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GENETIC ALGORITHMS

• Based on Darwin's "Survival of the Fittest" Theories

O

Q

Shows Great Potential for

• Multi-Modal Objective Functions

• Discrete and/or Continuous Design Variables

• Discontinous Design Space

Works With a Coding of the Design Variables,

Not the Design Variables Themselves

Searches From a Population of Designs,

Not a Single Design Point

Uses Payoff (Objective Function) Information,

Not Gradient Information

Uses Probabilistic Transition Rules,

Not Deterministic Rules

Genetic algorithms (GA's), as introduced by Holland (1975), are one form of directed random

search. The form of direction is based on Darwin's "survival of the fittest" theories. GA's

are radically different from the more traditional design optimization techniques. GA's work

with a coding of the design variables, as opposed to working with the design variables directly.

The search is conducted from a population of designs (i.e., from a large number of points

in the design space), unlike the traditional algorithms which search from a single design point.

The GA requires only objective function informat!0n, as opposed to gradient or other auxilia-

ry information. Finally, the GA is based on probabilistic transition rules, as opposed to deter-

ministic rules. These features allow the GA to attack problems with local-global minima,

discontinuous design spaces and mixed variable problems, all in a single, consistent frame-
work.

* Research Sponsored in part by the NASA CSI Program Office,
NASA Grant Number NAG-l-1017.
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GA's - ALGORITHM OVERVIEW

® Initial Population of Designs Created - Random or Heuristic

• Initial Population Allowed to"Evolve" Over Generations

O Conjecture - Evolution is the Best Compromise Between

Determinism and Chance

O Motivation - GA's are Robust Over a Wide Range

of Problems

J

Nonlinear Optimization

_Random Walk ic Algorithms_

Problem Class

In GA/s, a finite number of candidate solutions or designs are randomly or heuristically gener-
ated to create an initial population of designs. This initial population is then allowed to

evolve over generations to produce new, and hopefully better, designs. The basic conjecture

behind GA/s is that ew lut,,n Js the best compromise between determlmsm and chance. The
basic Fm_tTvati_/fi_Beh_nd_the deveiopment_J_A's is_that ihey are r¢;_ustprobiem S¢)ivers fi,r

a wide class of problems. However, it should be notedthat they are not as efficient as nonlin-

ear optimization techniques over the class of problems which are ideaIly suite d for nonlinear
optimization: namely continuous design variables with a continuous differentiable unimodai
design space.

304



GENETIC ALGORITHM MODULES

O Design Variables Coded as a q-Bit Binary Number

e Continuous Variables Like A/D Converter

e Discrete Variables Have Unique Binary Strings

® A Population Member is Just a String of Design Variables

O GA Evaluation- Level of Fitness Assigned to Each Member

e Fitness Chosen to be Related to Objective Function

® GA's Maximize Fitness

e GA Selection- Determination of Which Individuals in

Current Population Chosen to be Parents

® Biased Towards More Fit Members
,member, fitness,

o Proportional Bias-p_ i ) ._,_
fitnessj

J=l

® GA Crossover - Transfer of Design Information From

Parents to Prodigy

O GA Mutation - Low Probability Random Switch of Bits

Q Retain Design Information Over Entire Design Space

® Aides Search For Global Optimal Solution

Each design variable is coded as a q-bit binary number. A continuous design variable is ap-

proximated by 2q discrete numbers between lower and upper bounds set fl_r the design vari-

able. Discrete variables would each be assigned an unique binary string. A population mem-

ber is obtained by concatenating all design variables to obtain a single string of ones and zeros.

Evaluation is the process of assigning a fitness measure to each member of the current popula-

tion. Because GA's attempt to maximize the fitness of each member, an objective function

which is to be minimized must be converted into an equivalent maximization problem. Selec-

tion is biased towards the most fit members of the population. Therefore, designs which are

better as viewed from the fitness function, and therefore the objective function, are more like-

ly to be chosen as parents. Crossover is the process in which design infi_rmation is transferred

to the prodigy from the parents. Many crossover operators (1-point, 2-point, uniform) have

been investigated. Mutation is a low probability random operation which may perturb the de-

sign represented by the prodigy. The operator works on a bit-by-bit basis and is governed

by the probability of mutation, Pro- At each bit, a biased coin toss is used to determine wheth-

er the bit should be logically "NOTed". The mutation operator is used to retain design infor-

mation over the entire domain of the design space during the evolutionary process.
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GENETIC ALGORITHMS - SUMMARY

Create Initial
Population

Fitness Evaluation

Selection Criteria [

Reproduction
(crossover)

I Mutation ]

Stopping Criteria I
No

In the implementation of the GA shown above, the prodigies are produced until the number

of prodigies created is equal to npop. the population size. At that point, the current population

of parents are discarded and the prodigies are in turn made parents which are capable of pro-

ducing the next generation of prodigies. Thus, the production of npop prodigies can be viewed

as the completion of one generation cycle in the evolutionary process. During this procedure.

it is possible that both the fitness of the most fit member and the average population fitness

can be temporarily reduced during the evolutionary process. To overcome this, the concept

of a steady-state GA was implemented. In a steady-state GA (SSGA), the fitness of the chil-

dren after they have been mutated is evaluated. These fitness values are then compared to

the fitness of the two least fit parents in the current population. If the mutated child's fitness

is higher than the least fit member in the population, the child will replace that member and

will instantly become a candidate parent. To keep intact the concept of a generation, a gener-

ation is defined t0__be complete when the number of children produced, but not necessarily

accepted into the population, is equal to npop.
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GA EXAMPLE - ACTUATOR PLACEMENT

FOR MINI-MAST (discrete design problem)

PROBLEM - Given "N" Candidate Actuator Locations and

a Maximum of "K" Actuators, Each of Mass M, Determine

the Optimal Configuration

o Actuator Placement

® Criterion Representing Desirability of Configuration

e Simple Method of Evaluation

o Algorithm for Cycling Through Configurations - GA's

o Criterion: Energy Optimal Degree of Controllability

(Longman) - maximize the "size" of the state space that can

be returned to origin in prescribed time and energy

o FITNESS = EDOC - (soft penalty function)

• Soft Penalty Function Penalizes Configurations Which

Have More Than Allowable Number of Actuators

o In Addition to Identifying Optimal Configuration, "Nearly"

Optimal Configurations Also Found

Fundamental to the problem of actuator placement are: (i) the definition of an appropriate criterion representing

the desirability of actuator configurations, (ii) the development of a computationally efficient method for the
evaluation of this criterion, and Off) the development of algorithms to cycle through possible candidate actuator
configurations. _J date. the greatest amount of work has focussed on problems (i) and (ii). The approach taken

for problem (iii) by most researchers has been an exhaustive search. That is, given n candidate locations to place
m actuators, m < n. evaluate the effectiveness criteria for all configurations. The numhers aspect (i.e. place m

or less actuators) has rarely been investigated. In this demonstration of the GA, the energy degree of controlla-
bility (EDOC) developed by Longman (1989) is used as an actuator configuration effectiveness measure. The

effects of actuator mass are incorporated into the EDOC. The energy degree of controllability (EDOC) is related
to the size of the region in the state space that can be returned to the origin in a prescribed amount of time T
using less t hart a prescribed amount of energy e. The larger a given actuator configuration's EDOC is. the greater
its control authority. The optimal actuator configuration is that which maximizes the EDOC. Therefore. the

_hjective function used for evaluation is taken as J = EDOC - W(n,,,., -n,_,,,_.,)_(n,_, -n,,,.,,,_) where W is an arbi-

trary weight function, nact is the number of actuators, nactmax is the maximum allowable number of actuators.
and g is the unit step function. The second term is essentially a soft penalty function which reduces the objective

function for a given actuator configuration only if the configuration has more actuators than the maximum alh_w-
able. Actuator configurations which have less than the maximum allowable are not penalized by this term.
Therefore. the optimal number of actuators is also determined. It is possible in this problem that the optimal
number of actuators is less than the maximum allowable because of actuator mass effects. Details of this work

are presented in Zimmerman (1991).*

_Zimmerman. D.C. (199L). "A Darwinian Approach to the Actuator Number and Placement

Problem with Nonnegligible Actuator Mass." to appear. Journal of Mechanical Systems and

Signals.
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ACTUATOR PLACEMENT- RESULTS
BAY # BAY #
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Four test cases were run. In each figure, the optimal actuator configuration is shown pictorially with the st,lid

ovals. In addition to identifying the optimal configuration, the final generation of designs also provides valuable
information concerning other "nearly optimal" solutions. This is of significance in that (i) insight into the opti-
mization process can be gained and (ii) it allows for human judgement to factor in other criteria not embodied

in the objective function in comparing the "nearly optimal" designs to the "true optimal" design as dictated
by the fitness function. These "nearly optimal" designs are indicated to the right of each figure. In the top-left
case, the optimal configuration for placing two massless actuators was determined with equal m,v,.le 1-5 weight-

ing (171 possible combinations). It should be noted that the results correspond to the actual Mini-Mast config-
uration, qb increase the possible number of combinations, the remaining problems looked at placing four or

less actuators (4047 possible combinations). The top-right case was for no actuator mass and control ,,f onqy
mode one deemed important. The GA results are consistent with physical intuition. The bottom two cases
demonstrate the effects of actuator mass on the placement problem. For actuator mass normalized t,, unity

(mass = 1). the optimal configurations are shown in the bottom-left figure. For an increase in actuator mass
of 50%, the optimal actuator configurations are shown in the bottom-right figure. Comparing these two figures
demonstrates the obvious importance of including actuator mass in any placement algorithm. All GA results

presented above were validated by exhaustive search. This was possible due to the size of the factorial problem
investigated. The results showed that the final GA population included a minimum of five of the top seven

actuator configurations (including the optimal) for each case.
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CONVERGENCE HISTORY
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GENERATION NUMBER

O Average Population Increase With Each Generation -

Characteristic of Steady-State GA

O Population Size = 20, Generations = 40, Therefore

800 Function Evaluations (4047 possible combinations)

The above figure shows the convergence history of the GA fl_r the case of placing 4 actuators

with no actuator mass. The GA identified the optimal solution after 38 generations, although

the algorithm was run fl)r a total of 40 generations. With a population size of 20 members,

the GA required 800 function evaluations to arrive at the optimal solution (exhaustive search

would require 4047). At a given generation number, the maximum fitness value represents

the most fit member in the population, whereas the average fitness is the mean fitness of the

entire population. It can be seen that the average fitness increases with each new generation,

which is a property of the SSGA used. In a study of a large combinatorial problem not shown

(906,192 possible solutions, optimal solution known), the GA was able to determine the opti-

mal solution in less than 2500 function evaluations. Although no optimization algorithm can

guarantee convergence to the global optimal solution, experience with the GA has shown that

GA's are a powerful tool to improve CSI designs.

309



@

GENETIC ALGORITHM
LEARNING CONTROL

Utilize Genetic Principles to Evolve Controller Making

Use of On-Line Experimental Measures of Fitness

o Focus Application - Single Link Large Angle Slewing

o Weighted Fitness Function - Strain and Angle Error

Potentiomete

Strain Ga Flexible Beam

i Motor

Ma_

Encoder

ANAI,OG ] _

ELECTRONICS_--_

DSP CONTROLLER

(GENETIC LEARNING)

POWER ICONDITIONER

In this application of GP,/s, a Genetic Algorithm Learning Control (GALC) formulation is
investigated (Layton and Zimmerman, 1992). In learning control, the control law is adapted

from information gained by repeating the desired operation. In the GALC, various control-
let forms (i.e., parameterized control laws) are formulated. The ew)iutionary principles of
Genetics are then utilized to not only select the optimal control law parameters, but also

to select theoptimal c0ntroi law form. For this particular test case, the desired maneuver
is a rest-to-rest 45 degree slew. Available sensor information included angle, angle rate.
and beam root strain. In simulation studies, the optimal control law form was determined
(as well as the optimal control parameters). Experimentally, the control law form was fixed
with the GALC varying the control parameters. Fitness information was obtained exper-
imentally by integrating the angle error (square difference of the desired and actual angle)
and the square of the root strain signal. The objective of the GALC was to minimize a

weighted integral of angle error and root strain. All processing was clone digitally using a
DSP controller with an approximate update rate of 33kHz.
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GENETIC LEARNING
Heavy Weighting on Angle Error
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Three experimental case studies were investigated. In all cases, the initial population was

selected randomly and was not biased with any knowledge of the beam, actuator, or sensor

dynamics. In other words, there was no need to develop a system model as far as the experi-

ment was concerned. Fitness functions were developed using experimental sensor signals.

The repeatability of these calculations was nominally 8% error. Thus, issues of noisy func-

tion evaluation were addressed. In the first experiment, the fitness function was weighted such

that there was no penalty on the strain signal. The results are in agreement with physical rea-

soning: the motor slews as quickly as possible to reduce the angle error irregardless of the

strain signal. The second experiment is just the opposite of the first: no penalty associated

with the angle error. Again, the result of learning control agrees with physical reasoning: slew

the beam slowly to minimize the strain signal. Finally, the third experiment provided for ap-

proximate equal weighting (in a voltage sense) of the angle and strain signal. The waterfall

plot shows the progressive learning of the controller. It should be noted that the cost function

also included a time cubed weighting factor within each integral. This effect clearly is demon-

strated in the above figures.
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GENETIC LEARNING FOR CHANGED
SYSTEM
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In this experiment, a 76g mass was added at the tip of the beam. The mass of just the fle_ble

beam was 112g. Obviously, the tip mass greatly influenced the system dynamics. The top

graph shows the angle error and root strain time histories when the control optimized for the

previous system (i.e. no tip mass) is used to maneuver the beam with tip mass. In comparing

this figure with the bottom figure of the previous slide, it is obvious that performance has been

seriously degraded. The second figure of this slide shows the angle error and root strain time

histories after five generations of learning. It is obvious that the GALC has adapted the con-

trol law to better match the "new" system dynamics. It would be expected in this case that

the strain signal would have a larger RMS level than the angle error signal, and thus "equal"

weighting between angle error and strain is no longer achieved with the same weighting val-

ues. In the time history shown above, the weighting values were kept the same as in the pre-

vious case. This causes the angle error to remain at a non-zero value as time increases. If

the weight on angle error is increased, the angle error would go to zero in the steady-state.
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SUMMARY

O Genetic Algorithms Represent a New Class of Optimization

Tools Which Are Applicable To Many CSI Design Problems

® Genetic Can Handle Discontinous Design Spaces and Both

Discrete and Continuous Design Variables

O Demonstrate Quick Convergence to Near Optimal Solution,

Then Slows Down (hybrid solution techniques possible)

o Because GA's Require Function Evaluations, Instead of

Gradient Information, Well-Suited For Noisy Experimental

Function Evaluations

O Demonstrated For Both Actuator Placement and Learning

Control, But Other Applications Tested Include

o Truss Configuration and Sizing

e Constrained Layer Damping Treatment Placement

® Actuator Placement with Simultaneous Control Design

In this work, the use of Genetic Algorithms (G_s) in solving various CSI design problems

was presented. The basic principles of GA_s were addressed as well as the motivation of apply-

ing Ggs to CSI design problems. Two case studies were presented. The first problem in-

w_lved actuator number and placement, a discrete design problem. The focus structure was

the NASA Mini-Mast. The results indicate the promise of G_s in solving large order combi-

natorial problems. The second problem addressed the development of a Genetic Algorithm

Learning Control technique. Experimental results for the slewing of a flexible beam demon-

strated the learning ability of the controller. Most importantly, the control law was able to

adapt even in the worst case of no prior knowledge of system dynamics. The adaption was

driven making use of experimental measures of performance. Of course, prior knowledge

of system dynamics can be used to bias the initial GA population to enhance GA learning.

in this case, GA learning would compensate for analytical modelling errors (including unmo-

delled effects).
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