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Abstract

A project scheduling problem consists of a finite set of jobs,
each with fixed integer duration, requiring one or more resources
such as personnel or equipment, and each subject to a set of

precedence relations, which specify allowable job orderings, and
a set of mutual exclusion relations, which specify jobs that cannot
overlap. No job can be interrupted once started. The objective

is to minimize project duration. This objective arises in nearly
every large consmlction project--from software to hardware to
buildings. Because such project scheduling problems are NP-
hard, they are typically solved by branch-and-bound algorithms.
In these algorithms lower-bound duration estimates (admissible

heuristics) are used to improve efficiency. One way to obtain
an admiss_le heuristic is to remove (abstracO all resource and

mutual exclusion constraints and then obtain the minimal project
duration for the abstracted problem; this minimal duration is
the admissible heuristic. Although such abstracted problems can
be solved efficiently, they yield inaccurate admissible heuristics

precisely because those.constraints that are central to solving the
original problem are abstracted. This paper describes a method
to reconstituze the abstracted constraints back into the solution

to the abstracted problem while maintaining efficiency, thereby
generating better admissible heuristics. Our results suggest that
reconsfitution can make good admissible heuristics even better.

1 Introduction

One way to solve a difficult problem is to simplify it by

removing certain details, solve the simplified problem, and

then use its solution as a guide for solving the original

problem. For example, in solving a difficult physics prob-
lem, details such as friction might be ignored. Although

the simplified problem might be easy to solve, it might ig-

nore precisely those details that are central to solving the
original problem. This paper describes a method called re-

constitution that adds back such ignored details to the sim-

plified problem's solution, thereby providing a better guide

for solving the original problem. The ultimate goal of this

research is to develop an automatic reconsfitution system,

thereby shifting some of the simplification and problem-

solving from humans to machines.

As a vehicle for exploring reconstitution, we are currently

focusing on project scheduling problems because they ate

ofpracticalimportance and are difficultto solve.A project

schedulingproblem consistsof a finiteset of jobs,each

with fixedintegerduration,requiringone ormore resources

such as personnel or equipment, and each subjectto a

set of precedence relations,which specifyallowablejob

orderings,and a setof mutual exclusionconswaints,which

specifyjobs thatcannot overlap.No job can be interrupted

once started.The objectiveistominimize projectduration.

Sincethisobjectivearisesinnearlyeverylargeconstruction

project--fr.o, m software to hardware to buildings--efficient
algorithms that obtain that objective are desirable.

Integer linear programming methods have been used to

solve project scheduling problems for years [1, 2, 13, 7].

However, these methods are computationally expensive, un-

reliable, and applicable only to problems of small size. The

underlying reason for the computational expense and lim-

ited problem size is that such project scheduling problems

are NP-hard (see the Appendix). As a result, such prob-

lems are typically solved by branch-and-bound algorithms
with lower-bound duration estimates (admissible heuristics)

to improve efficiency [21, 4]. In addition to improving ef-
ficiency, admissible heuristics have other several other de-

sirable properties in various branch-and-bound algorithms

such as guaranteeing minimal project duration [16] or guar-

anteeing a project duration no longer than a certain factor
of the minimal one [18].

Several researchers have shown how admissible heuris-

tics can be derived by simplifying the original problem

via abstraction (ignoring certain details) and then using the
length of a shortest path solution in the abstracted prob-

lem as the admissible heuristic [8, 6, 17, 11, 15, 19, 20].

For example, the Manhattan Distance heuristic for sliding
block puzzles is derivable by ignoring the blank. For such

heuristics to be effective, the abstracted problem that gener-

ates them should be efficiently solvable and yet close to the

original problem [22, 15, 22]. Typically, the more details

that are removed, the easier the problem is to solve and the

less accurate the resulting heuristics. This tension between

accuracy and ease of solvability makes discovering those

abstracted problems that are easy to solve and close to the
original problem a difficult task [19].

The only published attempt at discovering admissible
heuristics with this approach in a scheduling domain yielded

poor heuristics [14, 20]. Moreover, the particular schedul-

ing problem (uniprocessor scheduling) to which it was ap-
plied did not allow concurrency, which is the essence of

scheduling. One of the contributions of this paper is to

apply abstraction-based heuristic derivation techniques to

a scheduling problem where concurrency is allowed (i.e.

project scheduling).

The other contribution of this paper is an automatic

method to reconstitute an abstract solution, thereby boosting
the effectiveness of an admissible heuristic. The idea that
abstraction+derived heuristics can sometimes be made more

effective by taking into account certain details ignored by

the abstracted problem was first expressed by Hansson,

Mayer, and Yung [9]. In particular, they hand-derived

a new effective admissible sliding block puzzle heuristic
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(the LC heuristic) by taking into account those linear tile
conflicts (same row or column) ignored by the Manhattan
Distance heuristic. We have extended this idea to a problem
involving time rather than solution path length: scheduling.

2 Definition of Key Terms

As shown in Figure 1, a scheduling problem can be repro-
sented as graph with jobs as vertices, precedences as single-
arr0wed edges, and mutual exclusions as double-at'rowed

edges. For example, the figure shows that job ! must be
completed before job J can start and that jobs J and K
cannot overlap. The single number above each job repre-
sents the job's duration. Fox example, job J takes 10 units
of time to complete. The letter to the left of each job rep-
resents the resource that the job requites; one job's use of a
resource cannot overlap with another job's use of that same
resource. For example, jobs I and E, which both require

, resource s, cannot overlap with each other.

A precedence graph is a directed acyclic graph consisting
only of the precedence relations and no resource constraints.

_ An early schedule graph is derived from the precedence
graph, where each job is scheduled as early as possible.
The numbers within the square brackets near each job in

,_ the figure represent the earliest start time e_ndthe earliest

completion time of each job. The criticalpath is the longest
path in the early schedule graph; it shows the earliest time

<+ by which all jobs can be completed. - -

- No job on the critical path can be delayed, although other
jobs on the same early schedule can 1_ cldayed as long as

r_i_th_eydo 'not increase the critical pa_'m |_ngdi. For+ex_ple,
if job J, which is on the critical path, starts"later than 33

_ un_ of time, the entire project K,ilFbe_delayed. These jobs
may have to be delayed in order to satisfy mutual exclusion

•_cons_train_ts.The total completion time of an early schedule
is therefore equal to the critical path length, which in our
ease is 43. An optimal schedule is an early schedule which
takes the least total time among all possible schedules. Note

that an. jobs within optimal schedule may not be scheduled
OPtimally, according to this definition.

Given only precedence constraints,-finding an early
schedule reduces to a topological sort of the precedence
graph, which can be done in linear time of the number of
jobs [10]. Finding the critical path in an early schedule also
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takes linear time of the number of jobs. Therefore, if all
other constraints such as mutual exclusion constraints and

resource constraints can be recast as precedence constraints,
the problem is easily solvable. For example, the mutual ex-
clusion constraint between jobs J and K can be recast in
two ways: either J is completed before K or vice versa.
Similarly, for resource constraints each pair of jobs shar-
ing the same resource can be recast as a mutual exclusion
constraint between the two jobs. Each mutual exclusion
constraint can then be recast as one of two precedence con-
straints as previously described.

3 Branch and Bound Project Scheduling

The idea of recasting mutual exclusion and resource con-
straints as precedence constraints suggests the following
simple combinatorial algorithm. Explore all recastings, one
at a time, that do not create a cycle and find early sched-
ules fox all of these recastings; the early schedule with the
minimum critical path length is the optimal one. Unfortu-

nately, this brute-force algorithm is combinatorially explo-
sive:-n mutual exclusion ctnsiralnts resal_ in 2n possible
recastings, which is clearly too large a space to explore
exhaustively for large n, One way"to irAuce tills combina-
torial explosion is to use a bmndh-and-boundflg_orithm with
lower-bound estimates to prune certain rec_ti/igs earlier. If
the current duration + the lower-bound estimate exceeds a

given upper-bouM, then that schedule can be pruned.

= The critical path:es-timate of an ........early schedule,_-:.... which is
efficiently computable, is clearly a fower21_ound-since any

' eai-T_S_che'duiethat satl_fies'_art°0f _thec0-fist_ii_ is a lower
bound onthecomplefionfifiae for _; Ol_thfi_ schedule sat-
isfying all cofistraints_ Mbr_b_/el, _'y ad:d_ti_-etnstraint

" will not result _ a decrease in the-"c_ticfii'p_fiilCidngth. No-
lice that the critical path (Cr') h_d_-fe_hlts from an ab-
straction of the original problem: all-mutual exclu_sion and
resource constraints are ignored.

Although the CP heuristic is admissible and easily com-
+_ putable and has proved to be valuable in evaluating overall
_ project performance and identifying bottlenecks, it can be
....._'arfroifi' +.he_kctfialprojecf+durati6_. - In the- _;orst +case, it

can underestimate the actual project duration by a factor
of n, where n is the total number of jobs to be scheduled.
This case aris_eswhen the_-only ptssibie scheduie _is a se-

Figure I A Project Scheduling Problem
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Figure 2 An Algorithm to Compute the RCP Heuristic

rim schedule. For example, if a scheduling problem has no
precedence constraints and has mutual exclusion constraints

between every pair of jobs, then the only possible schedule
will be a serial one. For this case, the CP heuristic will
return length of the longest job, which underestimates the
optimal duration by a factor of n. Also, since the critical
path estimate ignores the resource constraints, certmn se-
quencing decisions may be required in the actual schedule
that increase the proJect duration well beyond the critical
path estimate.

4 Reconstitution-based Heuristics

What we would like is an admissible heuristic that is as

easily computable as the critical path estimate, but that takes
into account the resource and mutual exclusion constraints,
which the critical path estimate ignores. We would like to
reconstitute these ignored constraints back into the critical
path somehow. The RCP (Reconstituted Critical Path)
heuristic described below does exactly that.

The basic idea behind the RCP heuristic is to extend the

critical path by analyzing all unsatisfied mutual exclusion

constraints between jobs in critical path and jobs not in
critical path. When possible, all jobs with such unsatis-
fied constraints are rescheduled at a later time while stiff

preserving critical path length. If that is not possible, then
the critical path length is increased by a time overlap un-
derestimate between the jobs of each type. For example,
consider the project scheduling problem in Figure 1, which
has a critical path of J, F, C, B, A. FirsL we examine job
J and check f_ any mutual exclusion comtraints involving
it. The only such constraint is the one with job K. Next,
we check if d overlaps with K, which in fact it does. The
object now is to try to delay job K beyond the completion
time of job J, which is at 43 time units. Delaying job K
will necessarily increase the length of the critical path by
1 time unit. If the rest of the jobs were ignored, the RCP
heuristic would return 44, which is the length of critical
path (43) plus the overlap of the earliest start time of job J
and the earliest completion time of K (34 - 33 = 1). The
general algorithm is shown in Figure 2. (We assume that
resource constraints have been recast as mutual exclusion

constraints.)

To see that the RCP heuristic is admissible, consider a

job j, on the critical path which has a mutual exclusion
constraint with job j,,. In the final schedule, either jt will
be scheduled before j,_ or vice versa. Note that neither of
the two jobs can be scheduled any earlier since the schedule

is already an early schedule. If job jm cannot be scheduled
after j_ without increasing the critical path length in the
current schedule by pushing jobs ahead which depend on
jm, then neither can it be scheduled after j_ in the final
schedule. The reason is that precedence constraints are
always added and never removed at each iteration of the
search algorithm and adding more precedence constraints
cannot invert an existing scheduling order. If jr is scheduled
after jm, then the critical path length will be increased by at
least the minimum of the overlap between the earliest start
time of jt and the earliest completion time of jr, or the
earliest start time of jm and the earliest completion time
ofjI.

Although the RCP heuristic takes slightly longer to com-
pute than the CP heuristic, it prunes more of the space than
the CP heuristic. As we will see in the next section, the

extra time taken in computing the heuristic is more than
compensated by the time saved from pruning the search
space. If the current critical path length is optimal, then
computation of the RCP heuristic takes longer than that of
the CP heuristic, since the algorithm has to examine all jobs
on the critical path. The worst case complexity of comput-
ing the RCP heuristic is O(n _) for n jobs, since at most
O(n) jobs will be on the critical path and O(n) work will
be required to process a mutual exclusion constraint involv-
ing a job on the critical path. An analysis of the average
computational complexity is, however, difficult since the
heuristic depends on specific mutual exclusion constraints.
The degree of complexity can be controlled by reconstitut-
ing less mutual exclusion constraints, if desired.

The complexity of the RCP heuristic can be further re-
duced by computing it incrementally. Since new prece-
dence conslraints are added and never removed at each it-

eration of the search algorithm, the critical path up to the
point in the graph where the new precedence constraint is
added remains the same and the critical path need only be
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41024
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RCP Heuristic

CPU Seconds

.25

Bytes

3O808

I0 14 8.52 58108

i i • ii ii

15 19 5.98 43212 19 9.18 70256

20 6237 1644.17 45796 49 30.58 109584

ill

25 6242 1651.53 47188 54 30.67 116068

I0 12 5.15 52928 12 5.63 72228

20 24 9.73 56988 24 18.52 IO1936

30 1084 718.20 71024 431 494.33 194220

40 1096 727.83 65104 521 521.80 224112

Table 1 Comparative Performance Analysis of the CP and RCP Heuristics with IDA"

-recomputed from that pointon.

5 Empirical Results

To get some idea of the effectiveness of the RCP and
CP heuristics, we implemented the IDA* algorithm [12],
which is a standard branch-and-bound algorithm in which

to evaluate admissible heuristics, in Quintus Pro!og on a
Sun Sparstation 1+ and ran it on a set of random solvable
(i.e. no cycles) problem instances with various numbers

of jobs, mutual exclusion constraints, and precedence con-
straints. The algorithm works as follows. All partialsched-

uleswhose duration exceeds a certain threshold are pruned.
Initially, the threshold is set to the value of the admissible
heuristic on the initial state. If no solution is found within

that threshold, then the algorithm repeats with a new thresh-
old set to the minimum of duration plus heuristic estimate
over all the previously generatedpartialschedules whose
duration exceeds the threshold. One important property of
IDA* is that it guarantees minimal duration solutions with
admissible heuristics.

A state consists of three items:

1. A precedence graph which includes original prece-
denc_constraintsafi_l_/zse! of prec_en¢_cdi_nts

originatingfrom mutualexclusionconstraintswhich

havesofarbeenrecastasoneoftwo precedencecon-
straints.

2. An earlyschedulesatisfyingtheprecedencec0ns_ts.
3. A setofunsatisfiedmutualexclusionconswaints.

The goalstateischaracterizedby an empty mutualex-

clusionconstraintset.A statetransitionisa/ecastingofa

niut_ exclusionConstraintintooneoftwoprecedenceCon-

straintsfollowedby thegenerationofanew earlyschedule.
Searchproceedsfrom an initialschedulesatisfyingonly

theoriginalprecedenceconstraints.(Our implementation
assumes that resource constraints have been recast as a set

of mutual exclusion constraints.)

We ran two sets of experiments, each with a fixed the

number of jobs and precedence constraints and a variable

number of mutual exclusion constraints since problem com-
plexity grows as the number of mutual exclusion constraints
increases: one with 30 jobs with 112 precedence constraints
and the other with 40jobs with 128 precedence constraints.
For the first set, we varied the number of mutual exclusion
constraints between 0 and 25; for the second, between 10

and 40. We chose these problems because they were the
largest ones we could generate that still could be solved in
a reasonable amount of time on our machine.

"Pable1 summarizes the results of running IDA* on these
two problem sets. For each problem set, the table lists
the number of mutual exclusion constraints, the number of
states expanded, the CPU time, and the amount of run-
time memory used. As the table shows, for problems
with few mutual exclusion constraints, the number of states

expandedinbothcasesremainthesameandCP consistently
takes less time than RCP, since RCP does more work each

time. However, for all problems where RCP resulted in a
saving in terms of states expanded, RCP always takes less
CPU time. RCP also uses slightly more run-time memory
in all examples, but always within a factor of 4 when
compared to CP. In summary, RCP works better than CP
inallcaseswhere the criticalpath length is not optimal,
which is typically the case in real-world (non-artificial)
problems, where it is highly probably that constraints other

than precedence constraints play a major role in dictating
the total project duration. Therefore, RCP will result in
better performance in most real-world cases.

6 Conclusions and Future Work

This paper has described an instance of a general three

step problem-solving paradigm: abstract, solve, reconsti-
tute. Certain details of the original problem are removed
by abstraction. Next, the abstracted problem is efficiently
solved. Finally, the abstracted details are reconstituted back
into this solution. This reconstituted solution is then used
as a guide for solving the original problem. We applied

this paradigm to project scheduling problems and obtained
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a novel effective heuristic (the RCP heuristic). The general
idea of reconstitution is to boost the informedness of an

admissible heuristic by adding back previously abstracted
details and maintaining efficiency.

This approach as applied to project scheduling has several
shortcomings. First, complex project scheduling problems
often involve resource conslraints with fixed limits for each

job, typically specifying the number of fixed resource units
that cannot be exceeded, rather than the absolute resource
constraints as in our model; it is not clear to us how to recast
such resource constraints as mutual exclusion conslraints.

However, Davis and Heidom [3] show a branch-and-bound
solution to the problem. They describe a preprocessor
algorithm that expands a job with duration k into a sequence
of k unit duration jobs each successively linked with a
"must immediately precede" precedence relation. After this
expansion, a standard branch-and-bound project scheduling
algorithm can be run. Unfortunately, such expansion can
result in enormous project networks in projects with long
durationjobs.

A second shortcoming is that not all scheduling con-
swaints can be recast as precedence constraints. For exam-
ple, a constraint that a particular job must start only after
a certain time cannot be recast as a precedence conslrainL
Effective admissible heuristics that reflect such general con-
stralnts would be an important contribution to scheduling.

Finally, although this paper has described a method for
generating better admissible heuristics from existing ones,
the process of discovering heuristics such as the RCP

heuristic is far from automatic. We are currently extend-
ing this method to job-shop scheduling problems of the sort
described in [5]. In a job-shop problem, n jobs are to be
scheduled on m machines with varying durations per job
per machine. We hope to develop a set of general princi-
ples that practitioners in the scheduling field can follow to
derive effective heuristics and eventually to automate the
discovery process.
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Mutual Exclusions are NP-Hard

Finding a minimum duration schedule for a project graph
with only mutual exclusion constraints and unit length job
duration is equivalent to solving a graph coloring problem.
In the project scheduling problem, the object is to partition
jobs into a minimum number of sets such that each job is
in exactly one set and no two jobs in a set have a mutual
exclusion edge between them. Since all jobs in each set
can be scheduled in parallel, the final schedule's duration is
simply the number of sets. In the graph coloring problem,
the object is to color the nodes of a graph such that no two
nodes connected by an edge have the same color and the
minimum number of colon's are used. Since there is a 1-1

correspondence between the two problems and the graph
colm-ing problem is N'P-Hard, so is the project scheduling
problem with mutual exclusion constraints. Furthermore,
since resource constraints can be recast as mutual exclusion

constraints, the problem of scheduling with resource con-
stralnts is also NP-Hard and adding non-unit length job du-
rations only makes the problem harder. Notice that adding
precedence constraints will not affect this result. We thank
Charles Martel for suggesting the basic idea behind this
proof.
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