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" Introduction

One of the most promising general approaches for solv-

ing combinatorial search problems is to generate an
initial, suboptimal solution and then to apply local
repair heuristics. Techniques based on this approach
have met with empirical success on many combina-

torial problems, including the traveling salesman and
graph partitioning problems[10]. Such techniques also

have a long tradition in AI, most notably in problem-
solving systems that operate by debugging initial so-
lutions [18, 20]. In this paper, we describe how this
idea can be extended to constraint satisfaction prob-
lems (CSPs) in a naturalmanner (see also [14] for full
paper).

Most of the previous work on CSP algorithms has
a_surncd a stand_d backtracking approach in which

a partial assignment to the variables is incrementally
extended. In contrast, our method starts with a com-
plete, but inconsistent assignment and then incremen-
tally repairs constrsint violations until a consistent

assignment is achieved. The method is guided by a
simple ordering heuristic for repairing constraint vio-
lations: identify a variable that is currently in conflict
and select a new value that minimizes the number of

outstanding constraint violations.

We present empirical evidence showing that on some
standard problems our approach is considerably more
efficient than traditional backtracking methods. For
example, on the n-queens problem, our method quickly
finds _lutionsto the one million queens problem[15].
We argue that the reason that repair-based methods
can outperform backtracking methods is because a
complete assignment can be more informative in guid-
ing search than a partial assignment. However, the
utility of the extra information is domain dependent.

The work described in this paper was inspired by
a surprisingly effective neural network developed by
Adoffand Johnston [1] for scheduling astronomical ob-
servatlons on _the Hubble Space TelescOpe. Our heuris-
tic CSP method was distilled from an analysis of the
network. In the process of carrying out the analysis,
we discovered that the effectiveness of the network has

little to do with its connectionist implementation. Fur-
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thermore, the ideas employed in the network can be
implemented very efficiently within a symbolic CSP

framework. The symbolic implementation is extremely
simple. It also has the advantage that several different

search strategies can be employed, although we have
found that hill-climbing methods are particularly well-
suited for the applications that we have investigated.

We begin the paper with a brief review of Adoff and
Johnston's neural network. Following this, we describe
our symbolic method for heuristic repair. / _

Previous Work: The GDS Network

By almost any measure, the Hubble Space Telescope
scheduling problem is a complex task [11, 17]. Be-
tween ten thousand and thirty thousand astronomi-
cal observations per year must be scheduled, subject
to a great variety of constraints including power re-
strictions, observation priorities, time-dependent or-
bital characteristics, movement of astronomical bod-
ies, stray light sources, etc. Because the telescope
is an extremely valuable resource with a limited life-

time, efficient scheduling is a critical concern. An ini-
tial scheduling system, developed using traditional pro-
granuning methods, highlighted the difficulty of the
problem; it was estimated that it would take over three
weeks for the system to schedule one week of observa-

tions. This problem was remedied by the development
of a successful constraint-based system to augment the
initial system. At the heart of the constraint-based sys-
tem is a neural network developed by Adorf and John-
ston, the Guarded Discrete Stochastic (GDS) network,
which searches for a schedule[l].

From a computational point of view, the network is
interesting because Adoff and Johnston found that it
performs well on a variety of tasks, in addition to the
space telescope scheduling problem. For example, the
network performed significantly better on the n-queens
problem than methods that had been previously devel-
oped. The n-queens problem requires placing n queens
on an n x n chessboard so that no two queens share a
row, column or diagonal. The network has been used

to solve problems of up to 1024 queens, whereas most
heuristic backtracking methods encounter difficulties
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withproblemsone-tenththatsize[19].
TheGDSnetworkisamodified Hopfield network[8].

In a standard Hopfield network, all connections be-

tween neurons are symmetric. In the GDS network, the
main network is coupled asymmetrically to an auxiliary
network of guard neurons which restricts the configu-
rations that the network can assume. This modifica-

tion enables the network to rapidly find a solution for
many problems, even when it is simulated on a serial

machine. Unfortunately, convergence to a stable con-
figuration is no longer guaranteed. Thus the network
can fall into a local minimum involving a group of un-
stable states among which it will oscillate. In practice,
however, if the network fails to converge after some
number of neuron state transitions, it can simply be
stopped and started over.

To solve the n-queens problem with the GDS net-
work, each of the n × n board positions is represented
by a neuron whose output is either one or zero depend-
ing on whether or not a queen is located in that posi-
tion. (Note that this is a local representation rather
than a distributed representation of the hoard.) If
two board positions are inconsistent, then an inhibit-
ing connection exists between the corresponding two
neurons. For example, all the neurons in a column will
inhibit each other, representing the constraint that two
queens cannot be in the same column. For each row,
a guard neuron is connected to each of the neurons in

the row and gives the neurons in that row a large exci-
tatory input, large enough so that at least one neuron
in the row will turn on. Thus, the guard neurons en-
force the constraint that one queen in each row must be
on. The network is updated on each cycle by randomly
picking a row and flipping the state of the neuron in
that row whose input is most inconsistent with its cur-
rent output. A solution is realized when the output of
every neuron is consistent with its input.

Why does the GDS Net Perform So Well?

Our analysis of the GDS network was motivated by
the question: "Why does the network perform so much
better than tra_titional backtracking methods on cer-
tain tasks?" In particular, we were intrigued by the
results on the r-queens problem, since this problem
has received considerable attention from previous re-
searchers. For n-queens, Adorf and Johnston found

empirically that the network requires a linear number
of transitions to converge. Since each transition re-
quires linear time, the expected (empirical) time for
the network to find a solution is O(n2). To check this
behavior, Johnston and Adorf ran experiments with n
as high as 1024, at which point memory limitations
became a problem. I

1The network, which is programmed in Lisp, requires
approximately 11 minutes to solve the 1054 queens prob-
lem on a TI Explorer H. For larger problems, memory be-
comes a limiting factor because the the network requires
approximately O(n _) space,

Nonsystematic Search Hypothesis

Initially, we hypothesised that it was the nonsystem-
atic nature of the network's search that allowed it to

perform much better than systematic depth-first back-
tracking search. There are two potential problems
associated with systematic depth-first search. First,
the search space may be organized in such a way
that poorer choices are explored first at each branch

point. For instance, in the n-queens problem, depth-
first search tends to find a solution much more quickly
when the first queen is placed in the center of the first
row rather than the corner. It would appear that solu-

tion density is much greater in the former case[19], but
most naive algorithms tend to start in the corner sim-
ply because humans find it more natural to program

that way. However, the fact that a systematic algo-
rithm may consistantly make poor choices does not
completely explain why the GDS network performs so
well for n-queens. A backtracking program that ran-
domly orders rows (and columns within rows) performs
much better than the naive method, and yet still per-
forms poorly relative to the GDS network.

The second potential problem with depth-first search
is more significant and more subtle. Depth-first search
can be a disadvantage when solutions are not evenly
distributed throughout the search space. As the distri-
bution of solutions becomes less uriif0rm, and, there-
fore, the solutions become more clustered, the time
to search between solution clusters increases. Thus,
we conclude that, in a tree where the solutions are

clustered, depth-first search performs relatively poorly.
In comparison, a search strategy which examines the
leaves of the tree in random order is not affected by
solution clustering.

We investigated whether this phenomenon explained
the relatively poor performance of depth-first search on
n-queens by experimenting with s randomized search
algorithm, called a Las Vegas algorithm [2]. The al-
gorithm begins by selecting a path from the root to
a leaf. To select a path, the algorithm starts at the

root node and chooses one of its children with equal
probability. This process continues recursively until a
leaf is encountered. If the leaf is a solution the al-

gorithm terminates, if not, it starts over again at the
root and selects a path. The same path may be exam-
ined more than once, since no memory is maintained
between successive trials.

The Las Vegas algorithm does, in fact, perform bet-
ter than simple dep_-i_rst search on n_-queens. In fac_,
this result was already known [2]. However, the perfor-
mance of the Las Vegas algorithm is still not nearly as
good as that of the GDS network, and so we concluded

that the systematlcity hypothesis alone cannot explain
the network's behavior.

Informedness Hypothesis ..... : :

Oursecond hypothesis was that the network's search

process uses information about the current assignment
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that is not available to a standard backtracking pro-
gram. We now believe this hypothesis is correct, in
that it explains why the network works so well. In par-

ticular, the key to the" network's performance appears
to be that state transitions are made so as to reduce the

number of outstanding inconsistencies in the network;
specifically, each state transition involves flipping the
neuron whose output is most inconsistent with its cur-

rent input. From a constraint satisfaction perspective,
it is as if the network reassigns a value for a variable by
choosing the value that violates the fewest constraints.

This idea is captured by the following heuristic:
Min-Confllcts heuristic:

G_v_n.. A _t of variables, a set of binary constraints,
and an assignment specifying a value for each vari-
able. Two variables conflict if their values violate a
constraint.
Procedure: Select a variable that is in conflict, and as-
sign it a value that minimizes the number of conflicts?
(Break ties randomly.)

We have found that the network's behavior can be

approximated by a symbolic system that uses the rain-
conflicts heuristic for hill-climbing. The hill-climbing
system starts with an initial assignment generated in a
preproceesing phase. 3 At each choice point, the heuris-
tic chooses a variable that is currently in conflict and

reassigns its value, until a solution is found. The sys-
tem thus searches the space of possible assignments,
favoring assignments with fewer total conflicts. Of

course, the hill-climbing system can become "stuck _
in a local maximum, in the same way that the network
may become %tuck _ in a local minimum.

There are two aspects of the rain-conflicts hill-
climbing method that distinguish it from standard
backtracking approaches for CSP problems. First, in-
stead of extending a consistent partial assignment, the
rain-conflicts method repairs a complete but incon-
sistent assignment by reducing those inconsistencies.
Thus, to guide its search, it uses information about
the current assignment that is not available to a stan-
dard backtracking algorithm. Second, the use of a hill-
climbing strategy produces a different style of search.

We have also found that extracting the method from
the network enables us to tease apart and experiment
with its different components. In particular, the idea of
repairing an inconsistent assignment can be used with
a variety of different search strategies in addition to
hill-climbing.

_Ingeneral' the heuristic attempts to minimize the num-
ber of other variables that will need to be repaired. For
binary CSPs, this corresponds to minimising the number
of conflicting variables. For general CSPs, where a single
constraint may involve several variables, the exact method
of counting the number of variables that will need to be
repaired depends on the particular constraint. The space
telescope scheduling problem is a general CSP, whereas the
other taslr_ d_cribed in this paper axe binary CSPs.

SSee [14] for an analysis of how different initial assign-
ments can a_ect the repair phase.

Highlights of Experimental Results

This sectio n contains highlights from experiments in
which we evaluate the performance of the min-conflicts
heuristic on some standard tasks. These experiments
identify problems on which rain-conflicts performs well,
as well as problems on which it performs poorly. The
experiments also show the extent to which the min-
conflicts approach approximates the behavior of the
GDS network.

The N-Queens Problem

• Min-conflicts hill-climbing approximates the GDS
network for _-queens.

• For n >_ 100 min-conflicts hill-climbing has never
failed to find a solution.

• For rnin-conficts, the required number of repairs ap-
pears to remain constant as n increases, and the time
to find a solution grows linearly with n.

* Standard backtracking using the "most-constrained
first _ heuristic quickly grows large: for 100 runs
when n > 1000 a backtracking program implement-
ing the heuristic took more than 12 hours to com-
plete.

Min-conflicts hill-climbing solves the million queens
problem in less than four minutes on a SPAR.Csta_
tion I.

N-queens is actually quite an easy problem given the
right method.

Scheduling Applications.. HST

• Min-conflicts hill-cllrnhing approximates the GDS
network for HST scheduling.

• Much of the overhead (particularly the space over-
head) in the GDS network is eliminated by using the
rain-conflicts method.

• Because the mln-confllcts heuristic is so simple, a
rain-conflicts scheduler for HST was quickly coded
in C and is extremely efficient.

• The simplicity of the rain-conflicts method makes it
easy to experiment with modifications to the heuris-

tic and the search-strategy.

• Other telescope scheduling problems have started to

use the min-conflicts scheduler developed for HST.

Graph Coloring

• Min-couflicts hill-climbing approximates the GDS
network for graph coloring.

• A standard backtracking algorithm employing a
Brelas-like[3] heuristic outperforms rain-conflicts
hill-climbing.

Summary of Experimental Results

For each of the three tasks we have examined in detail,
n-queens, HST scheduling and graph 3-colorability, we
have found that the GDS network's behavior can be
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approximated by the rain-conflicts hill-climbing algo-
rithm. To this extent, we have a theory that ex-
plains the network's behavior. Obviously, there are
certainpracticaladvantages tohaving "extracted"this

method from the network. First,the method isvery

simple, and so can be programmed extremely ei_-
ciently,especiallyifdone in a task-specificmanner.

Second, the heuristicwe have identified,that is,Choos-

ing the repairwhich minimizes the number ofconflicts,

isvery general.Itcan be usedln combination withdif-

ferentsearch strategiesand task-specificheuristics,an

important factorfor most practicalapplications.

Insofaras the power of our approach isconcerned,

our experimental resultsare encouraging. We have

identifiedtwo tasks,n-queens and HST scheduling,

which appear more amenable to our repair-basedap-

proach than a traditionalapproach that incrementally

extends a partialassignment. This isnot to say that
a repair-basedapproach willdo better than an_/tra-

ditionalapproach for solving these tasks,but merely

that our simple, repair-basedmethod has done rela-

tivelywell in comparison to the standard traditional

methods. We alsonote that repair-basedmethods have

a specialadvantage forscheduling tasks:they can eas-

ilybe used for both overconstrainedand rescheduling
problems. Thus itseems likelythat there are other

applicationsforwhich our approach willprove useful.

Discussion

The heuristicmethod described in this paper can be

characterizedas a localsearchmethod[10], inthat each
repairminimizes the number of conflictsfor an indi-

vidual variable.Local search methods have been ap-

plied to a varietyof important problems, oRen with

impressive results. For example, the Kernighan-Lin

method, perhaps the most successfulalgorithm for
solving graph-partitioning problems, repeatedly im-

proves a partitioningby swapping the two vertices
that yield the greatest cost differential.The much-

publicized simulated annealing method can also be

characterized as a form of local search[9]. However,
it is well-known that the effectiveness of local search
methods depends greatly on the particular task.

In fact, it is easy to imagine problems on which
the rain-conflicts heuristic will fail. The heuristic is

poorly suited for problems with a few highly critical
constraints and a large number of less important con-
straints. For example, consider the problem of con-
structing a four-year course schedule for a university
student. We may have an initial schedule which satis-
fies almost all of the constraints, except that a course
scheduled for the first year is not actually offered that
year. If this course is a prerequisite for subsequent
courses, then many significant changes to the sched-
ule may be required before it is fixed. In general, if
repairing a constraint violation requires completely re-
vising the current assignment, then the rain-conflicts

heuristic will offer little guidance.

The problems investigatedin this paper, especiaUy
the HST and n-queens problem, tend to be relatively

uniform in that criticalconstraintsrarelyoccur. In

part, thisis due to the way the problems are repre-

sented.For example, in the HST problem, as described

earlier,the transitiveclosureof temporal constraints

isexplicitlyrepresented. Thus, a single"after"rela-
tion can be transformed intoa set of "after"relations.

This improves performance because the rnin-conflicts

heuristicis lesslikelyto violatea set of constraints

than a singleconstraint. In some cases, we expect

that more sophisticatedtechniques willbe necessary

to identifycriticMconstraints[5].To thisend, we are

currentlyevaluating explanation-based learning tech-

niques [4,13] as a method for identifyingcriticalcon-
straints..... "

The algorithms describedin thispaper alsohave an

important relationto previous work in AI. In partic-

ular,there isa long historyof AI programs that use

repairor debugging strategiesto solve problems, pri-

marily in the areas of planning and design[18, 20]. This
approach has recently had a renaissance with the emer-
gence of case-based[6] and analogical [12, 21] problem
solving. To solve a problem, a case-based system will
retrieve the solution from a previous, similar problem
and repair the old solution so that it solves the new
problem.

The fact that the rain-conflicts approach per-
forms well on n-queens, a well-studied, "standard"
constraint-satisfaction problem, suggests that AI
repair-based approaches may be more generally use-
ful than previously thought. However, in some cases it
can be more time-consuming to repair a solution than
to construct a new one from scratch.

There are many possible extensions to the work re_
ported here, but three are particularly worth mention-
ing. First, we expect that there are other applications
for which the mln-conRicts approach will prove useful.
Conjunctive matching, for example, is an area where
preliminary results appear promising. This is particu-
larly true for matching problems that require only that
a good partial-match be computed. Second, we ex-

pect that there are interesting ways in which the rain-
conflicts heuristic could be combined with other heuris-

tics. Finally, there is the possibility of employing the
min-conflicts heuristic with other search techniques. In
this paper, we considered only one very basic method,
hill climbing. However, since the number of conflicts
in an assignment can serve as a heuristic evaluation
function, more sophisticated techniques such as best-
first search are possible candidates for investigation.
Another possibility is Tabu search[7], a hl]]-climbing
technique that maintains a list of forbidden moves in

order to avoid cycles. Morris[16] has also proposed a
hill-cllmbing method which can break out of local max-
ima by systematically altering the cost function. The
work by Morris and much of the work on Tabu search

bears a close relation to our approach.
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Conclusions

In this paper we have analyzed a very successful neural
network algorithm and shown that an extremely sim-
ple, heuristicsearch method behaves similarly.Based

on our experience with both the GDS network and

rain-conflictshill-climbing,we conclude that the rain-

conflictsheuristiccaptures the criticalaspectsof the

GDS network. In this sense,we have explained why

the network isso effective.Additionally,by isolating
the rain-conflictsheuristicfrom the searchstrategy,we
distinguishedthe idea of a repair-basedCSP method

from the particularstrategyemployed to searchwithin

the space ofrepairs.

Finally,there are severalpracticalimplicationsof
thiswork. First,the scheduling system for the Hub-

ble Space Telescope,SPIKE, now employs our sym-

bolicmethod, rather than the network, reducing the

overhead necessary to arriveat a schedule. Second,

and perhaps more importantly,itiseasy to experiment

with variationsof the symbolic method, which should

facilitatetransferringSPIKE to other schedulingap-
plications.Third, by demonstrating that repair-based

methods are applicabletostandard constraintsatisfac-

tionproblems, such as N-queens, we have provided a

new toolfor solvingCSP problems.
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