pitch control was commanded, the

vehicle would slow down without exhibiting any indi-
cation of rotation into a takeoff attitude.

Propulsion System Enhancement

An effort to increase the thrust of the propulsion sys-

tem was begun by tufting the inlet area of the vehicle
and performing other taxi tests with video documen-
tation. A review of the video documentation for the

tufted area revealed that the vehicles flush-inlet design

was drawing air from behind the inlet, prompting a

change in the inlet design to a ram configuration. The

ram-inlet design yielded an 82 percent increase in static

thrust, from 5.5 to 10 lb per engine. Subsequent tuft

tests of the ram-inlet design confirmed the improved

performance of the ram inlet.

Rolling Resistance Reduction

An effort was made to measure and reduce the ve-

hicles rolling resistance by testing different tire and

bearing combinations. The vehicle was towed down

the lakebed behind a truck with a long towline and a

force scale. The towing force was measured at different

speeds with each tire and bearing combination. Table
5 shows the results of these tests. Based on this in-

formation, a solid molded rubber tire was chosen and

adapted to a glass-filled nylon wheel modified to ac-

cept sealed ball-bearings. These modifications reduced

rolling friction with a minimal increase in weight.



Table 4. Sample flight card.

Performance Data

Flight Conditions

Altitude:2450 Ft

Man#

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Flight Configuration
Gear: Down

C.G.: 65.00%

-20 Degrees Pitch Trim

FIt: 5Card: 1

Taxi into Takeoff Position on Runway

Check Transmitter Configuration / Settings

Receiver Off

Transmitter Off

Remove Transmitter Antenna

Connect Coaxial Cable from 5w Amp to Transmitter

5w Amplifier On (Check output)
Receiver On

Throttle Sweep to Clear Engines

Verify-Tattle Transmitter Power Switch On

Verify Nose Gear Doors Fully open
Hold Aircraft From Aft End

Data System Status Button: Push to Verify OK

Data System Data Switch: On

Secure Data System Data Switch w/Tape
Select Transmitter Timer Mode

Start Transmitter Timer

Throttle: 100%

Release Aircraft - Takeoff

At 650' Marker, Go / No Go Decision:
Abort - Nosewheel not unstuck

Engines(s) not operating properly
a Positive Rate-Of-ClimbLift-Off and Initiate

Gear Up at ~ 25'
Climb Out

Perform a Right Turn of ~ 225 Degrees

Maintain Heading and Climb / Adjust Lateral & Pitch Trims

Perform a Left Turn of ~ 225 Degrees

Pilot's Option - Continue Climb or Perform Descending POPU (upwind)
If POPU - Throttle: Idle

Push Over - Pull Up
Throttle Maximum

Climb Out

Perform a Right Turn of ~ 225 Degrees

Pilot's Option - Climb to Repeat POPU or Return to Base
Jl of 4



Table 5. Tow test results.

Pull force, lb
Coefficient of

Configuration Breakout 5 mph 10 mph 15 mph Weight, lb rolling friction
1 6 2.5 4.5 5.5 26.5 0.2
2 2.7 3.5 4.2 28.2 0.15

3 2.2 2.2 3 28.2 0.1

Configuration 1: Hollow molded rubber tire with nylon hub and lubricated brass bushing
inserts.

Configuration 2: Hollow molded plastic tire with nylon hub and lubricated brass bushing
inserts.

Configuration 3: Solid molded rubber tire with glass-filled nylon hub and sealed ball-

bearing inserts.

Once these modifications were made, the vehicle

could accelerate in a faired control surface configura-

tion to a velocity sufficient for rotation and transition

to flight. The radar gun measured the transition ve-

locity (corrected for ground winds) and signaled the
pilot when to apply aft stick input for rotation, thus

minimizing the takeoff roll distance.

Remote Pilot Techniques

Another significant constraint was the effect of the
visual range limitation on the performance of the flight

test maneuvers. The low L/D ratio of the vehicle re-

sulted in a turn radius so large that flight within normal

visual range was nearly impossible. In addition, this

model had an odd symmetrical shape that made visual

attitude recognition difficult and forced the adoption

of unique flight procedures. The pilot could not main-

tain adequate visual contacl_ to maintain a steady, level

turn at an approximate distance of 2000 ft. During

the distant, level turns, the flight test engineer used
binoculars to assist the pilot by providing verbal cues

describing the vehicles heading and attitude. No other
type of controlled maneuvering, however, was possible
at this distance.

Another constraint was the lack of flight condition in-

formation available for feedback to the pilot. For this

program, there was no provision for real-time trans-

mission of data to the ground, which limited the pre-

cision of performing test maneuvers at a specific flight

condition. To maximize maneuver quality, each ma-

neuver was performed several times. Before first flight,
the use of a ground-based simulator was evaluated for

flight planning and maneuver evaluation. The simula-
tor was not considered an effective tool for this model

flight program, since it could not provide the neces-
sary visual range and attitude cues required by the

pilot of the model: Practice sessions with a substi-

tute model configured to have performance levels and

flying qualities similar to the test model provided the

most benefit in flight training and maneuver planning.

Interference and Vibration Problems

Another constraint became apparent during preflight

ground testing: the uplink signal to the receiver was

experiencing interference from the instrumentation sys-

tem. To eliminate this problem, a 5-W signal booster

was incorporated into the uplink transmitter system

(aef. 10).

Structural vibration from the reciprocating engines

at full power was measured in flight to be greater than

5 g. These vibration levels saturated the lower level ac-
celerometers that were measuring the incremental ac-

celerations and decelerations created by the flight test

maneuvers. Different mounting techniques and loca-

tions for the engines and accelerometers were tried, but

they failed to alleviate the problem.

The high level of structural vibration necessitated a

modification to the test procedures to gather mean-

ingful acceleration data. Initially, pushover-pullup

(POPU) maneuvers were performed at high-power set-

tings in steady level flight in an attempt to measure

lift and drag. Ultimately, a pullup maneuver was de-

veloped that could be flown from a steep descent with

the engines at an idle power setting. Under these condi-
tions the accelerometer data were suitable for analysis.

Flight Data

Figure 7 shows time history data from a represen-

tative pullup maneuver for this vehicle (Ref. 10): The

data presented are similar to flight test data acquired

with full-scale aircraft (Ref. 11). In figure 7 the data

analyzed were between 2 and 10 sec, which corresponds

to engine idle as indicated by the minimum values of

(Apt and Apt ).

Figure 8 is constructed with L/D data taken from

pullup maneuvers flown on three separate flights and

gives an indication of data repeatability and consis-
tency. The method used to derive lift and drag from
the measured data is found in Ref. 12. The accelerom-

eter data were filtered postflight with a digital low-



passfilterwitharollofffrequencyof0.25Hzto remove
turbulence-inducednoise.Thedottedlinesaboveand
belowthesolidlinesareestimatesof theerrorbounds
forthedatabasedoninstrumentationerrorestimates,
data repeatability,maneuverquality,and signal-to-
noiseratio. Figures9 and10showthe resultsof in-
strumentationsensitivityon theanalyzedflightdata.
Thedatashownareanexampleusedto indicatethat
it ispossibleto uselow-cost,free-flyingmodelsto ob-
tainhigh-quaiityresearchdatathat areconsistentand
repeatable.

Concluding Remarks

A flight test programusing a subscalerado-
controlledresearchmodel was completedat the
NASADrydenFlightResearchFacility. Experience
gainedduringthisprogramindicatesthat advancesin
lightweightinstrumentationtechnologyallowthistype
of flighttestingto beconductedin atimelyandcost-
effectivemannerwhileacquiringhigh-qualityresearch
data. Importantfactorsin achievingprogramgoals
with free-flyingresearchmodelsaretooperatethetest
vehiclein thesamemodeasatypicalmodelaircraft,to
useminimumbackupsystemssincelossofthetestve-
hiclewasanacceptablerisk, andto useoff-the-shelf
hardwareto reducecost,time, andoverhead.The
research-qualitydataacquiredduringtheseflightsil-
lustratedthat it ispracticalto usealow-cost,free-flying
modelto obtainconsistentandrepeatableflightdata.
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Fig. 1. Test vehicle.
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Fig. 2. Composite joint cross-section (typical dimensions shown).



Remote needle valve

reduces drag in the duct

Air

cooling

Aft cylinder fairing prevents
turbulence behind cylinder

_ast aluminium

engine mount

Computer
designed
rotoP

precision
trued and
balanced

stator

,_,,o straightens and
directs airflow

around engine

cylinder

Secondary stator's
straighten flow
to axial

_Center body fairing prevents

turbulence behind engine mount

Fig. 3. Typical ducted-fan system.

920739

Pitch
command

Roll
command

Yaw
command

Ground transmitter

Nonlinear stick gearing Control mixing

Fig. 4. Flight control system laws.

Model

,9,
Left elevon

servo actuator

Right elevon
servo actuator

Rudder
servo actuator

920741

10
]

J

/

/



Uplink
antenna

l,m !W,-

Flight control Itransmitter

I 9.6-Vbattery I

Uplink
signal

12-V
battery

I Receiver Iantenna

I On/offswitch I

6-Vbattery J

Channel1 I

Channel2

Channel3

I Channel 4 I

Flight control Ireceiver

I Channel5
Channel 6

Channel 7

Channel 9

(Note: Channel 8 was not used)

Servo actuator

Fig. 5. Flight control system hardware.

Left elevon I

Right elevon I

Left throttle I

Right throttle I

Left rudder I

Right rudder

Nose gear steering

I Data system power fail-safe

Left engine fuel mixture

Right engine fuel mixture

Retractable landing gear

Nose gear doors

920742

11



.i ¸ • •ii!il,i_i̧ , !i, ! , _ • iiiiiii,ii_ii_iiiiii
: ..... iiiii! , _iil _

. . :-;:::

.......... ::..-_.- _....: .... ..

i

.... !..

::::i ::

......................:.:::_:•::::::_:::_iii_i_iiii:!!iiiiii:_i_ili_!?_i_!_ii_i_i_i_ii_i_iii!!!i_i_ii_i_iii_iiii_ii!i_i_i_i_ii!_ii_i?_

.... •i.......i_:iiiii!i!!i_:!_iiii!i!!i:i?!i:ii?i!iii?i:i?i!i!i!_!ill!
.... _iiiii:::ii!!i_i:i!i:i_i:!!iiii!!ii i iiii_ili_!ii

:.`:.}_:_:._i.)_!:i.:!ii_::i_!i!_::._!_i:!(:!!!.!:!_{!:!!_!:!_!._!_!{ii_i!_!_.!_:_._!:i_:_{!_:!_!_ii_

............. ::!.....

(a) Data logger and noseboom installed in model aircraft.

EC 9205214-4

........... ........ i:i.. . ::i:

_i_:il;ii_;i_iii_'_' _ :i?Noseboom

O_vane
:.: :.;+; :_............

....

......

J

Dynamic ........
pressure

....::_:: .....................................i............•:::::::_:_•_::_:::••:::: •:iiI!!i_::i:•:::iii!ii::• i:•••!i!i

i:::Ap I and Apr i ;:_,_:_:::,:!:i:_!

::_transducers :: ::::::i:!:::::::i::::.::::i.:::.::::_:::i
......

..

..
..... ' i!:

!i

. ...: i:?

!

..... : .... i
:)i

transducer _ .....:: :!_ _'_ ::

transducers :Accelerometers :::. :

_i_i_i_:_;i;_i!_i:!_:_::_i_:!_:_i:_!;;_ii!_ii_!;:_::_?:_!i:_.!:_i!{ii:;_::_i:_::i;;i!_:_:_i!!`:_!_;_!_:_!_!iiii;_!!!i``.._.!!!_i_.::,:!:!;i_:!!::i!_ii::::::i::}...... : : : :

.... : :_;:iii;!_i:_i_:,i:ii_i;ii_ii`.i;iiii_iii;_::_ii_iii_!i!_i!i!i_i_i_ii_}ii_/_!_ii_ii:_;_::_::::: ::::.......::::i;:;:::!::_::::_:

920743 !i!
::.:

. : :.::-:
..

(b) Onboard data acquisition components.

Fig. 6. Miniature data acquisition system.
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Fig. 8. Flight data repeatability.
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Fig. 10. Accelerometer measurement sensitivity.
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