
f7

Scheduling Lessons Learned from the

Autonomous Power System

Mark J. Ringer
Sverdmp Technology Inc.

NASA Lewis Research Center Group
Cleveland, Ohio 44135

Ringer@mars.lerc.nasa.gov

jl

wJ

Abstract

The Autonomous Power System (APS) project at
the NASA Lewis Research Center is designed to
demonstrate the applications of integrated intelligent

diagnosis, control and scheduling techniques to space
power distribution systems. The project consists of three

elements: the Autonomous Power Expert System (APEX)
for Fault Diagnosis, Isolation, and Recovery (FDIR), the
Autonomous Intelfigent Power Scheduler (AIPS) to
efficiently assign activities start times and resources; and

power hardware (Brassboard) to emulate a space-based
power system.

The AIPS scheduler has been tested within the

APS system. This scheduler is able to efficiently assign
available power to the requesting activities and share this
information with other soft, rare agents within the APS
system in order to implement the generated schedule. The

AIPS scheduler is also able to cooperatively recover from
fault situations by rescheduling the affected loads on the
Brassboard in conjunction with the APEX FDIR system.

AIPS served as a learning tool and an initial
scheduling testbed for the integration of FD1R and
automated scheduling systems. Many lessons were

learned from the AIPS scheduler and are now being
integrated into a new scheduler called SCRAP (Scheduler

for Continuous Resource Allocation and Planning). This
paper will serve three purposes: an overview of the AIPS
implementation, lessons learned from the AIPS scheduler,
and a brief section on how these lessons are being applied
to the new SCRAP scheduler.

Space Station Freedom, a Lunar base, or Martian base

represents a critical portion of such a system. The APS
project explores intelligent hardware and software

architectures for efficient system operation and scheduling
of an electrical power system [Ringer 1991].

1.1 The Need For (Automated) Scheduling

Onboard a complex spacecraR many activities
must be performed, each competing for a multitude of
temporal positions and limited resources. A scheduler
must assign start times to each activity without violating
any resource or temporal constraints. The resources
onboard such a spacecraft will be vastly oversubscribed,
having many times more resource requests than available
resources. This makes it a paramount objective to
efficiently utilize the available resources in order to

complete as many activities as possible.
Current NASA space-based systems rely on

ground-based human-intensive scheduling methods.
Hmnans provide the main scheduling intelligence for
constructing schedules. These schedules are then
transmitted to the spacecraft to be executed. If the

scheduling expertise and computers are ground-based,
every anomaly that occurs onboard the spacecraft that
incurs a schedule modification would cause significant
time delays and efficiency losses. With the advent of
more complex space-based systems such as the Space
Station Freedom and beyond, a more efficient automated
scheduling paradigm is necessary [Britt 1988].

1.2 The APS Project Scheduling Coals

1. Introduction and Motivation

Future NASA spacecraft and planetary surface

installations will require larger and more sophisticated
infrastructure systems and living environments. Such
systems will consist of dozens of resources and hundreds

of attached loads. The electrical power system on the

The goal of the APS project is automated

scheduling for space systems with woof-of-concept
demonstrations on a power system testbed. In this process
only the high level goals of the system are stated by the
human operators, that is, which activities should be

performed. This information is taken and the scheduler
attains the goal of activities executed. The scheduler must

52

https://ntrs.nasa.gov/search.jsp?R=19930009482 2020-03-17T07:51:24+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42809183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.t.:_

w

not only know how to generate the schedule, but must also
know how to implement the schedule, and how to recover
fi'om system or load induced deviations in the schedule.

2. AIPS Implementation

Since scheduling cannot take place in a vacuum,
the scheduler must be able to interact with other agents as
well as cope with many operational concerns. The
scheduler must be able to generate an initial schedule, it
must have domain specific knowledge of how to
implement the schedule, it must be able to reactively
modify the schedule in the case that the assumed
information of the state of the system changes, and it must
be able to do this within metric time constraints.

2.1 What is being scheduled

The APS Brassboard is a power system testbed
that contains a set of power supplies, switcbgear, and
loads that emulate a space-based power system. This
hardware is controlled by a set of embedded controllers
capable of configuring the state of the Brasshoard. These
con_ollers are then used to configure the Brassboard to
supply power to the loads designated by the scheduler.
Figure 1 shows the current configuration of the APS
Brassboard. RBI's and RPC's are remote controlled

switches and an L represents a load attached to the system.
The loads attached to the Brassboard are resistive

load banks. In order to more closely emulate a space-
based power system each load is given a set of attributes
resembling those of a space-based system. Each activity

(load) has a time varying profile of power demand, earliest
start time and latest completion time constraints, priority,
and temporal placement preference.

So, gee !

J

So_oe 2

Figure 1 Brassboard Power System Configuration

2.2 Cooperation Between AIPS and APEX

Ali'S is responsible for assigning the power

requesting activities attached to the Brassboard temporal
positions and resources without overallocating the
available power. APEX is responsible for the
implementation of the schedule generated by AIPS. In
order to adequately model the interaction between APEX
and AIPS, a set of protocols was developed to
communicate different scheduling and rescheduling

procedures. Protocols were developed to generate an
initial schedule and modify executing schedules. Figure
2 shows a graphical representation of a schedule generated
by AIPS. A chart showing the interaction between the
three portions of the APS project is given- in Figure 3.

2.3 Scheduling Methods Used

Two modes of schedule generation are needed for

any integrated scheduling system. The ability to generate
an initial schedule and the ability to modify (reschedule)

an already executing schedule in the case of an anomaly.
In the former case, a metric amount of time is allocated to
the scheduler after which a solution must be returned. In

the latter case, the rescheduling results are usually needed
as soon as possible.

.........i

_ t---_,*_ !

Flgure 2 Representative Schedule Generated by AIPS

The AIPS scheduler has two modes of schedule

generation used for scheduling and rescheduling. The
scheduling engine is an incremental scheduler that uses a
set of activity selection and placement heuristics [Sadeh
1989]. These heuristics are used to construct a schedule
by taking each activity one by one, and determining where
to place the activity on the timeline. These heuristics also
form the basis of the rescheduling engine.

When the scheduler is given more time, it will
use the same basic heuristics along with a Monte-Carlo
type optimization method to generate multiple schedules

-- 53

based on the heuristics. Since the heuristics use local

goodness information, they do riot produce globally good

schedules. Small pe.rturbations to these heuristic decisions
will often improve the efficiency of the generated
schedule. Each schedule is rated based on a goodness
rating and when time to generate a schedule has run out,
the best schedule (that has been saved in memory) is
returned. With a relatively huge state space of solutions
this method works quite well probing many portions of the
state space that look promising based on the heuristics.

I It.ecb,dulingInk, i

• _,'FDIJL P-_les

Schedule Generatioa _ . . /im+-e_m_nl _ -.
TT.rTntm4'.,-. [A_tw,tyan d [W_ ._ mines
..... I Ruouroe DiUt t_ffim,oare _m.

Switch _kSwkh

Control I / States and
Mm_se*l lPower

+ llntonna_om

[_h_eIIRASSBOARD
Power So,n_en

Figure 3 APS Component Functionality

Rescheduling must also be accomplished "non-
nervously", that is, with as little deviation to the original
schedule as possible [Biefeld 1990, Zwehen 1990]. In
systems with human interaction the original schedule
should he followed as closely as possible in order to not

disturb the humans interacting with the system. To
accomplish non-nervous rescheduling, AIPS uses a set of
heuristics that judge the amount of perturbation caused by
a schedule modification versus the change of goodness of
the new schedule.

3. Lessons Learned

Lessons were learned from the design of the
scheduler, implementing a scheduler in a real system, and
integrating scheduling with an FDIR system. Some of the
lessons learned represented shortfalls in the original AIPS
scheduler while others represented ideas for the
improvement of the overall efficiency of the scheduling
system.

3.1 Retrospective

Many of the concepts implemented in the AIPS
scheduler worked quite well. Time was broken down into
smaller scheduling horizons in order to make the problem
solution feasible, Priorities were used to delineate

between the relative value of activities. Time was

partitioned at a granularity of five minutes. This was a
reasonable simplification since the time for APEX and the
Brassboard to be configured was on the order of one
minute. The ability to schedule within metric time
constraints was incorporated. A graphical interface was
available for both schedule display and human-scheduler
interaction.

The largest assumption made about the
environment was that all temporal durations and resource
requests are exact. In a real-life situation, if an activity
requests 100 watts for one hour the probability of the
activity using a constant !00 watts or lasting exactly one
hour is quite small. The problems incurred may include
undervoltage/overcurrent conditions caused by higher than
expected demands as well as propagation of temporal
constraints among activities caused by an extension of an

activity's duration. The need for some type of temporal or
resource padding is necessary. This padding decreases
schedule efficiency although it may improve overall
implemented schedule efficiency since the schedule will
not have to be modified as often with the padding added.

3.2 Perspective .

Much was learned about scheduling, but even

more was learned about implementing a schedule in an
automated domain. The whole object of scheduling is to
produce the best overall system efficiency. In order to
increase the efficiency ofthe implemented schedule, most
new ideas point to the need for the ability for real-time
reaction in the scheduler [Johnston 1989]. Here are three
examples.

Conventional schedulers use temporal padding to
increase the probability of executing a schedule.
Temporal uncertainties cause the forward propagation of
predecessor/successor constraints andresource availabifity.
If activities are padded, and this padding is not used, it is
wasted. It may be possible, however, to assign this
temporal position/resource to another activity. This would
entail moving another activity forward in time to fill the
temporal position/resource left unused by the previous
activity. This demonstrates a need for reaction in the
scheduler.

Suppose a 500 watt cooling fan operates only
when the experiment temperature rises above a certain
threshold. This may only operate 10% of the time (10%
duty cycle). How can the resources he allocated to
prevent oversubscriptions? If 500 watts are continuously
allocated 90% of this energy will be wasted (of course, a
conflict free schedule is guaranteed). Energy balancing
between multiple duty cycle activities can he used, but
problems arise if all these activities turn on at the same
time. Reaction is needed to delay some of these events if

they desire to consume power when it is not immediately
available. In addition, there is the possibility of

54

w

w

1

performing energy balancing in the power system domain.
With energy balancing however, it is necessary to use a
storage type resource such as a battery.

When using reaction, think about the

"moveability" of an activity. In a Space Station domain,
a dishwashing activity is much more moveable than a
medical experiment using two crew members and various

ground-based experts. The dishwashing activity has very
few attached dependencies while the medical experiment
would require the movement of many human interactors.
The dishwashing activity is easier to move and a small
temporal position change will not affect it as long as the
dishes are washed before the next meal. This information
can be used to makereactivemodificationstothe schedule
without impacting the humans who will have to interact
with the system.

The ideas of temporal padding usage, duty cycle
balancing, and activity moveability will allow for more
efficient use of limited resources. Of course, a scheduler
(and testbed architecture) that allows these ideas to be
implemented remains to be built and tested. The next

section will briefly describe this new scheduler.

4. Implementing the Lessons Learned

The SCRAP scheduler is currently under
development. General improvements in the representation
of the SCRAP scheduler include multiple resources,
multiple resource types (capacity, consumable, and
storage), one second time granularity, activities broken
into tasks, and multiple levels of schedule abstraction.
Since the previous section showed a need for reaction, a
scheduling paradigm that makes reaction easier would be
beneficial.

4.1 Prediction vs. Reaction

Two general categories can be delineated in

scheduling: predictive and reactive systems. Predictive
scheduling allows the efficient allocation of available

resources to activities by generating schedules based on
predicted knowledge of the activity and resource states.
This type of scheduling works well in static domains but
is often hard to implement and less efficient in complex,
uncertain, and dynamic domains. Reaction provides easier
implementation in dynamic domains, but sacrifices
resource usage efficiency caused by the lack of knowledge
used to generate schedules.

In most real world problems a combination of

static and dynamic domains exist. For example, a
completely reactive scheduler might have no information

on predicted resource demands of an activity, while a
completely predictive scheduler would assume exact
temporal durations and resource requests. Usually, a
combination of these methods are used with a predicted

resource level that provides an allowance for deviations
from that level. This would point to the use of a
combination of reaction and prediction. All schedulers
that operate in a real domain actually combine the two,
but the idea of SCRAP is to provide a framework that

allows these ideas to be implemented efficiently.

4.2 How to Combine Prediction and Reaction

Even though building an initial schedule is
computationally intense, the need to continuously modify
the schedule during execution is even more difficult

because of the tighter time constraints in the rescheduling
domain. When rescheduling, all temporal and resource
constraints propagate forward causing even more conflicts
in the schedule, also known as the r_pple effect.

Propagating temporal and resource constraints during a
reschedule clobbers previously computed future portions
of the schedule. If rescheduling occurs often, the entire
precomputed schedule may be recomputed by the

rescheduling engine. This is an extreme case but proves
the point that it may not be necessary to construct the
initial schedule with a great level of detail. Therefore it
may be wise to schedule far term activities with less effort
or detail than near term activities. In the SCRAP

scheduler this is accomplished by using multiple levels of
abstraction when scheduling activities. Further into the
future the schedule is constructed abstractly, while nearer
to the execution time more precision is used. Also, more
in-depth scheduling methods are used for times nearer to
the execution time than for times further into the future.

__ _-_ '_---_T _-_"_ _...:1.--.':,"

Figure 4 The SCRAP View of Scheduling

Multiple abstractions based on temporal distance
from the execution time will allow for more efficient

forward temporal propagation of constraints in the
schedule since less information is used for the future

portions of the schedule. The future portions of the

abstractly generated schedule serve as a partially computed
schedule when it comes time to actually schedule at a
more precise level. The scheduling timeline can be looked
at as a rolling horizon, with the future coming closer to

55

thepresentastimeticksduringexecution.
Figure4 graphically shows the general idea of

SCRAP. The time!ine moves in conjunction with the
movement of "real" time. Time "now" is the current

executiontimeoftheschedule.Time "infinity"issome

time very far in the future. The gantt chart shows I-beams
at different levels of scheduling abstraction. The solid
lines are precisely scheduled, the dashed lines are
scheduled at a medium abstraction, while the dotted lines

are abstractly scheduled. Resource oversubscriptions are
allowed in the future since the schedule in those areas has

not been computed more abstractly. Nearer to the time of

execution, more scheduling effort and precision is used
and these resource conflicts will be eliminated.

Many of the reactive situations stated in the

lessons learned section can be more easily implemented
using the SCRAP paradigm. In an automated domain the
scheduler has much more control over the executing
schedule. This control along with the ability to efficiently
modify the schedule during execution will allow for an
overall implemented schedule efficiency increase.

5. Conclusion

The Autonomous Power System project at the
NASA Lewis Research Center is an ongoing effort to
demonsWate the use of knowledge-based diagnosisand

schedulingsoftwarein advancedspace-basedelectrical

power systems. The APS project has completed one
development iteration. A scheduling system was
developed for the APS project and integrated with an

FDIR systemand hardware.The original AIPS scheduler
was successful as a learning tool and a new improved
scheduler is being developed. Many new ideas for
increasing the implemented schedule efficiency will be
realized using the SCRAP paradigm. The SCRAP
scheduling paradigm will allow for more efficient use of
the available resources.

Acknowledgements

This works was performed under NASA contract
NAS3-25206 with Jim Kish as Technical Coordinator.

References

[Biefeld 1990] Biefeld, E., Cooper, L., "Operations
Mission Planner:. Final Report", JPL Publication 90-16,
March,1990.

[Britt 1988] Britt, D.L., Gohring, J.IL,
Geoffrey, A.L., "The Impact of the Utility Power System
Concept on Spacecraft Activity Scheduling", Proc. 23rd

56

Intersociety Energy Conversion Engineering Conference,
1988.

[Johnston 1989] Johnston, M., "Knowledge-Based
Telescope Scheduling', In Knowledge-Based Systems in
Astronomy, Springer-Verlag, 1989.

[Ringer 1991a] Ringer, M.J., Quinn, T.M., and Merolla,
T., _Autonomous Power System: Intelligent Diagnosis and
Control", Proceedings of the NASA Geddard Conference

on Space Applications of Artificial Intelligence, 1991.

[Ringer 1991b] Ringer, M.J., "Autonomous Power
System: Integrated Scheduling", Proceedings Space
Operations, Applications, and Research Symposium,
NASA Johnson Space Hight Center, Houston, Texas, July
1991.

[Sadeh 1989] Sadeh, N., and Fox, M.S., "Focus of
Attention in an Activity-Based Scheduler", In Proc. NASA
Conference on Space Telerobotics, Pasadena, California,
1989.

[Zweben 1990] Zweben,M.,Deale,M.,and EskeyM.,
"Anytime Rescheduling",NASA Ames Artificial

IntelligenceBranchTechnicalReport,February1990.

