
NASA-TM-108631

:IATORY SERIES SEL-89-201

/:

RE ENGINEERING
RY (SEL)

ORGANIZATION
USER'S GUIDE
EVISION 2

OCTOBER 1992

(NASA-TM-I08631) SOFTWARE

ENGINEERING LABORATORY (SEL)

DATABASE ORGANIZATION ANO USER'S

GUIDE, REVISION 2 (NASA) 244 p

G3/61

Unclas

01B6116

https://ntrs.nasa.gov/search.jsp?R=19930009671 2020-03-17T07:25:12+00:00Z

%

j'

SOFTWARE ENGINEERING LABORATORY SERIES SEL-89-201

SOFTWARE ENGINEERING
LABORATORY (SEL)

DATABASE ORGANIZATION
AND USER'S GUIDE

REVISION 2

OCTOBER 1992

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National

Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) and

created to investigate the effectiveness of software engineering technologies when applied to

the development of applications software. The SEL was created in 1976 and has three

primary organizational members:

NASA/GSFC, Software Engineering Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the GSFC

environment; (2) to measure the effect of various methodologies, tools, and models on this

process; and (3) to identify and then to apply successful development practices. The

activities, ffmdings, and recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of reports that includes this document.

The original contributors to this document are

Maria So (Computer Sciences Corporation)

Gerard Heller (Computer Sciences Corporation)

Sandra Steinberg (Computer Sciences Corporation)

Karen Pumphrey (Computer Sciences Corporation)

Douglas Spiegel (NASA/GSFC)

The contributors to the latest revision of this document are

Linda Morusiewicz (Computer Sciences Corporation)

John Bristow (NASA/GSFC)

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

10004437L

_AuE It h,,[,

111

PRE'CEOING P/IIGE ' _'" ' "'""

ABSTRACT

This document presents the organization of the Software Engineering Laboratory (SEL)

database. Included are definitions and detailed descriptions of the database tables and views,

the SEL data, and system support data. The mapping from the SEL and system support data

to the base tables is described. In addition, techniques for accessing the database through the

Database Access Manager for the SEL (DAMSEL) system and via the ORACLE structured

query language (SQL) are discussed.

100044371.

, i4 II'_TEiiTiUhALLY _SLA,_

V

PR_._---fLgii,';._r-':_:.':_ :_

TABLE OF CONTENTS

1-1Section 1--Introduction ..

1.1 Basic Relational Database Concepts 1-2

Section 2--A Conceptual View of SEL Data 2-1

2.1 2-1Project Data ...

2.1.1 Schedules 2-3

2.1.2 Estimates 2-4

2.1.3 Resource Use 2-5

2.1.4 Product Characteristics 2-10

2.1.5 Changes .. 2-11

2.1.6 Subjective Evaluations 2-14

2.1.7 Final Statistics 2-15

2.1.8 Development Status Data 2-18

2.2 Project-Independent Data 2-19

2.2.1 People and Services 2-19

2.2.2 Computer 2-19

Section 3--SEL Data From a Data Collection Viewpoint 3-1

3.1 Data Collection Forms 3-1

3.1.1 Schedule and Estimates Forms 3-1

3.1.2 Weekly Rate Data Forms 3-2

3.1.3 Product Data Forms 3-5

3.1.4 Project Development Completion Forms 3-9

3.1.5 Project Data Forms 3-12

3.1.6 Project Development Status Forms 3-13

Section 4---A Logical View of the SEL Database 4-1

4.1 Database Table and View Definitions 4-1

10004437L

PAGE.__.V.j__ INTIrNl ' ";_..... t ''+',, ._tANI<
. -- +

vii

,, C;v+:y: ..

TABLE OF CONTENTS (Cont'd)

4.2 4-54

4-54

4-58

4-63

4.3 Mapping the Conceptual View to the Logical View 4-64

Section 5---Accessing the SEL Database 5-1

5.1 Database Access Requirements 5-1

5.2 DAMSEL ... 5-2

5.3 Ad Hoc Database Queries 5-3

5.3.1 Connecting to the Database 5-3

5.3.2 Basic Select Statement 5-4

5.3.3 Ordering the Retrieved Data 5-5

5.3.4 Limiting the Number of Rows Retrieved 5-6

5.3.5 Group Functions 5-7

5.3.6 Retrieving from More Than One Table--Joins 5-8

5.3.7 Retrieving from More Than One Table---Subqueries .. 5-9

5.3.8 Views--A Shortcut for Commonly Used Joins 5-10

5.3.9 Spooling Output and Saving Queries 5-11

Query Library .. 5-12

A--Encoded Fields and Allowable Values

B---Sample Optimized Database Queries

C---SEL Data Collection Forms

I)---Data Definition Language for the SEL Database

5.4

Appendix

Appendix

Appendix

Appendix

Glossary

Relationships and Constraints Among Database Tables

4.2.1

4.2.2

4.2.3

° ° ° °

Relationships Among Tables

Descriptions of Support Data Tables

Database Constraints

Abbreviations and Acronyms

References

Standard Bibliography of SEL Literature

10004437L viii

LIST OF ILLUSTRATIONS

Figure

1-1

2-1

4-1

4-2

4-3

Basic Relational Database Organization 1-3

Conceptual View of SEL Data 2-2

Relationships Among Project-Related Tables 4-55

Relationships Among DAMSEL Support Tables 4-56

Relationships Involving Project-Independent Data 4-57

10004437L I.X

LIST OF TABLES

Table

4-1

4-2

4-3

4-4

SEL Database Tables and Views 4-3

SEL Database Tables and Views--Technical Specifications ... 4-24

Constraints on Database Tables 4-65

SEL Database Access Paths 4-73

10004437L X

SECTION 1--INTRODUCTION

The Software Engineering Laboratory (SEL) was established in 1976 to support research in

measurement and evaluation of the software development process. Under its sponsorship,

numerous experiments have been designed and executed to study the effects of applying

various tools, methodologies, and models to software development efforts in flight dynamics

applications. The SEL is a cooperative effort of the National Aeronautics and Space

Administration/Goddard Space Flight Center (NASAJGSFC), Computer Sciences Corpora-

tion (CSC), and the University of Maryland.

To support the research activities it sponsors, one of the major functions of the SEL is the

collection of detailed software engineering data, describing 'all facets of the development

process, and the archival of this data for future use. To this end, the SEL has created and

maintained an online database for the storage and retrieval of software engineering data. The

SEL database has been designed and implemented as a relational database under the

ORACLE relational database management system (RDBMS) on the Systems Technology

Laboratory (STL) VAX 11/780 at GSFC. Since ORACLE provides the facilities for organiz-

ing, storing, maintaining, and retrieving data, SEL database users do not have to understand

the physical organization of the data. They need only understand the logical structure of the

database in order to query, calculate, and manipulate a variety of information. SEL database

users include those involved in software engineering research, managers of current flight

dynamics development efforts, and those involved in the collection of SEL data and mainte-
nance of the database.

This document is intended as a reference guide for "all SEL database users. Its purpose is to

provide general users with high-level information about data collected by the SEL and how

they are stored in the database. Information on how to access the data via various access paths

is also provided. For database maintenance personnel, this document provides in-depth

information about the structure of the database, including table and field definitions, indexes

used, and constraints among data items.

Since this document is intended to be referenced by a broad spectrum of users, it is organized

in increasing levels of specification. Section 1.1 describes general relational database con-

cepts and terminology for readers who are not familiar with relational database systems.

Section 2 of the document presents an introduction to the types of data that are stored from a

conceptual point of view (i.e., without regard to physical or logical storage characteristics).

Section 3 discusses the organization of the data with respect to their sources and the form in

which they are collected. The conceptual view in Section 2 and the data collection view in

Section 3 are then mapped into a logical view of the database design. This design is presented

in Section 4. The logical design of the database is the lowest level of detail required to

understand how to access the database. Details of the physical implementation are hidden

from the user via the ORACLE RDBMS. Section 5 discusses various ways to actually access

the SEL database. Appendix A lists all codes used in the database: Appendix B presents

10004437L 1-1

sample database queries; Appendix C presents the SEL data collection forms; and Appen-

dix D contains the data definition language (DDL), which specifies the def'mitions and
constraints of the database tables and views.

1.1 BASIC RELATIONAL DATABASE CONCEPTS

In relational database terminology, the basic structure for storing items of data is the table, or

relation. A table consists of a variable number of rows. There is no predefined order in which

the rows of a table are stored. Each row consists of a fixed number of columns, or fields.

Columns are identified by column names and are defined to contain values of a specific data

type (e.g., character, number, date). A particular column or _oup of columns is defined as a

unique index for the table. This means that the values of those columns will be unique for

every row in the table. There may also be other columns that are indexed but do not have to be

unique across all rows. Certain columns exist only to define the relationship of a given row to
rows in other tables. If the values in a column from one table are drawn from the same domain

as the values in a column from another table, the data in the two tables are related where rows

in each table share a common value. This basic organization is illustrated in Figure 1-1.

Figure 1-1 contains two tables, PROJECT and PROJ_SUB. The row in the PROJECT table

for the project named X'YZ is related, via common values in the project number columns

(PROJ_NO), to a group of rows in the PROJ_SUB table representing XYZ's subsystems.

The primary key in the PROJECT table is the project name column (PROJ_NAME), while

the primary key in the PROJ_SUB table is the combination of the project number

(PROJ_NO) and the subsystem prefix (SUB_PRE) columns. For more details, Reference 6

provides a good overview of relational database concepts. For ORACLE-specific informa-

tion, References 4 and 5 provide an overview of the ORACLE RDBMS as well as a detailed

description of the ORACLE structured query language (SQL).

Previous versions of this document mentioned that the SEL database contained clusters. The

SEL database no longer has any clusters and all reference have been removed.

'I0004487L 1-2

TABLE: PROJECT

COLUMN _pNAMES''" ROJ NAME

XYZ

ROW

COLUMNS

PROJ NO PROJ TYPE ACTIVE STATUS ''_

101 SIMULATOR ACT DEV

TABLE: PROJ SUB

PROJNO SUB_PRE SUB_DATE

101
101

102

,,¢

O

O

Figure 1-1. Basic Relational Database Organization

looo_37 1-3

SECTION 2--A CONCEPTUAL VIEW OF SEL DATA

This section presents an overview of the types of software engineering data that are stored in

the SEL database from a conceptual point of view. The fundamental entity about which SEL

data are collected and stored is the project. Project data compose the bulk of the data in the

database and are presented in Section 2.1. A relatively small portion of the database is

allocated to the storage of support data, such as computer and personnel names. These data,

which are not associated exclusively with individual projects, are referred to as project-inde-

pendent data throughout this document. Section 2.2 contains detailed descriptions of these

data. The data elements described in this section are tagged with the reference identifiers
used in Sections 3 and 4.

Figure 2-1 shows the m_or data items that make up both the project data and the project-

independent data. This conceptual view of the data is later mapped into the logical view of the

SEL database discussed in Section 4. In the figure, data items flagged with asterisks are

collected both during development and maintenance stages. The rest are collected only in

projects' development stages.

2.1 PROJECT DATA

Software development in the area of flight dynamics at GSFC is performed in distinct units

referred to by the SEL as projects. A project exists for a specified period of time that spans the

life of a particular software product. The life of a project comprises two primary stages: the

development stage and the operations and maintenance stage. The majority of the data

collected by the SEL cover the development stage of the lifespan, although some data, such

as resources and changes, are also collected during the maintenance stage. The following

sections describe data types that characterize the development stage as well as data types that

are captured during the maintenance stage. In addition, each project has associated with it the

following general information that defines and identifies the project:

P1 Name of the project; a unique identifier distinguishing it from other projects

P2 Type of project; indicator used to describe the nature of the application and to

identify projects with similar applications for the purpose of comparison

P3 Current status of the project; whether it is in the development stage or the

maintenance stage or whether its life cycle has been completed or discontinued

P4 Miscellaneous descriptive information; this is optional data and may include any

of the following:

• Project's full name

• Contacts for the project

I000.¢_7L 2-1

n-r',
C1.

t
t
t
t
t
t
t
t

F-
Z

UJ

O3

I--

_3

cO

Z
<
-r

F-

tl.I

w

u.I
T

t 112

L.U
rr w
_N

_3

n"

Z

S LO6-L_:_%'O00

_Z

t _.1

u.l
Z ,T./}
Z"'
O_E
(./),,_
rr z
ILl
o_ i

i

,-I
U,I

0

n

Q.
4)

0

&

u_

_000_37L 2-2

• Language(s) used in a project

• Computer on which project is being developed and operated

• Computer accounts to be monitored by the SEL

• Project task numbers and corresponding years

• SEL forms collected for the project

• General notes on project or data peculiarities

• Name of the project controlled source library

• Tools used for collecting project growth data

• Project closeout status

• Types of data that are currently stored in the database for the project

2.1.1 Schedules

Project schedules divide the lffespan of a project into a series of nonoverlapping, contiguous

time periods referred to by the SEL as phases. During the development stage, the phases

correspond closely to the primary type of development activity being performed at any given

time. The transition from one phase to the next is signaled by project milestones, such as the

critical design review (CDR). The schedules stored in the database are supplied by personnel

involved in managing the projects being monitored. An initial schedule is submitted at the

start of the project and updated every 6 to 8 weeks thereafter until the completion of the

project's development stage. All schedules submitted are stored in the database along with

their submission dates to provide a historical trace of schedule changes. Schedule data exist

in sets that include the following:

P1

P5

P6

P7

P8

P9

P10

Pll

P12

Project name

Date on which the schedule was recorded

Requirements def'mition phase start and end dates

Design phase start and end dates

Implementation (code and test) phase start and end dates

System test phase start and end dates

Acceptance test phase start and end dates

Cleanup phase start and end dates

Maintenance stage start and end dates (not collected on current Project Esti-

mates Form (PEF), but data exist for some projects)

I0004_3TL 2-3

Phasedatesaresubjecttocertainconstraints,suchastherequirementthattheyalwaysfall on
a Saturday.Also, dependingupon the life-cycle model followed, the size andlevel of
formalityof theproject, andthe SEL'sresearchneeds,someof thephasedatesmaynot be
suppliedfor particularprojects.ReferenceI presentsamorethoroughdiscussionof theSEL
definition of phasedatesandtheconstraintsto which theymustadhere.

2.1.2 Estimates

At various points in the life of a project, estimates are made of certain project characteristics

whose actual values do not become available until the end of the development phase. These

projections are made as part of the process of planning the project and monitoring its

progress. As the project proceeds, the estimates are updated regularly to reflect such factors

as system growth and changes in staffing patterns. Thus, toward the end of the development

phase, the at-completion estimates converge on the actual final project characteristics. The

sets of estimates collected by the SEL and stored in the database include the following:

P1

P13

Project name

Date on which the set of estimates was recorded

P14

P15

P16

P17

P18

P19

P20

P21

P22

Number of subsystems in the software product

Number of components in the software product

Total source lines of code (SLOC) in the software product

Total SLOC for all reused components in the software product

Total SLOC for all modified components in the software product

Total SLOC for all new components in the software product

Programmer hours spent on the project

Management hours spent on the project

Services hours spent on the project

The terms "subsystem" and "component," used above and elsewhere in this document, have

specific definitions in the SEL environment. In general, subsystems are a mutually exclusive

partitioning of the components that constitute a software system. Components, or modules,

are individual routines that are maintained in separate files. (See Reference 1 for a more

detailed description of these concepts.)

The SLOC estimates refer to total lines of source code, including executable and nonexecut-

able statements, comments, and blank lines. The total lines estimate is expected to be the sum

of the old, modified, and new lines estimates. The programmer hours estimate is a projection

of the total technical effort to be spent on the project. Similarly, the management hours

I000_7L 2-4

estimate is a projection of the total hours to be charged to project management. The services

hours estimate is a projection of the hours to be spent by support personnel on the project.

This includes secretaries, technical editors, word processors, couriers, and project control

personnel.

2.1.3 Resource Use

Throughout the development stage of a project, the use of personnel and computer resources

is measured and stored on a weekly basis. However, only the personnel resource use is

measured when a project starts its maintenance phase.

2.1.3.1 MANPOWER

Development

Each week, the staff resources expended on a given project are recorded and stored in the

database. Hours are stored for each person who does technical work or directly manages the

project during the particular week in question. These hours are categorized by the type of

development activity being performed. Thus, for any given project, week, and programmer,

the following data are stored:

P1 Project name

P23 Week ending date; this date is always a Friday

P24 Personnel name; name of the person performing technical or direct management

work on the project

P25 Predesign hours; hours worked on the project before commencement of actual

design work (requirements definition, requirements analysis, etc.)

P26 Create design hours; hours spent performing software design activities (creating

structure charts, writing program design language (PDL), etc.)

P27 Read and review design hours; hours spent reading and reviewing design materi-

als (peer reviews, design walkthroughs, etc.)

P28 Write code hours; hours spent developing source code from design materials

(coding at desk, entering code at terminal, etc.)

P29 Read and review code hours; hours spent reading code for any purpose except

isolation of errors (peer review, code walkthroughs, desk checks, etc.)

P30 Test code unit hours; hours spent testing individual code units (planning and

executing test cases, writing test drivers and stubs, etc.)

P31 Debug hours; hours spent isolating errors and planning corrections (does not

include actually correcting errors)

P32 Integration test hours; hours spent planning tests that integrate system

components (writing and executing system tests, etc.)

10004437L 2-5

P33 Acceptance test hours; hours spent running and supporting acceptance testing of
the software

P34 Other hours; hours that do not fall into any of the above activities (management,

training, documentation, etc.)

The hours that are recorded in the various activities for a given programmer during a given

week add up to the total hours worked on the project during that week by that programmer.

Manpower hours are recorded to the nearest tenth of an hour. For projects that began before

June 1987, the activity hour items P25 through P34 may be further classified by being

associated with the subsystem on which the work was performed. In this case, the sum of the

hours recorded in the various activities and associated with particular subsystems plus the

hours charged to various activities and not associated with particular subsystems represents

the total hours worked during that week by that programmer. An example of the latter case is
as follows:

Programmer: J. Doe Week ending: 30--Nov-87

Integration test hours (P32) for subsystem XYZ: 5.0

Integration test hours (P32) for subsystem ABC: 10.0

Write code hours (P28) for subsystem ABC: 15.0

Other hours (P34) (no subsystem): 10.0

Total hours worked: 40.0

In addition to and independent of these activity hours, programmer hours for the week are

collected for the following activities:

P35 Rework hours; hours spent reworking any part of the system due to errors or

other unplanned changes (includes rework of code, design, testing, and all hours

spent debugging)

P36 Enhancing, refining, and optimizing hours; hours spent improving efficiency or

clarity of design, code, or documentation (not due to unplanned changes)

P37 Documenting hours; hours spent creating any form of documentation on the

system (system descriptions, user's guides, in-line comments, etc.)

P38 Reuse hours; hours spent attempting to reuse components of this or other

systems

The hours recorded in the above categories do not adhere to the constraint that their sum must

represent the total hours worked by a given programmer during a given week.

Certain projects in the database were developed using a cleanroom methodology. Conse-

quently, the types of development activities recorded for these projects are different from

'10004437L 2-6

those mentioned above. However, staff resources expended on these projects are still re-

corded weekly and hours are still stored for each person who does technical work or directly

manages the project. The following are the data stored for projects using a cleanroom

methodology:

P1 Project name

P23 Week ending date; this date is always a Friday

P24 Personnel name; name of the person performing technical or management work

on the project

P157 Predesign hours; hours worked on the project prior to the actual design (such as

requirement analysis, etc.)

P 158 Pretest hours; hours worked on developing test plans and building test environ-

ments (compiling components, building libraries, defining input, etc.)

P159 Create design hours; hours spent developing system, subsystems, or

components design (state machine representation, data and stepwise refinement,

PDL, etc.)

P 160 Verify and review design; hours spent verifying and reviewing design in a group,

including design meetings, formal and informal reviews, or walkthroughs

P161 Write code hours; hours spent coding system components (coding at desk,

entering code at terminal, etc.)

P162 Read and review code hours; hours spent reading code for any purpose other

than isolation of errors (code verification)

P163 Independent test hours; hours spent generating and executing tests of system

components (by independent tester)

P164 Response to software failure report (SFR) hours; hours spent resolving a tester-

reported problem (isolating a reported problem and developing a solution)

P 165 Acceptance test hours; hours spent running and supporting acceptance testing of
the software

P166 Other hours; hours spent on activities not covered above (management,

meetings, training, documentation, etc.)

In addition to and independent of these cleanroom development activity hours, any weekly

programmer hours spent understanding the methodology are captured under the following

category:

P 167 Methodology Understanding and Discussion; hours spent learning, discussing,

or receiving training in cleanroom-related methods and techniques

Reference 1 presents a more detailed discussion of the various activities that categorize

manpower effort hours.

10004437L 2-7

Maintenance

When a project completes its development cycle and starts its maintenance stage, the use of

personnel resources is also measured and stored. Each week, the regular maintainers' re-

sources expended on a given maintenance project are recorded. Hours are stored for each

person who does technical work or directly manages the project. The hours are categorized

by both the class of maintenance and by the type of activity being performed. Thus, for any

given maintenance project, the following data are stored:

P1 Project name

P23 Week ending date; this date is always a Friday

P24 Personnel name; name of the person performing technical or management work

on the maintenance project

P168 Correction class hours; hours worked on all maintenance associated with a

system failure

P169 Enhancement class hours; hours spent on all maintenance associated with

modifying the system due to a requirements change

P170 Adaptation class hours; hours spent on all maintenance associated with modify-

ing a system to adapt a change in hardware, software, or environment

characteristics

P171

P172

P173

P174

Other class hours; hours spent on all maintenance that do not fall into any of the

above classes (management, meetings, etc.)

Isolation activity hours; hours spent on understanding the failure or request for

enhancement or adaptation

Change design activity hours; hours spent on redesigning the system

Implementation activity hours; hours spent on changing the system to complete

the necessary change (hours include changing not only the code, but the

associated documentation as well)

P175

P176

P177

Unit or system test activity hours; hours spent on testing the changed or added

component

Acceptance or benchmark test activity hours; hours spent on acceptance or

benchmark testing

Other activity hours; hours that do not fall into any of the above activities

(management, meetings, etc.)

2.1.3.2 SERVICES

Each week during the development stage of a project, services hours are recorded and stored

in the database. These are hours spent by support personnel who are not directly involved in

100044371. 2-8

the technical aspects of the project. The categories of services hours recorded each week for a

given project are as follows:

P1 Project name

P23

P39

P40

P41

P42

Week ending date; this date is always a Friday

Technical publications hours; hours spent by technical editors, word processors,

graphic artists, etc., in preparing technical documentation for the project

Secretary hours; hours spent by secretarial personnel in direct support of the

project

Librarians; hours spent by data librarians in support of the project, e.g., data

entry, tape generation (not collected on current Service/Products Form (SPF)

but data exist for some old projects)

Project management; hours spent by persons performing management activities

in support of the project, but who are not directly responsible for the project's

management

P43 Other; hours spent in support of the project by personnel who do not qualify in

one of the support service categories above

Service hours are not recorded for individuals. Rather, the sum of the hours reported by all

persons performing a particular support activity during a given week is recorded.

2.1.3.3 COMPUTER

Computer resources are the third type of resource data recorded and stored in the database on

a weekly basis. During the portion of the development stage when programmers are using

computer resources to create the resulting software product, the number of computer runs

and central processing unit (CPU) hours used are monitored. If different portions of the

development effort are performed on different machines, hours and runs are recorded for

each of them. Thus, for each week of a given project, the following computer resource data
are stored:

P1 Project name

P23 Week ending date; this date is always a Friday

and for each computer being used at the current time:

P44

P45

Computer name; name uniquely identifying the development computer

CPU hours used

P46 Number of runs executed

10004437L 2-9

The number of runs recorded is measured as either the number of interactive logons by

project members, the number of batch jobs submitted by project members, or both. On some

development computers, the accounting reports used for obtaining the resource data show

separate CPU time and number of run statistics for interactive sessions and batch jobs. In

these cases, the two axe recorded separately under distinct computer names. On other ma-

chines, the accounting reports show total CPU time and number of runs without distinguish-

ing between batch jobs and interactive sessions. In these cases, only the single combined

figures axe recorded.

2.1.4 Product Characteristics

A fourth class of project-related data characterizes the software product that is generated

during the development stage. There axe two primary types of product data: that which

captures the static composition of the system at any given point in time, and that which

captures the dynamic properties of system growth and change.

2.1.4.1 STRUCTURE AND SIZE

The static composition of the system is recorded as the system is produced. This consists of

the partitioning of the system into subsystems and components, along with descriptive

information about each. As mentioned earlier, the SEL defines subsystems as a mutually

exclusive partitioning of the system components. For each subsystem in a project, the

following data items are stored:

P 1 Project name

P47 Subsystem prefix; mnemonic prefLx used in naming components that belong to

the subsystem

P48 Subsystem name; descriptive name describing the purpose of the subsystem

P49 Subsystem function; indicator used to describe the nature of the subsystem and

also to identify similar subsystems for the purpose of comparison

P50 Date on which the subsystem information was recorded

Subsystem prefixes axe unique within a given project. Each subsystem comprises multiple

components. Components are defined as modules or routines that are maintained in separate

Files as individual configuration items. Each component is associated with exactly one

subsystem. The following descriptive information is stored for each component of the

system:

P24 Programmer name; name of programmer who created the component

P 1 Project name

P47 Subsystem pret'Lx; prefix identifying the subsystem to which the component

belongs

_O0044aTL 2-10

P51

P52

P53

P56

P57

P58

P59

Componentname;descriptivenameusedin identifying thecomponent

Componentdate;dateonwhichthecomponentinformationwasrecordedbythe
programmer

Creationdate;dateon which the componentfirst becamepart of thesystem
configuration(i.e.,wasmovedinto thecontrolledsourcelibrary)

Origin; sourceof thecomponent(i.e., old code,modifiedold code,new code)

Difficulty; discreteratingon ascaleof 1 (easiest)to 5 (mostdifficult) of the
difficulty in creatingthecomponent

Type;indicatorusedto classifycomponentsof similarnaturefor comparison

Purpose;indicatorof thecomponent'spurpose

2.1.4.2 GROWTH

Growth data recorded in the SEL database capture the dynamic nature of the evolving

software product. These data are obtained by taking snapshots of the comxolled source

library of the project at regular intervals (weekly for development projects, monthly for

maintenance projects). The data elements captured each week provide a historical perspec-

tive on system size through the development stage of the life cycle. The information recorded

is as follows:

P1

P23

P60

P61

P62

Project name

Week ending date; this data is always a Friday

Lines of code; count of the total lines of code in the project's controlled source

library

Components; count of the number of components in the project's controlled

source library

Changes; count of the number of changes that have occurred in the project's

controlled library (each time a new component is added to the library, it is

counted as one change; each time a component is updated in the library, it is

counted as another change)

2.1.5 Changes

Development

Detailed information is recorded in the database for each change that takes place in a

project's configured software library (or libraries). A change is viewed by the SEL as an

update to one or more system components for a particular specific purpose. Typical purposes

for changes include correcting an error, improving the efficiency of a particular operation, or

implementing an enhancement. The following data items are stored for each change:

I00044.37L 2-1 1

P1

P63

P24

P65

P66

P67

P68

P69

P70

P71

P72

P73

P74

P75

P76

P77

P78

P79

P80

Project name

Change number; number uniquely identifying each change in the database

Programmer name; name of the programmer implementing the change

Change date; date on which the change information was recorded

Effort required to isolate the change; time spent determining what was necessary

to make the change

Effort required to implement the change; time spent actually designing, coding,

and testing the change

One component affected; flag indicating whether the change involved updating

only one component

Involved Ada; flag indicating whether the change resulted from using the Ada

language

Examined other components; flag indicating whether components other than

those changed were examined when performing the change

Parameters passed; flag indicating whether the change required awareness of

data communicated between components

Date change determined; date on which the need for the change was initially
determined

Date change completed; date on which the change was implemented into the

system

Number of components changed; count of the changed components

Number of components examined; count of the components examined in the

change process that were not changed themselves

Change type; indicator used to classify changes by particular types

Error source; indicator of the source of the error for changes where the change

type (P76) is error correction

Error class; indicator of the class of error for changes where the change type

(P76) is error correction

Commission error; for changes where the change type (P76) is error correction,

flag indicating whether something incorrect was included in the code

Omission error; for changes where the change type (P76) is error correction, flag

indicating whether something was left out of the code

IO00_Z_'L 2-12

P81 Typographical error; flag indicating whether an error was typographical in

nature for changes where the change type (P76) is error correction

P82 Ada documentation; flag indicating whether the Ada documentation clearly

explained the features that contributed to an error (P76) attributed to the use of

Ada (P69)

P83 Ada cause; indicator of the cause of an error (P76) attributed to the use of Ada

(P69)

P84 Changed components; subsystem prefixes and names of the components that

were changed

P85 Ada features; list of the Ada features that were involved in a change (P76) in

which the use of Ada was a contributing factor (P69)

P86 Ada resources; list of resources used in resolving an Ada-related error (P69,P76)

P87 Ada tools; list of software tools used in resolving an Ada-related error (P69,P76)

Maintenance

Detailed information is also recorded for each change that takes place in a project's con-

trolled library during the maintenance stage. The definition of change is the same as men-

tioned in the change (development) section. The following data items are stored for each

change:

P1

P24

P65

P178

P179

P180

P181

P182

P183

P184

Project name

Programmer name; name of the programmer implementing the change

Change date; date on which the change information was recorded

Operational Software Modification Report (OSMR) number

Change type; indicator used to classify changes by particular types

Change cause; indicator used to classify the cause of a particular change

Effort required to isolate the change; time spent determining what was necessary

to make the change

Effort required to implement the change; time spent actually designing, coding,

and testing the change

Changed object types; list of objects that have been changed as a result of this

change

Change characteristic; indicator used to classify the characteristic of this change

100044ZrL 2-13

P185

P186

P187

P188

P189

P190

P191

P192

P193

2.1.6

Number of SLOC that have been newly added (the total SLOC includes blanks

and comments)

Number of SLOC that have been modified

Number of SLOC that have been deleted

Number of components that have been newly added

Number of components that have been modified

Number of components that have been deleted

Number of the added components that are totally new

Number of the added components that are t6tally reused

Number of the added components that axe reused with modifications

Subjective Evaluations

When a project completes its development stage, the retrospective subjective opinions of

personnel involved in the management of the project are collected and stored in the database.

This includes rating a set of project characteristics on a scale of 1 to 5 and indicating what

software engineering tools were used on the project. Unless otherwise specified, the scale on

the measures ranges from 1 = low to 5 = high. The subjective data items recorded are as
follows:

P1

P88

P89

P90

P91

P92

P93

P94

P95

P96

P97

P98

Project name

Problem complexity

Schedule constraints (loose = 1, tight = 5)

Stability of requirements (unstable = 1, stable = 5)

Quality of requirements

Documentation requirements

Rigor of requirements reviews

Development team ability

Development team application experience

Development team environment experience

Stability of development team (unstable = 1, stable = 5)

Management performance

I0004437L 2-14

P99

P100

P101

P102

P103

P104

P105

P106

P107

P108

P109

Pll0

Plll

Pl12

Pl13

Pl14

Pl15

Pl16

Pl17

Pl18

Pl19

P120

P121

P122

P123

2.1.7

Management application experience

Stability of management team (unstable = 1, stable = 5)

Project planning discipline

Degree to which plans were followed

Use of modem programming practices

Discipline in formal communication

Discipline in requirements methodology

Discipline in design methodology

Discipline in testing methodology

List of tools used on project (not a numerical rating, but an actual list of tool

names)

Use of test plans

Discipline in quality assurance

Discipline in configuration management

Access to development system

Ratio of developers to terminals (low = 5, high = 1)

Memory constraints

System response time (poor = 1, very good = 5)

Stability of hardware and support software

Effectiveness of tools used

Agreement of software with requirements

Quality of software

Quality of design

Quality of documentation

Timeliness of delivery

Smoothness of acceptance testing

Final Statistics

When the development stage of a project is complete, the actual values of parameters that

were estimated earlier and of additional parameters that were not estimated are recorded. In

10004_7L 2-15

addition, the project source code is run through a static analysis tool, and statistics are

recorded for each component of the system. The data items that constitute f'mal project
statistics are as follows:

P1

P124

P125

P126

P127

P128

P129

P130

P131

P132

P133

P134

P135

P136

P137

P138

P139

P140

P141

P142

P143

P213

P144

Project name

Date on which the final statistics were recorded

Actual requirements definition phase start and end dates

Actual design phase start and end dates

Actual code and test (implementation) phase start and end dates

Actual system test phase start and end dates

Actual acceptance test phase start and end dates

Actual cleanup phase start and end dates

Maintenance stage start and end dates

Total technical and management hours expended on the project

Total service hours expended on the project

Computer name

CPU hours used

Number of runs executed, for each computer used on the project

Number of subsystems in the system

Number of components in the system

Number of changes made to system components

Number of pages of documentation produced for the system

Total SLOC for all components in the system

Total SLOC for all components in the system that were classified as new

Total SLOC for all components in the system that were classified as slightly
modified

Total SLOC for all components in the system that were classified as extensively
modified

Total SLOC for all components in the system that were reused from other

systems without modification

1000,_,,37L 2-16

P145

P146

P147

P148

P214

P149

P150

P151

P152

P215

P153

P216

P217

P218

P219

P220

Total number

Total number

Total number

Total

other

Total

other

Total number

other systems

Total number

system

of comment lines for all components in the system

of executable components in the system

of newly created executable components in the system

number of executable components in the system that were obtained from

systems and slightly modified for this project

number of executable components in the system that were obtained from

systems and extensively modified for this project

of executable components in the system that were reused from
without modification

of executable statements for all FORTRAN components in the

Total number of executable statements for all FORTRAN components in the

system that were classified as new

Total number of executable statements for all FORTRAN components in the

system that were classified as slightly modified

Total number of executable statements for all FORTRAN components in the

system that were classified as extensively modified

Total number of executable statements for all FORTRAN components in the

system that were reused from other systems without modification

Total number of statements for all components in the system

Total number of statements for all components in the system that were classified

as new

Total number of statements for all components in the system that were classified

as slightly modified

Total number of statements for all components in the system that were classified

as extensively modified

Total number of statements for all components in the system that were reused

from other systems without modification

and for each component in the system:

P154 Number of executable statements in

components only)

P155

the component (for FORTRAN

Number of SLOC in the component (includes comments and blank lines)

100044ZTL 2-17

P156 Number of comment lines in the component (for FORTRAN or Ada

components only; does not include blank lines)

P221 Number of statements in the component (for FORTRAN or Ada components

only)

P222 Final origin category assigned to the component

2.1.8 Development Status Data

The status of active projects is monitored throughout project development and recorded in

the SEL database. The data items are recorded on a biweekly basis for each active project.

There are two types of development status data: target data and measurement data. The target

data represent the goal or target value. The measurement data represent a value measuring

the progress toward the target value. The following data items are stored:

P1

P23

P24

P195

P196

P197

P198

P199

P200

P201

P202

P203

P204

P205

P206

P207

Project name

Week ending date; this date is always a Friday

Name of originator

Total number of components to be designed

Number of components designed as of the week ending date

Total number of components to be coded

Number of components coded as of the week ending date

Total number of separate system tests planned

Number of system tests executed at least one time

Number of system tests passed

Total system test runs, including reruns (not collected on current Development

Status Form (DSF), but data exist for some projects)

Total number of separate acceptance tests planned

Number of acceptance tests executed at least one time

Number of acceptance tests passed

Total acceptance test runs, including reruns (not collected on current DSF, but

data exist for some projects)

Total number of discrepancies reported

100044;37L 2-18

P208

P209

P210

P211

P212

Total number of discrepancies resolved

Total number of specification modifications received

Total number of specification modifications completed

Total number of requirements questions submitted

Total number of requirements questions answered by analysts

2.2 PROJECT-INDEPENDENT DATA

This section describes two types of data stored in the database that represent real-world

entities, yet axe not directly related to a particular project, as were the items in the previous

section. The data stored about these items are not extensiv& Rather, their primary function is

to identify specific instances of resources when recording project data.

2.2.1 People and Services

The first class of support entities consists of people and services. Each person for whom data

are recorded is represented in the database by the following data items:

M1 Form name; abbreviated version of the person's name used on data collection

forms (see Section 3)

M2 Full name; person's complete first and last name

M3 Entry date; date on which personnel information was entered into the database

Service personnel are stored in the database generically; that is, the same information listed

above is stored as only one generic entry for a given class of service personnel. Thus, for

example, the personnel entry for secretary refers collectively to anyone performing secre-

tarial work on a monitored project.

2.2.2 Computer

The other class of support entities is computers. Each computer for which resource hours and

runs axe recorded is represented in the database by the following data items:

M4 CPU name; abbreviated version of the computer name used on data collection

forms (see Section 3)

M5 Computer full name; longer, more descriptive name for the computer

10004_rL 2-19

SECTION 3--SEL DATA FROM A DATA COLLECTION

VIEWPOINT

This section describes the data collection forms in their role as sources for the data items

described in Section 2. Many data items entered on the forms map directly to items described

in Section 2. Other items (e.g., form numbers) are unique to the data collection process and

therefore do not appear in Section 2. This section maps the software engineering items in

Section 2 to their sources on data collection forms and describes the data items that are

peculiar to the data collection process.

The following subsections present descriptions for the SEL data collection forms. The data

items described are tagged with reference identifiers corresponding to the identifiers in the

forms that are presented in Appendix C. The identifiers are also used as cross references in

the SEL database access paths (Table 4-4 in Section 4). If an item maps directly to an item in

Section 2, the description consists of the item name followed by the Section 2 identifier for

that item (in parentheses). Otherwise, a more complete description is presented.

3.1 DATA COLLECTION FORMS

3.1.1 Schedule and Estimates Forms

The PEF (Figure C-8 in Appendix C) provides periodic estimates of the development

process and the software product and estimates of the project schedule. The estimates of the

development process consist of staffing projections. The estimates of the software product
involve various estimates of the size of the delivered software. The schedule information

consists of a set of dates on which the various life-cycle phases of the project are scheduled to

start, along with a projected project end date. These estimates reflect the project size and

resource expenditure as of the completion of the cleanup phase.

The PEF is completed by the project leader. It is submitted at the initial entry of the project

into the database and every 6 to 8 weeks thereafter through the development life cycle. The

PEF data fields are described below. Note that the phase date fields contain the start dates of

each of the listed life-cycle phases that apply to the project. The end date for a given phase is

the next phase start date entered on the form, or the project end date if'there are no start dates

for subsequent phases.

PEF Fields

D1 Project name (P1)

D2 Form date (P5, P13)

D3

D4

Requirements; estimated requirements definition phase start date (P6)

Design; estimated design phase start date (P7)

10004.437L 3-1

D5

D6

D7

D8

D10

Dll

D12

DI3

D14

D15

D16

D17

D18

D19

D20

3.1.2

Implementation; estimated implementation (code and test) phase start date (P8)

System test; estimated system test phase start date (P9)

Acceptance test; estimated acceptance test phase start date (P10)

Cleanup; estimated cleanup phase start date (P11)

Project end; estimated project end date

Programmer hours (P20)

Management hours (P21)

Services hours (P22)

Number of subsystems (P14)

Number of components (P 15)

Total SLOC (P16)

Total SLOC for all new Components (P19)

Total SLOC for all modified components (PI8)

Total SLOC for all reused components (P17)

PEF form number; unique identifier distinguishing this form from other PEFs

Weekly Rate Data Forms

The Personnel Resource Form (PRF) or the Cleanroom Personnel Resource Form (CLPRF)

and the SPF provide weekly rate information for the projects in their development stage. The

SPF is also used to provide monthly growth rate information for projects in the maintenance

stage. The Weekly Maintenance Effo_ Form (WMEF) provides weekly rate information

when a project starts its maintenance stage. The PRF and CLPRF (Figures C-5 and C-6),

capture the actual technical/management expenditure history on the project. These forms

also contain information on the type of activity on which the manpower hours were spent

during the week. A separate section of the forms is used to record hours spent performing
specific activities that are of current interest to the SEL.

The PRF is used to capture personnel hours for most of the SEL-monitored projects. It is

submitted by every person performing either technical or management activities on the

project. This form is completed every Friday for the duration of the project development life
cycle.

PRF Fields

D21 Personnel name (P24)

DI Project name (P1)

D22 Week ending date (P23)

O00,U;'L 3-2

D23

D24

D25

D26

D27

D28

D29

D30

D31

D32

D33

D34

D35

D36

D37

Predesignhours(P25)

Createdesignhours(P26)

Read/reviewdesignhours(P27)

Write codehours(P28)

Read/reviewcodehours(P29)

Testcodeunit hours(P30)

Debugginghours(P31)

Integrationtesthours(P32)

Acceptancetesthours(P33)

Otherhours(P34)

Reworkhours(P35)

Enhancing/refining/optimizinghours(P36)

Documentinghours(P37)

Reusehours(P38)

PRFform number;uniqueidentifier distinguishingthis form from otherPRFs

TheCLPRFissubmittedbypersonnelwhoworkonprojectsthatusecleanroommethodolo-
gy to dosoftwaredevelopment.This form is submittedby everypersonperformingeither
technicalor managementactivitieson theproject.This form, like the PRF,is completed
everyFridayfor thedurationof theproject developmentlife cycle.

CLPRF Fields

D21

D1

D22

D199

D200

D201

D202

D203

Personnel name (P24)

Project name (P 1)

Week ending date (P23)

Predesign hours (P157)

Pretest hours (P 158)

Create design hours (Pt59)

Verify/review design hours (P 160)

Write code hours (P161)

1000_.3_'L 3-3

D204

D205

D206

D207

D208

D209

D210

Read/review code hours (P162)

Independent test hours (P163)

Response to SFR hours (P164)

Acceptance test hours (P165)

Other hours (P166)

Methodology understanding/discussion (P167)

CLPRF form number; unique identifier distinguishing this form from other
CLPRFs

The WMEF (Figure C-14) is submitted by every person performing either technical or

management activities on a maintenance project. The form is completed every Friday for the

duration of the project's maintenance phase. In the WMEF, the activity hours are categorized

as class of maintenance hours and as maintenance activity hours. The sum of the class of

maintenance hours recorded in Section B is equal to the total hours provided in Section A of

the form. The sum of the maintenance activities hours of Section C is also equal to the total

hours provided in Section A. The users can choose one of the two categories to calculate the

total maintenance manpower hours for the project.

WMEF Fields

D21

D1

D22

D151

D152

D153

D154

D155

D156

D157

D158

D159

DI60

D161

Personnel name (P24)

Project name (P1)

Week ending date (P23)

Correction hours (P 168)

Enhancement hours (P 169)

Adaptation hours (P 170)

Other hours (P 171)

Isolation hours (P172)

Change design hours (P173)

Implementation hours (P 174)

Unit test/system test hours (P175)

Acceptance/benchmark test hours (P176)

Other hours (P 177)

WMEF form number; unique identifier distinguishing this form from other
WMEFs

lO00_ZTL 3-4

TheSPF(FigureC-11)measuresresourceexpenditurebysupportpersonnel,andcomputer
resourceutilization, andis usedto createa historicalrecord of productgrowth over the
courseof theproject.The SPFis completedby SEL datacollectionpersonnel.The form
containsthreedistincttypesof data;thegrowthhistorydataareobtainedbyrunninggrowth
history monitoring programson the Flight DynamicsFacility (FDF) mainframes(two
ES/9000sandtwo NAS 8063s)andtheSTL VAX Cluster(8820,11/780,andMicro VAX
3100).The computerinformation is takenfrom computeraccountingreportsfrom these
computers.Serviceshoursareobtainedfrom taskaccountingreports.This form issubmitted
everyweek in which supportserviceor computerresourcesareusedor in which product
growthdataareavailable.This form issubmittedmonthlyfor all maintenanceprojectsfor
which _owth datais beingmonitored.

SPFFields

D1

D22

D38

D39

D40

D41

D42

D43

D44

D45

D47

D48

1949

3.1.3

Project name (P1)

Week ending date (P23)

Computer name (P44)

CPU hours (P45)

Number of runs (P46)

Number of components (P61)

Number of changes (P62)

Lines of code (P60)

Technical publications hours (P39)

Secretary hours (P40)

Project management hours (P42)

Other hours (P43)

SPF form number; unique identifier distinguishing this form from other SPFs

Product Data Forms

The Subsystem Information Form (SIF), the Component Origination Form (COF), and the

Change Report Form (CRF) provide product data information for the project during its

development stage. The Maintenance Change Report Form (MCRF) provides product data

information for the project when it moves into its maintenance stage.

The SIF (Figure C-13) contains information about the high-level partitioning of the system

into subsystems. A subsystem pre ffLx,a descriptive name, and a subsystem function should be

1000_7L 3-5

specifiedfor eachsubsystem.TheSIFiscompletedbytheprojectleader.A form issubmitted
at thetime of the preliminarydesignreview (PDR) andany time thereafterwhena new
subsystemis introducedinto thedesignof thesystem.

SIF Fields

D1

D2

D50

D51

D52

Projectname(P1)

Formdate(P50)

Subsystemprefm(P47)

Subsystemname(P48)

Subsystemfunction(P49)

TheCOF(FigureC-2) recordsinformationabouta componentin thesystem.Someof the
informationcollectedaretheoriginof thecomponent,difficulty of developingthecompo-
nent,typeof component,andpurposeof component.TheCOF is completedby personnel
who codenew systemcomponents,modify old componentsfor reuse,or transferreused
componentsto theproject'scontrolledlibrary. A form iscompletedfor eachcomponentin
the systemat the time when thecomponentis movedinto the project controlledsource
library.

COF Fields

D21 ProgrammerName(P24)

D1 ProjectName(P1)

D2 FormDate(P52)

D50 SubsystemsPrefLx(P47)

D53 Componentname(P51)

D54 Dateenteredinto controlledlibrary (P53)

D55 Relativedifficulty of developingcomponent(P57)

D56 Origin (P56)

D57 Typeof component(P58)

D58 Purposeof executablecomponent(P59)

D59 COFform number;uniqueidentifierdistinguishingthis form from otherCOFs

TheCRF (FigureC-l) containsinformationaboutthe typeof changethat wasmade,the
componentsthatwerechanged,errorinformationif applicable,andAda-specificinforma-

IODO_7L 3-6

tion if applicable. The CRF is completed by personnel who implement changes to the system

that involve modifying components in the project's controlled source library. A form is

submitted for each change to the system at the time the changed components are updated in

the project's controlled source library.

CRF Fields

D21

D1

D2

D50

D53

D63

D64

D65

D66

D67

D68

D69

D70

D71

D72

D73

D74

D75

D76

D77

D78

D79

Programmer name (P24)

Project name (P1)

Form date (P65)

Subsystem prefixes of components changes (P84)

Names of components changed (P84)

Date on which need for change was determined (P72)

Date change was completed (P73)

Effort to isolate change (P66)

Effort to implement change (P67)

Type of change (P76)

Change to one component (P68)

Look at any other components (P70)

Aware of parameters (P71)

Source of error (P77)

Class of error (1'78)

Omission error (P80)

Commission error (P79)

Transcription error (P81)

Did Ada contribute to the change (P69)

Ada features involved (P85)

Documentation understandable (P82)

Which statement best describes the cause of the Ada error (P83)

10004437L 3-7

D80

D81

D82

Which resources provided the information needed to correct the error (P86)

Which tools provided aided in correction of the error (P87)

CRF form number (P63)

The MCRF (Figure C-4) contains information about the type of change that was made to the

components in a project's maintenance controlled library. This form is submitted whenever

the maintenance programmer has completed the work associated with a particular OSMR.

MCRF Fields

D21

D162

D1

D2

D163

D164

D165

D166

D167

D168

D169

D170

D171

D172

D173

D174

D175

D176

D177

D178

Programmer name (P24)

OSMR number (P178)

Project name (P1)

Form date (P65)

Type of change (P179)

Cause of change (P180)

Effort to isolate change (P 181)

Effort to implement change (P182)

Changed objects (P183)

Change characteristic (P184)

Number of lines of code added (P185)

Number of lines of code changed (P186)

Number of lines of code deleted (P187)

Number of components added (P 188)

Number of components changed (P189)

Number of components deleted (P190)

Number of added components that are totally new (P191)

Number of added components that are totally reused (P192)

Number of added components that are reused with modifications (P 193)

MCRF form number; unique identifier distinguishing this form from other
MCRFs

10004._37L 3-8

3.1.4 Project Development Completion Forms

The Project Completion Statistics Form (PCSF) and the Subjective Evaluation Form (SEF)

provide project completion information for projects that have completed development and

have been delivered to maintenance and operations. The PCSF (Figure C-7) is used to record

the final development statistics for the project. This information includes the actual project

resource expenditures, project schedule, and the software product size.

The PCSF is completed by SEL personnel and is verified by the project leader. It is com-

pleted during "closeout", a process of project data validation and verification. The PCSF
data fields are described below. Note that, as in the PEF, the phase date fields contain the start

dates of each of the listed life-cycle phases that apply to the project. The end date for a given

phase is the next phase start date entered on the form, or the project end date if there are no

start dates for subsequent phases.

PCSF Fields

D 1 Project name (P 1)

D2 Form date (P124)

D84 Requirements; actual requirements def'mkion phase start date (P125)

D85

D86

D87

D88

D89

D90

Design; actual design phase start date (P126)

Implementation; actual implementation (code and test) phase start date (P127)

System test; actual system test phase start date (P128)

Acceptance test; actual acceptance test phase start date (P 129)

Cleanup; actual cleanup phase start date (P130)

Maintenance; actual maintenance stage start date (P131)

D91 Project end; actual project end date

D92 Technical and management hours (P132)

D93 Services hours (P133)

D38 Computer name (P 134)

D94 CPU hours (P135)

D95 Number of runs (P136)

D96 Number of subsystems (P137)

D97 Number of components (P138)

_O00_7L 3-9

D98

D99

DI00

D101

DI02

D211

D103

D104

D105

D106

D107

D212

D108

DI09

Dl10

Dill

D213

Dl12

D214

D215

D216

D217

D218

Dl13

Number of changes (P139)

Pages of documentation (P140)

Total SLOC (P141)

Total SLOC for all new components (P142)

Total SLOC for all slightly modified components (P143)

Total SLOC for all extensively modified components (P213)

Total SLOC for all old components (reused from other systems without modifi-

cation) (P144)

Comments (P145)

Total executable components (P146)

Total new executable components (P147)

Total slightly modified executable components (P148)

Total extensively modified executable components (P214)

Total old executable components (reused from other systems without modifica-

tion) (P149)

Total executable statements for all FORTRAN components (P150)

Total executable statements for all new FORTRAN components (P151)

Total executable statements for all slightly modified FORTRAN components

(P152)

Total executable statements for all extensively modified FORTRAN compo-

nents (P215)

Total executable statements for all old FORTRAN components (reused from

other systems without modification) (P153)

Total statements (P216)

Total statements for all new components (P217)

Total statements for all slightly modified components (P218)

Total statements for all extensively modified components (P219)

Total statements for all old components (reused from other systems without

modification) (P220)

PCSF form number; unique identifier distinguishing this form from other

PCSFs

1000_7L 3-10

TheSEF(FigureC-12)consistsof subjectiveperceptionsof personswho wereinvolvedin
managingtheprojectwith respectto suchfactorsastheuseof methodologies,thedevelop-
mentenvironment,andthecomplexityof theproblem.TheSEFiscompletedbytheproject
leaderandselectedpersonnelinvolvedinmanagingtheproject.Theresponsesfromeachof
thecompletedformsarecombinedandreportedononeform.TheSEFissubmittedwhenthe
final systemproductshavebeendelivered(endof cleanupphase).

SEF Fields

D1

D2

Dl14

Dl15

Dl16

Dl17

Dl18

Dl19

D120

D121

D122

D123

D124

D125

D126

D127

D128

D129

D130

D131

D132

Project name (P1)

Form date (P13)

Problem difficulty or complexity (P88)

Tightness of schedule constraints (P89)

Stability of requirements (P90)

Quality of specification documents (P91)

Requirements for documentation (P92)

Rigor of formal reviews (P93)

Ability of development team (P94)

Development team experience with application (P95)

Development team experience with environment (P96)

Stability of development team composition (P97)

Project management performance (P98)

Project management experience (P99)

Stability of project management team (P100)

Project planning discipline (P101)

Degree project plans followed (P102)

Modem programming practices (P103)

Disciplined specification modification and question tracking (P 104)

Use of requirements analysis methodology (P 105)

Use of disciplined design methodology (P 106)

10004437L 3-11

D133

D134

D135

D136

D137

D138

D139

D140

D141

D142

D143

D144

D145

D146

D147

D148

D149

D150

3.1.5

Use of disciplined testing methodology (P107)

Use of tools (P108)

Use of test plans (P109)

Use of quality assurance procedures (P110)

Use of configuration management procedures (P 111)

Degree of access to development system (Pl12)

Programmers per terminal (P113)

Development machine resource constraints (P114)

System response time (Pll 5)

System hardware and support software stability (P116)

Software tool effectiveness (P 117)

Delivered software supports requirements (Pl18)

Quality of delivered software (P 119)

Quality of design present in delivered software (P 120)

Quality and completeness of software documentation (P121)

Timely software delivery (P122)

Smoothness of acceptance testing (P123)

SEF form number; unique identifier distinguishing this form from other SEFs

Project Data Forms

The Project Start-up Form (PSF) and Project Messages Form (PMF) are used to record

miscellaneous descriptive information about a project. Both forms are completed by SEL

personnel with information provided by the project leader.

The PSF (Figure C-10) is completed only once at project startup. The PSF information is

obtained at the project starrup meeting between SEL personnel and the project leader. The

PSF data are stored as project messages.

PSF Fields

D1 Project name (P1)

D2 Form date

1000_37L 3-12

D60

D61

Projecttype(P2)

Project message type; NOTETYPEs of COMPACCTS, COMPSYS,

CONTACTS, FORMSCOL, GENMESS, LANGUAGES, PROJNAME, and

TASK.NO (P4)

D62 Project message (P4)

The PMF (Figure C-9) captures general notes about a project, unique characteristics of the

methodologies used, or peculiarities about the project's data. A PMF can be completed any

time SEL personnel or the project leader feel that something about the project should be

documented. A general message is always entered during project closeout.

PMF Fields

D 1 Project name (P 1)

D2 Form date

D61 Project message type; NOTE_TYPE of GENMESS (P4)

D62 Project message (P4)

3.1.6 Project Development Status Forms

The DSF provides project development status information for active projects. The DSF,

(Figure C-3) is used to record such project status information as the number of components

designed and coded and the number of tests performed. The DSF is completed on a bi-weekly

basis by the project leaders of all active projects.

DSF Fields

D21

D1

D22

D180

D181

D182

D183

D184

D185

Name of originator (P24)

Project name (P1)

Week ending date; this date is always a Friday (P23)

Total number of components to be designed (P195)

Number of components designed as of the week ending date (P196)

Total number of components to be coded (P197)

Number of components coded as of the week ending date (P198)

Total number of separate system tests planned (P 199)

Number of system tests executed at least one time (P200)

10004437L 3-13

D186

D188

D189

D190

D192

D193

D194

D195

D196

D197

D198

Number of system tests passed (P201)

Total number of separate acceptance tests planned (P203)

Number of acceptance tests executed at least one time (P204)

Number of acceptance tests passed (P205)

Total number of discrepancies reported (P207)

Total number of discrepancies resolved (P208)

Total number of specification modifications received (P209)

Total number of specification modifications completed (P210)

Total number of requirements questions submitted to analysts (P211)

Total number of requirements questions answered by analysts (P212)

DSF form number; unique identifier distinguishing this form from other DSFs

1000_37L 3-14

SECTION 4--A LOGICAL VIEW OF THE SEL DATABASE

This section presents the logical schema of the SEL database. The introduction to relational

databases in Section I, together with the table descriptions in the following sections, allow
the reader to understand where the data items described in Sections 2 and 3 may be found in

the database. This section also presents some additional information about the way the data

are stored and describes the tables containing database support data. These latter discussions

are intended for the reader who needs to understand the database at a deeper level, such as a

database maintenance programmer.

Section 4.1 defines each table in the SEL database. Section 4.2 describes how the tables are

related to one another and constraints that are imposed on the tables by the semantics of the

SEL data. Section 4.3 maps the data items as defined conceptually in Sections 2 and 3 to each

item's location in a database table. This section also describes the access path to follow to

reach each end data item.

In addition to the tables in the SEL database on the VAX, there are tables on the personal

computer (PC) that are used for storing and maintaining DSF data. Since the DSF data are

entered and quality assured by using the Database Access Manager for the SEL-PC

(DAMSEL-PC) system, tables for storing DSF data are replicated on the PC. Some addition-

al tables also exist on the PC to store validation data downloaded from the VAX database.

This information is presented in Table 4-2 in a separate PC section. Tables for the VAX DSF

data are described, along with others, both in Tables 4-1 and 4-2.

4.1 DATABASE TABLE AND VIEW DEFINITIONS

The SEL database contains a total of 78 base tables (relations) and 51 views. Base tables are

defined independently of other tables in the sense that no base table is completely derivable

from any other base table. On the other hand, views are virtual tables that are completely
derived from base tables and contain no data of their own. With some restrictions, they can be

treated as base tables. In the SEL database environment, views are used to provide users or

application programmers with amore convenient way to access data items that spread across

more than one base table. Tables 4-1 and 4-2 both present tables and views in the database and

their component fields. Table 4-1 contains only 40 tables and 5 views (on the VAX), and is

intended for all database users.

Table 4-2 contains additional tables and views that are mainly used for data entry, system

maintenance, and project closeout, and are not relevant to general users. Table 4-1 presents

the following information for each table and view included:

• Table or view name and a brief description of the data it contains

• For each column included in the table or view:

lOOO_7t. 4-1

Column name; an underlined column name is the primary key.for accessing

any table row. If multiple column names are underlined, the primary key is a
concatenation of those columns.

Column description

Column type; see data type description following

A list of valid values for the column, as applicable; Appendix A contains a
translation of these codes

One or more reference IDs that provide cross-references to data item de-

scriptions in Sections 2 and 3, as applicable. Columns without reference IDs

are generally intemal identifiers that link rows in different tables and estab-

lish the relational database.

The data types for columns are CHAR, NUMBER, and DATE. A CHAR column can contain

a sequence of alphanumeric characters. The number in parentheses is the maximum length of

the field. A NUMBER column can contain only the numerals 0 through 9 and the signs +

and -. The first number in the parentheses identifies the width of the numeric field. The

second number (after the comma) identifies the number of places after the decimal point. A

zero indicates that column entries must be integers. A DATE column can contain only a date,

formatted as DD-MMM-YY. Reference 4 presents a more detailed description of ORACLE

datatypes.

Table 4-2 is intended for users, such as maintenance programmers, who need to know more

of the technical specifications for all 64 base tables and 47 views on the VAX, and 14 base

tables and 4 views on the PC. Provided for each field are name; data type; length (the number

of decimal places is specified if the field is numeric); an indication of whether it is the

primary key or part of the primary key; a specification of whether it can contain null values;

and whether it is indexed. Fields that are identified as being indexed are those to be used

frequently in join operations, in comparison, or in specifying search conditions. Unique

indices exist for all fields or concatenations of fields that must have unique values within a

particular table row. The last column in the table is for the view entries. It specifies the

underlying table from which a particular column within a view is derived.

IO0(M_7L 4-2

Table 4-1. SEL Database Tables and Views (1 of 21)

Tnhie or

View Name

CHANGE

Co|umnName

CHANGE_NO

PROG_ID

SUB_DATE

EFF_ONE

EFF__ADA

EFF 1SO CH

EFF_COM_CH

EFF_PARPA

EFF_OTHER

DATE_DETER

Description

TABLE CONTAINING CRF

INFORMATION FOR ALL

CHANGES

FORM NUMBER OF CRF

ID UNIQUE_ IDENTIFY-

INGEACH PROGRAM-

MER(FROM TABLEPER-

SONNEL)

SUBMISSION DATE OF

CRF

YES/NO FLAG TO INDI-

CATE WHETHER

i CHANGE WAS MADE TO

ONE AND ONLY ONE

COMPONENT

YES/NO FLAG TO INDI-

CATE WHETHER USE OF

ADA CONTRIBUTED TO
THIS CHANGE

PROGRAMMER'S EF-
FORT TO ISOLATE

CHANGE

PROGRAMMER'S EF-

FORT TO IMPLEMENT
CHANGE

YES/NO FLAG TO INDI-

CATE WHETHER PRO-

GRAMMER HAD TO BE

AWARE OF PARAME-
TERS PASSED

YES/NO FLAG TO INDI-

CATE WHETHER PRO-
GRAMMER LOOKED AT

ANY OTHER COM-
PONENTS

DATE ON WHICH NEED

FOR CHANGE WAS DE-

TERMINED

Type

CHAR (6)

NUMBER

(5, o_

DATE

I CHAR (1)

CHAR(l)

CHAR (I0)

CHAR (10)

CHAR(1)

CHAR(1)

DATE

Vol_ Code/Value

Y,N

Y,N

1HR, 1DAY, 3DAY,
NDAY, NOTDET

1HR, 1DAY, 3DAY,
NDAY, NOTDET

Y,N

Y,N

Reference |D

P63, D82

P65, D2

P68, D68

P69, D76

P66, D65

P67, D66

P71. D70

P70, D69

P72, D63

DATE_COMP DATE ON WHICH DATE P73, D64
CHANGE WAS COM-

PLETED

NUM_COM_CH TOTAL NUMBER OF NUMBER P74
COMPONENTS (3, 0)

CHANGED

NUM COM EX P75TOTAL NUMBER OF

COMPONENTS EX-
AMINED

NUMBER

1 i2, O_

I

1000444.37 L 4.-3

Table 4-1. SEL Database Tables and Views (2 of 21)

Table or

View Name

CHANGE

(CONT'0)

Column Name

CH_TYPE

O=icriptlon

TYPE OF CHANGE

i

Type

CHAR (10)

Valid Code/Value

ERRCO, PLANE.

IMPRE, IMPCM.

IMPUS, IN/DE, OPTSA,

ADENC, OTHCH

cRF

Reference iD

P76, D67

FORM_TYPE TYPE OF DATA COLLEC- CHAR (6)
TION FORM

STATUS STATUS OF CRF CHAR (10) i UNCHK, HCCORRECT,

i HCERROR, VERAP,
CLOSED

CHANGE_ TABLE CONTAINING
COM CHANGED COM-

PONENTS ASSOCIATED

WITH PARTICULAR CRFs

CHANGE NO FORM NUMBER OF CRF CHAR (6) P63, D82
FROM TABLE CHANGE

COM NO ID OF CHANGED COM- NUMBER

PONENT FROM TABLE (7, 0)

SUB_COM

CH TABLE CONTAINING ADA

AD_,FEAT FEATURES THAT WERE

INVOLVED IN OR CON-

TRIBUTED TO PARTICU-

LAR CHANGES

CHANGE NO FORM NUMBER OF CRF CHAR (6) P63, D82
FROM TABLE CHANGE

ADA_FEATURE FEATURES(S) INVOLVED CHAR (10) DATATYPE, P85, D77

IN CHANGE IF ADA IS SUBPROG, EXCEPT,
USED AS DESIGN AND GEN, PACK. TASK,

IMPLEMENTATION [.AN- SYSDEPF, OTHER
GUAGE

CH_ERR_
ARES

TABLE CONTAINING

RESOURCES USED IN

CORRECTING ERRORS

FOR PARTICULAR

CHANGES INVOLVING

ADA

CHANGE_NO FORM NUMBER OF CRF CHAR (6) P63, D82
FROM TABLE CHANGE

ERR_ARES RESOURCES USED TO CHAR (10) NOTE, REFMAN, P86. DS0
CORRECT ERROR TEAM, MEMORY,

CAUSED BY USE OF ADA NTEAM, OTHER

CH ERR
GEN -

CHANGE_NO CHAR !6)

TABLE CONTAINING

ERROR CHARACTER-
i ISTICS FOR PARTICULAR

CHANGES iDENTIFIED

AS ERROR CORREC-

, TIONS

FORM NUMBER OF CRF
FROM TABLE CHANGE

I P63, D82

!

10004437L 4-4

Table 4-1. SEL Database Tables and Views (3 of 21)

Table or

View Name

CH_ERR_
GEN

(CONT'D)

CH_ERR_
TOOLS

COMPUTER

Column Name

ERR_SOURCE

Description

SOURCE OF ERROR

Type

CHAR (10)

Valid Code/Value

REQMT, FUNSPEC,

DESIGN, CODE,

PRECH, NOTDET

Reference ID

P77. D71

: ERR_CLASS CLASS OF ERROR CHAR (10) INIT, LOGIC, INTERI, P78, D72
INTERE, DATAVAL,

COMPUTE, NOTDET

ERR_COMIS CHAR (1) Y, N P79, D74

CHAR (1)

YES/NO FLAG TO INDI-

CATE WHETHER ERROR

WAS ONE OF COMMIS-
SION

YES/NO FLAG TO INDI-

CATE WHETHER ERROR

WAS TYPOGRAPHICAL

Y,NERR_T'YPO P81, D75

ERR_OMIS YES/NO FLAG TO INDI- CHAR (1) Y, N PSO, D73
CATE WHETHER ERROR

WAS ONE OF OMISSION

ERR_ADOC CHAR (1) Y, N P82, D78YES/NO FLAG TO INDI-

CATE WHETHER ADA

COMPILER DOCUMEN-

TATION OR ADA LAN-

GUAGE REFERENCE
MANUAL EXPLAINS IN-

VOLVED FEATURES

CLEARLY

CAUSE OF ERROR IN-

VOLVING ADA
ERR_ACAUSE

CHANGE NO

CHAR (10)

CHAR (6)

CHAR (10)ERR_TOOLS

TABLE CONTAINING

TOOLS USED IN COR-

RECTING ERRORS FOR

PARTICULAR CHANGES

INVOLVING ADA

FORM NUMBER OF CRF

FROM TABLE CHANGE

INTERACT, INCOF,
FEATUREM,

FEATUREC

COMPI, SYMDEB, LSE,

CMS, SCA, PCA

DECTM, OTHER

ADA TOOLS USED THAT

AIDED IN DETECTION OR

CORRECTION OF ER-

ROR

TABLE CONTAINING

INFORMATION ABOUT

COMPUTERS USED ON

VARIOUS PROJECTS

P83, D79

P63, D82

P87, D81

CPU_NAME SHORT. UNIQUE NAME CHAR (10) P44, P134,
IDENTIFYING A PARTICU- M4, D38
LAR COMPUTER

C_FULL_NAME COMPUTER FULL NAME CHAR (20) M5

I0004437L 4-5

Table 4-1. SEL Database Tables and Views (4 of 21)

Table or
View Name

COM
PURP'OSE

COM
SOURCE

Column Name

COM_NO

PURPOSE

COM_NO

Description

TABLE CONTAINING
PURPOSES REPORTED
ON COFs FOR EXECUT-
ABLE COMPONENTS

ID UNIQUELY IDENTIFY-
ING EACH COMPONENT

(FROM TABLE SUB_COM)

MAJOR PURPOSE(S) OF
COMPONENT

TABLE CONTAINING COF
INFORMATION FOR ALL

i COMPONENTS

ID UNIQUELY IDENTIFY-
ING EACH COMPONENT
(FROM TABLE SUB_COM)

Type

NUMBER
(7, 0)

CHAR (10)

NUMBER
(7,0)

Valid Code/Value

IOPRO, ALCOMP,
DATRA, LODEC,
CNTRMOD, INTOP,
ADAPR, ADADA

PROG_ID ID UNIQUELY IDENTIFY- I NUMBER
ING EACH PROGRAM- '(5, 0)
MER (FROM TABLE PER-
SONNEL)

FORM_NO FORM NUMBER OF COF CHAR (6) D59

FORMTYPE TYPE OF DATA COLLEC- CHAR (6) COF
TION FORM

STATUS

CREATE DATE

CHAR (10)

DATE

STATUS OF COF

DATE ON WHICH COM-
PONENT WAS ENTERED
INTO CONTROLLED LI-
BRARY

IUNCHK, HCCORREC_
!HCERROR, VERA_
CLOSED

Reference ID

P59, D58

P53, D54

ORI_TYPE ORIGIN OF COMPONENT CHAR (10) NEW, EXTMO, SLMOD, P56, D56
OLDUC

COM_T'YPE TYPE OF COMPONENT CHAR (10) P58, D57

DIFFICULTY

SUB_DATE

INCL, JCL, ALC,
FORTRAN, PASCAL,
NAM ELT, DISPLAY,
MENDER REFDATA,
BLOCKDA, ADASUBS,
ADASUBB,
ADAPACKS,
ADAPACKB,
ADATASKS,
ADATASKB,
ADAGENS, ADAGENB,
ADAUNSPEC, OTHER

DEGREE OF DIFFICULTY NUMBER 1 TO 5 P57, D55
IN CREATING PARTICU- (2, 0)
LAR COMPONENT

SUBMISSION DATE OF DATE P54, D2
COF

10004437L 4-6

Table 4-1. SEL Database Tables and Views (5 of 21)

Table or

View Name

COM_STAT

Column Name

COM_NO

C_E×E_S

C_LINE

C_C_LINE

C STMT

Description

TABLE CONTAINING

!STATISTICS FOR ALL

COMPONENTS

ID UNIQUELY IDENTIFY-

ING EACH COMPONENT

(FROM TABLE SUB_COM)

NUMBER OF EXECUT-

ABLE STATEMENTS IN

COMPONENT

NUMBER OFSOURCE

LINES OFCODE(WITH

COMMENTS) IN COM-
PONENT

NUMBER OF COMMENT

LINES IN COMPONENT

(NO BLANK LINES)

NUMBER OF STATE-

MENTS iN THE COM-

PONENT

Type

NUMBER

(7, 0)

NUMBER

(6, 0)

NUMBER

(6,o)

NUMBER

(6, 0)

NUMBER

(6, 0)

:INAL_ORIGIN_ ORIGIN CATEGORYAS- CHAR (10)
CAT SIGNED TO THE COM-

PONENT FOR COMPUT-

ING FINAL STATISTICS

DSF TABLE CONTAINING DSF

MEASURE MEASUREMENT DATA

D_ID D ID FROM TABLE NUMBER
PROJ_DSF (10, 0)

TYPE OF DSF DATA

TYPE OF DSF MEASURE

CHAR(10)STATUSCODE

MEASURE_
CODE--

MEASURE_
VALUE

VALUE OF DSF MEA-

SURE

CHAR (I0)

NUMBER

(s,o)

Valid Code/Value Reference ID

P154

P155

P156

P221

NE-W, EXTMO, SLMOD, P222

OLDUC

DESIGN, CODE,

SYSTEST, ACCTEST,

DISCREP,

QUESTIONS,
SPECMOD

MODDESIGN,

MODCODE,

SYSTSTONE,

SYSTSTPASS,

SYSTSTRUN,
ACCTSTONE.

ACCTSTPASS.

ACCTSTRUN,

DISCRES, QUESTANS,
SPECMODIMP

P196, P198,

P200, P204.
P208, P210.

P212

P196, D181,

P198, D183.
P200-P202.

D185-D186,
P204-P206,

D189-D190

P208, 3193,

P210, D195,

P212, D197

10004437L 4-7

Table 4-1. SEL Database Tables and Views (6 of 21)

Table or
View Name

DSF
TARGET

EFF_ACT

Column Name

D_ID

STATUSCODE

TARGET_CODE

TARGET_VALUE

EFFID

ACTIVITY

Description

TABLE CONTAINING DSF
TARGET DATA

D ID VALUE FROM
T._,BLE PROJ_DSF

TYPE OF DSF DATA

TYPE OF DSF TARGET

VALUE OF DSFTARGET

TABLE CONTAINING
TECHNICAL AND DIRECT
MANAGEMENT ACTIVITY
HOURS FROM CLPRFs
OR PRFs AND SERVICE
PERSONNEL HOURS
FROM SPFs FOR ALL
PROJECT, PERSONNEL,
AND WEEK COMBINA-
TIONS

P ID VALUE FROM
Th,BLE EFF PROJ OR
PS ID VALU'E FROM
TABLE EFF_SUB

ACTIVITY TO WHICH
PERSONNEL ARE
CHARGING TIME ON
CLPRF, PRF, OR SPF

Type

NUMBER
(10, O)

CHAR (10)

!CHAR(10)

NUMBER
(5, 0)

NUMBER
10,0)

CHAR (10)

Valid Code/Value

DESIGN, CODE.
SYSTEST, ACCT EST.
DISCRER
QUESTIONS,
SPECMOD

TOTDESIGN,
TOTCODE,
TOTSYSTS_
TOTACCTS_
TOTDISCRE_
QUESTSUB,
SPECMODREC

ACCTES_
CLACCTES_
CLCREDES,
CLINDTES_
CLOTHER,
CLPREDES,
CLPRETEST,
CLRDREVCOD.
CLRESPSFR,
CLVEREVDES,
CLWRCODE. CREDES,
DEBUG, INTTEST,
OTHER, PREDES.
RDREVCOD,
RDREVDES,
SUPPOR_
TSTCODUN, WRCODE

Reference ID

P195, P197,
P199, P203,
P207, P209,
P211

P195, D180,
P197. D182,
P199, D184,
P203, D188,
P207, D192,
P209, D194.
P211, D196

P25-P34,
P39-P40,
P42-P43,
P157-P166

10004437L 4-8

Table 4-1. SEL Database Tables and Views (7 of 21)

Table or
View Name

EFF ACT
(coFrr'D)

EFF_FORM

Column Name

ACT_HR

P_ID

Description

ACTUAL HOURS SPENT
IN PARTICULAR ACTIV-
ITY

TABLE CONTAINING
FORM IDENTI FICATION
AND STATUS INFORMA-
TION FOR EACH PROJ-
ECT, PROGRAMMER AND
WEEK COMBINATION;
ENTERED FROM
CLPRFs, PRFs, OR SPFs

P ID VALUE FROM
TABLE EFF_PROJ

Type

NUMBER
(lO, 2)

NUMBER
(1O, O)

Valid Code/Value Reference ID

P25-P34,
D23-D32,
P39-P40,
D44-D45,
P42-P43,
D47-D48,
P157-P 166,
D199-D208

FORM_NO FORM NUMBER OF ! CHAR (6) D37, D49,
CLPRF, PRF, OR SPF D210

FORM_TYPE TYPE OF DATA COLLEC- CHAR (6) CLPRF, PRF, SPF
TION FORM

STATUS STATUS OF CLPRF, PRF, CHAR (10) UNCHK, HCCORRECT,
OR SPF HCERROR, VERAP,

CLOSED

EFF_PROJ TABLE ASSOCIATING
GIVEN PROJECT, PRO-
GRAMMER, AND WEEK
COMBINATION WITH
SURROGATE KEY (P_ID)
FOR USE IN OTHER
TABLES

ID UNIQUELY IDENTIFY-
ING EACH PROJECT
(FROM TABLE PROJECT)

SUBMISSION DATE OF
, CLPRF, PRF, OR SPF

i lD UNIQUELY IDENTIFY-
ING EACH PROGRAM-
MER (FROM TABLE PER-
SONNEL)

PROJ NO

SUB_DATE

NUMBER
(3, O)

DATE

NUMBER
(s,o)

NUMBER
(lo, o)

PROG_ID

SURROGATE KEY AS-
SIGNED TO REPRESENT
UNIQUE PROJ_NO,
PROG_ID, AND
SUB DATE COMBINA-
TION-

P_ID

P23, D22

10004437L 4-9

Table 4-1. SEL Database Tables and Views (8 of 21)

Table or

Vi.w Name

EFF_SUB

Column Name Description

TABLE ASSOCIATING

P ID AND SUBSYSTEM

PREFIX WITH SURRO-

GATE KEY (PS_ID) FOR
USE IN OTHER TABLES

Type Valid Code/Value

I
Reference ID

P I D P ID VALUE FROM NUMBER
TABLE EFF_PROJ (10, 0)

SUB_PRE SUBSYSTEM PREFIX CHAR (5) P47, D52,

FROM TABLE PROJ__SUB D152

I PSID SURROGATE KEY AS- NUMBER
SIGNEDTO REPRESENT (10, 0)
UNIQUE P ID AND

SUB PRE COMBINATION

MAINT_ACT_
HRS

MAINTJD

TABLE CONTAINING

PROGRAMMER MAINTE-

NANCE HOURS FROM
WMEFs GROUPED BY

ACTIVITIES

MAINT_ID VALUE FROM

TABLE MAINT_.PROJ

ACTIVITY TO WHICH
PROGRAMMER IS

CHARGING TIME ON

WMEF

ACTUAL HOURS SPENT

IN PARTICULAR ACTIV-
ITY

TABLE CONTAINING

INFORMATION FORALL

MAINTENANCE

CHANGES

NUMBER

(lO,o)

CHAR (10)

NUMBER

(lO.2)

MAINT_ACT

MAINT
CHANGE

ISOLATION,

REDESIGN,

IMPLEMEN_

UNSYSTES_

ACCBENTES_ OTHER

ACT_HR

MAINT CH NO FORM NUMBER OF CHAR (6) D178
MCRF

PROJ_NO ID UNIQUELY IDENTIFY- NUMBER

ING EACH PROJECT (3, 0)

(FROM TABLE PROJECT)

PROG_ID NUMBER

(s,o)

SUB_DATE

OSMR NO

STATUS

ID UNIQUELY IDENTIFY-

ING EACH PROGRAM-

MER (FROM TABLE PER-

SONNEL)

P172-P 17"/

P 172-P 177,
D155--D160

SUBMISSION DATE OF DATE P65, D2

MCRF

OSMR NUMBER NUMBER P178, D162

(4, O)

STATUS OF MCRF CHAR (10) UNCHK, HCCORRECT.

HCERROR, VERAP,
CLOSED

10004437L 4-10

Table 4-1. SEL Database Tables and Views (9 of 21)

Table or
View Name

MAINT
CHANGE

(CONT'D)

Column Name

FORMTYPE

MAINT CH
TYPE

Description

TYPE OF DATA COLLEC-
TION FORM

Type

CHAR (6)

Valid Code/Value

MCRF

TYPE OF MODIFICATION CHAR (10) CORRECTION,
ENHANCEMNT,
ADAPTATION

Reference ID

P179, D163

CH CAUSE CAUSE OF CHANGE CHAR (10) REQMTSPEC, P180, D164
DESIGN, CODE,
PRECH, OTHER

MAINT ISO CH CHAR (10) P181, D1651HR, 1DAY, 1WEEK,
1MONTH,
1MONTHMORE

PROGRAMMER'S EF-
FORT TO ISOLATE
CHANGE

NUMBER OF THE ADDED
COMPONENTS THAT
ARE TOTALLY NEW

MAINT_COM_ PROGRAMMER'S EF- CHAR (10) 1HR, 1DAY, 1WEEK, P182, D166
CH FORT TO IMPLEMENT 1MONTH,

CHANGE 1MONTHMORE

CH_CLASS CLASS OF CHANGE CHAR (10) INIT, LOGIC, INTERI, P184, D168
INTERE, DATAVAL,
COMPUTE, OTHER

EST.._LOC_ADD ESTIMATED NUMBER OF NUMBER P185, D169
LINES OF CODE ADDED (6, 0)

EST._LOC_CH ESTIMATED NUMBER OF NUMBER P186, D170
LINES OF CODE (6, 0)
CHANGED

EST_LOC_DEL ESTIMATED NUMBER OF NUMBER P187, D171
LINES OF CODE DE- (6, 0)
LETED

COMP ADD NUMBER OF COM- NUMBER P188, D172
PONENTS ADDED (4, 0)

COMP CH NUMBER OF COM- NUMBER P189, D173
PONENTS CHANGED (4, 0)

COMP DEL NUMBER OF COM- NUMBER P190, D174
PONENTS DELETED (4, 0)

COMP_ADD_ NUMBER P191, D175
NEW (4, 0)

COMP_ADD_
REUSE

P192, D176

P193, D177

NUMBER OF THE ADDED
COMPONENTS THAT
ARE TOTALLY REUSED
(UNCHANGED)

COMP_ADD_
REMOD

NUMBER

(4,0)

NUMBER
(4,o)

NUMBER OF THE ADDED
COMPONENTS THAT
ARE REUSED WITH
MODIFICATIONS

100044.37L 4-11

Table 4-1. SEL Database Tables and Views (10 of 21)

Table or
Viow Iqamo

MAINT CH
OBJECTS

MAINT_
CLASS_HRS

Column Name

MAINT CH NO

CH_OBJECT

MAINT_ID

MAINT_CLASS

Description

TABLE CONTAINING
CHANGED OBJECTS
ASSOCIATED WITH PAR-
TICULAR MCRFs

FORM NUMBER OF
MCRF FROM TABLE

MAINT CHANGE

CHANGED OBJECT

TABLE CONTAINING
PROGRAMMER MAINTE-
NANCE HOURS FROM
WMEFs GROUPED BY
CLASS OF MAINTE-
NANCE

MAINT ID VALUE FROM
TABLE-MAINT_PROJ

;CLASS OF MAINTE-
NANCE TO WHICH PRO-
GRAMMER IS CHARGING
TIME ON WMEF

Type

CHAR (6)

CHAR (1O)

NUMBER
(10,0)

CHAR (1 O)

CLASS_HR ACTUAL HOURS SPENT NUMBER
IN PARTICULAR CLASS (10.2)
OF MAINTENANCE

MAINT
PROJ -

TABLE CONTAINING
WMEF DATA. A GIVEN
PROJECT, PROGRAM-
MER, AND WEEK ARE
ASSOCIATED WITH SUR-
ROGATE KEY (MAINT_ID)
FOR USE IN OTHER
TABLES

Valid Code/Value

REQMTDOC,
DESIGNDOC, CODE,
SYSDESC,
USERGUIDE, OTHER

CORRECTION,
ENHANCEMNT,
ADAPTATION, OTHER

Reference ID

D178

PROJ NO ID UNIQUELY IDENTIFY- NUMBER
ING EACH PROJECT (3, O)
(FROM TABLE PROJECT)

SUBDATE SUBMISSION DATE OF DATE P23, D22
WMEF

PROG_ID IO UNIQUELY IDENTIFY- NUMBER P24, D21
ING EACH PROGRAM- (5, O)
MER (FROM TABLE PER-
SONNEL)

MAINT ID SURROGATE KEY AS- NUMBER
SIGNEDTO REPRESENT (10, O)
UNIQUE PROJ_NO,
SUB DATE, AND
PRO-G ID COMBINATION

FORM_NO FORM NUMBER OF CHAR (6) D161
WMEF

FORM_TYPE TYPE OF DATA COLLEC- CHAR (6) WMEF
TION FORM

P183, D167

PI68-P171

P168-P171,
D15t-D154

_000,_TL 4-12

Table 4-1. SEL Database Tables and Views (11 of 21)

Table or

View Name

MAINT
PROJ

(CONT'D)

PERSONNEL

PROJECT

1
Column Name I Description

m

STATUS STATUS OF WMEF

PROG ID

FORMNAME

FULL_NAME

DATE_ENTRY

PROJNAME

PROJ_NO

PROJT'YPE

TABLE CONTAINING

INFORMATION ABOUT

PERSONNEL FOR WHOM

DATA ARE RECORDED IN

THE DATABASE

ID ASSIGNED FOR

UNIQUELY IDENTIFYING

EACH PERSON SUBMIT-

TING FORMS

ABBREVIATED NAME AS

IT APPEARS ON VARI-

OUS FORMS

FULL DESCRIPTIVE

NAME OF PERSON

DATE ON WHICH PER-

SONNEL DATA WERE

ENTERED INTO DATA-

BASE

TABLE CONTAINING

INFORMATION ABOUT

ALL PROJECTSINTHE
DATABASE

PROJECT NAME

ID ASSIGNED FOR

UNIQUELY IDENTIFYING

EACH PROJECT

PROJECT CATEGORY

Type

CHAR (10)

NUMBER

(s,o)

CHAR (15)

CHAR (30)

DATE

CHAR (8)

NUMBER

(3, 0)

CHAR (101

Valid Code/Value

UNCHK, HCCORREC_

HCERROR, VERAE

CLOSED

THIS FIELD ALSO

INCLUDES THE

FOLLOWING

SERVICES

PERSONNEL NAMES:

LIBARIAN-LIBRARI-

ANS

OTHSUPP-OTHER

SUPPORT PERSON-

NEL

PROGMGMT-PRO-

GRAM MANAGEMENT

PERSONNEL

SECRTARY-

SECRETARIES

TECHPUBS-TECHNI-

CAL PUBLICATIONS

PERSONNEL

i AGSS, ATTITUDE,

DATABASE.

GRAPH/UI. MP&A,
ORBIT, OTHER

REALTIME,
SIMULATOR, TOOL

Reference IO

P24. M1, D21

M2

M3

P1, D1

P2, D163

100044437L 4-13

Table 4-1. SEL Database Tables and Views (12 of 21)

Table or
View Name

PROJECT
(CONT'D!

PROJ_CPU_
STAT

PROJ_DSF

Column Name

ACTIVE_
STATUS

PROJ NO

SUB_DATE

CPU NAME

TOTAL_HRS

T RUN

PROJ_NO

SUB_DATE

PROG_ID

FORM NO

Description

CURRENT STATUS OF
PROJECT

TABLE CONTAINING
AT-COMPLETION COM-
PUTER RESOURCE STA-
TISTICS FOR ALL PROJ-
ECTS IN DATABASE

ID UNIQUELY IDENTIFY-
ING EACH PROJECT
(FROM TABLE PROJECT)

SUBMISSION DATE OF
PCSF

SHORT NAME IDENTIFY-
ING COMPUTER USED
ON PROJECT (FROM
TABLE COMPUTER)

TOTAL COMPUTER
HOURS USED ON PAR-
TICULAR COMPUTER
FOR PROJECT

TOTAL NUMBER OF
RUNS ON PARTICULAR
COMPUTER FOR PROJ-
ECT

TABLE CONTAINING
FORM IDENTIFICATION
AND STATUS INFORMA-
TION FOR EACH PROJ-
ECT, PROGRAMMER,
AND WEEK COMBINA-
TION; ENTERED FROM
DSFs

ID UNIQUELY IDENTIFY-
ING EACH PROJECT
(FROM TABLE PROJECT)

SUBMISSION DATE OF
DSF

ID UNIQUELY IDENTIFY-
ING EACH PROGRAM-
MER (FROM TABLE PER-
SONNEL)

FORM NUMBER OF DSF

Type

CHAR (1O)

NUMBER
(3, O)

DATE

CHAR (10)

NUMBER
(10, 2)

NUMBER

(s, o)

NUMBER
(3, o)

DATE

NUMBER
(5, O)

CHAR (6)

STATUS

Valld Code/Value

ACT_DEV,
ACT_MAIN_
INACTIVE, DISCONT

Reference ID

:P3

P124, D2

P134, M4,
D38

P135, D94

P136, D95

P23. D22

STATUS OF DSF CHAR (1O)

FORM_TYPE TYPE OF DATA COLLEC- CHAR !6)
TION FORM

UNCHK. HCCORREC_
HCERROR, VERAP,
CLOSED

DSF

D198

10004437L 4- J 4

Table 4-1. SEL Database Tables and Views (13 of 21)

Table or

View Name

PROJ DSF

(CONT'D)

PROJ_EST

Column Name

D_ID

PROJ_NO

SUB_DATE

Description

SURROGATE KEY AS-
SIGNED TO REPRESENT

UNIQUE PROJ_NO,
SUB DATE COMBINA-

TION-

TABLE CONTAINING

ESTIMATED STATISTICS

FOR ALL PROJECTS IN

DATABASE

ID UNIQUELY IDENTIFY-

ING EACH PROJECT

(FROM TABLE PROJECT)

Type

NUMBER

(lo, o)

NUMBER

(3, 0)

Reference ID

DATESUBMISSION DATE OF

PEF

Valid Code/Value

NUMBER

(4,o)

P!3, D2

T_SYS ESTIMATED TOTAL NUM- NUMBER P14, D14

BEN OF SUBSYSTEMS (4, 0)

T._COM ESTIMATED TOTAL NUM- P15, D15
BEN OF COMPONENTS

T LINE ESTIMATED TOTALSLOC NUMBER P16, D16

(7, 0)

T_NEW_LINE ESTIMATED TOTAL SLOC NUMBER P19, D17
FOR ALL NEW COM- (7, 0)
PONENTS

T MOD LINE ESTIMATED TOTAL SLOC NUMBER P18, D18

FOR ALL MODIFIED COM- (7, 0)
PONENTS

T_OLD_LINE ESTIMATED TOTAL SLOC NUMBER P17, D19
FOR ALL REUSED COM- (7, 0)
PONENTS

PRO_HR ESTIMATED TOTAL PRO- NUMBER P20, Dll
GRAMMER HOURS (10, 2)

MAN HR ESTIMATED TOTAL MAN- NUMBER P21, D12

AGEMENT HOURS (10, 2)

SER__HR ESTIMATED TOTAL SEN- NUMBER P22, D13
VICES HOURS (10, 2)

PROJ EST TABLE CONTAINING

PHASE - ESTIMATED AND AT-

COMPLETION PHASE

DATES FOR ALL PROJ-

ECTS IN DATABASE

PROJ_NO ID UNIQUELY IDENTIFY- NUMBER
ING EACH PROJECT (3, 0)

(FROM TABLE PROJECT)

SUB DATE SUBMISSION DATE OF DATE P5, P13,

PCSF OR PEF P124, D2

PHASE CODE IDENTIFY-
ING DIFFERENT PHASES

IN LIFE OF PROJECT

CHAR (10) REQNT, DESGN,
i CODET, SYSTE,

ACCTE, CLEAN,

MAINT

PHASE_CO P6-P21,
P125-P131

I0004_37L 4-15

Table 4-1. SEL Database Tables and Views (14 of 21)

PROJ_EST_
PHASE

(CONT'D)

PROJ_FORM

PROJ_GRH

PROJ

MESS-AGES

Column Name

START_DATE

END_DATE

PROJ NO

SUB_DATE

I)eecriptlon

START DATE OF A PAR-

TICULAR PHASE

END DATE OF A PARTIC-

ULAR PHASE

TABLE CONTAINING

FORM IDENTI FICATION
AND STATUS INFORMA-

TION FOR PCSF, PEF,

SEF, AND SPF DATA

ID UNIQUELY IDENTIFY-

ING EACH PROJECT

(FROM TABLE PROJECT)

SUBMISSION DATE OF

PCSF, PEF, SEF, OR SPF

Type

DATE

DATE

NUMBER

(3,o)

DATE

Valid Code/Value

FORM_NO FORM NUMBER OF CHAR (6)
PCSF, PEF, SEF, OR SPF

FORM_TYPE TYPE OF DATA COLLEC- CHAR (6) PCSF, PEF, SEF, SPF
TION FORM

STATUS OF PCSF, PEF,

SEF, OR SPF

STATUS CHAR (10)

TABLE CONTAINING

GROWTH HISTORY IN-

FORMATION FOR ALL

PROJECTS IN DATABASE

!UNCHK, HCCORREC_

HCERROR, VERAP,
CLOSED

PROJ NO ID UNIQUELY IDENTIFY- NUMBER

ING EACH PROJECT (3, 0)

(FROM TABLE PROJECT)

SUB_DATE SUBMISSION DATE OF DATE P23, D22
SPF

i GR_LINE

GR_MOD

GR_CH

TOTAL NUMBER OF

LINES OF CODE (WITH

COMMENTS) IN PROJ-
ECT CONTROLLED

SOURCE LIBRARY

TOTAL NUMBER OF

MODULES IN PROJECT

CONTROLLED LIBRARY

NUMBER

(7, 0)

NUMBER

(4,o)

NUMBER

(6,o)
TOTAL NUMBER OF

CHANGES RECORDED

IN PROJECT CON-
TROLLED LIBRARY

TABLE CONTAINING

GENERAL PROJECT
DESCRIPTION INFORMA-

TION FOR ALL PROJ-
ECTS IN DATABASE

Reference ID

P6-P11,

D3-D8,
P125-P131,

D84-Dg0

P6-P11,

D4-D8, D10,

P125-P131,
D85-D91

P13, P124,

D2, P23, D22

D150, D20,

D49, Dl13

P60, D43

P61, D41

P62, D42

1000,_,37L 4-16

Table 4-1. SEL Database Tables and Views (15 of 21)

Table or

View Name

PROJ
MESS-AGES

(CONT'D)

Column Name Description

S ID S ID FROM TABLE

PROJ_NOTES

LINE N_O LINE SEQUENCE NUM-
BER WITHIN A MESSAGE

MESSAGES GENERAL PROJECT

DESCRIPTION INFORMA-

TION

SUB_DATE DATE ON WHICH MES-
SAGE WAS SUBMrl-rED

PROJ

_IOTES

PROJ_NO

NOTE_TYPE

SJO

PROJ_NO

SUB_DATE

PROJ PROD

TABLE ASSOCIATING
GIVEN PROJECT AND

MESSAGE TYPE WITH

SURROGATE KEY (S_ID)
FOR USE IN THE

P ROJ_MESSAGES TABLE

ID UNIQUELY IDENTIFY-

ING EACH PROJECT

(FROM TABLE PROJECT)

GENERAL PROJECT

DESCRIPTION CODES

SURROGATE KEY AS-
SIGNED TO REPRESENT

UNIQUE PROJ NO AND

NOTE_TYPE COMBINA-
TION

TABLE CONTAINING
WEEKLY COMPUTER

RESOURCE USE IN-

FORMATION FOR ALL

PROJECTS IN DATABASE

ID UNIQUELY IDENTIFY-

ING EACH PROJECT

(FROM TABLE PROJECT)

SUBMISSION DATE OF

SPF

SHORT NAME IDENTIFY-
ING COMPUTER USED

ON A PROJECT (FROM

TABLE COMPUTER)

TOTAL CPU HOURS

IUSEDIN CURRENT

WEEK

Type

NUMBER

5,0)

ValldCodelValue Reterence ID

NUMBER

3, 0)

CHAR (65) P4, D62

DATE D2

NUMBER

(3, O)

CHAR (10) P4, D61

NUMBER

(5, O)

NUMBER

(3,0)

CLOSEOUT,

COMPACCTS,

COMPSYS,

CONTACTS,

CONTRLLIB,

DATAAVAIL,

FORMSCOL,

GENMESS, GHTOOL,
LANGUAGES,

PROJNAME, TASKNO

RES NAME

RES_HR

DATE

ICHAB(10)

NUMBER

(10, 2)

P23, D22

P44, M4, D38

P45, D39

1ooo4437L 4-17

Table 4-1. SEL Database Tables and Views (16 of 21)

Table or
View Name

PROJ PROD
(CONI='D)

PROJ_SEF

PROJ_SEF_
SEC

PROJ_STAT

Column Name

RES_RUN

PROJ_NO

MEAS_'rYPE

EVALUATE

PROJ_NO

MEAS_TYPE

SECOND L

PROJ NO

De_rtpllon

TOTAL RUNS MADE IN
CURRENT WEEK

TABLE CONTAINING
SUBJECTIVE MEASURES
FROM SEFs FOR ALL
PROJECTS IN DATABASE

ID UNIQUELY IDENTIFY-
ING EACH PROJECT
(FROM PROJECT TABLE)

CODESIOENTIFYING
SUBJECTIVEPROJECT
CHARACTERISTICS

INTEGER INDICATING
THE VALUE OF A PAR-
TICULAR MEAS_TYPE

TABLE CONTAINING
SECONDARY-LEVEL
INFO, AS RECORDED ON
SEFs, FOR ALL PROJ-
ECTS IN DATABASE

ID UNIQUELY IDENTIFY-
ING EACH PROJECT
(FROM TABLE PROJECT)

CODEIDENTIFYING
PROJECT CHARACTER-
ISTICS AND TOOLS
USED

SECONDARY LEVEL
INFORMATION FOR A
PARTICULAR
MEAS_TYPE; AT PRES-
ENT, ALL THE CODES
STORED HERE ARE FOR
"USE OF TOOLS" (PC21)

TABLE CONTAINING
AT-COMPLETION STA-
TISTICS FOR ALL PROJ-
ECTS IN DATABASE

ID UNIQUELY IDENTiFY-
ING EACH PROJECT
(FROM TABLE PROJECT)

Type

NUMBER
(s,o)

NUMBER
(3. O)

CHAR (1O)

NUMBER
(1,o)

NUMBER
(3,o)

CHAR (10)

CHAR (10)

NUMBER
(3,o)

Valid Code/Value

PM01, PM02, PM03,
PM04, PM05, PM06,
ST07, ST08, ST09,
STIO, TM11, TM12,
TM13, TM14, TM15,
PC16, PC17, PC18,
PC19, PC20, PC22.,
PC23, PC24, EN25,
EN26, EN27, EN28,
EN29, EN30, PT31,
PT32, PT33, PT34,
PT35, PT36

1 TO5

PC21

Reference ID

P46, D40

P88-P107,
D114-D133,
P109-P123,
D135-D149

SUB DATE SUBMISSION DATE OF
PCSF

DATE

COMPL, LINK, EDIT,
i GRADIS, REPLP,
;STRANT, PDLPR, ISPF,
SAP, CAT, PANVAL
TESTCO, INTERR LSE,
SYMDEB, CMTOOL,
SDE, OTHER

P108, D134

P124, D2

10004437L 4- | 8

Table 4-1. SEL Database Tables and Views (17 of 21)

Table or
View Name

i PROJ STAT
! (CONT'D)

Column Name

TECH_MAN_HR

SER_HR

T_SYS

T COM

Description

TOTAL TECHNICAL AND

MANAGEMENT HOURS

USED ON PROJECT

TOTAL SERVICE HOURS

EXPENDED ON PROJ-
ECT

TOTAL NUMBER OF SUB-

SYSTEMS

TOTAL NUMBER OF

COMPONENTS

T_CH TOTAL NUMBER OF
CHANGES

T_DOC TOTAL PAGES OF DOC-
UMENTATION

TLINE TOTAL SLOC FOR ALL
COMPONENTS (IN-
CLUDES BLANK LINES)

r_NEW_LINE TOTAL SLOC FOR ALL
NEW COMPONENTS

T MOD LINE

T_OLD_LINE

T_COMMENT

TOTAL SLOC FOR ALL
SLIGHTLY MODIFIED

COMPONENTS

TOTAL SLOC FOR ALL

REUSED (UNCHANGED)
COMPONENTS

TOTAL NUMBER OF

COMMENT LINES (BLANK
LINES NOT INCLUDED)

Type

NUMBER

(10, 2)

NUMBER

(10, 2)

NUMBER

(4, O)

NUMBER

(4,0)

TOTAL NUMBER OF NEW

EXECUTABLE COM-

PONENTS

Valid Code/Value Reference ID

P132, D92

P133. D93

P137. D96

P138, D97

NUMBER P139,098

(6,o)

NUMBER P140, D99

(6, O)

P141, DIO0NUMBER

(7.0)

NUMBER P142, D101
(6, O)

NUMBER P143, D102
(6, O)

NUMBER P144, D103
(6, o)

NUMBER

(6, 0)

P145. D104

T_EXE_MOD TOTAL NUMBER OF NUMBER P146, D105
EXECUTABLE COM- (4, 0)
PONENTS

T._NEW MOD NUMBER P147, D106

(4,o)

NUMBER

(4,O)

NUMBER

(4, o)

NUMBER

(6, 0)

T_MOD_MOD TOTAL NUMBER OF

SLIGHTLY MODIFIED

EXECUTABLE COM-

PONENTS

TOTAL NUMBER OF RE-

USED (UNCHANGED)
EXECUTABLE COM-

PONENTS

TOTAL NUMBER OF

EXECUTABLE STATE-

MENTS FOR ALL FOR-

TRAN COMPONENTS

I T_OLD_MOD

T_EXE_STAT

P148, D107

P149, D108

P150, D109

10004437L 4- 19

Table 4-1. SEL Database Tables and Views (18 of 21)

Table or
View Name

PROJ STAT
(CONT'D)

PROJ_SUB

Column Name

T_N EW_STAT

T_MOD_STAT

T_OLD_STAT

T_STMTS

T_NEW_STMTS

T_MOD_STMTS

T_OLD_STMTS

T_EXTMO_LINE

T_EXTMO_MOD

T_EXTMO_STAT

T_EXTMO_
STMTS

Description

TOTAL NUMBER OF
EXECUTABLE STATE-
MENTS FOR ALL NEW
FORTRAN COM-
PONENTS

!TOTAL NUMBER OF
EXECUTABLE STATE-
MENTS FOR ALL SLIGHT-
LY MODIFIED FORTRAN
COMPONENTS

TOTAL NUMBER OF
EXECUTABLE STATE-
MENTS FOR ALL RE-
USED (UNCHANGED)
FORTRAN COM-
PONENTS

TOTAL NUMBER OF
STATEMENTS

TOTAL NUMBER OF
STATEMENTS FOR ALL
NEW COMPONENTS

TOTAL NUMBER OF
STATEMENTS FOR ALL
SLIGHTLY MODIFIED
COMPONENTS

TOTAL NUMBER OF
STATEMENTS FOR ALL
REUSED (UNCHANGED)
COMPONENTS

TOTAL SLOC FOR ALL
EXTENSIVELY MODIFIED
COMPONENTS

TOTAL NUMBER OF EX-
TENSIVELY MODIFIED
EXECUTABLE COM-
PONENTS

TOTAL NUMBER OF
EXECUTABLE STATE-
MENTS FOR ALL EXTEN-
SIVELY MODIFIED FOR-
TRAN COMPONENTS

!TOTAL NUMBER OF

STATEMENTS FOR ALL
EXTENSIVELY MODIFIED
COMPONENTS

TABLE ASSOCIATING
PROJECT AND SUBSYS-
TEM WITH SURROGATE
KEY (SUBSY_ID) THAT
UNIQUELY IDENTIFIES
THE SUBSYSTEM FOR
USE IN OTHER TABLES

Type

NUMBER
(6, O)

NUMBER
(s,o)

NUMBER
(6, O)

NUMBER
(6, 0)

NUMBER

(6, O)

NUMBER
(6,O)

NUMBER
(6, O)

NUMBER
(6,o)

NUMBER
(4, O)

NUMBER
(6,o)

NUMBER
(6, O)

Valid Code/Value Reference ID
I

P151, Dl10

P152, Dlll

P153, Dl12

P216,D214

P217, D215

P218, D216

P220, D218

P213, D211

P214, D212

P215, D213

P219, D217

10004437L 4-20

Table 4-1. SEL Database Tables and Views (19 of 21)

Table or

View Name

PROJ SUB

(CON'S't:))

SPECIAL_
_CT

SUBSYSTEM

SUB_COM

Column Name

PROJ_NO

Description

ID UNIQUELY IDENTIFY-

ING EACH PROJECT

(FROM TABLE PROJECT)

SUB_PRE SUBSYSTEM PREFIX

SUB_DATE DATE SUBSYSTEM WAS
SUBMITTED

SUBSY_ID SURROGATE KEY AS-
SIGNED TO REPRESENT

UNIQUE PROJNO AND

SUB_PRECOMBINATION

EFF_ID

SP_ACTIVITY

ACT_HR

SUBSYJD

NAME

TABLE CONTAINING
PROGRAMMER ACTIVITY

HOURS FROM CLPRFs

OR PRFs (PART C) FOR
ALL PROJECT, PRO-

GRAMMER, AND WEEK
COMBINATIONS

P IO VALUE FROM
TABLE EFF PROJ OR

PS ID VALLTE FROM

TABLE EFF_SUB

SPECIAL ACTIVITY TO

WHICH PROGRAMMER

IS CHARGING TIME ON

CLPRF OR PRF

ACTUAL HOURS SPENT

IN A PARTICULAR ACTIV-

ITY

TABLE CONTAINING

INFORMATION FOR PAR-

TICULAR SUBSYSTEMS,

AS RECORDEDON SIR

ID UNIQUELY IDENTIFY-
INGEACH SUBSYSTEM

(FROM TABLE

PROJSUB)

SUBSYSTEM DE-
SCRIPTIVE NAME

SPECIFIC FUNCTION

THE SUBSYSTEM PER-

FORMS

TABLE ASSOCIATING

SUBSYSTEM AND COM-

PONENT NAME WITH
SURROGATE KEY THAT

UNIQUELY IDENTIFIES

I THE COMPONENT FOR

USE IN OTHER TABLES

Type

NUMBER

(3,o)

CHAR (5)

DATE

NUMBER

(5, 0)

NUMBER

(lo, o)

CHAR (10)

NUMBER

(lo, 2)

NUMBER

(5, 0)

CHAR (40)

Valid Code/Value

CLMETHOD,

DOCUMEN_

ENHANCE, REUSE,

REWORK

Reference ID

P47, P84,

D50

P50, P2

P35-P38,
P167

FUNCTION CHAR (10) USERINT, DPDC,

REALTIME, GRAPH,

CPEXEC, SYSSERV,
MATHCOMP

P35-P38,

D33-D36,

P167, D209

P48, D51

P49, D52

10004437L 4-21

Table 4-1. SEL Database Tables and Views (20 of 21)

Table or
View Name

SUB COM
(co£rr'D)

VALIDATION

V CLEAN-
ROOM ACT

V CLEAN-
R-C_M
PROJECTS

Column Name

SUBSY ID

COM. NAME

COM_NO

COM_DATE

F NAME

CODE

VALUE

EFFJD

ACTIVITY

ACT_HR

PROJ_NAME

Description

I D UNIQUELY IDENTIFY-
ING EACH SUBSYSTEM
(FROM TABLE
PROJ_SUB)

COMPONENT DE-
SCRIPTIVE NAME

SURROGATE KEY AS-
SIGNED TO REPRESENT
UNIQUE SUBSY ID AND
COM_NAME CO_IBINA-
TION

DATE ON WHICH COM-
PONENT IS ENTERED
INTO DATABASE

TABLE THAT IDENTIFIES
VALID CODES USED IN
VARIOUS FIELDS IN DA-
TABASE AND PROVIDES
DESCRIPTIONS FOR

, THEM

FIELD NAME FOR WHICH
CODE IS VALID

ABBREV IATED CODE

FULL DESCRIPTION OF
CODE

VIEW CONTAINING PER-
SONNEL ACTIVITY
HOURS FROM CLPRFs

FROM TABLE EFF_ACT)
THAT ARE CONVERTED
INTO PRF ACTIVITY
HOURS

SAME AS EFF_ID IN
EFF_ACT

SAME AS ACTIVITY IN
EFF_ACT

SAME AS ACT_HR IN
EFF._ACT

VIEW THAT JOINS THE
PROJECT, PROJ_NOTES,
AND PROJ_MESSAG ES
TABLES

SAME AS PROJ_NAME IN
PROJECT

Type

NUMBER
(5,o)

CHAR (40)

NUMBER
(7, 0)

DATE

CHAR (20)

CHAR (10)

CHAR (75)

NUMBER
(10)

!CHAR (8)

NUMBER

CHAR (e)

Vaild Code/Value

SEE APPENDIX A FOR
A DESCRIPTION OF
ALL CODES AND
VALUES

Re_ren_lD

P51, P84,
D53

P52, D2

10004437L 4-22

Table 4-1. SEL Database Tables and Views (21 of 21)

Table or
View Name

V_PROJ_
COM

V PROJ
SOB_ ACT

V
SUBSYSTEM

INFO

Column Name

PROJ_NAME

Description

VIEW THAT JOINS THE
PROJECT, PROJ SUB,
AND SUB_COM TABLES

SAME AS PROJ_NAME IN
PROJECT

Type

CHAR (8)

SAME AS COM_NO IN
SUB_COM

SUB_PRE SAME AS SUB_PRE IN CHAR (5)
PROJ_SUB

COM_NAME SAME AS COM_NAME IN CHAR (40)
SUB_COM

COM_NO

VIEW THAT JOINS THE
PROJECT, EFF_PROJ,
EFF_SUB, AND EFF_ACT

TABLES

PROJ_NAME SAME AS PROJ_NAME IN
PROJECT

NUMBER
(7, 0)

CHAR (8)

SUB_PRE SAME AS SUB_PRE IN CHAR (5)
EFF_SUB

ACTIVITY SAME AS ACTIVITY IN CHAR (10)
EFF_ACT

ACT_HR SAME AS ACT_HR IN NUMBER
EFF_ACT (10, 2)

VIEW THAT JOINS THE
PROJECT, PROJ_SUB,
AND SUBSYSTEM
TABLES

SUB_PRE SAME AS SUB_PRE IN CHAR (5)
PROJ_SUB

SAME AS NAME IN SUB-
SYSTEM

SAME AS FUNCTION IN
SUBSYSTEM

SAME AS SUB_DATE IN
PROJECT

SAME AS PROJ_NAME IN
PROJECT

NAME

FUNCTION

SUB_DATE

PROJ_NAME

CHAR (40)

CHAR (IO)

DATE

CHAR (S)

Valid Code/Value Reference ID

I0004437L 4-23

100004487L 4-24

i- n"

"I-

..J
U.I
O0

m

I-.

Z

0 0 0 0 0 0

rr rr" rr n" n" rr n" rr n" rr fr n" fr rc

-r (_ (_ -r -r -r -r -r "r -r" -r -r "r -r(D 0 0 0 0 0 0 C) :C3 0 0 0

m

X

E

IZ GO

w Z 0
0 rc w 0
0 w _C (9 k-

I u_ I t I
w ,_ CC n" CC

i"7 CC CC r_

Z _I w w w
7- 7- 7" 7" 7"
0 0 q) 0 0

X
W
a
Z

_j

_-_w
',,"z _0

II

121
, __z

,¢,

1000044,37L 4.- 25

o ;
8
= _=

0 0 0 0

® &

0

(G

.0

a
,.I

iii
1/)

4

..I

..I

,-J -J ::) ._J _J _ J
l,-J ,..I Z -J ._I _J _.I
--") ,::::) :::) :::) _ :::)

z z z :_ z z z z

O,

o o o
_ ,,- f,J0 cb (x) ,,--..,-

n- rr nr rr u.l I.U n" n-

-r -r -r- "r ,_" _ "T" "r"

0 0 0 0 a eh 0 0

zl

o
o,

0 Q 1_ i11

Z 0
Z I

_ __ u_ _ u_
> 0 0 m

"_ _ o o o
I_ _ LI.I I LI.II Z LLI I

O-- 0

_0 0 0 0

X
i,i
r_
Z

z__

11

M

Y

I00004437L 4-26

I000044.37L 4-27

100004437L 4-28

c

0 _ i_ a a
.... !Z _.... _

| _ o o o _

k-
>- 0

'_1
,,

w

X
w
t7

II

x

_z

_1 o3

1000044.37L 4- 29

LU

100004437L 4-30

o

| i_ o o o o

® X

X
ILl
ID

v 7 CI

y

100004437L 4-31

Xu..I

O_ "I-i

x _ z z z_ z z oo, ,,z_ z

1000044,37L 4-32

0

1000044,37L 4-33

_ooooa,_3;,t. 4-34

--1

e4
4

_ _?_
_- z z

Z

o >- :o"'.. ,. = ==: ,o _,, o , g _,, o,
"I-I Z I __11 ml rn I '_I _I OIo _ _' == _-o
I_, 09 I:1. (/)

ILl
£O
<

• 0 -r

__ o _-I

o
I_ _ LLII LUl U'I I

x'_8_.., 8 8 8
__- _- r_ ,n-o. O- 13. _-

X
LU

Z

LU

z__

7
I!

II X

_n_z

100004437L 4-35

1000044.37L 4-36

Z

±

X
LU

100004437L 4-37

I

_ xx xx
0 _ !w uJ W W

Q O O Q___z _z_z

.-I ,.d ...1 ,_.1

._ ; Z Z Z Z Z

a. ,, _

! =-__ooooooooo o o o °

p

= _-_-_- _,,_ _ o' ' "' o
_l °l co z _I o ,,, wi ,,, .w o m,m ca c_ ,_

• O. U') t,O i0 ;U.
I-- I-- __1 i.I I-- i I __1 I-- i I __1

_. __ _ _,,

I_ °_I _I 01 _

1oooo,,,_7t. 4-38

100004437L 4-39

m

_ _ __ ××w W

| i_° o _ o o o o o

Z Z I

100004a,_TL 4-40

100004437L 4-41

_ooooaa,_Tt. 4-42

A

0
e_

0

0

C
_o

_o
,i

0
0

i

o

.C
U

>

C

G

.J
,,I

O O Q 0 O 0

Z 0 Z Z Z Z Z Z Z 0 0 0 0 0 0 0 0

! °'
---, o _o, _ _ o, 00 '

a. u.a. _ O O O 0 0 E 0 _

@

Luo "m
=_ 0 01

o< %

X
LU
E3
Z

,," z _0

x

z_

10000,_7L 4-43

100004437L 4-44

a

o

Z

100004437L 4-_.5

100004437L 4-46

Z

m

= 0

X _ I _ I _1 I I _ _ _ II --

1000044371 4-47

| s o

oooooozozo oooozoo

z
a _ _: i_< _ ,,, ._ ._

sl n ! . I n 1

I--

-- -- <1
ca 0 0 n- :_ nn

r'r" i _ cO os 0 oO

"_ _ <l __ u_I < _._ =_ _
_ LuUJ rr 0 0

I'_ m _ (_1 031 --I 8 ILl r'r'
X ,,0 I -_ _ Ol In'_ Q-I Q- Q">_X < X > >__>> >> I I

X
LU
C_
Z

Y Z 0

ii
ii x

Y

100004437L 4-48

100004437L 4.-49

100004437L 4-50

o
E

IZ

0

Z Z

_z

"" 0

u

100004437L 4-5 1

Z

J

| _ o"1_ 0 0 0

"_ o ooo_ =

111 wl i_ I I 0

o ¢ =o ,,,o __ -_ _o _z_

100004437L 4-52

E

_aaaaa

o

°

_ "

_°, _,_,

100004437L

4.2 RELATIONSHIPS AND CONSTRAINTS AMONG DATABASE
TABLES

The SEL database is composed of two classes of information: the software engineering data

itself, and the information describing those data and defining their organization within the

database. The software engineering data are discussed in Sections 2 and 3. The descriptive

and organizational information stored in various tables and referred to from here on as

system support data are further described in this section.

4.2.1 Relationships Among Tables

In the SEL database, certain tables have relational dependencies among them. These depen-

dencies among tables are important and need to be observed, especially when insert, update,

or delete operations are performed. In a relationship, tables share common values existing in

one or more colurnns of each table. For example, table PROJECT and table PROJ_SUB both

share the same values of project number. When project data are first entered in the database, a

record containing the project name, project type, and project status is created in the PROJ-

ECT table. A unique project number is also assigned and stored in the same record. As the

rest of the project data are collected, they are stored in various tables. The relationship

between these tables and the PROJECT table is defined through the project number column.

(See Figure 1-1 for an example of this relationship between the PROJECT and PROJ_SUB

tables.)

Figures 4-1 through 4-3 depict these relationships and represent them as tree structures.

Figure 4-1 shows the relationships among project related data. Figure 4-2 shows the relation-

ships among DAMSEL support tables. Figure 4-3 shows the relationships involving project-

independent data.

In these figures, each tree is a logical entity of related tables. The name shown within each

block is a table name. The top node in each tree is the parent node, and the others are

dependent (child) nodes. Each dependent node occurrence in the tree must have a record in

its parent. For example, each record existing in table SUBSYSTEM that contains detailed

subsystem information must first have been created in the PROJ_SUB table, since the record

in the PROJ_SUB table contains the vital information---the project number and the subsys-

tem prefix. The name(s) shown at the upper left comer of each block corresponds to the field

name that links these tables together and can be used as a joining column. For example, field

COM_NO can be specified in a WHERE clause for joining tables SUB_COM and COM

PURPOSE. If the common columns in both the parent and child tables have the same name,

only one name is shown. Otherwise, both column names from these tables are shown and the

notation "=" is used to show that they share common values. The left-hand side of the

equality is the column name from the parent table; the right-hand side is the column name

from the child table. For example, to join tables EFF PROJ and EFF_ACT in a SQL SELECT

statement, the joining columns axe P_ID from EFF_PROJ and EFF_ID from EFF_ACT.

The relationships between data elements and tables are described in detail in Reference 2.

However, some of these relationships are worth mentioning here so that the reader can

100044aTL 4-54

m

m
m

,,c m

i

<

Q,,-

_m

m m

,.,.,

m

m

_l, c,

a.

=. m

° il
m

c_

....,_,

_ [-----

I:--

m

.5 -
<

0

i

l

0

0
E

Q.
m

0

m

m

I,,1=

I000,_._7L 4-55

PERMSC Ti l TEOPI

SCRIPT_NO I

I GENERATE-SAT- IDAY

SCRIPT_NO I

I SCRIPT_REPORT

REPORT_TYPE_SELECTION I

I SCRI PT_PROJECTS I

SCRIPT_NO i

I TEMP ACTIVITY]

SCRIPT_NO I SCRIPT_NO I

TEMP_FORMCT J TEMP_MANHRS

I USER_CLASS_ IACCESS

USER_CLASS I USER_CLASS

TABLE
USER_CLASS PRIVILEGE

t_
_3

§

Figure 4-2. Relationships Among DAMSEL Support Tables

understand how the data are logically divided and stored in the database. Observe that the

data elements that compose each of the major data groups presented in Section 2 may reside

in one or more tables, depending on the number of occurrences of a particular data element.

For example, consider the component information within the structure and size data group.

For each component of a project, all component-related data, such as origin, creation date,

type, etc., reside in the COM_SOURCE table, with the exception of the component pur-

poses. These reside in the COM_PURPOSE table because one component can have multiple

purposes. This logical partitioning of data was performed during the database design process

to ensure data integrity and minimize data redundancy.

For the same reasons, staff hours information within the resource usage data group resides in

different tables. Regular activity hours for all projects reside in the EFF_ACT table. The data

elements required for retrieving project-related activity hours, such as project and program-

mer IDs, are stored in the EFF_PROJ table. Additional data elements required for retrieving

10oo,_rt. 4-56

J COMPUTER

CPU_NAME

I PROJ_CPU_STAT I

I CPU_NAME = RES_NAME

PROJ_PROD I

PERSONNEL I

PROG_ID I

I EFF_PROJ

PROG_ID I

I COM_SOURCE

PROG IDPROG ID

MAINT_CHANGE MAINT_PROJ I

0

0
0
0

Figure 4-3. Relationships Involving Project-Independent Data

subsystem-related hours, such as subsystem prefixes, are stored in the EFF_SUB table.

Using this arrangement can minimize data redundancy. As mentioned in Section 2, many

projects do not have subsystem-related activity hours. Thus, depending on the project, the

activity hours may be retrieved from the EFF_ACT table by directly joining it with the EFF_

PROJ table, or via the EFF_SUB table. These relationships are depicted as connected lines in

Figure 4-1.

As for staff hours recorded for projects using cleanroom methodology, they can be retrieved

in one of two ways: as cleanroom PRF activity hours or as regular PRF activity hours. To

retrieve hours under cleanroom PRF activities, join the EFF_ACT table with the EFF_PROJ

table and specify the cleanroom activities. The cleanroom PRF activities are provided in

Appendix A of this document or can be viewed in the database by selecting codes and values

from the view VAL_CL_ACTIVITY. To retrieve hours under the regular PRF activities, join

1000_7L 4-57

•theview V_CLEANROOM_ACTwith tableEFF_PROJ. The mapping between the clean-

room PRF activities and the regular PRF activities is as follows:

Cleanroom PRF Activity/Code

Predesign (CLPREDES)

Create design (CLCREDES)

Verify/Review design (CLVEREVDES)

Write code (CLWRCODE)

Read/Review code (CLRDREVCOD)

Pretest + Independent test

(CLPRETEST + CL/2qDTEST)

Response to SFR (CLRESPSFR)

Acceptance test (CLACC'FF__T)

Other (CLOTHER)

Regular PRF Activity/Code

Predesign (PREDES)

Create design (CREDES)

Read/Review design (RDREVDES)

Write code (WRCODE)

Read/Review code (RDREVCOD)

Integration test (IN'ITEST)

Debugging (DEBUG)

Acceptance test (ACCTEST)

Other (OTHER)

In addition, some of the tables are used as connectors to relate data items that reside in

different tables. For example, consider the CHANGE_COM table within the change data

group. It does not contain any SEL forms data. It only contains two surrogate key fields,

change number and component number. The fields in this table can be used to connect the

change data with the size and structure data (i.e., project and subsystem data items stored in

various tables). Other tables, such as PROJ_SUB and SUB_COM, have a functionality
similar to the CHANGE COM table.

4.2.2 Descriptions of Support Data Tables

The tables described in this section do not contain software engineering data. Rather, they are

used to store data that are internal to the database structure and to store data that are used by

the database operational software.

CLOSE COF
m

This table is used during project closeout for verifying the accuracy and completeness of a

project's COFs. This temporary table is cleared, populated with all the component informa-

tion for the specified project, queried, and cleared again.

CLOSE COM NO ORIGIN

This table is used during project closeout for assigning a final "origin" category to each

component. For most components the final "origin" is the same as the COF origin. However,

any component with a COF origin of"Old and Unchanged" will be assigned a final "origin"

of slightly modified if any CRFs were submitted for that component.

looo_art. 4-58

CLOSE CRF

This table is used during project closeout for verifying the accuracy and completeness of a

project's CRFs. This temporary table is cleared, populated with all the change information

for the specified project, queried, and cleared again.

CLOSE CRF ERR
m m

This table is used during project closeout for verifying the accuracy and completeness of a

project's CRFs with a change type of error correction (ERRCO). This temporary table is

cleared, populated with all the information about changes due to errors for the specific

project, queried, and cleared again.

CRF TEMP CHANGE COM
m m

This table is used by the DAMSEL CRF data entry programs CRF_INSERT, CRF_UP-

DATE, and CRF__QA. It contains the component information associated with the current

CRF form. The information is uniquely identified with a USER_ID, which is actually the

SESSIONID of the current user.

DUMMY

This table is used by DAMSEL data entry programs. It is updated with null values during

data entry to invoke, or trigger, certain sequences of operations to be performed.

GENERATE SAT DAY

This table is used in generating DAMSEL reports. It stores all the Saturday dates for reports

that display weekly information. Once the dates are used by a report, the corresponding

entries in this table axe then deleted.

PC_SEQNO

This table is used by the DAMSEL DSF data entry software. The PROJ_DSF table contains

two columns that are system-generated numeric IDs: D_ID and FORM_NO. The

PC_SEQNO table stores the maximum value that a/ready exists in PROJ_DSF for each of

these fields.

PERM SCRIPT

This table is used in generating DAMSEL reports. It contains header information about the

permanent report scripts. A report script is built during interactive report selection via

DAMSEL. A script is identified by a script number and its owner's ORACLE USER_ID.

REP CODES

This table is used as a look-up table by the DAMSEL menus and screens. It contains all the

possible report types, report titles, report codes, and project selection criteria. Each entry in

the table contains a unique code and a descriptive value. The codes are stored, but the values

are displayed on the screens so that users will understand the contents of a report script.

IO0044ZrL 4-59

SCRIPT_PROJECTS

This table is used in generating DAMSEL reports. It stores the names of the projects that are

entered by a user for multiple-project reports with a REPORT_TYPE_SELECITON (in

table SCRI__REPORT) of "LIST." The entries that are created for temporary scripts are

deleted once the report has been generated; the entries for permanent scripts are stored until

the script owner deletes the script.

SCRIPT REPORT
m

This table is used in generating DAMSEL reports. It contains the def'mitions of both tempo-

rary and perrnanent scripts. The following information is stored for each report in a script: the

report type (e.g., single-project or multiple-project); the report code, which identifies the

report; the project(s) to be included in the report; and the report sequence number, which

identifies the location of the report within the script.

SEQNO

This table is used by DAMSEL data entry programs. It stores the maximum values already

used of all the system-generated IDs in the database. The following columns are system-

generated IDs :

Table Name

EFF_PROJ

EFF_SUB

MA.12qT_PROJ

PERM_SCRIPT

PERSONNEL

PROJECT

PROJ_NOTES

PROJ SUB

SUB_COM

TEMP_SCRIPT

Column Name

P_ID

PS_ID

MAINT_ID

SCRI__NO

PROG_ID

PROJ_NO

SAD

SUBSY_ID

COM_NO

SCRIPT_NO

TABLE PRIVILEGE

This table is used in enrolling DAMSEL users. It defines the access privileges that each user

class may be granted for each table in the database. The valid privileges are select, insert,

update, delete, alter table structure, and create indices.

TEMP ACTIVITY

This table is used for producing the DAMSEL Programmer Activity Hours reports. It

contains all of the possible activities for each week the project has been in a development

looo_arL 4-60

phase. For each activity and week, the total number of hours worked on the project is stored.

To populate this table, the GENERATE_SAT_DAY table must ftrst be populated with the

correct Saturday dates.

TEMP FORMCT
a

This table is used for producing the DAMSEL Project Form Counts reports. It contains the

total number of CRFs, COFs, and SPFs that have been entered since the project has been in a

development phase. For each form type and week, the total number of forms entered is

stored.

TEMP MANHRS

This table is used for producing the DAMSEL Manpower Hours reports. It contains all of the

programmer names for each week the project has been in a development phase. For each

programmer and week, the total number of hours worked is stored. To populate this table, the

GENERATE SAT DAY table must fizz'st be populated with the correct Saturday dates.

TEMP SCRIPT
w

This table is used in generating DAMSEL reports. It contains header information about the

temporary report scripts that are created by each user during an interactive session. The script

owner, his/her process ID, the script status, and other script-related information are stored in

this table. The scripts are identified by script numbers.

TEMP SERVHRS

This table is used for producing the DAMSEL Services Hours reports. It contains all of the

support names for each week the project has been in a development phase. For each support

name and week, the total number of hours worked is stored. To populate this table, the

GENERATE_SAT_DAY table must first be populated with the correct Saturday dates.

T C OM STAT
m

This table is used during project closeout to load the COM_STAT table. Records are loaded

from a flat fide into T_COM_STAT via SQL*Loader. The T_COM_STAT rows and

SQL*Loader output are then verified by SEL personnel before the rows are inserted into

COM_STAT.

USER CLASS

This table is used in enrolling DAMSEL users. It contains all users' ORACLE user IDs and

their user class specifications. Currently, there are five types of user classes: general user,

librarian, quality assurance (QA), SEL database administrator (DBA), and system mainte-

nance user.

USER CLASS ACCESS
m

This table is used in enrolling DAMSEL users. For each user class specification, the types of

functional access permitted are stored in this table. The current valid types of access are

BACKUP, DBA, DELETE, DISTAff'E, FORM, GENERAL, IMPORT, INSERT, QA,

QUERY, REPORT, RESTORE, UPDATE, UPDOWN, AND VIEW.

100044.37L 4-61

VALIDATION

This table stores all the codes and their corresponding detailed descriptions used by various

tables throughout the database. (Appendix A provides a complete list of all the codes and

their descriptions.) Fields that use coded values are listed below.

Table or View Name

CHANGE

CHANGE

CHANGE

CHANGE

CH_ADAFEAT

CH_ERR_ARES

CH_ERR_GEN

CH_ERR_GEN

CH_ERR_GEN

CH_ERR_TOOLS

COM_PURPOSE

COM_SOURCE

COM SOURCE

COM_SOURCE

COM_STAT

DSF_MEASURE

DSF MEASURE

DSF_TARGET

DSF_TARGET

EFF_ACT

EFF_FORM

AIN _ACT_HRS

MAINT_CHANGE

MAINT_CHANGE

MAINF_CHANGE

MA.INT_CHANGE

MAINT_CHANGE

MAINT_CH_OBJECTS

Field Name

CH_TYPE

EFF_COM_CH

EFF_ISO_CH

STATUS

ADA_FEATURE

ERR_ARES

ERR_ACAUSE

Fe,R_CL .SS

ERR_SOURCE

ERR_TOOLS

PURPOSE

COM_TYPE

OR/_TYPE

STATUS

FINAL_OR/GIN_CAT

MEASURE CODE

STATUS_CODE

STATUS_CODE

TARGET_CODE

ACTIVITY

STATUS

MAINT_ACT

CH_CAUSE

CH_CLASS

MAINT_CH TYPE

MAINT_COM_CH

MAINT_ISO_CH

CH_OBJECT

10(X)4&37L 4-62

Table or View Name

MAINT_CLASS_HRS

PROJECT

PROJECT

PROJ_EST_PHASE

PROJ_FORM

PROJ_NOTES

PROJ_SEF

PROJ_SEF_SEC

SPECIAL_ACT

SUBSYSTEM

VAL_CL_ACTIVlTY

VAL_DATA_AVAIL

VAL_QA_STATUS

Field Name

MAINT_CLASS

ACTIVE_STATUS

PROJ_TYPE

PHASE_CO

STATUS

NOTE_TYPE

MEAS_TYPE

SECOND_L

SP_AcrrvrrY

FUNCTION

CL_ACTIVITY

DATA_AVAIL

QA_STATUS

4.2.3 Database Constraints

Various constraints are associated with the database. Constraints are defined to ensure that

the database contains only accurate and consistent data and to protect the data against

unauthorized or accidental alterations. In the SEL database environment, constraints are

identified as access constraints or data integrity constraints. Access constraints are

associated with each user class and are defined as follows:

• General user--Has read access to all data

• Data librarian---Has read, write, and update access to the form-related data

• QA--Has read and update access to certain form related data

• DBA--Has read, write, and update access to all data

System maintenance---Has read access to all data, and read, write, and update ac-

cess to system support data

Data integrity constraints are applied to all insertions to, deletions from, and updates of the

database. Table 4-3 describes these constraints. They axe used not only in SQL queries, but

also in the DAMSEL data entry software. Table 4-3 lists only the database tables that have

constraints. In addition to these constraints, field EFF_ID in table EFF_ACT and table

SPECIAL_ACT contains values from both the P_ID field (in table EFF_PROJ) and the

PS_ID field (in table EFF_SUB). This constraint is accommodated by assigning mutually

exclusive values for P_ID and PS_ID.

1000_._7L 4-63

4.3 MAPPING THE CONCEPTUAL VIEW TO THE LOGICAL
VIEW

This section presents a schema, shown in Table 4-4 (at the end of the section), that maps both

the conceptual and the data collection views of the SEL data described in Sections 2 and 3 to a

unified logical view. The schema is intended to provide general users who would like to

retrieve data using SQL queries with more detailed information on how to get to the desired

data. By using this schema, along with the specific instructions on how to access SQL*Plus

in the SEL database environment (provided in Section 5.3), general users can set up their

own queries to look at the data in their own specific ways.

Table 4-4 lists all the reference IDs used in Sections 2 and 3 that identify the data items in the

database and presents the name of the table and the column where that data item is stored.

This table is ordered by target table and target column.

Required access information, needed to obtain a particular piece of data, is also provided for
each reference ID. Under the columns "TARGET TABLE" and "TARGET COLUMN" is

the table/field from which data are being retrieved. For example, to retrieve the activity hours

for a particular programmer (see Table 4-4, under TARGET TABLE EFF_ACT and TAR-

GET COLUMN ACT_FIR), the project name, the programmer name, and the week ending

date on the PRF must be provided before the appropriate activity hours can be retrieved.

Under the heading "Access Path," there is a graph-like diagram showing the access path that

a SQL query may traverse to retrieve the desired data. The path shown is just one of the many

possible ways to get to the data; other paths can be used to achieve the same result. In each

access path, the names within square brackets [] represent column names. The names with

no brackets around them represent table names. The arrows point to either an intermediate

table or the final target column. The name of each target field that stores coded values is

followed by the keywords "*CODED FIELD." The codes and their descriptions are ex-

plained in Appendix A. In addition, symbol "!=" means not equal to and MAX means the
maximum value of the column that follows.

Using the access paths in Table 4-4, the corresponding SQL queries can be formulated easily.

The following three examples demonstrate how to interpret the access path diagrams. They

also show that some of the access paths may retrieve a single record from a target table and

others may retrieve multiple records. In the first example, the access path will return one

record if one subsystem exists for the specified project; multiple records if more than one

subsystem exists; or null if no subsystems exist. In the second example, the access path will

return a single record that contains the creation date for the component specified by the user.

However, this access path can be modified to retrieve all the creation dates for all compo-

nents in a particular subsystem within a particular project. This can be accomplished by not

specifying the component name in the SQL query. The third example retrieves the same

information as example 2. The difference is that a view is joined to one table to simplify the

query and eliminate the need to join four tables.

looo_;,t_ 4-64

Table 4-3. Constraints on Database Tables (1 of 6)

Table Constraint

CHANGE THE CRF FORM NUMBER (CHANGE_NO) MUST BE UNIQUE WITHIN THIS TABLE.

THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.

THE EFFORT TO ISOLATE CHANGES CODE (EFF ISO CH) MUST EXIST IN THE

VAL_ISO_CH VIEW.

THE EFFORT TO IMPLEMENT CHANGES CODE (EFF_COM_CH) MUST EXIST IN THE

VAL_COM_CH VIEW.

THE TYPE OF CHANGE (CH_TYPE) MUST EXIST IN THE VAL CH TYPE VIEW.

THE FORM TYPE (FORM_TYPE) MUST EQUAL 'CRF'.

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

CHANGE_COM THE CRF FORM NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE.

THE COMPONENT NUMBER (COM_NO) MUST EXIST IN THE SUB_COM TABLE.

CH ADAFEAT THE CRF FORM NUMBER (CHANGE_NO) MUST EXIST INTHE CHANGE TABLE, AND THE
FLAG INDICATING WHETHER THE USE OF ADA CONTRIBUTED TO THE CHANGE
(EFF_ADA) IN THE CHANGE TABLE MUST EQUAL 'Y' FOR THAT CHANGE.

THE ADA FEATURE CODE (ADA_FEATURE) MUST EXIST IN THE VAL_ADA FEATURE
VIEW.

CH_ERR_ARES THE CRF FORM NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE, THE
TYPE OF CHANGE (CH_TYPE) IN THE CHANGE TABLE MUST EQUAL 'ERRCO' FOR THAT
CHANGE, AND EFF_ADA MUST EQUAL 'Y'

THE CODE REPRESENTING THE RESOURCE NEEDED TO CORRECT AN ADA ERROR
(ERR_ARES) MUST EXIST IN THE VAL_ERR ARES VIEW.

CH_ERR GEN iTHE CRF FORM NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE, AND THE
TYPE OF CHANGE (CH_'r'YPE) IN THE CHANGE TABLE MUST EQUAL 'ERRCO' FOR THAT
CHANGE.

THE SOURCE OF ERROR CODE (ERR_SOURCE) MUST EXIST IN THE
VAL_ERR..SOURCE VIEW.

THE CLASS OF ERROR CODE (ERR_CLASS) MUST EXIST IN THE VAL ERR_CLASS
VIEW.

THE CODE FOR THE CAUSE OF AN ERROR INVOLVING ADA (ERR_ACAUSE) MUST EX-
IST IN THE VAL_ERR..ACAUSE VIEW.

CH_ERR_TOOLS THE CRF FORM NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE, THE
TYPE OF CHANGE (CH_TYPE) IN THE CHANGE TABLE MUST EQUAL 'ERRCO' FOR THAT
CHANGE, AND EFF_ADA MUST EQUAL 'Y'.

THE CODE FOR ADA TOOLS AIDING IN THE DETECTION OR CORRECTION OF AN ER-

ROR (ERR_TOOLS) MUST EXIST IN THE VAL_ERR_TOOLS VIEW.

COMPUTER THE COMPUTER NAME (CPU_NAME) MUST BE UNIQUE WITHIN THIS TABLE.

COM_PURPOSE THE COMPONENT NUMBER (COM NO) MUST EXIST IN THE SUB_COM TABLE.

THE COMPONENT PURPOSE (PURPOSE) MUST EXIST IN VAL_COM_PURPOSE VIEW.

COM_SOURCE THE COMPONENT NUMBER (COM_NO) MUST EXIST IN THE SUB_COM TABLE.

THE PROGRAMMER ID (PROG ID) MUST EXIST IN THE PERSONNEL TABLE.

THE COF NUMBER (FORM_NO) MUST BE UNIQUE WITHIN THIS TABLE.

THE FORM TYPE (FORM_TYPE) MUST EQUAL 'COW.

10004437L 4-65

Table 4-3. Constraints on Database Tables (2 of 6)

Table

COM SOURCE
(CON-T'D)

Constraint

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

:THE ORIGIN OF A COMPONENT CODE (ORI_TYPE) MUST EXIST IN THE VAL ORI TYPE
VIEW.

THE COMPONENT TYPE CODE (COM_TYPE) MUST EXIST IN THE VAL COM_TYPE VIEW.

COM._STAT THE COMPONENT NUMBER (COM_NO) MUST EXIST IN THE SUB_COM TABLE.

CRF TEMP THE SUBSYSTEM PREFIX (SUB_PRE) MUST EXIST IN THE PROJ_SUB TABLE.
CHANGE_C_)M

THE COMPONENT NAME (COM_NAME) MUST EXIST IN THE V_PROJ_COM VIEW.

THE COMPONENT NUMBER (COM_NO) MUST EXIST IN THE V_PROJ_COM VIEW.

DSF_MEASURE THE D_ID MUST EXIST IN THE PROJ_DSF TABLE.

THE DSF STATUS CODE (STATUS_CODE) MUST EXIST IN THE VAL_DSF_STATUS VIEW.

THE DSF MEASURE CODE (MEASURE_CODE) MUST EXIST IN THE VAL_DSF_MEASURE
VIEW.

DSF_TARGET THE D_ID MUST EXIST IN THE PROJ_DSF TABLE.

THE DSF STATUS CODE (STATUS_CODE) MUST EXIST IN THE VAL_DSF_STATUS VIEW.

THE DSF TARGET CODE (TARGET_CODE) MUST EXIST IN THE VAL_DSF TARGET VIEW.

EFF_ACT THE EFF_ID MUST EXIST IN THE EFF_SUB (AS PS_ID) OR IN THE EFF_PROJ (AS P_ID)
TABLE.

THE ACTIVITY CODE (ACTIVITY) MUST EXIST IN THE VAt_ACTIVITY VIEW.

EFF_FORM THE P_ID MUST EXIST IN THE EFF_PROJ TABLE.

THE FORM TYPE (FORM_TYPE) MUST BE 'CLPRF, 'PRF', OR 'SPF'.

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

EFF_PROJ THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBMISSION DATE (SUB_DATE) MUST BE A VALID FRIDAY DATE.

THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.

THE P_ID MUST BE UNIQUE WITHIN THIS TABLE.

EFF_SUB THE P_ID MUST EXIST IN THE EFF_PROJ TABLE.

THE SUBSYSTEM PREFIX (SUB_PRE) MUST EXIST IN THE PROJ SUB TABLE.

THE PS_ID MUST BE UNIQUE WITHIN THIS TABLE.

GENERATE_ THE REPORT SCRIPT NUMBER (SCRIPT_NO) MUST EXIST IN THE TEMP_SCRIPT TABLE.
SAT_DAY

THE DATE (SAT_DAY) MUST BE A VALID SATURDAY DATE.

MAINT ACT_ HRS

MAINT_CHANGE

THE MAINT_ID MUST BE IN THE MAINT_PROJ TABLE.

THE MAINTENANCE ACTIVITY CODE (MAINT..ACT) MUST EXIST IN THE VAL_MAINT_ACT
VIEW.

THE COMBINATION OF THE MAINT ID AND MAINT_ACT MUST BE UNIQUE.

THE MAINTENANCE CHANGE NUMBER (MAINT CH NO) MUST BE UNIQUE WITHIN THIS
TABLE.

10004437L 4-66

Table 4-3. Constraints on Database Tables (3 of 6)

Table

MAINT CHANGE
(CONT-D)

MAINT CH
OBJECTS

MAINT_CLASS_HRS

MAINT_PROJ

Constraint

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

THE FORM TYPE (FORM_TYPE) MUST BE 'MCRF'.

THE TYPE OF CHANGE (MAINT_CH TYPE) MUST EXIST IN THE VAL_MAINT CH TYPE
VIEW.

THE CAUSE OF CHANGE (CH_CAUSE) MUST EXIST IN THE VAL CH TYPE VIEW.

THE EFFORT TO ISOLATE CHANGES CODE (MAINT ISO CH) MUST EXIST IN THE

VAL MAINT ISO CH.

THE EFFORT TO IMPLEMENT CHANGES CODE (MAINT_COM_CH) MUST EXIST IN THE
VAL_MAINT_COM_CH VIEW.

THE CHARACTERISTIC OF CHANGE (CH_CLASS) MUST EXIST IN THE VAL CH CLASS
VIEW.

THE MAINTENANCE CHANGE NUMBER (MAINT CH NO) MUST EXIST IN THE
MAINT_CHANGE TABLE.

THE CHANGE OBJECTS (CH_OBJECT) MUST EXIST IN THE VAL CH OBJECT VIEW.

THE MAINT_ID MUST BE IN THE MAINT_PROJ TABLE.

THE CLASS OF MAINTENANCE (MAINT_CLASS) MUST EXIST IN THE VAL_MAINT_CLASS
VIEW.

THE COMBINATION OF THE MAINT_ID AND MAINT_CLASS MUST BE UNIQUE.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBMISSION DATE (SUB_DATE) MUST BE A VALID FRIDAY DATE.

THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.

THE MAINT ID MUST BE UNIQUE WITHIN THIS TABLE,

THE FORM TYPE (FORM_T'YPE) MUST BE 'WMEF.

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

PC_SEQNO THE TABLE NAME (TABLE_NAME) MUST EXIST IN THE DATABASE.

THE FIELD NAME (FIELD_NAME) MUST EXIST IN THAT PARTICULAR TABLE.

PERM_SCRIPT THE ORACLE USER ID (ORA_USER) MUST EXIST IN THE USER_CLASS TABLE.

THE SCRIPT NUMBER (SCRIPT_NO) MUST BE UNIQUE WITHIN THIS TABLE.

THE OUTPUT DESTINATION (OUT_ROUTING) MUST BE 'P' FOR PRINTER OR 'F' FOR
FILE.

THE OUTPUT FILE NAME (OUT_FILE) MUST BE ENTERED IF OUT_ROUTING EQUALS 'F.

PERSONNEL THE ABBREVIATED NAME USED ON FORMS (FORM_NAME) MUST BE UNIQUE WITHIN
THIS TABLE.

THE PROG_ID MUST BE UNIQUE WITHIN THIS TABLE.

PROJECT THE PROJECT NAME (PROJ_NAME) MUST BE UNIQUE WITHIN THIS TABLE.

THE PROJECT NUMBER (PROJ_NO) MUST BE UNIQUE WITHIN THIS TABLE,

1000_;'L 4-6'7

Table 4-3. Constraints on Database Tables (4 of 6)

Table Constraint

PROJ CPU_ STAT THE PROJECT NUMBER (PROJ NO) MUST EXIST 1N THE PROJECT TABLE.

THE COMPUTER NAME (CPU_NAME) MUST EXIST IN THE COMPUTER TABLE.

PROJ_DSF PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBMISSION DATE (SUB_DATE) MUST BE A VALID FRIDAY DATE.

THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

THE FORM TYPE (FORMTYPE) MUST BE 'DSF.

THE D_ID MUST BE UNIQUE WITHIN THIS TABLE.

PROJ_EST THE PROJECT NUMBER (PROJ NO) MUST EXIST IN THE PROJECT TABLE.

PROJ_EST_ PHASE THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE PHASE CODE (PHASE_CO) MUST EXIST 1N THE VAL_PHASE VIEW.

PROJ_FORM

=THE PHASE START DATE (START_DATE) AND END DATE (END_DATE) MUST BE VALID
SATURDAY DATES.

THE PROJECT NUMBER (PROJ_.NO) MUST EXIST IN THE PROJECT TABLE.

THE FORM NUMBER (FORM_NO) MUST BE UNIQUE WITHIN THIS TABLE FOR A PARTIC-
ULAR FORM TYPE.

THE FORM TYPE (FORM_TYPE) MUST BE 'PCSF', 'PEF', 'SEF, 'SPF.

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL STATUS VIEW.

PROJ_GRH THE PROJECT NUMBER (PROJ NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBMISSION DATE (SUB_DATE) MUST BE A VALID FRIDAY DATE.

PROJ_ MESSAGES THE S ID MUST EXIST IN THE PROJ_NOTES TABLE.

PROJ_NOTES THE PROJECT NUMBER (PROJ NO) MUST EXIST IN THE PROJECT TABLE.

THE MESSAGE TYPE (NOTE_TYPE) MUST EXIST IN THE VAL_NOTE_TYPE VIEW.

THE S_ID MUST BE UNIQUE WITHIN THIS TABLE.

PROJ_PROD THE PROJECT NUMBER (PROJ NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBMISSION DATE (SUB_DATE) MIJST BE A VALID FRIDAY DATE,

THE COMPUTER NAME (RES_NAME) MUST EXIST tN THE COMPUTER TABLE.

PROJ'_SEF THE PROJECT NUMBER (PROJ..NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBJECTIVE EVALUATION MEASUREMENT (MEAS TYPE) MUST EXIST IN THE
VAL_MEAS_TYPE VIEW.

PROJ SEF_$EC THE SUBJECTIVE EVALUATION MEASUREMENT (MEAS "r'YPE) AND THE PROJECT
NUMBER (PROJ_NO) MUST EXIST IN THE PROJ._SEF TABLE.

THE SECONDARY-LEVEL INFORMATION MEASUREMENT CODES (SECOND_L) MUST
EXIST IN THE VAL SECOND_L VIEW.

PROJ_STAT THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

PROJ_SUB THE PROJECT NUMBER (PROJ__NO) MUST EXIST IN THE PROJECT :rABLE.

THE SUBSYSTEM PREFIX (SUB_PRE) MUST BE UNIQUE WITHIN THIS TABLE FOR A
PARTICULAR PROJ_NO.

lO004_rL 4-68

Table 4-3. Constraints on Database Tables (5 of 6)

Table Constraint

PROJ SUB THE SUBSYSTEM ID (SUBSY_ID) MUST BE UNIQUE WITHIN THIS TABLE.
(CON'S'D)

SCRIPT_ PROJECTS THE SCRIPT NUMBER (SCRIPT_NO) AND THE REPORT SEQUENCE NUMBER (RE-
PORT_SEQ) MUST EXIST IN THE SCRIPT_REPORT TABLE.

THE PROJECT NAME (PROJ_NAME) MUST EXIST IN THE PROJECT TABLE.

SCRIPT_ REPORT THE SCRIPT NUMBER (SCRIPT_NO) MUST EXIST IN EITHER THE PERM_SCRIPT OR
THE TEMP_SCRIPT TABLE.

THE REPORT CODE {REPORT_CODE) MUST EXIST IN THE VAL_REPORT_CODE TABLE.

THE REPORT TYPE CODE (REPORT_TYPE) MUST BE 'S' FOR SINGLE PROJECT RE-
PORT. 'M' FOR MULTIPLE-PROJECT REPORT, OR 'O' FOR MISCELLANEOUS REPORT.

IF REPORT TYPE EQUALS 'S', THE VALID VALUES FOR REPORT_TYPE_SELECTION
ARE VALID-15ROJECT NAMES (PROJ_NAME) IN THE PROJECT TABLE. IF REPORT_TYPE
EQUALS 'M', THE "VALIDVALUES FOR REPORT_TYPE_SELECTION ARE 'ALL', 'ACT_DEV',
'ACT MAINT', 'INACTIVE', AND I_IST'. IF REPORT_TYPE EQUALS 'O', THE REPORT TYPE
SELE-CTION IS NULL.

SEQNO THE TABLE NAME (TABLE_NAME) MUST EXIST IN THE DATABASE.

THE FIELD NAME (FIELD_NAME) MUST EXIST IN THAT PRTICULAR TABLE.

SPECIAL_ACT THE EFF ID MUST EXIST IN EITHER THE EFF_PROJ (AS P_ID) OR THE EFF_SUB (AS
i PS_ID) T_kBLE.

SUBSYSTEM

SUB_COM

TABLE_ PRIVILEGE

TEMP_ACTIVITY

TEMP_FORMCT

TEMP_MANHRS

THE SPECIAL ACTIVITY CODE (SP_ACTIVITY) MUST EXIST IN THE VAL SP ACTIVITY
VIEW.

THE SUBSYSTEM ID (SUBSY_ID) MUST EXIST IN THE PROJ_SUB TABLE.

THE SUBSYSTEM FUNCTION (FUNCTION) MUST EXIST IN THE VAL_S_FUNCTION VIEW.

THE SUBSYSTEM IO (SUBSY_ID) MUST EXIST IN THE PROJ_SUB TABLE.

THE COMPONENT NAME (COM_NAME) MUST BE UNIQUE WITHIN THIS TABLE FOR A
PARTICULAR SUBSYSTEM.

THE COMPONENT NUMBER (COM_NO) MUST BE UNIQUE wrrHIN THIS TABLE.

THE TABLE NAME (TABLE_NAME) MUST EXIST IN THE DATABASE.

THE USER CLASS (USER CLASS) MUST EXIST IN THE USER_CLASS TABLE.

THE SCRIPT NUMBER (SCRIPT_NO) AND SATURDAY DATE (SAT_DAY) MUST EXIST IN
THE GENERATE_SAT_DAY TABLE.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE SCRIPT NUMBER (SCRIPT_NO) MUST EXIST IN THE TEMP_SCRIPT TABLE.

THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE SCRIPT NUMBER (SCRIPT_NO) AND SATURDAY DATE (SAT_DAY) MUST EXIST IN
THE GENERATE_SAT_DAY TABLE.

THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE P_ID MUST EXIST IN THE EFF_PROJ TABLE.

10004437L 4-69

Table 4-3. Constraints on Database Tables (6 of 6)

Table Constraint

TEMP SCRIPT THE SCRIPT NUMBER (SCRIPT_NO) MUST BE UNIQUE WITHIN THIS TABLE.

THE ORACLE USER ID (ORA_USER) MUST EXIST IN THE USER_CLASS TABLE,

THE OUTPUT DESTINATION (OUT_ROUTING) MUST BE 'P' FOR PRINTER OR 'F' FOR
FILE.

THE OUTPUT FILE NAME (OUT_FILE) MUST BE ENTERED IF OUT_ROUTING EQUALS 'F'.

TEMP_SERVHRS THE SCRIPTNO AND SAT_DAY MUST EXIST IN THE GENERATE_SAT_DAY TABLE.

THE PROGRAMMER ID (PROG ID) MUST EXIST IN THE PERSONNEL TABLE.

THE PROJECT NUMBER (PROd_NO) MUST EXIST IN THE PROJECT TABLE

THE P_ID MUST EXIST IN THE EFF_PROJ TABLE.

USER_CLASS THE ORACLE USER ID (ORA_USER_ID) MUST BE A VALID ORACLE USER ACCOUNT
NAME.

THE CLASS OF USER (USER_CLASS) MUST EXIST IN THE USER_CLASS_ACCESS
TABLE.

Example 1

This example retrieves all the subsystem prefixes of a particular project. This access path is

shown in Table 4-4 under target table PROJ_SUB and target column SUB_PRE and is as
follows:

[PROJ_NAME] PROJECT

PROJ_SUB

[SUB_PRE]

[PROJ_NO]

The first line in the access path shows that PROJ_NAME is the field whose value must be

specified by the user to identify which project's data are to be retrieved. The down arrow

between PROJECT and PROJ SUB means that the two tables are joined together by a

common field, which is listed next to the arrow (PROJ_NO, in this case). The down arrow

under PROJ SUB points to the target column SUB_PRE of table PROJ SUB, where "all the

subsystem prefixes are stored.

SQL statement

SQL>
2

3

SELECT SUB_PRE FROM PROJ_SUB, PROJECT

WHERE PROJ_SUB. PROJ_NO = PROJECT. PROJ_NO

,aND PROJ NAME = <user-supplied project name>;

_ooo4.¢zrt. 4-70

Example 2

This example retrieves the date on which a component was entered into the project's con-

trolled library. The access path for this example is shown in Table 4-4 under target table

COM_SOURCE and target column CREATE_DATE and is as follows:

[PROJ_NAME] _ PROJECT

[SUB_PRE]

[COM_NAME]

PROJ_SUB

SUB_COM

COM_SOURCE

[CREATE_DATE]

[PROJ_NO]

[SUBSY_ID]

[COM_NO]

PROJ_NAME, SUB_PRE, and COM_NAME are the fields whose values must be provided

by the user. Tables PROJECT and PROJ_SLTB are joined on PROJ_NO; PROJ_SUB and

SUB_COM axe joined on SUBSY_ID; and SUB_COM and COM_SOURCE are joined on

COM_NO. The result is field CREATE_DATE of the COM_SOURCE table.

SQL statement

SQL> SELECT

2 FROM

3 WHERE

4 AND

5 AND

6 AND

7 AND

8 AND

CREATE_DATE

COM_SOURCE, SUB_COM, PROJ_SLrB, PROJECT

COM_SOURCE. COM_NO = SUB_COM. COM_NO

SUB_COM.SUBSYS_ID = PROJ_SUB.SUBSY_ID

PROJ_SUB. PROJ_NO = PROJECT. PROJ_NO

PROJ_NAME = <user-supplied project name>

SUB_PRE = <user-supplied subsystem pret-tx>

COM_NAME = <user-supplied component name>;

10004437L 4-7 1

Example 3

This example uses a predef'med view as an alternative to the method presented in example 2

to get the same data (i.e., the date on which a component was entered into the controlled

library). The access path for using the view V_PROJ_COM to retrieve this data item is as
follows:

[-PROJ_NAME]

COM_NAME

V_PROJ_COM _

[COM_NO]

COM_SOURCE

,L
[CREATE_DATE]

[SUB_PRE]

In this example, view V_PROJ_COM replaces tables PROJECT, PROJ_SUB, and

SUB COM used in the previous example. The view already joins these tables. The result is
field CREATE_DATE of the COM_SOURCE table.

SQL statement

SQL> SELECT

2 FROM

3 WHERE

4 AND

5 AND

6 AND

CREATE_DATE

V_PROJ_COM, COM_SOURCE

V_PROJ_COM.COM NO = COM_SOURCE.COM_NO

COM_NAME = <user-supplied component name>

SUB PRE = <user-supplied subsystem prefLx>

PROJ NAME = <user-supplied project name>;

The SQL statements in these examples are included for completeness. For a more detailed

introduction to formulating SQL queries, see Section 5.3.

_0004_37L 4-72

Table 4-4. SEL Database Access Paths (1 of 28)

Ref. ID

P63, D82

P76, D67

P73, D64

P72, D63

P69, D76

P67, D66

P66, D65

Target
Table

CHANGE

Target
Column

CHANGE_NO

Access

Information

PROJECT NAME

CHANGE

CHANGE

CHANGE

CHANGE

CHANGE

CHANGE

CH TYPE

DATA_COMP

DATE_DETER

EFF_ADA

EFF_COM_CH

EFF ISO CH

CHANGE NUM-

BER; SEE P63
FOR THE AC-

CESS PATH THAT
FINDS A PARTIC-

ULAR CHANGE

NUMBER

CHANGE NUM-

BER; SEE P63
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-

ULAR CHANGE

NUMBER

CHANGE NUM- '

BEN; SEE P63

FOR THE AC-

CESS PATH THAT
FINDS A PARTIC-

ULAR CHANGE

NUMBER

CHANGE NUM-

BER; SEE P63
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-
ULAR CHANGE

NUMBER

CHANGE NUM-

BER; SEE P63
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-

ULAR CHANGE

NUMBER

CHANGE NUM-

BER; SEE P63
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-

ULAR CHANGE

NUMBER

Access Path

[PROJ_NAME] --'-> V_PROJ_COM

l_ [COM_NO]

CHANGE_COM

Jr [CHANGE_NO]

CHANGE --.> [CHANGE_NO]

[CHANGE_NO] _ CHANGE

'I

[CH_TYPEI*CODED F1ELD

[CHANGE_NO] --..> CHANGE

[DATECOMP]

[CHANGE_NO] CHANGE

[DATE_DETER]

[CHANGE_NO] -.-> CHANGE

[EFF_ADAI

[CHANGE_NO] _ CHANGE

[EFF_COM_CH]*CODED FIELD]

[CHANGE_NO] --_ CHANGE

[EFF ISO_CHI*CODED FIELD]

10004437L 4-73

Table 4-4. SEL Database Access Paths (2 of 28)

Ref. ID

P68, D68

P70, D69

P71, D70

P74

P75

P65, D2

P85, D77

Target
Table

CHANGE

i CHANGE

CHANGE

CHANGE

CHANGE

CHANGE

CH
ADAFEAT

Target
Column

EFF ONE

EFF_OTHER

EFF_PARPA

NUM COM
CH

NUM_COM_
EX

SUBDATE

ADA
FEA'rURE

Access

InformaUon

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

Access Path

[CHANGE..NO]--> CHANGE

JEFF_ONE]

[CHANGE_NO]--> CHANGE

[EFF_OTHER]

[CHANGE_NO]--> CHANGE

[EFF_PARPA]

[CHANGE_NO]--> CHANGE

[NUM COM_CH]

[CHANGENO]--> CHANGE

[NUM COM_EX]

[CHANGENO] .-]b CHANGE

J,
[SUB_DATE]

[CHANGENO]--> CH_ADAFEAT

[ADA_FEATUR E]*CODED FIELD

1000_7L 474

Table 4-4. SEL Database Access Paths (3 of 28)

Ref. ID

P86, D80

P83, D79

P82, D78

P78, D72

P79, D74

PS0, D73

_P77, D71

Target
Table

CH_ERR_
ARES

CH ERR_
GE_

CH ERR_
GEN

CH_ERR_
GEN

CH_ERR_
GEN

CH_ERR_
GEN

CH ERR_
GEN

Target
Column

ERRARES

ERR_ACAUSE

ERR_ADOC

ERR_CLASS

ERR._COMIS

ERR_OMIS

ERR
SOURCE

Acc888

Information

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

CHANGE NUM-
BER: SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

Access Path

I [CHANGE_NO]--]I_ CH_ERR_ARES

[ERR_ARESI*CODED FIELD

[CHANGENO] -1_ CH_ERR_GEN

[ERR_ACAUSEJ*CODED FIELD

[CHANGE_NO]--> CH_ERR_GEN

,L
[ERR .ADOCI

[CHANGE_NO] "-_ CH_ERR_GEN

[ERR_CLASSI'CODED FIELD

[CHANGE_NO]--) _ CH_ERR_GEN

[ERR_COMIS]

[CHANGE_NO]--> CH_ERR_GEN

[ERR_OMIS]

[CHANGE_NO]--)" CH_ERR_GEN

[ERR_SOURCE]*CODED FIELD

I0004437L 4-75

Table 4-4. SEL Database Access Paths (4 of 28)

Ref. ID

P81, D75

P87, D81

M4

Target
TabkD

CH ERR_
GEN

CH ERR
TOOLS -

COMPU-
TER

Target
Column

ERR_TYPO

ERR_TOOLS

CPU_NAME

Access
InformaUon

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT

, FINDS A PARTIC-
ULAR CHANGE
NUMBER

NONE

M5 COMPU- C_FULL NONE
TEN NAME

P59, D58 COM PURPOSE
PURP'OSE

COM
SOURCE

P58, D57 COM_TYPE

PROJECT NAME,
SUBSYSTEM
PREFIX, AND
COMPONENT
NAME

PROJECT NAME,
ISUBSYSTEM
PREFIX, AND
COMPONENT
NAME

Access Path

[CHANGE_NO]---> CH_ERR GEN

[ERR_TYPO]

[CHANGE_NO]--]I_ CH_ERR_TOOLS

[ERR_TOOLS]*CODED FIELD

COMPUTER --> [CPU_NAME]

CPU_NAME_I_ COMPUTER.--> [CFULL_NAME]

PROd_NAME] --> PROJECT

r [PROd_NO]

[SUB_PRE] --> PROd SUB

[SUBSY_ID]

[COM_NAME] --> SUB_COM

[COM_NO]

COM_PURPOSE

[PURPOSE]*CODED FIELD

[PROd_NAME] --_ PROJECT

[PROd_NO]

[SUB_PRE] ---> PROd SUB

[SUBSY_ID]

COM NAME] --_ SUB__COM

_ [COM_NO]

COM_SOURCE

[COM_TYPE]*CODED FIELD

10004,mTL 4-76

Table 4-4. SEL Database Access Paths (5 of 28)

Ref. ID

P53, D54

P57, D55

D59

Target
Table

COM
SOURCE

Target
Column

CREATE_
DATE

Access

Information

PROJECT NAME,
SUBSYSTEM

PREFIX, AND

COMPONENT

NAME

COM
SOURCE

COM

SOURCE

DIFFICULTY

FORM_NO

PROJECT NAME,

SUBSYSTEM

PREFIX, AND

COMPONENT
NAME

PROJECT NAME,
SUBSYSTEM

PREFIX, AND

COMPONENT

NAME

Access Path

[PROJ_NAME] _ PROJECT

r [PROJ_NO]

[SUB_PRE] _ PROJ SUB

t [SUBSY_ID]

[COM_NAME] _ SUB_COM

._ [COM_NO]

COM SOURCE

IC REATE._DATE]

[PROJ_NAME] ---> PROJECT

[PROJ_NO]

[SUB PRE] _ PROJ SUB

[SUBSY_ID]

[COM_NAME] _ SUB_COM

r [COM_NO]

COM_SOURCE

[DIFFICULTY]

[PROJ_NAME] '--> PROJECT

r [PROJ NO]

[SUB_PRE] "-'> PROJ SUB

[SUBSY_ID]

[COM_NAME] ---> SUB_COM

l_ [COM_NO]

COM_SOURCE

[FORM_NO]

10004_K37L 4-77

Table 4-4. SEL Database Access Paths (6 of 28)

Ref. ID

P56, D56 COM
SOURCE

P54, D2

P156

Target
Table

Target
Column

ORI TYPE

ACCESS

Information

PROJECT NAME,

P154

COM

SOUI_CE

COM
STAr-

i COM

STAr

SUB_DATE

C_C_LINE

C_EX E_S

SUBSYSTEM

PREFIX, AND
COMPONENT

NAME

PROJECT NAME,
SUBSYSTEM

PREFIX, AND

COMPONENT
NAME

PROJECT NAME

AND COM-

PONENT NAME

PROJECT NAME

AND COM-

PONENT NAME

Access Path

[PROJ_NAME] --_ PROJECT

[PROJ_NO]

[SUB_PRE] "--> PROJ SUB

,_ [SUBSY_ID]

[COM_NAME] --> SUB COM

Jr [COM_NO]

COM_SOURCE

,l
[ORI_TYPEI'CODED FIELD

[PROJ_NAME] _ PROJECT

_ [PROJ_NO]

[SUB PRE] _ PROJ SUB

[SUBSY_ID]

[COM_NAME] --> SUB_COM

_ [COM_NO]

COM_SOURCE

[SUB_DATE]

[PROJ_NAME]--]I_ V_PROJ_COM<F- {COM_NAME]

_ {COM_NO]

COM STAT

C_C_LINE

[PROJ_NAME}-_ V_PROJ_COM,(-- [COM_NAME]

{COM_NO]

COM STAT

[C_EXE_S}

10004437L 4-78

Table 4-4. SEL Database Access Paths (7 of 28)

Ref, ID

P155

Target

Table

Target
Column

P221

P222

COM_
STAT

COM_

Access

Informatlon

PROJECT NAME

STAr

AND COM-

PONENT NAME

P196, 0181,

P198, D183,
P200-P202.

D185-0186,

P204-P206,

D189-0190,

P208, D193,

P210, D195,
P?_12, D197

COM
STAT-

DSF
MEASURE

C_LINE

C STMT

FINAL

ORIGIhI_CAT

MEASURE_
VALUE

PROJECT NAME

AND COM-

PONENT NAME

PROJECT NAME

AND COM-

PONENT NAME

PROJECT NAME

AND MEASURE-

MENT CODE

Access Path

[PROJ_NAML=]--_ V_PROJ_COM'I}- [COM_NAME]

_L [COM_NO]

COM_STAT

,L
[C_UNN

PROJ_NAME]--_ V_PROJ_COM'<-- [COM_NAME]

r {COM_NO]

COM STAT

[C_STMT]

[P ROJ_NAM E]--> V_P ROJ_CO M'_- [COM_NAME]

[COM_NO]

COM STAT

{FINAL_ORIGIN_CAT]

[PROJ_NAME] -_ PROJECT

_L [P ROJ_NO]

PROd DSF

[DjD l

[MEASURE_CODE] --> DSF_MEASURE

[MEASURE_VALUE]

WHERE

MEASURE_CODE FOR P196, D181 = MODDESIGN

MEASURE_CODE FOR P198, D183 = MODCODE

MEASURE_CODE FOR P200, D185-= SYSTSTONE

MEASURE_CODE FOR P201, D186 = SYSTSTPASS

MEASURE_CODE FOR P202 = SYSTSTRUN

MEASURE_CODE FOR P204, D189 = ACCTSTONE

MEASURE_CODE FOR P205, D190 = ACCTSTPASS

MEASURE_CODE FOR P206 = ACCTSTRUN

MEASURE_CODE FOR P208, D193 = DISCRES

MEASURE_CODE FOR P'210, D195 = SPECMODIMP

MEASURE_CODE FOR P212. Dlg = QUESTANS

10004437L 4-79

Table 4-4. SEL Database Access Paths (8 of 28)

Ref. ID

P195, D180

P197 D182
I
i P199, D184,

P203, D188,

P207, D192,

P209, D194,

1:>211, D196

P25-P34,

D23-D32,

i P15-/-P166,

D199-D208

Target
Tabk3

DSF

TARGET

Target
Column

TARGET_
VALUE

Access

InformaUon

PROJECT NAME

AND

TARGET_CODE

[PROJ_NAME]

Access Path

---]b PROJECT

¢ [PROJ NO]

PROJ DSF

[D_ID]

EFF ACT i ACT_HR

(FROM PRF

PROJECT NAME,
PROGRAMMER

[TARGET_CODE] --> DSF_TARGET

[TARGET_VALUE]

WHERE

TARGET_CODE FOR P195, D180 = TOTDESIGN

TARGET_CODE FOR P197, D182 = TOTCODE

TARGET_CODE FOR P199, D184 = TOTSYSTST

TARGETCODE FOR P203, D188 = TOTACCTST

TARGET CODE FOR P207, D192 = TOTDISCREP

:TARGET_-CODE FOR P209, D194 = SPECMODREC

TARGET_CODE FOR P211, D196 = QUESTSUB

[PROJ_NAME] _ PROJECT

OR CLPRF)
NAME, WEEK

ENDING DATE,

SUBSYSTEM

PREFIX (OPTION-
AL), AND ACTIV-

ITY

i

[FORM_NAME] ' [PROJ NO]

4, ! -
PERSONNEL

,_ ,,

{PROG_ID] _ EFF_PROJ<E-- [SUB_DATE]

/
[P_ID] / EFF_SUB_--- [SUB PRE]

¢ /

[ACTIVITY]-), EFF ACT_ -_1 [PS tD]

[ACT_HR]

WHERE

ACTIVITY FOR

ACTIVITY FOR

ACTIVITY FOR

ACTIVITY FOR

ACTIVITY FOR

ACTIVITY FOR

ACTIVITY FOR

ACTIVITY FOR

ACTIVITY FOR

ACTIVITY FOR

P25, D2 = PREDES

P26, D24 = CREDES

P27, D25 = RDREVDES

P28, D26 = WRCODE

P29, D27 = RDREVCOD

P30, D28 = TSTCODUN

P31, DL:xJ = DEBUG

P32, [:)30 = INTTEST

P33, D31 = ACCTEST

P34, D32 = OTHER

(FOR PRF)

1000_TL 4-80

Table 4-4. SEL Database Access Paths (9 of 28)

Ref. ID

P25-P34,
D23-D32,
P157-P166,
D199- D208
(Cont'd)

P157-P166,
D199-D208

Target
Table

EFF_ACT

Target
Column

ACT HR

(FROM PRF
OR CLPRF)

Access
Information

PROJECT NAME,
PROGRAMMER
NAME, WEEK
ENDING DATE,
SUBSYSTEM
PREFIX (OPTION-
AL), AND ACTIV-
ITY

ACTIVITY FOR
ACTIVITY FOR
ACTIVITY FOR
ACTIVITY FOR
ACTIVITY FOR
ACTIVITY FOR
ACTIVITY FOR
ACTIVITY FOR
ACTIVITY FOR
ACTIVITY FOR

Access

P157, D199
P158, D200
P159, D201
P160, D202
P161, D203
P162, D204
P163, D205
P164, D206
P165, D20
P168, D208

Path

(FOR CLPRF)
= CLPREDES
= CLPRETEST
= CLCREDES
= CLVEREVDES
= CLWRCODE
= CLRDREVCOD
= CLINDTEST
= CLRESPSFR
= CLACCTEST
= CLOTHER

EFF_ACT ACT HR

(FROM
CLPRF,
MAPPED TO
PRF ACTIVI-
TIES)

CLEANROOM
PROJECT NAME,
PROGRAMMER
NAME, AND
WEEK ENDING
DATE

"CLEAN ROOM
ACTIVITIES ARE
CONVERTED TO
STANDARD ACTI-
VITIES BY USING
V CLEANROOM
AC,T

PERSONNEL

[PROG_ID]

[GLEANROOM PROJ_NAME]'--'_ PROJECT

[FORM_NAME] / [PROJ_NO]

EFF_PROJ<-- [SUB_DATE]

[P_ID]

[ACTIVITY] --), V_CLEANROOM_ACT

$
[ACT_HRI

WHERE
ACTIVITY FOR P25, D23 = PREDES
ACTIVITY FOR P26,
ACTIVITY FOR P27,
ACTIVITY FOR P28,
ACTIVITY FOR P29,
ACTIVITY FOR P31,
ACTIVITY FOR 1>32,
ACTIVITY FOR P33,
ACTIVITY FOR P34,

D24 = CREDES
D25 = RDREVCOD
D26 = WRCODE
D27 = RDREVDES
D29 = DEBUG
D30 = INTTEST
D31 = ACCTEST
D32 = OTHER

10004437L 4-81

Table 4-4. SEL Database Access Paths (10 of 28)

Ref. ID

P39, P40,
P42, P43,
1344, D45,
D47, D48

D37, D49,
D210

P23, D22

Target
Table

EFF_ACT

EFF
FORM

EFF
PROJ

Target
Column

ACT_HR
(FROMSPF)

FORM_NO

SUB_DATE

Access
InformaUon Access Path

PROGRAMMER
NAME, AND
WEEK ENDING
DATE

[FORM_NAME] [PROJ_NO]

$
PERSONNEL

,_ ,,

[PROG_ID] --_ EFF_PROJ _ [SUB_DATE]

f [P_ID] = [EFF_ID]

[ACTIVITY] --> EFF_ACT

$
[ACT._HR]

PROJECT NAME, ![PROJ_NAME] _ PROJECT

WHERE

FORM_NAME FOR P39, D44 = TECHPUBS
FORM_NAME FOR P40, D45 = SECRTARY
FORMNAME FOR P42, D47 = PROGMGMT
FORM_NAME FOR P43, D48 = OTHSUPP
AND
ACTIVITY FOR P39, D44,

P40, D45, _ = SUPPORT
P42, D47, I
P43, D48 i

[PROJ_NAME] _ PROJECT

[PROJ_NO]

EFF_.PROJ

r [P_ID]

FORM_TYPE] ---..-> EFF_FORM

[FORM_NO]

WHERE

FORM_TYPE FOR D37 = PRF
FORMTYPE FOR D49 = SPF
FORMTYPE FOR D210 = CLPRF

PROJECT

_ [PROJ_NO]

EFF_PROJ

[SUB_DATE]

PROJECT NAME
AND FORM TYPE

PROJECT NAME [PROJ_NAME]

I000._37L 4-82

Table 4-4. SEL Database Access Paths (11 of 28)

Ref. ID

P172-P177,

D155--D160

Target
Table

MAINT

ACT_H-RS

Target

Column

ACT_HR

Access

Information

PROJECT NAME,

PROGRAMMER

NAME, WEEK

ENDING DATE,

AND MAINTE-
NANCEACTIVITY

[PROJ_NAME]

Access Path

--)pPROJECT

[PROJ_NO]

[FORM_NAME]

PERSONNEL !

[PROG_ID] _ MAINT_PROJ _'--[SUB_DATE]

,_ [MAINT_NO]

P180, D164

P184, D168

P188, D172

MAINT

CHAN(3E

CH CAUSE

MAINT CH_CLASS
CHANGE

MAINT COMP_ADD
_CHANGE

MAINTENANCE
CHANGE NUM-

BER; SEE D178
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-

ULAR MAINTE-

NANCE CHANGE

NUMBER

MAINTENANCE

CHANGE NUM-

BER; SEE D178
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-
ULAR MAINTE-

NANCE CHANGE

NUMBER

MAINTENANCE
CHANGE NUM-

BER; SEE D178
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-

U!_AR MAINTE-

NANCE CHANGE

NUMBER

[MAINT_ACT] --_ MAINT_ACT_HRS

[ACT_HR]

WHERE

MAINT...ACT FOR P172, D155 = ISOLATION

MAINT_ACT FOR P173, D156 = REDESIGN

MAINT_.ACT FOR P174, D157 = iMPLEMENT

MAINT_ACT FOR P175, D158 = UNSYSTEST

MAINT ACT FOR D176, D159 = ACCBENTEST

MAINT_ACT FOR Pt'7"7, D160 = OTHER

[MAINT CH NO] MAINT CHANGE

[CH CAUSE]'CODED FIELD

[MAINT CH NO] MAINT CHANGE

[CH_CLASSI'CODED FIELD

[MAINT CH NO] MAINT CHANGE

,L
[COMP_ADD]

10004437L 4-83

Table 4-4. SEL Database Access Paths (12 of 28)

Ref. ID

P191, D175

Target
Table

Target
Column

Access
Information

MAINTENANCEMAINT
CHAN(3E

COMP_ADD_
NEW CHANGE NUM-

BER; SEE D178
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-

ULAR MAINTE-

NANCE CHANGE
NUMBER

[MAINT CH NO]

Access Path

-_ MAINT_CHANGE

[COMP_ADD_N_I

P193, D177

P192, D176

P189, D173

P190, D174

MAINT

CHANGE

MAINT

CHANGE

MAINT
CHANGE

MAINT

CHANGE

COMP ADD
REMO5 -

COMP_ADD_
REUSE

COMP CH

COMP_DEL

P185, D169 MAINT EST_LOC_
CHANGE ADD

MAINTENANCE

CHANGE NUM-

BER; SEE D178
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-

ULAR MAINTE-

NANCE CHANGE
NUMBER

MAINTENANCE
CHANGE NUM-

BER; SEE D178
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-

ULAR MAINTE-

NANCE CHANGE
NUMBER

MAINTENANCE

CHANGE NUM-

BER; SEE D178

FOR THE AC-

CESS PATH THAT
FINDS A PARTIC-

ULAR MAINTE-
NANCE CHANGE

NUMBER

MAINTENANCE

CHANGE NUM-

BER; SEE D178
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-

ULAR MAINTE-

NANCE CHANGE
NUMBER

MAINTENANCE

CHANGE NUM-

BER; SEE D178

FOR THE AC-

CESS PATH THAT
FINDS A PARTIC-

ULAR MAINTE-

NANCE CHANGE

NUMBER

[MAINT CH NO]

[MAINT CH NO]

[MAINT CH NO]

[MAINT CH NO]

[MAINT CH NO]

_MAINT_CHANGE

[COMP_ADD_REMOD]

•"'--> MAINT_CHANGE

J,
[COMP ADD_REUSE]

---_ MAINT_CHANGE

[COMP_CH]

MAINT_CHANGE

[COMP_DEL]

-----) MAINT_CHANGE

[EST_LOC ADO]

I0004437L 4-84

Table 4-4. SEL Database Access Paths (13 of 28)

Ref. ID

P186, D170

P187, D171

D178

P179, D163

P182, D166

Target
Table

MAINT
CHANGE

; MAINT
CHANGE

MAINT
CHANGE

MAINT
CHANGE

MAINT

CHANGE

Target
Column

EST_LOC_
CH

EST_LOC_
DEL

MAINT_CH_
NO

Access

Information

MAINTENANCE

CHANGE NUM-

BER; SEE D178
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-

ULAR MAINTE-

NANCE CHANGE

NUMBER

MAINTENANCE

CHANGE NUM-

BER; SEE D178
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-

ULAR MAINTE-

NANCE CHANGE

NUMBER

PROJECT NAME,

PROGRAMMER

NAME, AND SUB-

MISSION DATE

MAINTENANCE

CHANGE NUM-

BER; SEE D178
FOR THE AC-

CESS PATH THAT
FINDS A PARTIC-

ULAR MAINTE-
NANCE CHANGE

NUMBER

[MAINT CH NO]

Access Path

MAINT._CHANG E

[EST_LOC_CH]

{MAINT CH NO] _ MAINT_CHANGE

[EST_LOC_DELI

[PROJ_NAME] _ PROJECT

[FORM_NAME] [PROJ_NO]

PERSONNEL

[PROG_ID] ------> MAINT_CHANGE

[MAINT CH NO]

[MAINT CH NO] _ MAINT_CHANGE

[MAINT CH "T'YPE]*CODED FIELD

MAINT CH

TYPE

MAINT_COM
CH

MAINTENANCE

CHANGE NUM-

BER; SEE D178
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-

ULAR MAINTE-

NANCE CHANGE

NUMBER

[MAINT CH NO]---_ MAINT_CHANGE

[MAINT_COM_CH]*CODED FIELD

10004437L 4-85

• Table 4-4. SEL Database Access Paths (14 of 28)

Ref. ID

P181, D165

P183, D167

P168--P171,

D151-D154

P23, D22

Target
Table

MAINT

CHANP_E

MAINT_
CH

OBJ ECTS

MAINT

CLASS_

HRS

MAINT_
P ROJ

Target
Column

MAINT ISO

CH

CH_OBJECT

Access
Informatlon

MAINTENANCE

CHANGE NUM-

BER: SEE D178
FOR THE AC-

CESS PATH THAT

FINDS A PARTIC-

ULAR MAINTE-

NANCE CHANGE

!NUMBER

MAINTCHANGE

NUMBER

PROJECT NAME,
PROGRAMMER

NAME, AND

WEEK ENDING

DATE

Access Path

[MAINT CH NO]---,), MAINT_CHANGE

[MAINT 1SO CH]*CODED FIELD

[MAINT CH NO]

MAINT CH OBJECTS

[CH_O_JEC'rI'CODED FIELD]

[PROJ NAME] _ PROJECT

[FORMNAME] r [PROJ_NO]

PERSONNEL

_f

[PROG_ID] _ MAINT_PROJ'_h'- [SUB_DATE]

_L [MAINT_ID]

[MAINT_CLASS] _ MAINT_CLASS_HRS

[CLASS_HR]

WHERE

MAINT CLASS FOR P168, D151 = CORRECTION

MAINT CLASS FOR P169, D152 = ENHANCEMNT

MAINT CLASS FOR P170, D153 = ADAPTATION

MAINT CLASS FOR P171, D154 = OTHER

CLASS_HR

SUB_DATE PROJECT NAME [PROJ_NAM_--->PROJECT
l

FORM_NAME [PROJ_NO]

PERSONNEL

[PROG ID] --_ MAINT_PROJ

[SUB_DATE]

M1 PERSON- FORM_NAME NONE PERSONNEL _ [FORM_NAME]
NEL

M3 PERSON- DATE_ENTRY PROGRAMMER [FORM_NAME]-'_ PERSONNEL) [DATE_ENTRY]
NEL NAME

10004437L 4-86

Table 4-4. SEL Database Access Paths (15 of 28)

Ref. ID

P24, D21

Target
Table

PERSON-
NEL

Target
Column

FORM_NAME

(FROM COP)

NAME

AcceSS

Information

PROJECT NAME,
SUBSYSTEM
PREFIX, AND
COMPONENT

P24, D21

P24, D21

P24, D21

i PERSON-
,NEL

PERSON-
NEL

PERSON-
NEL

FORM_NAME

(FROM CRF--)

FORM_NAME

(FROM DSF)

FORMNAME

(FROM MCRF)

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

PROJECT NAME

PROJECT NAME

Access Path

[PROd_NAME] _ PROJECT

[PROd_NO]

[SUB_PRE] ---_ PRO,J_SUB

f [SUBSY_ID]

[COM NAME}--'> SUB COM

[COM_NO]

COM_SOURCE

[PROG_ID]

PERSONNEL

[FORM_NAME}

[CHANGE_NO] _ CHANGE

[PROG_ID]

PERSONNEL

[FORM_NAME}

[PROd_NAME] _ PROJECT

J¢ [PROd_NO]

PROJ_DSF

J_ [PROG_ID]

PERSONNEL

[FORM_NAME}

[PROd_NAME] _ PROJECT

[PROd_NO]

MAINT CHANGE

[PROG_ID]

PERSONNEL

[FORM_NAME]

10004437L 4-87

Table 4-4. SEL Database Access Paths (16 of 28)

Ref. ID

P24, D21

Target
Table

PERSON-
NEL

Target
Column

FORM_NAME

(FROM PRF
OR CLPRF)

ACcess

Information

PROJECT NAME
AND FORM TYPE

P24, D21

Access Path

[PROJ_NAME] _ PROJECT

(PROJ_NO]

[FORM_TYPE] _ EFF..PROJ

J_ [PROG_ID]

PERSONNEL

[FORM_NAME]

WHERE
FORM_TYPE = PRF OR CLPRF

[PROJ_NAME] ---]b PROJECT

Jt [PROJ_NO]

[FORM_TYPE] _ EFF_PROJ

[PROG_ID]

PERSONNEL

[FORM_NAME]

P24, D21

PERSON-
NEL

PERSON-
NEL

FORM_NAME

(FROM SPF)

FORMNAME

(FROM
WME_

PROJECT NAME
AND FORM TYPE

PROJECT NAME

M2 PERSON- FULL_NAME PROGRAMMER
NEL NAME

P3 PROJECT ACTIVE PROJECT NAME
STATUS

PI,D1 PROJECT PROJ_NAME NONE

P2, DI_ PROJECT PROJ_TYPE PROJECT NAME

I WHERE

FORM_TYPE= SPF

NOTE:
FORM_NAME= LIBARIAN, OTHSUPP,

PROGMGM_ SECRTARY,
TECHPUBS

[PROJ_NAME] _ PROJECT

[PROJ_NO]

MAINT_PROJ

,_ [PROG-IDI

PERSONNEL

[FORM_NAME]

[FORM_NAME]-), PERSONNEL-']_ [FULL_NAME]

PROJ_NAME]--), PROJECT

[ACTIVE_STATUS]'CO DED FIELD

PROJECT _ [PROJ_NAME]

PROJ_NAME]-]b PROJECT

[PROJ_TYPE]°CODED FIELD

I0_7L 4-88

Table 4-4. SEL Database Access Paths (17 of 28)

Ref. ID

P134, D38 PROd_
CPU
STAT-

Target
Table

Target
Column

CPU_NAME

Access

InformaUon

PROJECT NAME

PROd PROJECT NAMEP135, D94

P136, D95

P23, D22

P21,D12

P20. Dll

P22, D13

CPU
STAT-

PROd_
CPU
STAT-

PROd_
DSF

PROd_
EST

PROd_
EST

PROd_
EST

TOTAL_HRS

T_RUN

SUB_DATE

MAN_HR

PRO HR

SER_HR

PROJECT NAME

PROJECT NAME

PROJECT NAME
AND SUBMIS-
SION DATE OF

Access Path

[PROJ_NAME]-]b PROJECT

[PROd_NO]

P ROJ_CPU_STAT

[CPU_NAMEI

[PROJ_NAM E]--> PROJECT

[PROd_NO]

PROJ_C PU_STAT

['I'OTAL_H RS l

[PROd_NAME]--> PROJECT

[PROd_NO]

PROJ_CPU_STAT

[r_aUNl

[PRO,J_NAME]-> PROJECT

[PROd_NO]

PROJ_DSF

[SUB_DATEI

DESIRED SET OF [SUB_DATE]
ESTIMATES

PROJECT NAME
_ND SUBMIS-
SION DATE OF
DESIRED SET OF

:ESTIMATES

PROJECT NAME
AND SUBMIS-
SION DATE OF
DESIRED SET OF
ESTIMATES

[PROJ_NAME]-_ PROJECT

r [PROd_NO]

PROJ_EST

[MAN_HRI

[PROJ_NAME]-_ PROJECT

[PROd NO]

[SUB_DATE] -]_ PROJ_EST

[PRO_HR]

[PROd_NAME],--> PROJECT

_ [PROd_NO]

[SUB_DATE] -> PROJ_EST

[SER_HRI

_O00,*,mZL 4-89

Table 4-4. SEL Database Access Paths (18 of 28)

Ref. ID

P13, D2

P15, D15

Target
Tabk3

Target
Column

Access
Information

PROJECT NAME

Access Path

[PROd_NAME] --> PROJECT

_ [PROd_NO]

PROJ_EST

[SUB_DATE]

[PROd_NAME] .-_

PROd
EST

PROd
EST

SUB_DATE

T._COM

P16, D16

P18. D18

P19, D17

P17, D19

P14, D14

PROd_
EST

PROd
EST

PROd
EST

PROd
EST

PROd
EST

T_LINE

T_MOD_LINE

T_NEW_LINE

T_OLD_LINE

T_SYS

PROJECT NAME
AND SUBMIS-
SION DATE OF
DESIRED SET OF
ESTIMATES

PROJECT NAME
AND SUBMIS-
SION DATE OF
DESIRED SET OF
ESTIMATES

PROJECT NAME
AND SUBMIS-
SION DATE OF
DESIRED SET OF
ESTIMATES

PROJECT NAME
AND SUBMIS-
SION DATE OF
DESIRED SET OF
ESTIMATES

PROJECT NAME
AND SUBMIS-
SION DATE OF
DESIRED SET OF
ESTIMATES

PROJECT NAME
AND SUBMIS-
SION DATE OF
DESIRED SET OF
ESTIMATES

[SUB_DATE] ->

PROd ECT

t [PROd_NO]

PROJ_EST

F_COM]

[PROd_NAME] -_, PROJECT

t [PROd_NO]

[SUB_DATE] -> PROJ_EST

IT_LINE]

[PROd_NAME] -._

[SUB_DATE] -]_

PROJECT

f [PROd_NO]

PROJ_EST

F_MOD UNEI

[PROd_NAME] -,,>

[SUB_DATE] -->

PROJECT

f [PROd_NO]

PROJ_EST

['I'_NEW_LINE 1

PRO,J_NAME] -> PROJECT

[PROd_NO]

[SUB_DATE] -_ PROJ_EST

F_OLD_LINE]

{PROd_NAME] --),

[SUB_DATE] ->

PROJECT

f [PROd_NO]

PROJ_EST

[T_SYS]

10004437L 4-90

Table 4-4. SEL Database Access Paths (19 of 28)

Ref. ID

PIO, D91

P6-P11,

D3-D8,
P125-P131,

D84-D9o

P6-P11,

P5. P13,

P124, D2

D20, D49,

Dl13, D150

Target
Table

Target
Column

Access
Information

PROJECT NAME

AND SUBMIS-

SION DATE OF

PEF OR PCSF

[PROJ_NAM EJ -->PROJ_
EST
PHASE

PRO J_
EST
PHASE

PRO J_
EST
PHASE

PROJ

EST
PHASE

PROJ
FORM-

END_DATE

START_DATE

START_DATE,

END_DATE

SUB_DATE

FORM_NO

PROJECT NAME

AND SUBMIS-

SION DATE OF

PEF OR PCSF

PROJECTNAME,

PHASE CODE,
ANDSUBMIS-

SION DATE OF

PEF OR PCSF

PROJECT NAME

PROJECT NAME,
AND FORM TYPE

[SUB_DATE] ->

[PROJ_NAM_--_

Access Path

PROJECT

[PROJ_NO]

PROJ_EST_PHASE

MAX lEND_DATE]

[SUB_DATE] ->

PROJECT

t [PROJ_NO]

PROJ_EST_PHASE

MIN [START DATE]

[PROJ_NAME]-> PROJECT

[PROJ_NO]
[SUB_DATE]-_PROJ_EST_PHASE<[-[PHASE_

CO]

[START_DATEI,
[END_DATE]

WHERE

PHASE_CO FOR P6, D3, P125, D84 = REQNT

PHASE_CO FOR P7, D4, P126 D85 = DESGN

PHASECO FOR P8, D5, P127, D86 = CODEr

PHASE_CO FOR Pg, D6, P128, D87 = SYSTE

PHASE_CO FOR PlO, D7, P129, 088 = ACCTE

PHASE_CO FOR Pll, D8, P130, D89 = CLEAN

PHASE CO FOR P131, Dgo = MAINT

[PROJ_NAME]-]b PROJECT

t [PROd_NO]

PROJ_EST_PHASE

[SUB_DATEI

[PROJ_NAME] -_ PROJECT

_ [PROJ_NO]

[FORM__PEI -_ PROJ_FORM

[FORM_NO[

WHERE

FORM TYPE FOR D150 = SEF

FORM TYPE FOR D20 = PEF

FORM_TYPE FOR D49 = SPF
FORM TYPE FOR Dl13 = PCSF

10004437L 4-91

Table 4-4. SEL Database Access Paths (20 of 28)

Ref. ID

P62, D42

P60, D43

P61, D41

P4, D62

P4, D61

Target
Table

PROd_
GRH

PROd_
GRH

PROd_
GRH

PROd
MES-
SAGES

PROd
NOTES

Target
Column

GR_CH

dR_LINE

GR_MOD

MESSAGES

NOTE_TYPE

Access

Information

PROJECT NAME.
AND WEEK END-
ING DATE

PROJECT NAME
AND WEEK END-
ING DATE

PROJECT NAME
AND WEEK END-

lING DATE

PROJECT NAME
AND NOTE TYPE

PROJECT NAME

{PROd_NAME} -),

{SUB_DATE} -,>

Access Path

PROJECT

,,_ {PROd_NO}

PROJ_GRH

[GR_CH]

[PROd_NAME} -),,

{SUB_DATE] -),

PROJECT

r [PROJ-NOI

PROJ_GRH

{dR_LINE}

{PROd_NAME}

{SUB_DATE} ->

PROd ECT

[PROJ_NO l

PROJ GRH

[GR_MOD]

PROJ_NAME] -]_ PROJECT

_L [PROd NO}

NOTE_TYPE} _ PROd_NOTES

, [SJD]
PROJ MESSAGES

[MESSAGES]
!WHERE
NOTE_TYPE = CLOSEOUT, COMPACCTS,

COMPSYS, CONTACTS,
CONTRLLIB DATAAVAIL,
FORMSCOL, GENMESS GHTOOL,
LANGUAGES, PROJNAME, OR
TASKNO

{PROd_NAME} PROd ECT

{PROd_NO}

PROd_NOTES

[NOTE_TYPE]'CODED FIELD

I0004.437L 4-92

Table 4-4. SEL Database Access Paths (21 of 28)

Ref. ID

P45, D39 PROd
PROD-

Target
Table

Target
Column

RES_HR

Access
InformaUon

PROJECT NAME

P44, D38

P46,D40

PROJ
PROD-

PROd_
PROD

RES_NAME

RES_RUN

COMPUTER
NAME, AND
WEEK ENDING
DATE

PROJECT NAME

PROJECT NAME,
COMPUTER
NAME, AND
WEEK ENDING
DATE

[PROd_NAME] -]_

[SUB_DATE] ->

Access Path

PROJECT

[PROd_NO]

PROd_PROD <[- IRES_NAME]

[RES_HRI

i [PROd_NAME] -> PROJECT

[PROd_NO]

PROd_PROD

[RES_NAME]

[PROd_NAME] -_ PROJECT

,,_ [PROd NO]

[SUB_DATE] --'> PROd_PROD 'd- [RES_NAME]

[RES_RUN]

I0004437L 4-93

Table 4-4. SEL Database Access Paths (22 of 28)

Ref. ID

P88-P107,
D114-D133

P109- P123,
D135-D149

P108, D134

Target
Table

PROd_
SEF

Target
Column

EVALUATE

Access
information

PROJECT NAME

AND MEASURE-

MENT TYPE

Access Path

[PROJ_NAME] -]b PROJECT

[PROd_NO]

[MEAS TYPE] -> PROJ_SEF

[EVALUATE]
WHERE

MEAS I'YPE FOR P88, Dl14 = PM01

MEAS_TYPE FOR P89, Dl15 = PM02

MEAS_TYPE FOR P90, Dl16 = PM03

MEAS_TYPE FOR P91, Dl17 = PM04

MEAS_TYPE FOR P92. Dl18 = PM05

MEAS_TYPE FOR P93, Dl19 = PM06

MEAS_TYPE FOR P94, D120 = STO7

MEAS TYPE FOR P95, D121 = ST08

MEAS_TYPE FOR P96, D122 = ST09

MEAS_TYPE FOR P97, D123 = STIO

MEAS._TYPE FOR P98, D124 = TM11

MEAS_TYPE FOR P99, D125 = TM12

MEAS_TYPE FOR PIO0, D126 = TM13

MEAS_TYPE FOR P101. D127 = TM14

PROJ

SEF_SEC

MEAS_TYPE FOR P102. D128 = TM15

MEAS_TYPE FOR P103, D129 = PC16

MEAS_TYPE FOR P104, D130 = PC17

MEAS_TYPE FOR P105, D131 = PC18

MEAS_TYPE FOR P106, D132 = PC19

MEAS_TYPE FOR P107, D133 = PC20

MEAs_'rYPE FOR P109. D135 = PC22

MEAS_TYPE FOR Pl10, D136 = PC23

MEAS_'I'YPE FOR Pl11. D137 = PC24

MEAS_TYPE FOR Pl12. D138 = EN25

MEAS_TYPE FOR Pl13, D139 = EN26

MEAS_TYPE FOR Pl14, D140 = EN27

MEAS_TYPE FOR Pl15, D141 = EN28

MEAS_TYPE FOR Pl16. D142 = EN29

MEAS_TYPE FOR Pl17, D143 = EN30

MEAS TYPE FOR Pl18, D144 = PT31

MEAS_TYPE FOR Pl19, D145 = PT32

MEAS_TYPE FOR P120, D146 = PT33

I MEAS_'r'YPE FOR P121,0147 = PT34

MEAS_T'YPE FOR PlPP, D148 = PT35

SECOND_L P ROJECT NAME

AND MEASURE-

MENT TYPE

MEAS_TYPE FOR P123, D149 = PT36

[PROd_NAME] -_ PROJECT

f [PROd_NO]

[MEAS_I'YPE] --'), PROJ_SEF_SEC

[S ECOND_L]'CODED FIELD

NOTE: MEAS TYPE = PC21

10004437L 4-94

Table 4-4. SEL Database Access Paths (23 of 28)

Ref. ID

P133, D93

Target
Column

Target
Table

PROd_
STAT

SER_HR

Access
Information

[PROd_NAME] -]_

P132, D92

P139, D98

P138, D97

TECH_MAN_
HR

IT CH

I PROJECT NAME

P145, D104

P ROd_
STAT

PROd
STAT

PROd

STAT

PROd_
STAT

P140, 099 PROd_
STAT

PROd

STAT
P146, 0105

T COM

T COMMENT

T_DOC

T_EXE_MOD

PROJECT NAME

PROJECT NAME

PROJECT NAME

PROJECT NAME

PROJECT NAME

PROJECT NAME

[PROd_NAME] --_

Access Path

PROJECT

[PROd_NO]

PROJ_STAT

[SER_HRI

[PROJ_NAMEJ -_

PROJECT

t [PROd_NO]

PROJ_STAT

ffECH_MAN_HRI

[PROJ_NAMEJ ->

PROJECT

[PROd_NO]

PROJ_STAT

rT_CHI

[PROd_NAME]

P ROJ ECT

[PROd_NO]

PROJ_STAT

[r COMI

PROJECT

_ [PROJ_NO]

PROJ_STAT

['r_COMMENrl

[PROd_NAME 1 -_ PROJECT

t [PROd_NO]

PROJ_STAT

rr_DOCl

[PROd_NAME] -_ PROJECT

_L [PROd_NO[

PROd STAT

ff_EXE MOO]

10004437L 4-95

Table 4-4. SEL Database Access Paths (24 of 28)

Ref. ID

P150, D109

Target
Table

PROd_
STAT

Target
Column

T._EXE_STAT

Access

Information

PROJECT NAME

P213, D211

P214, D212

P215, D213

P219, D217

P141, DIO0

P143, D102

PROd

STAT

PROd_
STAT

PROd
STAT

PROd
STAT

PROd

STAT

P ROd

STAT

T EXTMO_
LI'NE

T EXTMO
M_D

F_EXTMO
STAr

T EXTMO
STMTS -

T_LINE

"_MOD_LINE

PROJECT NAME

PROJECT NAME

: PROJECT NAME

PROJECT NAME

PROJECT NAME

PROJECT NAME

[PROd_NAME] -->

Access Path

PROJECT

[PROd_NO]

PROJ_STAT

[T_EX E_STA'r]

[PROd_NAME] --),, PROJECT

t {PROd_NO]

PROd STAT

[T_EXTMO_LINE]

[PROd_NAME] -]_ PROJECT

r [PROd_NO]

PROd STAT

[r_EXTMO_MOD1

[PROd_NAME] -> PROJECT

t [PROd_NO]

PROJ_STAT

[r_EXTMO_STAr]

[PROd_NAME] PROJECT

[PROd_NO]

PROd STAT

[T_EXTMO_STMTS]

[PROd_NAME] --.> PROJECT

[PROd_NO]

PROJ_STAT

fr_UINN

[PROd_NAME] --..> PROJECT

[PROd_NO]

PROd STAT

[T_MOO_LINE]

10004,k37 L 4-96

Table 4-4. SEL Database Access Paths (25 of 28)

Ref. ID

P148, D107

Target
Table

)RE)J_
STAT

Target
Column

T_.MOD_MOD

Access

Information

_ROJECT NAME i [PROd_NAME] -_

P152, Dlll

P218, D216

P142, D101

P147, D106

P151, Dl10

P217, D215

PROd_
STAT

PROd_
STAT

PROd

STAT

PROd_
STAT

PROd_
STAT

PROd_
STAr

T_MOD_STAT

T_MOD_
STMTS

T_NEW_LINE

T_NEW_MOD

T_N EW_STAT

T NEW
S_MTS-

P ROJECT NAME

PROJECT NAME

PROJECT NAME

PROJECT NAME

P ROJECT NAM E

PROJECT NAME

Access Path

PROJECT

[PROd_NO]

PROJ_STAT

[T_MOD_MOO]

[PROd_NAME] -> PROJECT

[PROd_NO]

PROJ_STAT

[T_MOD_STAT]

PROd_NAME] -_ PROJECT

f [PROd_NO]

PROd SlAT

[T_MOD_S'rMTSl

[PROJ_NAM E] P ROd ECT

[PROd_NO]

PROJ_STAT

IT_NEW_LINE]

[PROd_NAME] -> PROJECT

t [PROd_NO]

PROJ_STAT

[T_NEW_MO01

[PROJ_NAM E] -]_ PROJECT

[PROd_NO]

PROJ_STAT

[T_NEW_STAT]

! [PROd_NAME] -)_ PROJECT

f [PROd_NO]

PROJ_STAT

[T_N EW_STMTS]

0004_ZL 4-97

Table 4-4. SEL Database Access Paths (26 of 28)

Ref. ID

P144, D103

P149, D108

P153, Dl12

P220, D218

P216, D214

P137, D96

P47, P84.
D50

Target
TabkD

PROd_
STAT

PROd_
STAT

PROd_
STAT

P ROd
STAT

PROd
STAT

PROd_
STAT

' PROd_
SUB

Target
Column

T_OLD_LINE

T_OLD_MOD

T_OLD_STAT

T OLD
S_VlTS-

T_STMTS

T_SYS

Access

Informatlon

PROJECT NAME

PROJECT NAME

PROJECT NAME

PROJECT NAME

PROJECT NAME

PROJECT NAME

SUB_PRE PROJECT NAME

Access Path

1 [PROd_NAME] _ PROJECT

r [PROd_NO]

PROJ_STAT

F OLO_UNEI

[PRO,J_NAME] -> PROJECT

_ [PROd_NO]

PROd STAT

F_OLD_MODI

[PROd_NAME] _ PROJECT

[PROd_NO]

P ROJ_STAT

[T_OLD_STAT}

[PROd_NAME] -]b, PROJECT

_ [PROJ_NO]

PROd STAT

IT_OLD_STMTS]

PROd_NAME] -> PROJECT

t [PROd_NO]

PROd STAT

rF_STMTS]

, [PROd_NAME] -]_ PROJECT

r [PROd_NO]

PROJ_STAT

F_SYSl

[PROd_NAME] ->, PROJECT

[PROd_NO}

PROd_SUB

[SUB_PRE]

IO0(Pl,437L 4-98

Table 4-4. SEL Database Access Paths (27 of 28)

Ref. ID

P50, D2

P35-P38,
D33-D36,
P167, D209

P49, D52

P48, D51

Target
Table

PROJ
SUB

SPECIAL_
ACT

SUBSYS-
TEM

SUBSYS-
TEM

Target
Column

iSUB_DATE

ACT_HR

FUNCTION

NAME

ACCESS

InformaUon

PROJECT NAME
AND SUBSYS-
TEM PREFIX

=ROJECT NAME
PROGRAMMER
NAME, WEEK
ENDING DATE,
AND SPECIAL
ACTIVITY

PROJECT NAME
AND SUBSYS-
TEM PREFIX

PROJECT NAME
AND SUBSYS-
TEM PREFIX

[PROJ_NAME] -->

[SUB_PRE] -),

Access Path

PROJECT

[PROJ_NO !

PROJ_SUB

[SUB_DATE]

[PROJ_NAME]-.> PROJECT

[FORM_NAME] [PROJ_NO]

PERSONNEL

_, ,,

PROG_ID] ---),, EFF_PROJ _ [SUB_DATE]

[P_tD] = [EFF_ID]

ACTIVITY] _ SPECIAL_ACT

WHERE

SP_ACTIVFI'Y FOR
SP_ACTIVITY FOR
SP_ACTIVITY FOR
SP_ACTIVITY FOR

SP_ACTIVITY FOR

[ACT_HR]

(,FOR PRF)
P35, D33= REWORK
P36, D34= ENHANCE
P37, D35= DOCUMENT
P38, D36= REUSE

(FOR CLPRF)
P167, D209 = CLMETHOD

[PROJ_NAME] --_

[SUB_PRE] ->

PROJECT

[PROM_NO 1

PROJ SUB

[SUBSY_ID]

SUBSYSTEM

[FUNCTION]*CODED FIELD

' [PROJ_NAME] -.]1,,

[SUB_PRE] .->

PROJECT

[PROd_NO I

PROJ SUB

[SUBSY_tD]

SUBSYSTEM

[NAME]

1000,_7L 4-99

Table 4-4. SEL Database Access Paths (28 of 28)

Ref. ID

P51, D53

P52, D2

P84, D53

Target
Table

SUB_COM

SUB_COM

V PROJ

COM -

Target
Column

COM_NAME

COM_DATE

iCOM_NAME

Access

Information

PROJECT NAME

AND SUBSYS-

TEM PREFIX

[PROJ_NAME]

PROJECTNAME
SUBSYSTEM

PREFIX, AND
COMPONENT

NAME

PROJECT NAME

[SUB_PRE] -.),

Access Path

PROJECT

[PROJ_NO]

PROJ_SU8

[SUBSY_ID]

SUB_COM

[COM_NAME}

[PROJ_NAME]-), PROJECT

[PROJ_NO]

[SUB_PRE] -]_ PROJSUB

[SUBSY_ID]

_OM_NAME] -_ SUB COM

NOM_DATEI

[PROJ_NAME] ->

CHANGE COM

_L [COM_NO]

V PROJ_COM

[COM_NAMEI

10004437L 4-100

SECTION 5---ACCESSING THE SEL DATABASE

The database table def'mitions, relationships, and access paths presented in Section 4 provide

a guide to finding a particular software engineering data item in the database. This section

discusses how to actually access a data item once its location in the schema has been
identified.

Section 5.1 discusses how a user initially obtains access to the SEL database. Section 5.2

provides an introduction to the DAMSEL user interface (I3I) subsystem: menus that allow

users to view data, enter data, generate reports, and perform various database support

functions. Section 5.3 presents an introduction to ad hoc database queries via SQL*Plus,

which is provided by ORACLE. This introduction covers the basics of how to formulate a

SQL query and provides several illustrative examples. Section 5.4 presents an introduction

to the query library. This introduction covers the help system, searching the library, and

executing and spooling queries.

5.1 DATABASE ACCESS REQUIREMENTS

To access the SEL database through SQL*Plus, a user must have a user ID and password for

the STL VAX 11/780 and an ORACLE user ID and password on the VAX. To access the SEL

database through DAMSEL, a user must have these IDs and passwords, plus have their

ORACLE user ID enrolled as a DAMSEL user. All of these can be obtained by contacting

either STL systems personnel orthe SEL DBA at CSC. In DAMSEL, user classes are defined

to give different types of users appropriate levels of database access. The user class deter-

mines the access privileges a user has with respect to individual database tables and the

functions that may be performed in DAMSEL. The following user classes have been
defined:

Q General user--Users requiring read-only access to the database, such as research-

ers and managers

• Librarian---SEL data entry personnel

• QA---SEL quality assurance personnel

• Maintenance---SEL database maintenance programmers

• DBA---SEL database administrator

Once a user obtains the appropriate accounts and privileges and logs onto the STL VAX, the

user must execute the foUowing command procedure to create all of the logicals and symbols

required to access the ORACLE RDBMS and the DAMSEL system:

$ @STL DISKI: [TOOLS]SEH24IT

10004437L 5-1

To avoid having to type this command each time the user logs on the VAX to access the

database, it is recommended that the command be included in the user's LOGIN.COM File.

Then it will be executed automatically whenever the user logs onto the VAX.

5.2 DAMSEL

DAMSEL provides a convenient way for all classes of users to access the SEL data. This

menu-driven user interface has five major options at the top level:

Form function option--This option permits users to view, insert, update, delete,

or quality assure SEL data interactively, one SEL form at a time. The screens for

performing these operations display data in a manner that resembles the data

collection forms presented in Section 3.

Report function option--This selection provides a method for users to view

large amounts of data on single projects, or on multiple projects, within a single

report. Reports are available for viewing data that are not project-specific or re-

lated to SEL forms. Users select a sequence of reports and options (a script) from

the report menus and submit the script to be executed. They may also save fre-

quently used report scripts for future execution. Reports can be submitted interac-

tively or as batch jobs. The results may be printed or routed to Files for terminal

display and/or future printing.

Query support function option--This selection provides a set of ad hoc SQL

queries that would likely be used by general users, such as researchers and manag-
ers. (This option is currently not available.)

DBA function optiotr---This selection provides data entry screens for the SEL

DBA to enter or modify projects, personnel information, and computer informa-
tion and to perform various database verification tasks.

General database support function option---This selection provides to SEL

database support personnel the capability to generate distribution tapes.

Users, depending on their assigned user class, may have access to one or more of these

functions. The menu system has built-in security features to verify that each user has the

access privilege to the functions that he or she is attempting to perform. The message "You do

not have access to this option" will appear on the screen if the user tries to perform a function

that is not in his/her operational domain. Each user class has different access privileges in the
menu system. These are def'med as follows:

General user--This class of user can access all the SEL form function viewing

screens, all the report function screens, and all the query support function screens.

Librarian---This class of user can access all the SEL form function viewing, in-

sert, update, and delete screens; all the report function screens; and the general

database support function screens.

10004437L 5-2

QAmThis class of user can access all the SEL form function viewing and quality

assurance screens, plus all the report function screens.

Maintenance----This class of user can access all the SEL form function viewing

screens, all the report function screens, all the query support function screens, and

the general support function screens.

DBA--This class of user can access all the SEL form function viewing screens,

all the report function screens, all the query support function screens, all the DBA

function screens, and all the general support function screens.

After the database access requirements, described in Section 5.1, are satisfied, the user can

access DAMSEL as follows:

• Log on to the VAX using his/her VAX user ID and password.

• At the '$' prompt, type DAMSEL.

Enter his/her ORACLE user ID and password at the prompts on the DAMSEL

login screen.

• Select menu options.

• Terminate the DAMSEL session via the <Exit/Cancel> key.

Reference 3 presents a more detailed discussion on using the DAMSEL software.

5.3 AD HOC DATABASE QUERIES

The basic operations that may be performed on a database table axe retrieving rows and

columns, inserting rows, deleting rows, and updating existing rows. In the SEL database,

insertion, deletion, and update operations are all performed via DAMSEL, as described in

the previous section. This is done to ensure that the semantic constraints imposed by the

nature of the software engineering data, as discussed in Section 4.2, axe enforced at all times.

The operation of retrieving data, however, may be done in any context without risk of

violating the integrity of the database. This section discusses how to perform database

retrievals in an ad hoc manner. Additional examples of optimized SQL queries are presented

in Appendix B. Although an introduction to the SQL SELECT statement is included, the

coverage is not exhaustive. Refer to Reference 4 for a more in-depth presentation of the SQL

language.

5.3.1 Connecting to the Database

Once a user with database access (Section 5.1) has logged onto the VAX, typing the follow-

ing command at the system prompt connects him/her to the SEL database:

$ SQLPLUS

1ooo44aTL 5-3

After supplying an ORACLE user ID and password at the prompts, the user is placed in an

interpretive environment from which he/she may enter ad hoc SQL queries to retrieve

database data. The command line prompt

SQL>

is displayed, signaling that the system is waiting for a SQL command. Upon entering a SQL

command, terminated with a semicolon (;), and pressing the retum key, SQL processes the

command, displays the result, and returns to the SQL> prompt.

While in a SQL*Plus session, the following online HELP command is available:

SQL> HELP;

This displays a list of SQL commands, clauses, and related topics for which help is available.

To exit from a SQL*Plus session, the user types

SQL> EXIT

which will disconnect the user from ORACLE and return to the system prompt ($).

5.3.2 Basic Select Statement

The SQL statement for retrieving data from the database is the SELECT statement. In its

simplest form, the SELECT statement has the following syntax:

SQL> SELECT * FROM <table-name>;

This statement displays on the terminal screen every row in the table indicated, as in the

following example:

SQL> SELECT * FROM PROJECT;

PROJ_NAME PROJ_NO PROJ_TYPE ACTIVE_STATUS

PROJ_I01 101 SIMULATOR ACT_DEV

PRO J_ 102 102 AGSS ACT_DEV

PRO J_ 103 103 SIMULATOR ACT_DEV

PROJ_104 104 SIMULATOR ACT_DEV

PROJ_105 105 AGSS ACT_DEV

PRO J_106 106 SIMULATOR ACT_DEV

PROJ 71 71 SIMUI.ATOR I]qAC'IqVE

PROJ_I 10 110 AGSS ACT_DEV

PRO J_ 108 108 SIMULATOR ACT_DEV

PRO J_96 96 ORBIT INACTIVE

PRO J_73 73 ATTITUDE ACT_MA//qT

PRO J_72 72 OTHER ACT_DEV

10004437L 5-4

The '*' in this form of the SELECT statement indicates that all columns of the table should

be retrieved. To retrieve only specific columns, the '*' should be replaced by a list of the

desired column names. The column names need not be specified in the order in which they

are defined in the table definition, as illustrated in the following example:

SQL> SELECT PROJ_NO, PROJ NAME FROM PROJECT;

PROJ_NO PROJ_NAME

108 PRO J_108

96 PRO J_96

73 PRO J_73

5.3.3 Ordering the Retrieved Data

The SELECT statements seen thus far do not guarantee that the rows retrieved from the table

will be displayed in any particular order. This may be ensured by specifying an ORDER BY

clause on the SELECT statement, as in the following:

SQL> SELECT PROJ_NAME, PROJ_NO
2 FROM PROJECT

3 ORDER BY PROJ_NAME;

PROJ_NAME PROJ_NO

PRO J_73 73

PROJ_I01 101

PROJ_102 102

PROJ_ll0 110

This causes the retrieved rows to be displayed in ascending order, sorted on the column

specified in the ORDER BY clause. CHARACTER columns are sorted alphabetically,

NUMBER columns are sorted numerically, and DATE columns are sorted chronologically.

The default order in an ORDER BY clause is ascending. A display in descending order may

be accomplished by specifying DESC after the name of the ORDER BY column. The

ORDER BY clause also permits sorting on more than one field.

In the previous example, the SELECT statement was entered on more than one line. This

illustrates that the SQL interpreter does not execute the command until a semicolon is

entered. The typed command is stored in a buffer that is retained after the command is

10004437L 5-5

executed. This buffer may be edited to change the query slightly without having to retype it

completely. The current command in the buffer may be executed by typing

SQL> /

followed by a carriage return. The command buffer may be displayed by typing 'L', followed

by a carriage return:

SQL> L

1 SELECT PROJ_NAME, PROJ_NO

2 FROM PROJECT

3 ORDER BY PROJ_NAME

Reference 4 provides details on editing the command buffer.

5.3.4 Limiting the Number of Rows Retrieved

The queries presented thus far have all displayed every row of the table specified. The

WHERE clause allows constraints to be defined that limit the number of rows retrieved, as in

the following example:

SQL> SELECT * FROM PROJECT WHERE PROJ TYPE = 'SIMULATOR';

PROJ_NAME PROJ_NO PROJ_TYPE ACTIVE_STATUS

PRO J_ 101 101 SIMULATOR ACT_DEV

PRO J_71 71 SIMULATOR INACTIVE

PROJ_108 108 SIMULATOR ACT_DEV

PROJ_103 103 SIMULATOR ACT_DEV

PROJ_104 104 SIMULATOR ACT_DEV

PRO J_ 106 106 SIMULATOR ACT_DEV

This query selects only those records in which the PROJ TYPE column has a value of

'SIMULATOR'. It should be noted that, when specifying a character constant (or a date

constant), it must be surrounded by single quotes. Date constants must be specified as

follows: 'dd-mmm-yy', as in '05-JAN-88 '. ORACLE character fields are case sensitive, and

all the character fields in the SEL database that are commonly used in queries contain only

uppercase characters.

Additional relational operators useful in specifying WHERE conditions include the

following:

!= not equal to

> greater than

>= greater than or equal to
< less than

<= less than or equal to
IN member of a list of items

10004437L 5-6

The following example illustrates the use of the IN operator:

SQL> SELECT * FROM PROJECT

2 WHERE PROJ_NO IN (101,103,105,107);

PROJ_NAME PROJ_NO PROJ_TYPE ACTIVE_STATUS

PROJ_105 105 AGSS ACT_DEV

PROJ_103 103 SIMULATOR ACT_DEV

PRO J_ 101 101 SIMULATOR ACT_DEV

Conditions in a WHERE clause may be combined by the logical connectives AND, OR, and

NOT to build more complex conditions, as follows:

SQL> SELECT * FROM PROJECT

2 WHERE PROJ_TYPE = 'SIMULATOR'

3 AND PROJ_NO > 104;

PROJ_NAME PROJ_NO PROJ_TYPE ACTIVE_STATUS

PRO J_ 106 106 SIMULATOR ACT_DEV

PROJ_108 108 SIMULATOR ACT_DEV

When multiple conditions are specified, parentheses () may be used to clarify or override

precedence of operators.

5.3.5 Group Functions

A set of functions in SQL*Plus allows statistics to be calculated on the results of a query.

Some of the most common of these are COUNT, AVG, MAX, MIN, SUM, STDDEV, and

VARIANCE. The following example illustrates how these work:

SQL> SELECT COUNT(PROJ_NO)

2 FROM PROJECT;

COUNT(PROJ_NO)

9O

This query returns a count of the number of rows in the PROJECT table that have a non-null

value in the PROJ_NO column. Null values are entered into a particular column of a

particular row to indicate that no data exist for that data item. The table def'mitions in

Section 4.1 indicate which columns in the database will accept null values. Thus, in the case

of the above query, since the PROJ_NO column does not accept null values, the query. 'always
returns a count of _1 rows in the table. Like COUNT, the statistical functions AVG,

STDDEV, and VARIANCE operate only on non-null values. Another example is as follows:

SQL> SELECT COUNT(RES_HR), SUM(RES_HR), AVG(RES_HR)

2 FROM PROJ_PROD

3 WHERE PROJ_NO = 151'

10004437L 5-7

COUNT(RES_HR) SUM(RES_HR) AVG(RES_HR)

22 ! .88 .085454545

5.3.6 Retrieving from More Than One Table---Joins

At this point, enough of the basic features of the SELECT statement have been presented to

allow the user to find a particular piece of data in the database. Suppose, for example, the user

wishes to know the names of the subsystem pref'Lxes for project EXAMPLE. Consulting

Section 4.3, the fu'st step is to f'md the PROJ_NO value for that project:

SQL> SELECT PROJ_NO

2 FROM PROJECT

3 WHERE PROJ_NAME = 'EXAMPLE';

PROJ_NO

135

The user can use this result to retrieve the subsystem prefLxes from PROJ_SUB:

SQL> SELECT SUB_PRE

2 FROM PROJ_SUB

3 WHERE PROJ NO = 135;

SUB PRE
u

PP

SD

TM

PG

CM

UT

AC

This works, but rather than doing this in two steps every time, the same result can be

accomplished by a single query that joins the two tables:

SQL> SELECT SUB_PRE

2 FROM PROJECT, PROJ_SUB

3 WHERE PROJ_NAME = 'EXAMPLE'

4 AND PROJECT.PROJ_NO = PROJ_SUB.PROJ NO;

SUB PRE

PP

SD

TM

PG

CM

UT

AC

10004437L 5-8

In this query, ORACLE created a virtual table containing all the columns in both the

PROJECT and PROJ_SUB tables. If no constraints had been specified, the virtual table

would have contained a row for each possible pairing of a row in PROJECT with a row in

PROJ_SUB. However, the WHERE clause allowed it to create a virtual table in which the

only row selected from the PROJECT table was that in which the PROJ_NAME was

EXAMPLE; the only rows selected from the PROJ_.SUB table were those in which the

PROJ_NO column had the same value as the PROJ_NO column in the row selected from

PROJECT (the PROJ_NO value for EXAMPLE). A join is not limited to two tables, and the

columns displayed may come from any of the tables specified, as in the following example

that displays the same subsystems as above, but includes the name of the project and the

descriptive name of the subsystem:

SQL>
2 FROM

3 WHERE

4 AND

5 AND

6 ORDER

SELECT PROJ_NAME, SUB_PRE, NAME

PROJECT, PROJ_SUB, SUBSYSTEM

PROJ_NAME = 'EXAMPLE'

PROJECT.PROJ_NO = PROJ_SUB.PROJ_NO

PROJ_SUB.SUBSY_ID = SUBSYSTEM.SUBSY_ID

BY SUB_PRE;

PROJ_NAME SUB_PRE

EXAMPLE AC

EXAMPLE CM

EXAMPLE PG

NAME

ATITI'UDE AND ORBIT CONTROL

COMMON BLOCKS

PLOT GENERATOR

When the same column name occurs in more than one of the tables selected, that name must

be qualified with the table name to refer to it within the query. Thus, PROJ_NO is qualified to
differentiate between its occurrences in the PROJECT and PROJ_SUB tables, but

PROJ_NAME need not be qualified, since it occurs only in the PROJECT table.

5.3.7 Retrieving from More Than One Table--- Subqueries

Suppose the user wants to know the most recently estimated start and end dates for the design

phase of project EXAMPLE. The user could join PROJECT and PROJ_EST_PHASE on the

PROJ_NO field and get all of the estimated design phase start and end dates for that project.

To limit the retrieval to only one pair of dates, however, a subquery is used. The most

common use of a subquery is in specifying conditions on a WHERE clause, as follows:

SQL>
2

3

4

5

SELECT PROJ_NAME, PHASE_CO, STARTDATE, END_DATE

FROM PROJECT, PROJ_EST_PHASE

WHERE PROJ_NAME = 'EXAMPLE'

AND PHASE_CO = 'DESGN'

AND PROJECT.PROJ_NO = PROJ_EST PHASE.PROJ_NO

1ooo4_7t. 5-9

6 AND

7

8

9

SUBDATE =

(SELECT MAX(SUB_DATE)

FROM PROJ_EST_PHASE

WHERE PROJ_EST_PHASE.PROJ_NO = PROJECT_PROJ_NO);

PROJ_NAME PHASE_CO STARTDATE END DATE

EXAMPLE DESGN 06-JUN-87 02-JAN-88

This query joins the PROJECT and PROJ_EST_PHASE tables on the PROJ_NO field, and

further limits the retrieval by specifying that only the PROJ_EST_PHASE row with the most

recent SUBDATE for the specified project be selected. Note that subqueries are enclosed in

parentheses, and they must return a single value or a single column of values. The relational

operator IN may be used to see if a value is in a column of values returned by a subquery.

Also, subqueries may be nested, as in the following example that lists the names of all

components under project EXAMPLE:

SQL>
2

3

4

5

6

7

8

9

SELECT

FROM

WHERE

COM_NAME

SUB_COM

SUBSY_ID IN

(SELECT SUBSY_ID

FROM PROJ_SUB

WHERE PROJ_NO =

(SELECT PROJ_NO

FROM PROJECT

WHERE PROJ_NAME = 'EXAMPLE'));

COM NAME

PROID

PROl2qI

PROINT

ACQINT
DELP

GETCAS

5.3.8 Views---A Shortcut for Commonly Used Joins

Several views have been defined in the SEL database to allow users quick access to common-

ly used data items. A view is a virtual table that consists of columns from one or more tables

selected by criteria specified in the definition of the view. For example, to be able to retrieve

10o044a7t. 5- l 0

all thecomponentnamesfor agivenproject,theV_PROJ_COMview wasdefined(referto
thetableandview definitionsin Section4.1).Thus,thefollowing:

* FROM V_PROJ_COM
PROJ_NAME= <projectname>;

SQL> SELECT
WHERE

is equivalentto

SQL> SELECT
FROM
WHERE
AND
AND

PROJ_NAME,SUB_PRE,COM_NAME, COM_NO
PROJECT,PROJ_SUB,SUB_COM
PROJ_NAME= <projectname>
PROJECT.PROJ_NO= PROJ_SUB.PROJ_NO

PROJ_SUB.SUBSY_ID = SUB_COM.SUBSY_ID;

Similarly, the view V SUBSYSTEM INFO allows subsystem information to be selected

using the following query:

* FROM V_SUBSYSTEM_INFO

PROJ_NAME = <project name>;

SQL> SELECT
WHERE

This is equivalent to

SQL> SELECT

FROM

WHERE

AND

AND

SUB_PRE, NAME, FUNCTION, SUB_DATE, PROJ_NAME

PROJECT, PROJ_SUB, SUBSYSTEM

PROJ_NAME = <project name>

PROJECT.PROJ_NO = PROJ_SUB.PROJ_NO

PROJ_SUB.SUBSY_ID = SUBSYSTEM.SUBSY_ID;

Finally, the view V_PROJ_SUB_ACT is a shortcut to retrieve the activity hours charged to a

particular subsystem. Thus,

* FROM V_PROJ_SUB_ACT

PROJ_NAME = <project name>

SUB_PRE = <subsystem prefix>;

SQL> SELECT
WHERE

AND

is equivalent to

SQL> SELECT

FROM

WHERE

AND

AND

AND

AND

5.3.9 Spooling

PROJ_NAME, SUB PRE, ACTIVITY, ACT_HR

PROJECT, EFF_PROJ, EFF_SUB, EFF_ACT

PROJ_NAME =<project name>

PROJECT.PROJ_NO = EFF_PROJ.PROJ_NO

EFF_PROJ.P ID = EFF_SUB.P_ID

SUB_PRE = <subsystem prefix>

EFF_SUB.PS_ID = EFF_ACT.EFF_ID;

Output and Saving Queries

'All the queries presented displayed their results on the terminal screen. To create a permanent

copy of the query results, it is necessary to spool the query session, or at least part of it, to a

t-fie. This can be accomplished with the following command:

SQL> SPOOL <VMS file name>;

10004437L 5-1 1

If no file extension is supplied as part of the file name, a file is created in the current default

directory with the extension .LIS. After this command is entered, any queries executed and

the associated results are written to this file, as well as displayed on the screen. Spooling can
be turned off, with the following command:

SQL> SPOOL OFF;

It is also useful to save the contents of the current command buffer and reload it at some

future time. The first step can be accomplished with the following commands:

SQL> SAVE <VMS file name>;

If no file extension is supplied as part of the file name, a file is created in the current default

directory with the extension .SQL. This query can be reloaded into the command buffer by

using the following command:

SQL> GET <VMS file name>;

This command searches the current default directory for the file name specified. If no

extension is supplied in the f'de name, it searches for a file with extension .SQL. The loaded

query may now be executed or listed with / or L as described in Section 5.3.3.

This section presents enough about ad hoc database queries to enable the user to access any

particular item of software engineering data in which he or she is interested. It does not,

however, cover all of the features in SQL*Plus that facilitate data retrieval. Some additional

capabilities include displaying computed columns, simple pattern matching in WHERE

clauses, conversion between data types, renaming column headings and defining display

formats, parameterizing queries, computing statistics on groups of records, and printing

them on break points when the value of a particular column changes. Readers who are
interested in these and other advanced features should refer to Reference 4.

5.4 QUERY LIBRARY

A collection of commonly used, generalized queries is organized into a library on the STL

VAX-11/780. The library includes a search facility with predefined commands to aid the

users in locating appropriate queries to retrieve desired information. The queries are grouped

into categories by the type of data they retrieve, as follows:

• Projects---General project data, statistics

• Effort--Personnel and services hours, activity hours

• Changes--Change and error data from CRFs

• Estimates--Estimated statistics and phase dates

• Growth--Growth history data

• Computers--Computer resource data

10004437L 5-12

• Components---Component data from COFs

• ProgrammersmProgrammer hours, activities

• Other--Miscellaneous queries not covered above

The search facility prompts for a category and provides a brief description of all queries

available under that category. A help command is also available that provides instructions for

using the library and lists the categories available.

Most of the queries prompt for parameters such as project name and date. The user should

note the following two important constraints:

1. All character data must be typed in UPPER CASE

2. All dates must be entered in the format DD-MMM-YY (e.g., 01-JAN-89)

Once a user with database access (Section 5.1) has logged onto the VAX, the following

command is typed to connect to SQL*Plus:

$ SQLPLUS

After supplying an ORACLE user ID and password at the prompts, the user is placed in an

interpretive environment from which he or she may use the query library. The command line

prompt

SQL>

is displayed, signaling that the system is waiting for a SQL command. Online query library

help is available by typing

SQL> START QLIB:QHELP

NOTE: The symbol "@" can be used in place of the word "START" (i.e.,

@QLIB:QHELP)

The available help information on the query library will be displayed. To view a list of

available queries and their associated description, type the following:

SQL> START QLIB:SEARCH

The user will be prompted for the name of one of the above categories.

If the user is unsure of the category names, he or she should type a question mark (?) and all

categories will be listed. Once the desired query has been located, the query can be executed

by typing

SQL> START QLIB:<query name>

All requested parameters should then be entered (note the previously mentioned constraints).

If the user wants to save the result, the following steps should be executed:

SQL> SPOOL <output file>

SQL> START QLIB:<query name>

SQL> SPOOL OFF

100044.?,7L 5-13

Theoutput will be located in user's directory and appear as/output file/.LIS. Once the user

has completed use of the library, he/she can enter ad hoc queries (Section 5.3) or exit from

SQL*Plus by typing

SQL> EXIT

The system prompt will be displayed.

100044,37L 5-14

APPENDIX AmENCODED FIELDS AND ALLOWABLE VALUES

This appendix lists all the codes used throughout the SEL database and their corresponding

values. Items axe listed alphabetically according to the field in which the code is stored.

Exceptions to this axe CL_ACTIVITY, DATA_AVAIL, and QA_STATUS. The CL_AC-
TIVITY codes axe the Cleanroom PRF values that axe stored in the ACTIVITY field of the

EFF_ACT table. DATA_AVAIL and QA_STATUS codes axe stored only in the VALIDA-

TION table, but axe included in the VAL_DATA_AVAIL and VAL_QA_STATUS views,

respectively.

Fields Where Used

ACTIVE_STATUS

ACTIVE_STATUS

ACTIVE_STATUS

ACTIVE_STATUS

Code

ACT_DEV

ACT

DISCONT

INACTIVE

ACTIVITY ACCTEST

ACTIVITY CREDES

ACTIVITY DEBUG

ACTIVITY INTTEST

ACTIVITY OTHER

ACTIVITY PREDES

ACTIVITY RDREVCOD

ACTIVITY RDREVDES

ACTIVITY SUPPORT

ACTIVITY TSTCODUN

ACTIVITY WRCODE

ADA_FEATURE DATATYPE

Value (Description)

Data collection is active; project is in

development

Data collection is active; project is in
maintenance

Data collection discontinued; data for

the project axe incomplete; no plan to
validate data

The project has been completed and no
more data axe being collected

Acceptance test

Create design

Debugging

Integration test

Other

Predesign

Read/review code

Read/review design

Support

Test code units

Write code

Data typing

1ooo,_4aTt. A- 1

Fields Where Used

ADA_FEATURE

ADA_FEATURE

ADA_FEATURE

ADA_FEATURE

ADA_FEATURE

ADA_FEATURE

ADA_FEATURE

CH_CAUSE

CH_CAUSE

CH_CAUSE

CH_CAUSE

CH_CAUSE

CH_CLASS

CH_CLASS

CH_CLASS

CH_CLASS

CH_CLASS

CH_CLASS

CH_CLASS

CH_OBJECT

CH_OBJECT

CH_OBJECT

CH_OBJECT

CH_OBJECT

CH_OBJECT

CH_TYPE

CH_TYPE

Code

EXCEPT

GEN

OTHER

PACK

SUBPROG

SYSDEPF

TASK

CODE

DESIGN

OTHER

PRECH

REQMTSPEC

COMPUTE

D ATAVAL

INIT

INTERE

INTERI

LOGIC

OTHER

CODE

DESIGNDOC

OTHER

REQMTDOC

SYSDESC

USERGUIDE

ADENC

ERRCO

Value (Description)

Exceptions

Generics

Other

Program structure and packaging

Subprograms

System dependent features

Tasking

Code

Software Design

Other

Previous Change

Requirements/functional specifications

Computational

Data (value or structure)

Initialization

Interface (external)

Interface (internal)

Logic/control structure

Other

Code

Design document

Other

Requirements/specifications document

System description

User's guide

Adaptation to environment change

Error correction

100044371. A-2

Fields Where Used

CH_TYPE

CH_TYPE

CH_TYPE

CH_TYPE

CH_TYPE

CH TYPE

CH TYPE

CL ACTIV1TY

CL ACITVITY

CL_ACTIVITY

CL_ACTIV1TY

CL_ACTIVITY

CL_ACTIVITY

CL_ACTIVITY

CL_ACI'IVITY

CL_ACITVrI'Y

CL_ACTIVrFY

CL_ACTIVITY

COM_TYPE

COM TYPE

COM TYPE

Code

IMPCM

IMPRE

IMPUS

IN/DE

OPTSA

OTHCH

PLANE

CLACCTEST

CLCREDES

CLINDTEST

CLOTHER

CLPREDES

CLPRETEST

CLRDREVCOD

CLRESPSFR

CLVEREVDES

CLWRCODE

SUPPORT

ADAGENB

ADAGENS

ADAPACKB

Value (Description)

Improvement of clarity, maintain-

ability, or documentation

Implementation of requirements

change

Improvement of user services

Insertion/deletion of debug code

Optimization of time/space/accuracy

Other change type

Planned enhancement

Cleanroom acceptance test

Cleanroom system, subsystems, or

components design

Cleanroom system components testing

by independent tester

Cleanroom other hours, i.e., manage-

ment, meetings, documentation, etc.

Cleanroom predesign, such as

requirements analysis

Cleanroom pretest

Cleam'oom code read and code verifi-

cation

Cleanroom response to tester reported

problems and solution implementation

Clean.room design verification and

review, including meetings, reviews, or

walkthroughs

Cleanroom system components coding

Cleanroom support

Ada generic body

Ada generic specification

Ada package body

10004437L A-3

Fields Where Used

COM_TYPE

COM_TYPE

COM_TY'PE

COM_TYPE

COM_TYPE

COM_TYPE

COM TYPE

COM TYPE

COM TYPE

COM_TYPE

COM_TYPE

COM_TYPE

COM TYPE

COM_TYPE

COM "ITPE

COM TYPE

COM_TYPE

DATA_AVAIL

DATA_AVAIL

DATA_AVAIL

DATA_AVAIL

DATA_AVAIL

DATA_AVAIL

DATA_AVAIL

Code

ADAPACKS

ADASUBB

ADASUBS

ADATASKB

ADATASKS

ADAUNSPEC

ALC

BLOCKDA

DISPALY

FORTRAN

INCL

JCL

MENDEF

NAMELT

OTHER

PASCAL

REFDATA

COF

COM_NAME

CPU

CRF

EFF_PROJ

EFF_SERV

EFF_SPEC

Value (Description)

Ada package specification

Ada subprogram body

Ada subprogram specification

Ada task body

Ada task specification

Ada source code (type unspecified)

Assembly language component

BLOCK DATA component

Dispaly identification

FORTRAN source code

Include file

1ob control language

Menu definition or help fide

NAMELIST or parameter list

Other type of component

Pascal source code

Reference data file

Component origination information
available

Component names available

Project computer resources available

Component change information avail-
able

Manpower effort data at the project
level available

Services effort data (Tech. Pubs.,

Secretary, etc.) available

Manpower effort data for special acti-

vities (rework, reuse, etc.) available

100044371. A-4

Fields Where Used

DATA_AVAIL

DATA_AVAIL

DATA_AVAIL

DATA_AVAIL

DATA_AVAIL

DATA_AVAIL

DATA_AVAIL

DATA_AVAIL

DATA-AVAIL

DATA-AVAIL

EFF_COM_CH

EFF_COM_CH

EFF_COM_CH

EFF_COM_CH

EFF_COM_CH

EFF_ISO_CH

EFF_ISO_CH

EFF_ISO_CH

EFF_ISO_CH

EFF_ISO_CH

ERR_ACAUSE

ERR_ACAUSE

Code

EFF_SUB

EST_SCH

EST_STAT

HN_CPU

FIN_SCH

FIN_STAT

GRH

SAP

SEF

SIF

1HR

1DAY

3DAY

NDAY

NOTDET

1HR

1DAY

3DAY

N-DAY

NOTDET

FEATUREC

FEATUREM

Value (Description)

Manpower effort data at the subsystem
level available

Estimated project phase schedules
available

Estimated project statistics (LOC,

effort data, component data) available

Closed project--Final computer
resources available

Closed project--Final phase dates
available

Closed projectmFinal statistics (LOC,

effort, component data) available

Project growth data available

Closed projectmDetailed component

analysis available

Close project----Sujective evaluation
data available

Subsystem information available

1 hour or less

1 hour to I day

1 day to 3 days

More than 3 days

Not determined

1 hour or less

1 hour to 1 day

1 day to 3 days

More than 3 days

Not determined

Confused features

Misunderstood features

100044a7L A-5

Fields Where Used

ERR_ACAUSE

ERR_ACAUSE

ERR_ARES

ERR_ARES

ERR_ARES

ERR_ARES

ERR_ARES

ERR_ARES

ERR_CLASS

ERR_CLASS

ERR_CLASS

ERR_CLASS

ERR_CLASS

ERR_CLASS

ERR_CLASS

ERR_SOURCE

ERR_SOURCE

ERR_SOURCE

ERR_SOURCE

ERR_SOURCE

ERR_SOURCE

ERR_TOOLS

ERR_TOOLS

ERR_TOOLS

ERR_TOOLS

ERR_TOOLS

ERR_TOOLS

Code

INCOF

INTERACT

MEMORY

NOTE

NTEAM

OTHER

REFMAN

TEAM

COMPUTE

DATAVAL

INIT

INTERE

INTER/

LOGIC

NOTDET

CODE

DESIGN

FUNSPEC

NOTDET

PRECH

REQMT

CMS

COMPI

DECTM

LSE

OTHER

PCA

Value (Description)

Features applied incorrectly

Misunderstood interaction of features

Own memory

Class notes

Someone not on project team

Other

Ada reference manual

Own project team member

Computational

Data value or structure

Initialization

Interface (external)

Interface (internal)

Logic/control structure

Not determined

Code

Design

Functional specifications

Not determined

Previous change

Requirements

Code Management System

Compiler

DEC Test Manager

Language sensitive editor

Other

Performance and coverage analyzer

10004437L A-6

Fields Where Used

ERR_TOOLS

ERR_TOOLS

FINAL_ORIGIN_CAT

FINAL_ORIGIN_CAT

FINAL_ORIGIN_CAT

FINAL_ORIGIN_CAT

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

MAINT_ACT

MAINT ACT

MAINT_ACT

MAtNT_ACT

MAINT_ACT

MAJ/qT_ACT

MAINT_CH_TYPE

MAINT_CH TYPE

Code

SCA

SYMDEB

EXTMO

NEW

OLDUC

SLMOD

CPEXEC

DPDC

GRAPH

MATHCOMP

REALTIME

SYSSERV

USERINT

ACCBENTF_T

IMPLEMENT

ISOLATION

OTHER

REDESIGN

UNSYSTEST

ADAPTATION

CORRECTION

Value (Description)

Source code analyzer

Symbolic debugger

Extensively modified

Completely new

Old (unchanged)

Slightly modified

Control processing/executive

Data processing/data conversion

Graphics and special device support

Mathematical/computational

Real-time control

System services

User interface

Hours spend on acceptance/benchmark

testing

Hours spend on changing a system,
code and the associated documentation

included

Hours spend on understanding the

failure or request for enhancement of

adaptation

Hours spend on other maintenance
activities

Hours spent on redesigning a system

Hours spend on unit/system testing

Adaptation (response to change of

operational environment)

Correction (system did not satisfy its

requirements)

10004_37L A-7

Fields Where Used

MAINT_CH_TYPE

MAgqT_CLASS

MAINT_CLASS

MAIN'F_CLASS

MAINT_CLASS

MAINT_COM_CH

MAINT_COM_CH

MAINT_COM_CH

MAINT_COM_CH

MAINT_COM_CH

MAn_rrAso_cH

MAINT_ISO_CH

MAINT_ISO_CH

MAINT_ISO_CH

MAINT_ISO_CH

MEASURE_CODE

MEASURE_CODE

MEASURE_CODE

MEASURE_CODE

MEASURE_CODE

MEASURE_CODE

Code

ENHANCElVlNT

ADAPTATION

CORRECTION

ENHANCEMNT

OTHER

1HR

1DAY

1WEEK

1MONTH

1MONTHMORE

1HR

1DAY

1WEEK

1MONTH

1MONTHMORE

ACCTSTONE

AccrSTPASS

ACCTSTRUN

DISCRES

MODCODE

MODDESIGN

Value (Description)

Enhancement (response to change of

requirements)

Hours spend on maintenance with

modifying a system to adapt to a

change

Hours spend on maintenance with a

system failure

Hours spent on maintenance with a

system failure

Hours spent on other maintenance
activities

1 hour or less

1 hour to 1 day

1 day to 1 week

1 week to 1 month

More than 1 month

1 hour or less

i hour to 1 day

1 day to 1 week

1 week to 1 month

More than I month

Number of acceptance tests executed at
least one time

Number of acceptance tests passed

Number of acceptance test runs,

including renms

Number of discrepancies resolved

Number of modules completed

Number of modules designed

10004437L A-8

Fields Where Used

MEASURE_CODE

MEASURE_CODE

MEASURE_CODE

MEASURE_CODE

MEASURE_CODE

MEAS_TYPE

MEAS_TYPE

MEAS TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS TYPE

MEAS TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS _TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

Code

QUESTANS

SPECMODIM

SYSTSTONE

SYSTSTPASS

SYSTSTRUN

PM01

PM02

PM03

PM04

PM05

PM06

ST07

ST08

ST09

STIO

TMll

TM12

TM13

TM14

TM15

PC16

PC17

Value (Description)

Number of questions answered by

analysts

Number of specification modifications

implemented

Number of system tests executed at
least one time

Number of system tests passed

Number of system test runs, including
reruns

Problem difficulty

Tightness of schedule constraints

Requirements stability

Quality of specification documents

Requirements for documentation

Rigor of formal reviews

Ability of development team

Development team experience with

application

Development team experience with
environment

Stability of development team

composition

Project management performance

Project management experience with

application

Stability of project management team

Project planning discipline

Degree project plans followed

Modem programming practices

Disciplined change/question tracking

10004437L A-9

Fields Where Used

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE.

MEAS_TYFE

MEAS_TYPE

NOTE_TYPE

NOTE_TYPE

Code

PC18

PC19

PC20

PC21

PC22

PC23

PC24

EN25

EN26

EN27

EN28

EN29

EN30

PT31

PT32

PT33

PT34

PT35

PT36

CLOSEOUT

COMPACCTS

Value (Description)

Use of disciplined requirements analy-

sis methodology

Use of disciplined design methodology

Use of disciplined testing methodology

Use of tools

Use of test plans

Use of quality assurance procedures

Use of configuration management.

procedures

Degree of access to development

system

Programmers per terminal

Development machine resource
constraints

System response time

System hardware and support software

stability

Software tool effectiveness

Delivered software supports

requirements

Quality of delivered software

Quality of design present in delivered
software

Quality/completeness of software
documentation

Timely software delivery

Smoothness of acceptance testing

ProJect closeout status

Computer accounts to monitor

10004,_37L A- 10

Fields Where Used

NOTE_TYPE

NOTETYPE

NOTETYPE

NOTETYPE

NOTETYPE

NOTETYPE

NOTETYPE

NOTETYPE

NOTE_TYPE

NOTE_TYPE

OR.tTYPE

OR1 TYPE

ORI_TYPE

ORI_TYPE

PHASE_CO

PHASE_CO

PHASE_CO

PHASE_CO

PHASE_CO

PHASE_CO

PHASE_CO

PROI_TYPE

PROJ_TYPE

PROJ_TYPE

PROJ_TYPE

PROJ_TYPE

Code

COMPSYS

CONTACTS

CONTRLLIB

D ATAAVAIL

FORMSCOL

GENMESS

GHTOOL

LANGUAGES

PROJNAME

TASKNO

EXTMO

NEW

OLDUC

SLMOD

ACCTE

CLEAN

CODET

DESGN

MABqT

REQNT

SYSTE

AGSS

ATTITUDE

DATABASE

GRAPH/UI

MP&A

Value (Description)

Development and operational

computer system

Project contacts

Names of controlled libraries

Type of data available

SEL forms collected

General messages

Growth history tool used

Languages used

Project full name

Task numbers and corresponding years

Extensively modified

Completely new

Old (unchanged)

Slightly modified

Acceptance test

Cleanup

Code and test (implementation)

Design

Maintenance

Requirement definition

System test

Attitude ground support system

Attitude oriented

Database

Graphics/user interface

Mission planning and analysis

1ooo4,_7L A- 11

Fields Where Used

PROJ_TYPE

PROJ_TYPE

PROJ_TYPE

PROJ_TYPE

PROJ_TYPE

PURPOSE

PURPOSE

PURPOSE

PURPOSE

PURPOSE

PURPOSE

PURPOSE

PURPOSE

QA_STATUS

QA_STATUS

SECOND_L

SECOND_L

SECOND L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

Code

ORBIT

OTHER

REALTIME

SIMULATOR

TOOL

ADADA

ADAIR

ALCOMP

CNTRMOD

DATRA

INTOP

IOPRO

LODEC

HCCORRECT

HCERROR

CAT

CMTOOL

COMPI

EDIT

GRADIS

INTERF

ISPF

LINK

LSE

OTHER

PANVAL

Value (Description)

Orbit oriented

Other

Real time processing

Simulator

Software tool

Ada data abstraction

Ada process abstraction

Algorithmic/computational

Control module

Data transfer

Interface to operating system

I/O processing

Logic/decision

Hand-checked: correct

Hand-checked: errors found

Configuration Analysis Tool

Configuration management tool

(e.g. CMS, MMS)

Compiler

Editor

Graphics display builder

Interface checker (e.g., RXVP80,

ANALYZ)

ISPF

Linker

Language sensitive editor

Other tools

PANVALET

looo,_;,t. A-12

FieldsWhere Used

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SP_ACTIVITY

SP_ACTIVITY

SP_ACITVITY

SP_ACTIVITY

SP_ACTIVrTY

STATUS

STATUS

STATUS

STATUS

STATUS

STATUSCODE

STATUSCODE

STATUS_CODE

STATUSCODE

STATUSCODE

STATUS_CODE

STATUSCODE

TARGETCODE

Code

PDLPR

R.EPLP

SAP

SDE

STRANT

SYMDEB

TESTCO

CLMETHOD

DOCUMENT

ENHANCE

REUSE

REWORK

CLOSED

HCCORRECT

HCERROR

UNCHK

VERAP

ACCTST

CODE

DESIGN

DISCREP

QUESTIONS

SPECMOD

SYSTST

QUESTSUB

Value (Description)

PDL processor

Requirement language processor

Source Code Analyzer program

Software development environment

Structured analysis tool

Symbolic debugger

Test coverage tool

Methodology understanding or
discussion

Document

Enhance/refine/optimize

Reuse

Rework

Information has been verified and

validated--Project is closed

Hand-checked: correct

Hand-checked: errors found

Unchecked

Verified by application

Acceptance testing status

Code status

Design status

Discrepancy status

Questions to analysts status

Specification modification status

System testing status

Number of questions submitted to

analysts

10004437L A- 13

FieldsWhere Used

TARGET_CODE

TARGETCODE

TARGETCODE

TARGETCODE

TARGET_CODE

TARGET_CODE

Code

SPECMODREC

TOTACCTST

TOTCODE

TOTDESIGN

TOTDISCREP

TOTSYSTST

Value (Description)

Number of specification modifications
received

Total number of separate acceptance

tests planned

Estimated total number of modules to
be coded

Estimated total number of modules to

be designed

Total number of discrepancies reported

Total number of separate system tests

planned

10oo,UaTt. A-14

APPENDIX B.--SAMPLE OPTIMIZED DATABASE QUERIES

This appendix contains additional examples of SQL queries to augment those presented in

Section 5.3. These are optimized queries that are written specifically for an ORACLE

RDBMS environment. In each example, the desired retrieval is first expressed in an English

statement. This is followed by SQL statements to retrieve the desired data. The user should

remember that there is often more than one way to formulate a particular query; only one

method is presented here for each example.

l° Retrieve the names of all Attitude Ground Support Systems (AGSSs) with more

than 100,000 total lines of code.

SQL> SELECT

FROM

WHERE

AND

AND

PROJ_NAME

PROJ_STAT, PROJECT

T_LINE > 100000

PROJ_TYPE = 'AGSS'

PROJECT.PROJ_NO = PROJ STAT.PROJ_NO;

2. Retrieve the names of all persons who have submitted PRFs for project 'XYZ'.

SQL > SELECT

FROM

WHERE

AND

AND

AND

AND

DISTINCT FULL_NAME

EFF_FORM, EFF_PROJ, PERSONNEL, PROJECT

FORM_TYPE = 'PRF'

EFF_PROJ.P_ID = EFF FORM.P_ID

EFF_PROJ.PROG_ID = PERSONNEL.PROG_ID

EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO

PROJ_NAME = 'XYZ';

° For project 'XYZ', list alphabetically all component names (with subsystem pre-

fixes) that do not have COF data.

SQL > SELECT

FROM

WHERE

AND

ORDER

SUB_PRE, COM_NAME

V_PROJ_COM

PROJ_NAME = ' XYZ'

COM_NO NOT IN

(SELECT COM_NO FROM COM_SOURCE)

BY SUB PRE, COM_NAME:

10004437L B- 1

4. Retrieve the number of error correction changes for project 'KYZ' that took more

than 3 days to implement.

SQL > SELECT COUNT (CHANGE_NO)

FROM CHANGE

WHERE CHANGE_NO IN

(SELECT DISTINCT CHANGE _NO

FROM CHANGE_COM, V_PROJ_COM

WHERE CHANGE_COM.COM_NO =

V_PROJ_COM.COM_NO

AND PROJ_NAME = 'XYZ')

AND EFF_COM_CH = 'NDAY'

AND CH_TYPE = 'ERRCO';

5. Retrieve the total design hours for project 'XYZ'. This query may be interpreted

two ways.

a. Retrieve all hours charged to design activities.

SQL> SELECT SUM(ACT_HR)

FROM EFF_ACT

WHERE EFF_ID IN

(SELECT P_ID

b.

FROM

WHERE

AND

UNION

SELECT

FROM

WHERE

AND

AND

AND

EFF_PROJ, PROJECT

EFF_PROJ.PROJ_NO =

PROJECT.PROJ_NO

PROJ_NAME = 'XYZ'

PS_ID

EFF_SUB, EFF_PROJ, PROJECT

EFF_PROJ.P_ID = EFF_SUB.P_ID

EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO

PROJ_NAME = 'XYZ')

ACTIVITY IN ('CREDES', 'RDREVDES');

Retrieve all manpower hours charged during the design phase.

First, find the design phase start and end dates.

SQL> SELECT START_DATE, END_DATE

PROJ_EST_PHASE, PROJECT

WHERE SUB_DATE =

(SELECT MAX (SUB_DATE)

FROM PROJ_EST_PHASE

WHERE PROJ_NO = PROJECT.PROJ_NO)

10004437L B-2

AND

AND

AND

PHASE_CO = 'DESIGN'

PROJ_EST_PHAS E.PROJ_NO =

PROJECT.PROJ_NO

PROJ_NAME = 'XYZ'

Second, find all activity hours between these dates

SQL> SELECT SUM (ACT_HR)

FROM EFT_ACT

WHERE EFF_ID IN

(SELECT P_ID

FROM

WHERE

AND

AND

AND

UNION

SELECT

FROM

WHERE

AND

AND

AND

AND

AND

EFF PRO J, PROJECT

SUB_DATE BETWEEN <start date>

<end date>

EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO

PROJ_NAME = 'XYZ'

PS_ID

EFF_SUB, EFF_PROJ, PROJECT

SUB_DATE BETWEEN <start date>

<end date>

EFF_PROJ.P_ID = EFF_SUB.P_ID

EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO

PROJ_NAME = ' X'YZ'

ACTIVITY ! = 'SUPPORT');

I O0044,.q7L B-3

APPENDIX C--SEL DATA COLLECTION FORMS

This appendix contains all the SEL data collection forms. Most forms are completed by

programmers and managers of SEL-monitored projects. The PCSF, PMF, PSF, and SPF axe

completed by SEL personnel.

10004437L C- 1

Name: D21

Project: D1

CHANGE REPORT FORM

Approved by:

Date: D2

Section A- Identification

Describe the change: (What, why, how)

Effect: What components are changed?

Prefix Name Version

D61 D62

Effort: What additional components
were examined in determining
what change was needed?

(Attach list if more space is needed)

Location of developer's source files
month day year

Need for change determined on: D63_
Change completed (incorporated into system): D64

Effort in person time to isolate the change (or error):
Effort in person time to implement the change (or correction):

Check here if change involves

Ada components (It so, complete

questions on reverse side)

I hr/less 1 hrll day 1/3 days >,3 days

Section B- All Changes

Type of Change (Check one)
[] En'or correction

[] Planned enhancement

[] Imptemental;on of requirements

change

1'7 Improvement o! clan_,

mamtainablity, or documentatmn

[] Improvement of user serwces

[] InsemorVdeletmn of debug code

[] Opfirmzat_on of time/space/

accuracy

[] Adaptm=on to environment
change

[--IJ O_er (Des_lbe below)

D67

Y N Effects of Change
[] [] Was the change or correct=on to one and only one

E)68 component? (Must match Effect m Section A)

[] [] Did you look at any other component? (Must

match Effort in Section A)
D69

[] [] Dw::iyou have to be aware of parameters passed

explicitly or impl¢itly (e.g., COMMON blocks) to or

D70 trom the changed components?

Section C - For Error Corrections Only
Source of Error

(Check one)

[] P,e(luirements

[] Functional speoficatmns

[] Oes_jn

[]co=
r7 Prev=ous change

D71

Class of Error
(Check most applicable) °

[] Iniualizat_on D72
[] Logic/control structure

(eg. flow o| control incorrect)

[] Interface (internal)

(mOdule-to-module commun=catlon)

[] Interface (external)

(module to external communicat_on_

[] Data (value or structure)

](e.g., wrong variable used)

Computational

(e.g., error in math expression)

"If two are _:lually applicable check the

one higher on the list

Characteristics

(Check Y or N for all)

Y N

__
D73
[][]

D74

[-1rl
_75

_error (e.g. something was tett out)

Commission error (e g. something incorrect was

included)

Error was created by transcnpt_on (ctencal)

For LJbranan's Use Only

Number: D82
Date

Entered by:

Checked by:.

076

o_

NOVEMBER 1991

Figure C-1. Change Report Form (CRF) (1 of 2)

100044371_ C-2

D77

CHANGE REPORT FORM
Ada Project Additional Information

1. Check whictl Ada feature(s) was involved in this change (Check all that apply)

[] Data typing [] Program structure and packaging

[] Subprograms [] Tasking

[] Exceptions [] System-dependent features

[] Generics [] Other, please specify
(e.g., I/O, Ada statements)

2. For anerror involving Ada components:

a. Does the compiler documentation or the language D78
(Y/N)

reference manual explain the feature clearly?

b. Which of the following is most true? (Check one)

[] Understood features separately but not interaction

[] Understood features, but did not apply correctly
D79

[] Did not understand features fully

[] Confused feature with feature in another language

c. Which of the following resources provided the information

needed to correct the error? (Check all that apply)

[] Class notes [] Own memory

D80 [] Ada reference manual [] Someone not on team

[] Own project team member [] Other

d. Which tools, if any, aided in the detection or correction of this error? (Check all that apply)

D81

3.

[] Compiler

[] Symbolic debugger

[] Language-sensitive editor

[] CMS

[] Source Code Analyzer

[] P&CA (Performance and Coverage Analyzer)

[] DEC test manager

[] Other, specify

Provide any other information about the interaction of Ada and this change

that you feel might aid in evaluating the change and using Ada

8

NOVEMBER 1991

Figure C-1. Change Report Form (CRF) (2 of 2)

10004437L C-3

COMPONENT ORIGINATION FORM

Identification

Name:
D21

Project: D 1 Date:

Subsystem Prefix:

Component Name:

D50

D53

D2

Configuration Management Information

Date entered into controlled library (supplied by configuration manager):

Library or directory containing developer's source file:

Member name:

D54

Relative Difficulty of Developing Component

Please indicate your judgment by circling one of the numbers below.

Easy Medium Hard
1 2 3 4 5

D55

Origin D56

If the component was modified or derived from a different project, please indicate the
approximate amount of change and from where it was acquired; if it was coded new (from
detailed design) indicate NEW.

NEW

Extensively modified (more than 25% of NumOer:
statements changed) Date:

Slightly modified Entered by:
Old (unchanged) Checkedby:

If not new, what project or library is it from?
Component or member name:

For Librarian's Use Only

Type of Component (Check one only)

INCLUDE file (e.g., COMMON)
Control language (e.g., JCL, DCL, CLIST)
ALC (assembler code)
FORTRAN source
Pascal source
C source

NAMELIST or parameter list
Display identification (e.g., GESS, FDAF)
Menu definition or help
Reference data files

D57

BLOCK DATA file

Ada subprogram specification
Ada subprogram body
Aria package specification
Ada package body
Ada task body
Aria generic instantiation
Aria generic specification
Ada generic body
Other

Purpose of Executable Component D58

For executable code, please identify the major purpose or purposes of this component.
(Check all that apply).

I/O processing __ Control module
Algorithmic/computational Interface to operating system
Data transfer Process abstraction

Logic..Jdeci sion Data abstraction

NOVEMBER 1991

Figure 0-2. Component Origination Form (COF)

looo,_zTt. C-4

DEVELOPMENT STATUS FORM

Name: D21

Proiect: D1
Date: D22

Please complete the section(s) that is appropriate for the current status of the project.

Design Status

Planned total number of components to be designed D180
(New, modified, and reused)

Number of components designed D181
(Protog and PDL have been completed)

Code Status

Planned total number of components to be coded D182
(New, modified, and reused)

Number of components completed i D183
lAdded to controlled library) F

Testing Status i Acceptance Test
i

D188Total number of separate tests planned

System Test

D184

Number of tests executed at least one time D185
1 O186

D189

Number of tests passed D190

Discrepancy Tracking Status (from beginning of system testing)

Total number of discrepancies reported ! D192
)

Total number of discrepancies resolved I D193

Specification Modification Status (from beginning of requirements analysis)

Total number of specification modifications received ! D194
Total number of specification modifications completed (implemented) i O195

Requirements Questions Status (from beginning of requirements analysis)

Total number of questions submitted to analysts i D196

Total number of questions answered by analysts i D197
k

For Librarian's Use Only

D198
Check here if there

are no changes
Number:

Date:

Entered by:

Checked by:

NOVEMBER 1991

Figure 0-3. Development Status Form (DSF)

10004437L C-5

J ForluOr_tanSUse Only

MAINTENANCE CHANGE REPORT FORM N=_: 017_
Name: D21 OSMRNumber: D162 oa_:

Project: D 1 Date: 132 Ente,_ by:
Checked by:

SECTION A: Change Request Information

Functional Description of Change:

What was the type o! modification?

Correction

D163 _ Enhancement
Adaptation

What caused the change?

Requirements/specifications

D164 _ Software design
Code

Previous change

Other

==...................... _; ;_ :
_!_i!_!__ __ !_ _iii!::i!ii:.i:_i : ! :

SECTION B: Change Implementation Information

Components Added/Changed/Deleted:

Estimate effort spent isolating/determining the change:

Estimate effort to design, implement, and test the change:

1 hrto ldayto lweekto
< lhr 1 day 1 week 1 month

Check all changed objects: D167

Requirements/Specifications Document

Design Document

Code

System Description

User's Guide

Other

> 1 month

D165
0166

If code changed, characterize the change (check most
applicable):

Initialization D168

Logic/control structure

(e.g., changed flow of control)

Interface (internal)

(module to module communication)
Interface (external)
(module-to-external communication)

Data (value or structure)
(e.g., variable or value changed)

Computational

(e.g., change of math expression)

Other (none of the above apply)

D17t
deleted

Estimate the number of lines of code (including comments): D169 D170

added changed
Enter the number of components: D 172 D173 D174

added changed deleted

Enter the number of the added components that are: O175 D176
totally new totally reused

D177
reused with

modifications
oo
Q

NOVEMBER lggl

Figure C-4. Maintenance Change Report Form (MCRF)

_ooo_4zrt. C-6

Name:

Project:

D21
Personnel Resources Form

D 1 Date (Friday): D22

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

Activity ActivityDefinitions Hours

Predesign Understandingthe conceptsof the system. Any work prior to theactual design (such D23
as requirementsanalysis).

Create Design Developmentof the system, suOsystem,or components design. Includes development D24
of PDL, design diagrams, etc.

Read/ReviewDesign Hoursspent readingor reviewingdesign. Includes design meetings, formal and informal D25
reviews,or walkthroughs.

Write Code Actually coding systemcomponents. Includesboth deskand terminal code development. D26

Read/ReviewCode Codereading for anypurposeother than isolation of errors. D27

Test Code Units Testing individual componentsof the system. Includes writingtest drivers. D28

! Debugging Hoursspent finding a known error in the system and developing a solution. Includesgen- D29
eration andexecution ol tests associatedwith finding the error.

Integration Test Writingand executingtests that integratesystem components, including system tests. D30

Acceptance Test Running/supportingacceptance testing. D31

Other Other hours spenton the project not covered above. Includes management,meetings, D32
training hours, notebooks,system descriptions,user'sguides, etc.

SECTION C: Effort On Specific Activities (Need not add to A)
(Some hours may be counted in more than one area; view each activity separately)

Rework: Estimateof total hours spent that were caused by unplannedchanges or errors. Includes
effortcaused by unplanned changesto specifications,erroneousor changed design, errorsor
unplannedchanges to code, changesto documents. (This includes all hoursspent debugging.)

Enhancing/Refining�Optimizing: Estimateot total hours spent improvingthe efficiency or clarity of design, or
code, or documentation. These are not caused by requiredchanges or errors in the system.

Documenting: Hoursspent on anydocumentationof the system. Inctudesdevelopment of design documents,
prologs,in-line commentary, testplans, system descriptions,user'sguides, or anyother system
documentation.

Reuse: Hours spent in an effort to reusecomponents of the system. Includeseffort in lookingat other
system(s)design, code, or documentation. Counttotal hours in searching,applying,and testing.

For Dbranan's Use Only

Number: D37

Date:

Entered by:

Checked by:

NOVEMBER 1991

Figure 0-5. Personnel Resources Form (PRF)

10004437L C-'7

Name: ,

Project:
i --
k

D21

D1

Personnel Resources Form

(CLEANROOM VERSION)

Date(Friday):
D22

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours in Section 8 should equal total hours in Section A)

Activity

Predesign

l Pretest

l CreateDesign

Verify/ReviewDesign

WriteCode

Read/ReviewCode

IndependentTest

Responseto SFR

AcceptanceTest

ActivityDefinitions

Understandingtheconceptsof thesystem. Any workpriorto theactualdesign (such
asrequirementsanalysis).

Developinga testplanandbuildingthetestenvironment, includesgeneratingtestcases,
generatingJCL,compilingcomponents,buildinglibranes,anddetininginputsand
probabilities.

Developmentofthesystem,subsystem,orcomponentsdesign. Includesboxstructure
decomposition,stepwiserefinement,developmentof PDL,designdiagrams,etc.

Includesdesignmeetings,formalandinformalreviews,andwalkthroughs.

Actuallycodingsystemcomponents. Includesbothdeskand terminalcodedevelopment.

Codereadingfor anypurposeotherthanisolationof errors. Includesvenfyingand
reviewingcodefor correctness.

Executingandevaluatingtestsof systemcomponents.

Isolatinga tester-reportedproblemanddevelopinga solution. Includeswritingand
reviewingdesignor codetoisolateandcorrecta tester-reportedproblem.

Running/supportingacceptancetesting.

Hours

D199

D200

D201

D202

D203

D204

D205

D206

D207

Other Otherhoursspenton theprojectnotcoveredabove. Includesmanagement,meetings,
traininghours,notebooks,systemdescriptions,user'sguides,etc.

D208

SECTION C: Eifort On Specific Activities

MethodologyUnderstanding�Discussion:Estimatethe totalhoursspent learning,discussing,reviewingor
atlemptingto understandcleanroom-relatedmethodsandtechniques,includesall timespentin training.

For Libranan's Use Onty

Num_: D210
Date:

Entered by:

Checked by:

NOVEMBER 1991

Figure 0-6. Cleanroom Personnel Resources Form (CLPRF)

10004437L C-8

PROJECT COMPLETION STATISTICS FORM

Name:

Project: D1 Date: D2

Phase Dates (Saturdays)

Phase

Requirements Definition

Design D85

Implementation D86

System Test D87

Acceptance Test D88

Cleanup D89

Maintenance D90

Project End D91

Start Date

D84

Staff Resource Statistics

Technical and

Management Hours D92

Services Hours D93

Computer Resource Statistics

Computer CPU hours No. of runs

D38 D94 D95

Project Size Statistics

General Parameters Source Lines of Code

Number of subsystems D96 Total D100

D97 New D101Number of components

Number of changes D98 Slightly Modified

Pages of documentation D99 Extensively Modified

Old

Comments

D102

D211

D103

D104

Executable Modules Executable Statements Statements

Total D105 Total D109 Total D214

New D106 New D110 New [)215

Slightly Modified D107 Slightly Modified D111 Slightly Modified D216

Extensively Modified D212 Extensively Modified D213 Extensively Modified D217

Old D108 Old D112 Old D218

Note: All of the values on this form are to be actual values at
the completion of the project. The values entered by
hand by SEL personnel reflect the data collected by
the SEL during the course of the project. Update
these according to proiect records and supply values
for all blank fields.

Fo_ {Jbrarlan's Use Only

Number D113

Date:

Entered by:

Checkecl by

NOVEMBER 1991

Figure 0-7. Project Completion Statistics Form (PCSF)

10004437L C-9

PROJECT ESTIMATES FORM

Name:

Project: D1

Phase Dates (Saturdays)

Phase Start Date

Requirements Definitior

Date: D2

Staff Resource Estimates

Programmer Hours D11

Management Hours D12

Services Hours D13

D3

Design D4

Implementation D5

System Test D6

Acceptance Test D7

Cleanup D8

Project End D10

Project Size Estimates

Number of subsystems D14

Number of components D15

Source Lines of Code

Total D16

New D17

Modified D18

Old D19

Note: All of the values on this form are to be
estimates of projected values at completion
of the project. This form should be
submitted with updated estimates every 6 to
8 weeks during the course of the project,

For Librarian's Use Only

Number: D20

Date:

Entered by:

Checked by:

f_
o4

t_

_8
NOVEMBER 1991

Figure C-8. Project Estimates Form (PEF)

1ooo,U.ZTt. C-IO

Name:

Project:

PROJECT MESSAGES FORM

D1 Date: D2

Messages:

P4, D61, D62

NOVEMBER 1991

Figure C-9. Project Messages Form (PMF)

Iooo4__ C- 11

PROJECT STARTUP FORM

Name:

Project: D1 Date: D2

Project Full Name:

PLEASE PROVIDE ALL AVAILABLE INFORMATION

P4, D61, D62

Project Type: 1=2,D60

Contacts: P4, D61, D62

Language: P4, D61, D62

Computer System: P4, D61, D62

Account: P4, D61, D62

Task Number: P4, D61, D62

Forms To Be Collected: (Circle forms that apply) P4, D61, D62

PEF PRF CLPRF DSF SPF SIF COF CCF CRF SEF

General Notes: P4, D61, D62

PCSF WMEF MCRF

lit
Personnel Names (indicate with if not in database):

NOVEMBER 1991

Figure 0-10. Project Startup Form (PSF)

10004437L C-]. 2

SERVICES/PRODUCTS FORM

Project: D1

Date (Friday): D22

COMPUTER RESOURCES

Computer CPU Hours No. of Runs

D38 D39 D40

GROWTH HISTORY

Components D41

Changes D42

Lines of Code D43

SERVICES EFFORT

Service

Tech Pubs

Hours

D44

Secretary D45

Proj Mgmt D47

Other D48

For Librarian's Use Only

Number: D49

Date:

Entered by:

Checked by:

0

0

0
0

NOVEMBER 1991

Figure C-11. Services/Products Form (SPF)

10004437L C- 13

SUBJECTIVE EVALUATION FORM

Nan30:

Proi_'t: D1 Date: D2

Indicate response by circling the corresponding numeric ranking.

I. PROBLEM CHARACTERISTICS

1. Assess the intrinsic difficulty or complexity of the problem that was addressed by the software development.

Dl14 t 2 3 4 5

Easy Average Difficult

2. How tight were schedule constraints on project?

Dl15 t 2 3 4 5
Loose Average]qght

3. How stable were requirements over development period?

Dl16 t 2 3 4 5

Loose Average High

4. Assess the overall quality of the requirements specification documents, including their clanty, accuracy,
consistency, and completeness.

Dl17 t 2 3 4 5

Low Average High

5. How extensive were documentation requirements?

Dl18 t 2 3 4
Low Average

5

High

6. How rigorous were formal review requirements?

Dl19 1 2 3 4 5
Low Average High

II. PERSONNEL CHARACTERISTICS: TECHNfCAL STAFF

7. Assess overall quality and ab=lity of development team.

D120 t 2 3 4 5

Low Average High

8. How would you characterize the development team's experience and familiarity with the application area of
the project?

D121 t 2 3 4 5
Low Average High

9. Assess the development team's expenence and familiarity with the development environment (hardware
and support software).

D122 t z 3 4 5

Low Average High

10. How stable was the composition of the development team over the duration of the project?

D123 1 2 3 4 5
Loose Average High

FOR LIBRARIAN'S USE ONLY

Number: Entered by:

Date: 01 50 Checked by:

NOVEMBER 1991

Figure O-12. Subjective Evaluation Form (SEF) (1 of 3)

100044371.. C-14

SUBJECTIVE EVALUATION FORM

III. PERSONNEL CHARACTERISTICS: TECHNICAL MANAGEMENT

11. Assess the overall performance of project management,
1 2 3 4 5

D124 Low Average High

12. Assess project management's experience and familiarity with the application.

D125 1 2 3 4 5
Low Average High

13. How stable was project management during the project?

1 2 3 4 5

D126 Low Average High

14. What degree of disciplined project planning was used?
1 2 3 4 5

D127 Low Average High

15. To what degree were project plans followed?

D128 1 2 3 4 5
Low Average High

IV. PROCESS CHARACTERISTICS

16. To what extent did the development team use modern programming practices (POL, top-down

development, structured programming, and code reading)?

D129 _ 2 3 4 5
Low Average High

17. To what extent did the development team use well.defined or disciplined procedures to record

specification modifications, requirements questions and answers, and interface agreements 9
1 2 3 4 5

D130 Low Average High

18. To what extent did the development team use a well-defined or disciplined requirements analysis

methodology?

D131 t 2 3 4 5
Low Average High

19. To what extent did the development team use a well-defined or disciplined design methodology?

I 2 3 4 5

D132 Low Average High

20. To what extent did the development team use a well.defined or disciplined testing methodology?

D133 t 2 3 4 5
Low Average High

IV. PROCESS CHARACTERISTICS

21. What software tools were used by the development team? Check all that apply from the list that follows

and identity any other tools that were used but are not listed.

D134

22. To

D135

[] Compder

[] Linker

[] Editor

[] Graphic display builder

[] Requirements language processor

[] Structured analysis support tool

[] PDL processor

[] _SPF
[] SAP

[] CAT

[] PANVALET

[] Test coverage tool

[] Interface checker (RXVP80, etc.)

[] Language.sensitive editor

[] Symbolic debugger

[] Configuration Management Tool (CMS, etc.)

[] Others (identify by name and function)

what extent did the development team prepare and follow test plans?

1 2 3 4 5

Low Average High
I;

Figure C-12. Subjective Evaluation Form (SEF) (2 of 3)

100044371- C- t 5

SUBJECTIVE EVALUATION FORM

IV. PROCESS CHARACTERISTICS (CONT'D)

23. To what extent did the development team use well.defined and disciplined quality assurance procedures

(reviews, inspections, and walkthroughs)?

D136 t 2 3 4 s
Low Average High

24. To what extent did development team use well.defined or disciplined configuration management

procedures?

D137 1 2 3 4 5
Low Average High

V. ENVIRONMENT CHARACTERISTICS

25. How would you characterize the development team's degree of access to the development system?
1 2 3 4 5

D 1 38 Low Average High

26. What was the ratio of programmers to terminals?
1 2 3 4 5

D139 8:1 4:1 2:1 1:1 1:2

27, To what degree was the development team constrauned by the size of main memory or direct-access
storage availal:de on the development system?

1 2 3 4 5

Ol 40 Low Average High

28. Assess the system response time: were the turnaround times experienced by the team satisfactory in

light of the size and nature of the jobs?

D141 1 2 3 4 5
Poor Average Very Good

29. How stable was the hardware and system support software (including language processors) during the

project?

D142 t 2 3 4 5
Low Average High

30. Assess the effectiveness of the software tools.

D143 1 2 3 4 5
Low Average High

VI. PRODUCT CHARACTERISTICS

31. To what degree does the delivered software provide the capabilities specified in the requirements?

D144 1 2 3 4 5
Low Average High

32. Assess the quality of the delivered software product.

1 2 3 4 5

D145 Low Average High

33. Assess the quali_ of the design that is present in the software product.
1 2 3 4 5

D146 Low Average High

34. Assess the quality and completeness of the delivered system documentation.
1 2 3 4 5

D147 Low Average High

35. To what degree were software products delivered on time?
1 2 3 4 5

D148 Low Average High

36. Assess smoothness or relative ease of acceptance testing.
1 2 3 4 5

D 149 Low Average High

Figure C-12. Subjective Evaluation Form (SEF) (3 of 3)

10004437L C- 16

Name:

Project:

SUBSYSTEM INFORMATION FORM

D1 Date: D2

Subsystem
Prefix
D50

Add New Subsystems

Subsystem Subsystem
Name Function

D51 D52

Change Existing Subsystems

Old Subsystem Prefix
(Must exist in the database)

Action

(R- Rename,
D- Delete)

New Subsystem Prefix
(Must not exist in the database)

This form is to be completed by the time of the Preliminary Design Review (PDR). An update
must be submitted each time a new subsystem is defined thereafter. This form is also to be
used when a subsystem is renamed or deleted.

Subsystem Prefix: A prefix of 2 to 5 characters used to identify the subsystem when naming

components
Subsystem Name: A descriptive name of up to 40 characters
Subsystem Function: Enter the most appropriate function code from the list of functions below:

For Ubranan's Use Only

Number:

D_e:

Entered by:

Checked by:

USERINT:

DPDC:
REALTIME:
MATHCOMP:

GRAPH:
CPEXEC:
SYSSERV:

User Interface

Data Processing/Data Conversion
Real-time Control

Mathematical/Computational
Graphics and Special Device Sup0ort
Control Processing/Executive
System Services

NOVEMBER Ig91

Figure C-13. Subsystem Information Form (SIF)

10004437L C-]-7

Name:

Project:

WEEKLY MAINTENANCE EFFORT FORM
D21

D1 Date (Friday): D22

For _Drai'l<3ns Use Only

Number D161

Date:

Entered by:

Checked by:

Section A - Total Hours Spent on Maintenance llncludes time spentonallmaintenance

activities for the project excluding wnting specification modifications)

Section B - Hours By Class of Maintenance (Total of hours in Section B should equal total hours in
Section A)

Class Deft nition Hou rs

Correction Hours spent on all maintenance associated with a system failure.
D151

Enhancement Hours spent on atl maintenance associated with modifying the system due
,to a requirements change. Includes adding, deleting, or modifying system
features as a result of a requirements change. D152

Adaptation Hours spent on all maintenance associated with modifying a system to
adapt to a change in hardware, system software, or environmental
characteristics. D 153

Other Other hours spent on the project (related to maintenance) not covered

above, includes management, meetings, etc. 0154

Section C - Hours By Maintenance Activity (Totalot hours,nSe_on Cshou_ e,_uattotaJhou,_,n
Section A)

Activity Activity Definitions Hours

Isolation Hours spent understanding the failure or request for enhancement or D155
adaptation.

Change Hours spent actually redesigning the system based on an understanding
Design of the necessary change. D 156

Implementation Hours spent changing the system to complete the necessary change.
This includes changing not only the code, but the associated
documentation. D 157

Unit Test/ Hours spent testing the changed or added components. Includes hours
_System Test spent testing the integratPon of the components. D158

Acceptance/ Hours spent acceptance testing or benchmark testing the modified
Benchmark Test system. D159

Other Other hours spent on the project (related to maintenance) not covered

above. Includes management, meetings, elc.
D160

8

NOVEMBER 1991

Figure 0-14. Weekly Maintenance Effort Form (WMEF)

10004437L C- 18

APPENDIX D--DATA DEFINITION.LANGUAGE FOR THE

SEL DATABASE

This appendix describes the data definition language (DDL) that contains all the semantic

rules of the SEL database. This DDL represents the design of the SEL database. It is not

implementation language and should not be confused with Oracle's DDL statements in SQL.

In the design DDL, each base relation is identified by the keyword RELATION and each

view is identified by the keyword VIEW. Each field within a relation is identified by the

keyword FIELD followed by its name, its data type, and its length. Char, which represents a

character data type, is followed by the maximum length of the field. Numeric, which

represents a numeric data type, is followed by the width of the field and the number of

decimal places, if any. Date represents an ORACLE date data type.

The primary key component(s) is identified by the keyword KEY. The keyword UNIQUE

identifies fields that are not part of the primary key but whose values are unique within a

relation. The keyword INDEX identifies fields that are not unique, but should be indexed to
facilitate database retrievals.

The constraints mentioned in Section 4.2.3 are represented by mathematical expressions.

The following constraint in the DDL

CONSTRAINT

RANQE PROJECT P

RANGE PROJ SUB S

_'S 3P (P.PROJ_NO = S.PROJ_NO)

can be interpreted as follows: P is the range variable that ranges over the PROJECT relation,

and its permitted values are records of PROJECT. S is the range variable that ranges over the

PROJ_SUB relation, and its permitted values are records of PROJ_SUB. Here, range vari-

ables are used as a simple shorthand. For all (_') S, there exists (3) P such that PROI NO in P

is equal to PROJ_NO in S. In other words, for each project number that exists in the

project-subsystem relation, the same project number must exist in the project relation.

Besides "for all" (V) and "there exist" (3) qualifiers, the qualifier "or" (V) is used in the

constraint definition of relation EFF_ACT, and the qualifier"and" A is used in the constraint

detrmitions of relations CH_ERR_ARES, CH ERR_TOOLS, CH_ADAFEAT, and

CH ERR_GEN. Each field within a view is identified by the keyword FIELD followed-by

its name and the base relation from which it is derived. The field lengths are the same as in the
base relations.

100044,37L

RELATION CHANGE

(FIELD CHANGE_NO char (6)

FIELD PROG_ID numeric(5)

FIELD SUB_DATE date

FIELD EFF ONE char(l)

FIELD EFF_ADA char(l)

FIELD EFF_ISO_CH char(10)

FIELD EFF_COM_CH char(10)

FIELD EFF PARPA char(l)

FIELD EFF_OTHER char(1)

FIELD DATE_DETER date

FIELD DATE_COMP date

FIELD NUM_COM_CH numeric(2)

FIELD NUM_COM_EX numeric(2)

FIELD CH_TY'PE char(10)

FIELD FORMTYPE char(6)

FIELD STATUS char(10))

KEY (CHANGE_NO)

INDEX (SUB_DATE)

INDEX (PROG_ID)

INDEX (CH_TYPE)

INDEX (STATUS)

CONSTRAINT

RANGE VAL_ISO_CH VEI

RANGE CHANGE CH

RANGE PERSONNEL PROG

RANGE VAL_STATUS VS

RANGE VAL_EFF_COM_CH VEC

RANGE VAL_CH_TYPE VCHT

VCH

VCH

VCH

VCH

VCH

VCH

::IPROG (PROG.PROG_ID = CH.PROG_ID)

=IVS (VS.CODE = CH.STATUS)

::IVEI (VEI.CODE = CH.EFFISO_CH)

BVEC (VEC.CODE = CH.EFF_COM_CH)

::::IVCHT (VCHT.CODE = CH.CH_TYPE)

::::ICH (CH.FORM_TYPE = 'CRF')

looo#_ D-2

RELATION CHANGE_COM

(FIELD CHANGE_NO char(6)

FIELD COM_NO numeric(7))

KEY (CHANGE_NO, COM_NO)

INDEX (COM_NO)

CONSTRAI/qT

RANGE SUB_COM C

RANGE CHANGE_COM CHC

RANGE CHANGE CH

VCHC]C (C.COM_NO = CHC.COM_NO)

VCHC ::ICH (CH.CHANGE_NO = CHC.CHANGE NO)

RELATION CH_ADAFEAT

(FIELD CHANGE_NO char(6)

FIELD ADA_FEATURE char(10))

KEY (CHANGE_NO, ADA_FEATURE)

RANGE CHANGE CH

RANGE CH_ADAFEAT CHA

RANGE VAL_ADA_FEATURE VAF

VCHA ::IVAF (VAF.CODE = CHA.ADA_FEATURE)

VCHA ::]CH (CH.EFF_ADA = 'Y' A CH.CHANGE_NO =

CHA.CHANGE_NO A CH.CH_TYPE = 'ERRCO')

RELATION CH_ERR ARES

CHANGE_NO char(6)

FIELD ERR_ARES char(10))

KEY (CHANGE_NO, ERR_ARES)

CQNS_

RANGE CHANGE CH

RANGE CH_ERR_ARES CHEA

RANGE VAL_ERR_ARES VEA

VCHEA :::ICH (CH.CH_TYPE = 'ERRCO' A CH.CHANGE NO =

CHF_.,A.CHANGE_NO A CH.EFF ADA = 'Y')

VCHF_.,A :::IVEA (VEA.CODE = CHEA.ERR_ARES)

100044,.37L D-3

RELATION CH_ERR_GEN

(FIELD CHANGENO char(6)

FIELD ERR_SOURCE char(10)

FIELD ERR_CLASS char(10)

FIELD ERR_COMIS char(l)

FIELD ERR_TYPO char(1)

FIELD ERR OMIS char(. 1)

FIELD ERR_ADOC char(l)

FIELD ERR_ACAUSE char(10))

KEY (CHANGE_NO)

INDEX (ERR_ACAUSE)

CONSTRAINT

RANGE CHANGE CH

RANt_E CH_ERR_GEN CHEG

RANGE VAL_ERR_SOURCE VES

RANGE VAL_ERR_CLASS VEC

RANGE VAL_ERR_ACAUSE VERA

VCHEG 3CH (CH.CH_TYPE = 'ERRCO' A CH.CHANGE_NO -

VCHEG

VCHEG

VCHEG

CHEG.CHANGE_NO)

3VES (VES.CODE = CHEG.ERR_SOURCE)

3VERA (VERA.CODE = CHEG.ERR_ACAUSE)

3VEC (VEC.CODE = CHEG.ERR_CLASS)

RELATION CH_ERR_TOOLS

(FIELD CHANGE_NO char(6)

FIELD ERR_TOOLS char(10))

KEY (CHANGENO, ERR_TOOLS)

CONSTRAINT

RANGE CHANGE CH

RANGE CH_ERR_TOOLS CHET

RANGE VAL_ERR_TOOLS VET

VCHET ::tCH (CH.CH_TYPE = 'ERRCO' A CH.CHANGE_NO =

CHET.CHANGE_NO)

VCHET =:IVET (VET.CODE = CHET.ERR_TOOLS)

i 0004437L D--4

RELATION COMPUTER

(FIELD CPU_NAME char(10)

FIELD C FULL_NAME char(20))

KEY (CPU_NAME)

RELATION COM PURPOSE

(_FIELD COM_NO numeric(7)

FIELD PURPOSE char(10))

KEY (COM_NO, PURPOSE)

CONSTRAINT

RANGE COM_SOURCE C

RANGE COM_PURPOSE CP

RANGE VAL_COM_PURPOSE_VCOP

VCP 3C (C.COM_NO = CP.COM_NO)

VCP 3VCOP (VCOECODE = CEPURPOSE)

RELATION COM_SOURCE

(.FIELD COM_NO numeric(7)

FIELD PROG_ID numeric(5)

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FORM_NO char(6)

FORM_TYPE char(6)

STATUS char(10)

CREATE_DATE date

ORI_TYPE char(10)

COM_TYPE char(10)

DIFFICULTY numeric(2)

FIELD SUB_DATE date)

KEY (COM NO)

UNIQUE (FORM_NO)

INDEX (FORM_NO)

INDEX (STATUS)

INDEX (CREATE_DATE)

INDEX (SUB_DATE)

CONSTRAINT

RANGE SUB_COM C

RANGE COM SOURCE CSO

10004437L D-5

RANGE VAL ORI_TYPE VOT

RANGE VAL_STATUS VS

RANGE VAL_COM_TYPE VCT

RANGE PERSONNEL PROG

VCSO

VCSO

VCSO

VCSO

VCSO

VCSO

3C (C.COM_NO = CSO.COM_NO)

3VOT (VOT.CODE = CSO.OR/_TYPE)

3VS (VS.CODE = CSO.STATUS)

3VCT (VCT.CODE = CSO.COM_TYPE)

3PROG (PROG.PROG_ID = CSO.PROG_ID)

3CSO (CSO.FORM_TYPE = 'COF')

RELATION COM_STAT

(FIELD COM_NO numeric(7)

FIELD C_EXE_S numeric(6)

FIELD C_LINE numeric(6)

FIELD C C LINE numeric(6)

FIELD C STMTS numeric(6)

FIELD FINAL_ORIGIN_CAT char(t0))

KEY (COM_NO)

CONSTRAINT

RANGE SUB_COM C

RANGE COM_STAT CS

VCS 3C (C.COM_NO = CS.COM_NO)

RELATION CRF_TEMP_CHANGE_COM

(FIELD USER_ID numeric

FIELD SUB_PRE char(5)

FI LE.___COM NAME char(40)

FIEL!D COMNO numeric(7))

KEY (USER_ID, SUB PRE, COM_NAME)

CONSTRAINT

RANGE V PROJ_COM VPROJ

RANGE CRF_TEMP_CHANGE_COM CRF

RANGE PROJ_SUB SUB

VCRF 3SUB (SUB.SUB_PRE = CRF.SUB_PRE)

VCRF =IVPROJ (VPROJ.COM_NAME = CRECOM_NAME)

VCRF 3VPROJ (VPROJ.COM_NO = CRF.COM_NO)

10004_ZL D-6

RELATION DSF_MEASURE

(.FIELD DID numeric(10)

FIELD STATUS_CODE char(10)

FIELD MEASURE_CODE char(10)

FIELD MEASURE_VALUE numeric(,5))

KEY (D_ID, STATUS_CODE, MEASURE_CODE)

CONSTRAINT

RANGE VAL_DSF_TARGET VDT

RANGE VAL_DSF_MEASURE VDM

RANGE PROJ_DSF DSF

RANGE DSF_MEASURE DM

VDM 3VDT (VDT.CODE = DM.MEASURE_CODE)

VDM 3VDM (VDM.CODE = DM.STATUS_CODE)

VDM 3DSF (DSF.D_[D = DM.D_ID)

RELATION DSF_TARGET

(FIELD DID numeric(10)

FIELD STATUS_CODE char(10)

FIELD TARGET_CODE char(10)

FIELD TARGET_VALUE numeric(5))

KEY (DID, STATUS_CODE, TARGET_CODE)

CONSTRAINT

RANGE VAL_DSF_TARGET VDT

RANGE VAL_DSF_STATUS VDS

RANGE PROJ_DSF DSF

RANGE DSF_TARGET DT

VDT 3VDT (VDT.CODE = DT.TARGET_CODE)

VDT 3VDS (VDS.CODE = DT.STATUS_CODE)

VDT 3DSF (DSF.D_ID = DT.D_ID)

RELATION DUMMY

(HELD HIDDEN char(1))

RELATION EFF_ACT

(FIELD EFF_ID numeric(10)

FIELD ACTIVITY char(10)

FIELD ACT_HR numeric(10, 2))

100044,37L D-7

KEY (EFF_ID, ACITVITY)

CONSTRAINT

RANGE EFF PROJ EP

RANGE EFF_SUB ES

RANGE VAL_ACTIVITY VA

RANGE EFF ACT EA

VEA 3VA (VA.CODE = EA.ACTIVITY)

VEA 3EP ES (ES.PS_ID = EA.EFF_ID

EP.P ID = EA.EFF_ID)

RELATION EFF_FOR.M

(FIE_ P_ID-numeric(10)

FIELD FORM_NO char(6)

FIELD FORM_TYPE char(6)

FIELD STATUS char(10))

(P_m)

INDEX (STATUS)

INDEX (FORMNO)

CONSTRAINT

RANGE EFF_PROJ EP

RANGE EFF_FORM EFF

RANGE VAL_STATUS VS

VEFF 3EP (EP.P_ID = EFEP ID)

VEFF 3VS (VS.CODE = EFESTATUS)

VEFF 3EFF (EFF.FORM_TYPE = 'SPF' V EFF.FORM_TYPE = 'PRF')

RELATION EFF_PROJ

PROJ NO numeric(3)

FIELD SUB_DATE date

FIELD PROG_ID numeric(5)

FIEI___ P_ID numeric(10))

KEY (PROJ_NO, SUB_DATE, PROG_ID)

UNIQUE (P_D)

INDEX (P_D)

CONSTRAINT

RANGE PROJECT P

RANGE PERSONNEL PROG

RANGE EFF_PROJ EP

IO0044ZrL D-8

VEP

'v'EP

'v'EP

3P (P.PROJ_NO = EP.PROJ NO)

3PROG (PROG.PROG_ID = EP.PROG_ID)

3EP (EP.SUB_DATE = a valid Friday date)

RELATION EFF_SUB

(FIELD P ID numeric(10)

FIELD SUB_PRE char(5)

FIELD PS_ID numeric(10))

KEY (P_ID, SUB_PRE)

Ul OUE (PS n))

INDEX (PS_ID)

CONSTRAINT

RANGE EFF_PROJ EP

RANGE EFF_SUB ES

RANGE PROJ_SUB S

YES 3S (S,SUB_PRE = ES.SUB_PRE)

'¢ES 3EP (EP.P_ID = ES.P ID)

RELATION GENERATE_SATDAY

(FIELD SCR/FT_NO numeric(10)

FIELD SAT_DAY date)

KEY (SCRIPTNO, SAT_DAY)

CONS'IRAINT

RANGE TEMP_SCRIPT T

RANGE GENERATE_SAT_DAY SAT

VSAT 3"1" (T.SCRIPT_NO = SAT.SCRItrr_NO)

VSAT 3SAT (SAT.SATDAY =a valid Saturday date)

RELATION MAINT_ACT HRS

MAINT_ID numeric(10)

FIELD MAINT ACT char(10)

FIELD ACT_HR numeric(10, 2))

KEY (MAINT_ID, MAINT ACT)

1ooo4,_ D-9

CONSTRAINT

RANGE MAINT_ACT_HRS MAH

RANGE MAINT_PROF MP

RANGE VAL_ACT VA

VMAH =:IVC (VA.CODE = MAH.MAINT_ACT)

VMAI-I ::IMP (MP.MAINT_ID = MAH.MAINT_ID)

RELATIQN MAINT_CHANGE

(FIE_ MAINT_CH_NO char(6)

FIELD PROJ_NO numeric(3)

FIELD PROG_ID numeric(5)

FIELD SUB_DATE date

FIELD OSMR_NO numeric(4)

FIELD STATUS char(10)

FIELD FORM_TYPE char(6)

FIELD MAI2qT CH_TYPE char(10)

FIELD CH_CAUSE char(10)

FIELD MAINT_ISO_CH char(10)

FIELD MA[NT_COM_CH char(10)

FIELD CH_CLASS char(10)

FIELD EST_LOC_ADD numeric(6)

FIELD EST_LOC_CH numeric(6)

FIELD EST_LOC-DEL numeric(6)

FIELD COMP_ADD numeric(4)

FIELD COMP_CH numeric(4)

FIELD COMP_DEL numeric(4)

FIELD COMP_ADD_NEW numeric(4)

FIELD COMP_ADD_REUSE numeric(4)

FIELD COMP_ADD_REMOD numeric(4)

KEY (MAnVr_CH_NO)

12N-DEX (PROJ NO)

CONSTRAINT

RANGE MAINT_CHANGE MC

RANGE VAL_MAINT_CH_TYPE VMCT

RANGE VAL_CH CAUSE VCHC

RANGE PROJECT P

1o0044371_ D- 10

RANGE VAL_STATUS VS

RANGE PERSONNEL PROG

RANGE VAL_MAINT_ISO_CH VMIC

RANGE VAL_MAINT_COM_CH VMCC

RANGE VAL_CH_CLASS VCC

VMC

VMC

VMC

v/MC

VMC

VMC

VMC

VMC

VMC

VMC

3P (RPROJ_NO = MC.PROJ_NO)

3PROG (PROG.PROG_ID = MC.PROG_ID)

3VS (VS.CODE = MC.STATUS)

3MC (MC.FORM_TYPE = 'MCRF')

3VMCT (VMCT.CO DE = MC.MAINT CH_TYPE)

3VCHC (VCHC.CODE = MC.CH_CAUSE)

3VMIC (VMIC.CODE = MC.MAINT_[SO_CH)

3VMCC (VMCC.CODE = MC.MAINT_COM_CH)

3VCC (VCC.CODE = MC.CH_CLASS)

3MC (SUM(MC.COMP_ADD) =

SUM(MC.COMP_ADD_NEW+

MC.COMP_ADD_REUSE+

MC.COMP_ADD_REMOD))

RELATION MAINT_CH_OBJECTS

(FIELD MAINT_CH_NO char(6)

FIELD CH_OBJECT char(10))

KEY (MAINT_CH_NO, CH_OBJECT)

CONSTRAINT

RANGE MAINT_CH_OBJECTS MCO

RANGE VAL_CH_OBJECT VCO

RANGE MAINT_CHANGE MC

'_¢ICO 3VCO (VCO.CODE = MCO.CH_OBJECT)

VMCO 3MC (MC.MAINT_CH_NO = MCO.MAINT_CH NO)

RELATION MAINT_CLASS_HRS

(FIELD MAINT_ID numeric(l 0)

FIELD MAINT_CLASS char(10)

FIELD CLASS_HR numeric(10, 2))

KEY (MAINT_ID, MAINT_CLASS)

I00044,37L D-II

CONSTRAINT

RANGE MAINT_CLASS_HRS MCH

RANGE MAINT_PROJ MP

RANGE VAL_CLASS VC

VIVICH 3VC (VC.CODE = MCH.MAINT_CLASS)

VIVICH 3MP (MP.MA[NT_ID = MCH.MAINT_ID)

RELATION MAINT_PROJ

(FIELD PROJ_NO numenc(3)

FIELD SUB_DATE date

FIELD PROG_ID numeric(5)

FIELD MAINT_ID numeric(10)

FIELD FORM_NO char(6)

FIELD FORM_TYPE char(6)

FIELD STATUS char(10))

KEY (PROJ_NO. SUB_DATE, PROG_ID)

UNIQUE (MAINT_ID)

INDEX (MAINT_ID)

INDEX (FORM_NO)

CONSTRAINT

RANGE MAINT_PROJ MP

RANGE PROJECT P

RANGE VAL_STATUS VS

RANGE PERSONNEL PROG

VMP

VMP

VMP

VMP

VMP

3P (P.PROJ_NO = MP.PROJ_NO)

3PROG (PROG.PROG_ID = MP.PROG_ID)

3VS (VS.CODE = MESTATUS)

3MP (MP.SUB_DATE - a valid Friday date)

3MP (MEFORM_TYPE = 'WMEF')

RELATION PC_SEQNO

(FIELD TAB LE_NAME char(30)

FIELD. FIELD_NAME char(30)

FIELD MAX_SEQNO numeric(10))

KEY (TAB LE _NAME. FIELDNAME)

100044,37L D- 12

CONSTRAINT

RANGE PC SEQNO S

VS qS IS.TABLE NAME = a vaiid reiation name

A S.FIELD_NAME = a v'aiid field name within that

relation}

RELATION PERM SCRIt_

(FIELD ORA_USER chart 20)

FIELD SCRItrF_NAME chart20)

FIELD SCRIPTNO numeric(10))

HELD OUT_ROUTING ciaan 20)

FIELD O UT_I_LE chart 20)

KEY (OR.A_USER, SCRIPT_NAME)

UNIQUE (SCRIPT_NO)

INDEX (SCRIPTNO)

CONSTRAINT

RANGE USER CL.-kSS U

RANGE PERM_SCRIPT P

VP 3U (U.ORA_USER = P.ORA_USER)

V1a 3P ((ROUT_ROUTING = '2')

A (ROUT_FILE != null A

P.OUT_ROUTING = ' t '))

RELATION PERSONNEL

(FIELD PROG_[D numerict 5)

FIELD FORM_NAME char{ 15)

FIELD FULL_NAME char(30)

FIELD DATE_ENTRY date)

KEY (PROG_[D)

UNIQUE (FORM_NAME)

INDEX (FORM_NAME)

RELATION PROJECT

(FIELD PROJ_NAME chart8)

FIELD PROJ_NO numeric(3)

FIELD PROJ_TYPE char(10))

¢FIELD ACTIVESTATUS chart 10))

KEY (PROJ_NAME)

UNIQUE (PROJ_NO

INDEX (PROJ_NO)

10004437L D- t 3

RELATION PROJ_CPU_STAT

(HELD PROJ NO numerici3)

FIELD SUB _DATE date

FIELD CPU_NAME chart 10_

ELD TOTAL HRS numeric(10,2

FIELD T RUN numeric(6))

KEY (PROJ_NO, SUBDATE, CPU_NAME)

CONSTRAINT

RANGE PROJECT P

RANGE PROJ_EST_CPU PESC

RANGE COMPUTER_CPU

_/PESC 3P (P.PROJ_NO = PESC.PROJ_NO)

v/PESC 3CPU (CPU.CPU_NAME = PESC.CPU_NAME)

RELATION PROJ_DSF

(HELD PROJ_NO numeric l 3)

FIELD SUB_DATE date.

FIELD PROG_ID numeric(5)

FIELD FORMNO char(6)

FIELD STATUS char(10)

FIELD- FORM_TYPE chart6)

FIELD D [D numeric(t0))

KE.____Y(PROJ_NO, SUB_DATE)

UNIQUE (D_ID)

U2CIQUE (FORM_NO)

INDEX (D_ID)

_NDEX (FORM_NO)

CONSTRAINT

RANGE VAL_STATUS VDS

RANGE PERSONNEL PROG

RANGE PROJECT P

RANGE PROJ_DSF_PD

VPD

_'PD

_fl:'D

'¢PD

VPD

3P (P.PROJ NO = PD. PROJ_NO)

3PROG (PROG.PROG_iD = PD.PROG_!D_

3PD (PD.SUB_DATE = a valid Friday date)

3VDS !VDS.CODE = PD.STATUS)

3PD (PD,FORM_TYPE = "DSF')

10004437L D- t4

RELATION PROJ_EST

(_FIELD PROJ_NO numeric(3)

FIELD SUB_DATE date

FIELD T SYS numeric(4)

FIELD T COM numeric(4)

FIELD T LINE numeric(7)

____LD T NEW_LINE numeric(7)

FIELD T MOD_LJNE numeric(7)

FIELD T OLD_LINE numeric(7)

FIELD PRO_HR numeric(10,2)

FIELD MAN_HR numeric(10,2)

.FIELD SER_HR numeric(10,2)

KEY (PROJ_NO, SUB_DATE)

CONSTRAINT

RANGE PROJECT P

RANGE PROJ_EST PES

VPES zIP (P.PROJ_NO = PES.PROJ_NO)

RELATION PROJ_EST_PHASE

(FIELD PROJ_NO numeric(3)

FIELD SUB_DATE date

FIELD PHASE_CO char(10)

FIELD START_DATE date

FIELD END_DATE date)

KEY (PROJ_NO, SUB_DATE, PHASE_CO)

CONSTRAINT

RANGE PROJECT P

RANGE PROJ_EST_PHASE PESP

RANGE VAL_PHASE_CO VPC

'v'PESP

VPESP

VPESP

VPESP

3P (RPROJ_NO = PESRPROJ_NO)

3VPC (VPC.CODE = PESRPHASE_CO)

3PESP (PESRSTART_DATE = a valid Saturday date)

3PESP (PESEEND_DATE = a valid Saturday date)

100044,37L D- 15

RELATION PROJ_FORM

(FIELD PROJ_NO numeric(3)

FIELD SUB_DATE date

FIELD FORM_NO char(6)

FIELD FORM_TYPE char(6)

FIELD STATUS char(10))

KEY (PROJ_NO, SUB_DATE, FORM_TYPE)

UNIOUE (FORM_NO, FORM_TYPE)

INDEX (FORM_TYPE)

INDEX (STATUS)

RANGE PROJECT P

RANGE PROJ_FORM PF

RANGE VAL_STATUS VS

VPF 3P (P.PROJ_NO = PF.PROJ_NO)

VPF 3VS (VS.COD = PESTATUS)

VPF 3PF (PF.FORM_TYPE = 'PEF' V PF.FORM_TYPE =

'SPF' V PEFORM_TYPE = 'PCSF' V

PEFORM_TYPE = 'SEF')

RELATION PROJ_GRH

(FIELD PROJ_NO numeric(3)

FIELD SUB_DATE date

FIELD GR_I.XNE numeric(7)

FIELD GR_MOD numeric(4)

FIELD GR_CH numeric(6))

KEY (PROJ_NO, SUB DATE)

.C..0.B2_TKAIb
RANGE PROJECT P

RANGE PROJ_GRH PG

VPG 3P (P.PROJ_NO = PG.PROJ._NO)

VPG 3PG (PG.SUB_DATE = a valid Friday date)

RELATION PROJ_MESSAGES

(FIELD S_ID numeric(5)

FIELD LINE_NO numeric (3)

FIELD MESSAGES char (65)

FIELD SUB_DATE date)

10004437L D- 16

KEY (S_ID, LINE_NO)

CONSTRAINT

RANGE PROJ NOTES PN

RANGE PROJ_MESSAGES PM

VPN 3PM (PM.S_ID = PN.S_ID)

RELATION PROJ_NOTES

(FIELD PROJ NO numeric(3)

FIELD NOTE_TYPE char(10)

FIELD S ID numeric(5))

KEY (PROJ_NO, NOTE_TYPE)

UNIQUE (S_D)

INDEX (S_if))

CONSTm [NT

RANGE PROJECT P

RANGE VAL_NOTE_TYPE VNT

RANGE PROJ_NOTES PN

_¢PN 3P (P.PROJ_NO = PN.PROJ_NO)

VPN 3VNT_(VNT.CODE = PN.NOTE_TYPE)

RELATION PROJ_PROD

(FIELD PROJ_NO numeric(3)

FIELD SUB_DATE date

FIELD RES_NAME char(10)

FIELD RES_HR numeric(10,2)

FIELD RES_RUN numeric(5))

KEY (PROJ_NO, SUB_DATE, RES_NAME)

CONSTRAINT

RANGE PROJECT P

RANGE PROJ_PROD PR

RANGE COMPUTER CPU

VPR 3P (EPROJ_NO = PR.PROJ_NO)

VPR 3CPU (CPU.CPU_NAME - PR.RES_NAME)

VPR 3PR (PR.SUB_DATE = a valid Friday date)

10004437L D- 17

RELATION PROJ_SEF

tFIELD PROJ_NO numeric(3)

FIELD MEAS_TYPE char(10)

FIELD EVALUATE numeric(I))

KEY (PROJ_NO, MEAS_TYPE)

CON,,STRAINT

RANGE PROJECT P

RANGE PROJ_SEF PSE

RANGE VAL_MEAS TYPE VMT

VPSE ::::Ip(P.PROJ_NO = PSE.PROJ_NO)

VPSE 3VMT_(VMT.CODE = PSE.MEAS_TYPE)

RELATION PROJ_SEF_SEC

(FIELD PROJ_NO numeric(3)

FIELD MEAS TYPE char(10)

FIELD SECOND_L char(10))

KEY (PROJ_NO, MEAS_TYPE, SECOND_L)

CONSTRAINT

RANGE PROJ_SEF SEC PSES

RANGE PROJ_SEF PSE

RANGE VAL_SEC_L VSL

VPSES 3PSE (PSE.MEAS_TYPE = PSES.MEAS_TYPE A

PSE.PROJ_NO = PSES.PROJ_NO)

VPSES 3VSL (VSL.CODE = PSES.SECOND L)

RELATION PROJ_STAT

(FIELD PROJ_NO numeric(3)

FIELD SUB_DATE date

FIELD TECH_MAN_HR numeric(10,2)

FIELD SER_HR numeric(10,2)

FIELD T SYS numeric(4)

FIELD_ T_COM numeric(4)

FIELD_ T_CH numeric(6)

FIELD T DOC numeric(6)

FIELD T LINE numeric(7)

10004437L D- 18

FIELD

HELD

HELD

HELD

HELD

HELD

FIELD

HELD

FIELD T

HELD T

HELD T

FIELD T

HELD T

HELD T

FIELD T

FIELD T

HELD T

T NEW_LINE numeric(6)

T_MOD_LINE numeric(6)

T_OLD_IANE numenc(6)

T COMMENT numenc(6)

T_EXE_MOD numeric(4)

T NEW MOD numeric(4)

T MOD_MOD numerici4)

T OLD_MOD numeric(4)

EXE_STAT numeric(6)

NEW_STAT numeric(6)

MOD_STAT numeric(6)

_OLD_STAT numeric(6)

STMTS numeric(6)

NEW_STMTS numeric(6)

MOD_STMTS numeric(6)

OLD_STMTS numeric(6))

EXTMO_LINE numeric(6)

EXTMO MOD numeric(4)

EXTMO_STAT numeric(6)

HEI._D T EXTMO_STMTS numeric(6))

KEY (PROJ_NO)

CONSTRA[NT

RANGE PROJECT P

RANGE PROJ_EST PES

VPES 3P (P.PROJ_NO = PES.PROJ_NO)

=a][LO__ PROJ_SUB

PROJ_NO numeric(3)

HELD SUB_PRE char(5)

HELD SUB_DATE date

FIE_ SUBSY_ID numeric(5))

KEY (PROJ_NO, SUB_PILE)

UNIQUE (SUBSY_ID)

INDEX (SUBSYID)

1ooo4437L D- 19

CONSTRAINT

RANGE PROJECT P

RANGE PROJ_SUB S

VS ziP (P.PROJ NO = S.PROJ_NO)

RELATION REP_CODES

CODE char(10)

_ELD VALUE char(30)

FIELD FUNCTION char(15))

KEY (CODE)

RELATION SCRIPT_PROJECTS

SCRIPT_NO numeric(10)

FIELD REPORT_SEQ numeric(3)

FIELD PROJ_NAME char(8))

KEY (SCRIPT_NO, REPORT_SEQ, PROJ_NAME)

CONSTRAINT

RANGE PROJECT PR

RANGE SCRIPT_REPORT R

RANGE SCRIPT_PROJECTS P

VP :::IR (R.SCRIPT NO = P.SCRIFT_NO A

R.REPORT_SEQ = P.REPORT_SEQ)

VP 3PR (PR.PROJ_NAME = P.PROJ_NAME)

RELATION SCRIFT_REPORT

(FIELD SCRIPT_NO numeric(10)

FIELD REPORT_SEQ numeric(3)

FIELD REPORT_CODE char(10)

FIELD. REPORT_TYPE char(20)

FIELD REPORT_TYPESELECTION char(10))

KEY (SCRIPT_NO, REPORT_SEQ)

CONSTRAINT

RANGE PROJECT PROJ

RANGE PERM_SCRIPT P

RANGE TEMP_SCRIPT T

10004437L D- 20

RANGE SCRIPT_REPORT S

RANGE VAL_REPORT_CODE VAL

VS P T (ESCRIIrr_NO=S.SCRIPTNO

T.SCRIPT_NO = S.SCRIFF_NO)

VS VAL (VAL.REPORT_CODE = S.REPORT_CODE)

VS PROJ ((S.REPORT_TYPE SELECTION = 'INACTIVE'

V S.REPORT TYPE SELECTION = 'ACT_MAINT'

V S.REPORT TYPE SELECTION = 'ACT_DEV'

V S.REPORT_TYPE SELECTION = 'ALL'

V S.REPORT_TYPE SELECTION = 'LIST')

A S.REPORT TYPE = 'M') V

((S.REPORT_TYPE_SELECTION = null)

A (S.REPORT_TYPE = 'O')) V

(S.REPORT_TYPE SELECTION = PROJ.PROJ_NAME

S.REPORT TYPE = 'S')

RELATION SEQNO

TABLE_NAME char(30)

FIELD FIELDNAME char(30)

FIELD MAXSEQNO numeric(10))

KEY (TABLENAME, FIELDNAME)

CONSTRAINT

RANGE SEQNO S

VS 3S (S.TABLE_NAIVlE = a validrelationname

S.FIELD_NAME = a validfieldname withinthat

relation)

RELATION SPECIAL ACT

(FIELD EFF_ID numeric(10)

SP_AC'nW1TY char(10)

FIELD ACT_HR numeric(10, 2))

KEY (EFF_ID, SP ACTIVITY)

CONSTRAINT

RANGE SPECIALACT SA

RANGE EFF_PROJ EP

RANGE EFF_SUB ES

RA, NGE VAL SP ACTIVITY VAL

VSA 3EP ES (EP.P_ID = SA.EFF_ID

ES.PS_ID = SA.EFF_ID)

VSA 3VAL (VAL.SP_AC'I'IVITY = SA.SP_ACTIVITY)

A

1000._7L D-21

RELATION SUBSYSTEM

(FIELD SUBSY_ID numeric(5)

FIELD NAME char(40)

FIELD FUNCTION char(10))

KEY (SUBSY_ID)

CONSTRAINT

RANGE PROJ_SUB S

RANGE SUBSYSTEM SUB

RANGE VAL_S FUNCTION VSF

VSUB 3S (S.SUBSY_ID = SUB.SUBSY_ID)

VSUB 3VSF (VSF.CODE = SUB.FUNCTION)

RELATION SUB_COM

(FIELD SUBSY_ID numeric(5)

FIELD COM_NAME char(40)

FIELD COM_NO numeric(7)

FIELD COM DATE date)

KEY_ (SUBSY_ID, COM_NAME)

UNIOUE (COM_NO)

INDEX (COM_NO)

CONSTRAINT

RANGE PROJ_SUB S

RANGE SUB_COM C

VC ::IS (S.SUBSY_ID = C.SUBSY_ID)

RELATION TAB LE_PRIVILEGE

(FIELD TABLE_NAME char(40)

HELD

HELD

FIELD

HELD

HELD

HELD

HELD

USER_CLASS char(20)

SELECT_PRIV char(1)

INSERT_PRIV char(1)

UPDATE PRIV char(1)

__ DELETE_PRIV charf 1)

ALTER_PRIV char(l)

INDEX_PRIV char(1))

KEY (TABLE_NAME, USER_CLASS)

10004437L D- 22

¢ON TRAnVT

.RANGE TABLE_PRIVILEGE T

RANGE USER_CLASS U

VT 3U (U.USER CLASS = T.USER_CLASS)

VT 3T_(T.TABLE_NAME = a valid relation in the database)

RELATION TEMP_ACTIV1TY

(FIELD ACTIVITY char(10)

FIELD SAT_DAY date

FIELD HOURS numeric(10,2)

FIELD PROJ_NO numeric(3)

FIELD SUB_HR numeric(10,2)

FIELD FLAG char(4)

FIELD SCRIFT_NO numeric(10))

CONSTRAINT

RANGE TEMP_ACTIVITY TEMP

RANGE GENERATE_SAT_DAY GSAT

VTEMP 3GSAT (GSAT.SCRIPT_NO = TEMP.SCRIFF_NO

A GSAT.SAT_DAY = TEMP.SAT_DAY)

RELATION TEMP_FORMCT

(_FIELD SUB_DATE date

FIELD_ PROG_ID numeric(5)

FIELD FORM_TYPE char(6)

FIELD_ PROJ_NO numeric(3)

FIELD SCRIPT_NO numeric(10))

CONSTRAINT

RANGE TEMP FORMCT TEMP

RANGE GENERATE_SAT_DAY GSAT

VTEMP 3GSAT (GSAT.SCRIPT_NO = TEMP.SCRIPT_NO

A GSAT.SAT_DAY = TEMP.SAT_DAY)

RELATION TEMP_MANHRS

(FIELD FORM_NAME char(l 5)

FIELD SAT_DAY date

FIELD HOURS numeric(10,2)

100044,37L D- 23

FIELD PROJ_NO numeric(3)

FIELD PROG_ID numeric(5)

FIELD SUB_HR numeric(10,2)

FIELD FLAG char(4)

FIELD P ID numeric(10)

FIELD SCRIPT_NO numeric(10))

_ONSTR.AINT

RANGE TEMP_MANHRS TEMP

RANGE GENERATE_SAT_DAY GSAT

VTEMP 3GSAT (GSAT.SCRIFT_NO = TEMP.SCRIPT_NO

A GSAT.SAT_DAY = TEMP.SAT_DAY)

RELATION TEMP__SCRI]_

(FIELD SCRIPTNO numeric(10)

FIEI,_D_ ORA USER char(20)

FIELD PROCESS_ID char(20)

FIELD OUT ROI.Y]TNG char(20)

FIELD OUT_FILE char(20)

FIELD RUNSTATUS char(10)

FIELD DELETE_STATUS char(10))

KEY (SCRIPT_NO)

CONSTRAB¢/"

RANGE USERCLASS U

RANGE TEMP_SCRIPT T

VT 3U (U.ORA_USER = T.ORA_USER)

VT 3T ((T.OUT_ROUTING = '2' V T.OUT ROUTING = '1')

(T.OUT_FILE != null A T.OUT ROUTING = '1'))

RELATION TEMP_SERVHRS

(.FIELD FORM_NAME char(15)

FIELD SAT_DAY date

FIELD

FIELD

FIELD

FIELD

FIELD

HOURS numeric(l 0,2)

PROJ_NO numeric(3)

PROG_ID numeric(5)

FLAG char(4)

P ID numeric(10)

10004437L D- 24

FIELD SCRIPT_NO numeric(10))

CONSTRAINT

RANGE TEMP_SERVHRS TEMP

RANGE GENERATE_SAT_DAY GSAT

VTEMP 3GSAT (GSAT.SCRIPT_NO = TEMP.SCRIPT_NO

A GSAT.SAT_DAY = TEMP.SAT_DAY)

RELATION USER_CLASS

(FIELD ORA_USER_ID char(20)

FIELD USER_CLASS char(20))

KEY (ORA_USER_ID)

CONSTRAINT

RANGE USER_CLASS_ACCESS UA

RANGE USER_CLASS U

VU 3U (U.ORA_USER_ID = a valid ORACLE user ID)

VU 3UA (UA.USER_CLASS = U.USER_CLASS)

RELATION USER_CLASS_ACCESS

(FIELD USER_CLASS char(20)

FIELD ACCESS_TYPE char(10))

KEY (USER_CLASS, ACCESS_TYPE)

CONSTRAINT

RANGE USER_CLASS_ACCESS UA

RANGE USER_CLASS U

VU

VUA

3UA (UA.USER_CLASS = U.USER_CLASS)

3UA (UA.ACCESS_TYPE = ('BACKUP' v 'DBA'
v 'DELETE' v 'DISTAPE' v 'FORM' v 'GENERAL'

v 'IMPORT' v 'INSERT' v 'QA' v 'QUERY'

v 'REPORT' v 'RESTORE' v 'UPDATE' v 'VIEW'))

RELATION VALIDATION

(.FIELD F NAME char(20)

FIELD CODE char(10)

FIELD VALUE char(75))

KEY (F_NAME, CODE)

VIEW AUTHORIZE

(FIELD ACCESS_TYPE, SOURCE USER_CLASS_ACCESS

FIELD ORA_USER_ID, SOURCE USER_CLASS)

100044,37L D-25

VIEW VAL_ACTIVE_STATUS

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VIEW VAL ACTIV1TY

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_ADA FEATURE

CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_CH_CAUS E

CODE, SOURCE VALIDATION

_FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_CH_CLASS

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_CH_OBJECT

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_CH_TYPE

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VIEW VALCL ACTIVITY

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_COM CH

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_COM PURPOSE

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

1000443 7L D-26

VIEW

VIEW

VIEW

VIEW

VIEW

VIEW

VIEW

VIEW

VIEW

VIEW

VAL_COM_TYPE
(FIELD CODE,SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VAL_DATA_AVAIL

(FIELD CODE, SOLIRCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VAL_DSF_MEASURE

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

__ VAL_DSF_STATUS

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VAL_DSF_TARGET

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VAL_ERR_ACAUSE

(.FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

__ VAL_ERR_ARES

(.FIELD CODE, SOURCE VALIDATION

HELD VALUE, SOURCE VALIDATION)

__ VAL_ERR_CLASS

(.FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

__ VAL_ERR_SOURCE

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

__ VAL_ERR_TOOLS

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

10004437L D-27

VIEW

VIEW

VIEW

VIEW

VIEW

VIEW

VIEW

VIEW

VAL_HNAL_ORIGIN_CAT

(FIELD CODE, SOURCE VALIDATION

HELD VALUE, SOURCE VALIDATION)

VAL_ISO_CH

CODE, SOURCE VALIDATION

HELD VALUE, SOURCE VALIDATION)

VAL_MAINT_ACT

(FIE_ CODE, SOURCE VALIDATION

HELD VALUE, SOURCE VALIDATION)

VAL_MAINT_CH TYPE

(FIELD CODE, SOURCE VALIDATION

HEI,__ VALUE, SOURCE VALIDATION)

VAL_MA.INT_CLASS

CODE, SOURCE VALIDATION

HELD VALUE, SOURCE VALIDATION)

VAL_MAINT_COM_CH

_FIELD CODE, SOURCE VALIDATION

HELD VALUE, SOURCE VALIDATION)

VAL_MAINT_IS O_CH

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VAL MEAS TYPE

(FIE_ CODE, SOURCE VALIDATION

HELD VALUE, SOURCE VALIDATION)

VAL_NOTE_TYPE

(.FIELD CODE, SOURCE VALIDATION

HELD VALUE, SOURCE VALIDATION)

VAL_ORI_TYPE

(FIELD CODE, SOURCE VALIDATION

HELI_ VALUE, SOURCE VALIDATION)

looo_zzt. D-28

VIEW VAL_PHASE_CO

(.FIELDCODE,SOURCEVALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_PROJ_TYPE

(FIELD PROJ_NO, SOURCE PROJECT

HELD PROJ_TYPE, SOURCE PROJECT)

VIEW VAL_QA_STATUS

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_REPORT_CODE

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_SECOND_L

(.FIELD CODE, SOURCE VALIDATION

HELD VALUE, SOURCE VALIDATION)

VIEW VAL S FUNCTION

(.HELD CODE, SOURCE VALIDATION

HELD VALUE, SOURCE VALIDATION)

VIEW VAL_SP_ACTIVITY

(HELD CODE, SOURCE VALIDATION

HELD VALUE, SOURCE VALIDATION)

VIEW__ VAL_STATUS

(HELD CODE, SOURCE VALIDATION

FIELD VALUE, SOURCE VALIDATION)

VIEW V CLEANROOM_ACT

(HELD EFF_ID, SOURCE EFF_ACT

HELD ACTIVITY, SOURCE EFF_ACT

HELD ACT_HR, SOURCE EFF_ACT)

CONSTRAINT

RANGE EFF_ACT_EA

10004437L D-29

RANGE V_CLEANROOM_ACT VCA

RANGE VAL_CL_ACTIVITY VALA

VVCA 3EA 3VALA (EA.AC77VTrY LIKE 'CL%' A

VALA.CODE = VCA.CL ACTIVITY)

VIEW V CLEANROOM_PROJECTS

PROJ_NAME, SOURCE PROJECT)

VIEW V PERM_SCRIPT

(FIELD SCR/lWF NAME, SOURCE PERM_SCRIPT)

VIEW V PROJ_COM

(FIELD PROJ_NAME, SOUR(_E PROJECT

FIELD SUB_PRE, SOURCE PROJ SUB

FIELD COM_NAME, SOURCE SUB_COM

FIELD COM_NO, SOURCE SUB_COM)

VIEW V PROJ_SUB_ACT

(FIELD PROJ_NAME, SOURCE PROJECT

FIELD SUB_PRE, SOURCE EFF_SUB

FIELD ACITVITY, SOURCE EFF_ACT

FIELD ACT HR, SOURCE EFF_ACT)

VIEW V REP_CODES_CRITERIA

(FIELD VALUE, SOURCE REP CODES)

VIEW v SEQNO

TABLE_NAME, SOURCE SEQNO

FIELD FIELD_NAME, SOURCE SEQNO

HELD MAXSEQNO, SOURCE SEQNO)

VIEW V SUBSYSTEM_INFO

(HELD FUNCTION, SOURCE SUBSYSTEM

HELD NAME, SOURCE SUBSYSTEM

HELD PROJ_NAME, SOURCE PROJECT

HELD SUB_DATE, SOURCE PROJ SUB

HELD SUB PRE, SOURCE PROJ SUB)

"10004437L D-30

GLOSSARY

Clause

Cluster

Column

Command

Field

Group

Index

Join

Null

Order by

Primary Key

Query

Record

Relation

Row

Subquery

Table

View

A portion of a SQL command, starting with a reserved word, that

qualifies or constrains the operation of the command.

An internal mechanism for storing together groups of related col-

umns from different tables, or groups of like-valued column entries

from a single table, to improve efficiency. (There are no clusters in the

SEL database.)

A particular class of data items within a table. Each column has a

single value in each row of a table. Also called a field.

An instruction to the SQL*Plus interpreter.

Synonymous with column.

A SQL*Plus function that operates on a single column ofaU rows in a

query, returning a single value.

A mechanism for improving efficiency of database access by enab-

ling searches to be performed without always examining an entire
table.

Retrieval of related rows from two or more tables in a single query.

A "value" for a column indicating that the column has no value. Null

values do not use storage space.

A SQL clause that controls the order of displayed rows.

A column or concatenation of columns whose values are frequently

used to access a row of a table.

An instruction to the SQL*Plus interpreter to retrieve one or more
rows and columns from one or more tables or views.

Synonymous with row.

Synonymous with table.

A single entry in a table, containing one entry for each column in the
table. Also called a record.

A query enclosed in parentheses that returns values used in a condi-

tion of a SQL command.

The basic unit of data storage in a relational DBMS. Contains a vari-

able number of rows, each of which contains a t_ed number of col-

umns. Also called a relation.

A "virtual table" that consists of one or more columns from underly-

ing database tables. Views do not actually store data.

100044,37L GL-1

AGSS

CDR

CLPRF

COF

CPU

CRF

CSC

DAMSEL

DBA

DDL

DSF

ERRCO

FDF

GSFC

ID

MCRF

NASA

OSMR

PC

PCSF

PDL

PDR

PEF

PMF

PRF

PSF

ABBREVIATIONS AND ACRONYMS

Attitude Ground Support System

critical design review

Cleanroom Personnel Resources Form

Component Origination Form

central processing unit

Change Report Form

Computer Sciences Corporation

Database Access Manager for the Software Engineering Laboratory

database administrator

data definition language

Development Status Form

error correction

Flight Dynamics Facility

Goddard Space Flight Center

identification

Maintenance Change Report Form

National Aeronautics and Space Administration

Operational Software Modification Number

personal computer

Project Completion Statistics Form

program design language

preliminary design review

Project Estimates Form

Project Message Form

Personnel Resources Form

Project Startup Form

1ooo,,_rt. AB- 1

QA

RDBMS

SEF

SEL

SFR

SIF

SLOC

SPF

SQL

STL

WMEF

quality assurance

relational database management system

Subjective Evaluation Form

Software Engineering Laboratory

Software Failure Report

Subsystem Information Form

source lines of code

Services/Products Form

structured query language

Systems Technology Laboratory

Weekly Maintenance Effort Form

1000,_7L AB-2

REFERENCES

.

,

.

Software Engineering Laboratory, SEL-92-002, Data Collection Procedures for the

Software Engineering Laboratory. (SEL) Database, G. Heller, J. Valet-t, and M. Wild,

March 1992

Computer Sciences Corporation, CS c,rI'M -87/6016, Design of the Rehosted SEL Da-

tabase, M. So and G. Heller, March 1987

, CSC/SD-88/6019.Database Access Manager for the Software En gmeering

Laboratory (DAMSEL) User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel,

March 1990

4. ORACLE Corporation, SQL*Plus User's Guide and Reference, Version 3,

L. Colston, 1989

. ORACLE Corporation, SQL Language Reference Manual, Version 6, D. Cheu and B.

Linden, 1990

6. C.J. Date, An Introduction to Database Systems, 2nd ed., Addison Wesley, 1977

100044,37L R-1

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are or-

ganized into two groups. The first group is composed of documents issued by the Soft-

ware Engineering Laboratory (SEL) during its research and development activities.

The second group includes materials that were published elsewhere but pertain to SEL
activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop,

August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,

September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton and

S. Zeldin, September 1977

SEL-77-005, GSFC NA VPAKDesign Specifications Languages Study, P. A. Scheffer and

C. E. Velez, October 1977

SEL'78-005, Proceedings From the Third Summer Software Engineering Workshop,

September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study,

P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide

(Revision 3), W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002,

IC Freburger

SEL-79-003,

User's Guide,

The Software Engineering Laboratory:

and V. R. Basili, May 1979

Relationship Equations,

Common Software Module Repository (CSMR) System Description and

C. E. Goorevich, A. L. Green, and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farb_ and Gordon Program Design Language

(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-

ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop,
November 1979

1OOO0229

1016/O84O

BI-1

SEL-804902,Multi-Level Expression Design Language-Requirement Level (MEDL-R)

System Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-804903, Multimission Modular Spacecraft Ground Support Software System (MMS/

GSSS) State-of-the-Art Computer Systems�Compatibility Study, T. Welden,

M. McClellan, and P. Liebertz, May 1980

SEL-80-005,A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-804906, Proceedings From the Fifth Annual Software Engineering Workshop,

November 1980

SEL-80-007, An Appraisal of Selected Cost�Resource Estimation Models for Software

Systems, .l. E Cook and E E. McGarry, December 1980

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,

V. R. Basili, 1980

SEL-81-008, Cost andReliabilityEstimation Models (CAREM) User's Guide, J. E Cook

and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Workbench Phase I Evalua-

tion, W. J. Decker and E E. McGarry, March 1981

SEL-81-011, Evaluating Software Development by Analysis of Change Data,

D. M. Weiss, November 1981

SEL-814912, The Rayleigh Curve as a Model for Effort Distribution Over the Life of

Medium Scale Software Systems, G. O. Picasso, December 1981

SEL-814913, Proceedings of the Sixth Annual Software Engineering Workshop, December
1981

SEL-814914, Automated Collection of Software Engineering Data in the Software Engi-

neering Laboratory (SEL), A. L. Green, W. J. Decker, and E E. McGarry, September
1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al.,

August 1982

SEL-81-104, The Software Engineering Laboratory, D.N. Card, E E. McGarry,

G. Page, et al., February 1982

SEL-81-107, Software Engineering Laboratory (SEL) Compendium of Tools (Revision 1),

W. J. Decker, W. A. Taylor, E. J. Smith, et al., February 1982

SEL-81-110,Evaluation of an Independent Verification and Validation (IV& 1i) Methodol-

ogy for Flight Dynamics, G. Page, E E. McGarry, and D. N. Card, June 1985

1000022g

_018/01B40

BI-2

SEL-81-305, Recommended Approach to Software Development, L. Landis,

E E. McGarry, S. Waligora, et al., June 1992

SEL-82-001, Evaluation of" Management Measures of Software Development, G. Page,

D. N. Card, and E E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: kblume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop,
December 1982

SEL-82-008, Evaluating Software Development by Ana_sis of Changes: The Data From

the Software Engineering Laborato_, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description

(Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst,

M. G. Rohleder, and E E. McGarry, October 1983

SEL-82-1006, Annotated Bibliography of Software Engineering Laboratory Literature,
L. Morusiewicz and J. Valett, November 1991

SEL-83-001, An Approach to Software Cost Estimation, E E. McGarry, G. Page,

D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D.N. Card,

E E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume 11, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic Variables,

C. W. Doerflinger, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop,
November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revi-

sion 1), C. W. Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Labora-

to_ (SEL), W. W. Agresti, V. E. Church, and E E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop,
November 1984

SEL-84-t01, _lanager's Handbook for Software Development (Revision 1), L. Landis,

E E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D.N. Card,

R. W. Selby, Jr., E E. McGarry, et al., April 1985

O00O229

_0T6/0_0

BI-3

SEL-85-002,Ada Training Evaluation and Recommendations From the Gamma Ray

Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing CLEANROOM, and

Metrics, R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, E McGarry,

and C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop,
December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development,

R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and

M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE)

Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IK, November 1986

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop,

December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software

Development, S. Perry et al., March 1987

SEL-87-002, Ada ® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification

W. W Agresti, June 1987

SEL-87-004, Assessing the Ada ® Design Process and Its Implications:

S. Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume 7, November 1987

Model (CSM),

A Case Study,

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop,
December 1987

SEL-88-001, System Testing of a ProductionAda Project: The GRODY Stuay, J. Seigle,

L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume I/7, November 1988

;0000229

',0a610840

BI-4

SEL-88-003,Evolution of Ada Technology in the Flight Dynamics Area: Design Phase

Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,

November 1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study,

S. Godfrey and C. Brophy, September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/

Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry,

November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/

Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,

November 1989

SEL-89-008, Proceedings of the Second NASA Aria Users' Symposium, November 1989

SEL-89-103, Software Management Environment (SME) Concepts and Architecture

(Revision 1), R. Hendrick, D. Kistler, and J. Valett, September 1992

SEL-89-201, Software Engineering Laboratory (SEL) Database Organization and User's

Guide (Revision 2), L. Morusiewicz and J. Bristow, October 1992

SEL-90-001, Database Access Manager for the Software Engineering Laboratory

(DAMSEL) User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project

Description and Early Analysis, S. Green et al., March 1990

SEL-90-003,A Study of the Portability of anAda System in the Software Engineering Labo-

ratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experi-

ment Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop,

November 1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Man-

agement Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

BI-5

1000(1229

1016/0840

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,

E. W. Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model,

S. Green, November 1991

SEL-91-005, Collected Software Engineering Papers: Volume 1X, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop,
December 1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revi-

sion 1), E McGarry, August 1991

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kistler,

January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL)

Database, G. Heller, March 1992

SEL-RELATED LITERATURE

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Sat-

ellite Simulation: A Case Study," Proceedings of the First International Symposium on

Ada for the NASA Space Station, June 1986

2Agresti, W W., E E. McGarry, D. N. Card, et al., "Measuring Software Technology,"

Program Transformation and Programming Environments. New York: Springer-Verlag,
1984

1Bailey, J. W., and V. R. Basili, '_ Meta-Model for Software Development Resource

Expenditures," Proceedings of the Fifth International Conference on Software Engineer-

ing. New York: IEEE Computer Society Press, 1981

8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development

Reusability," Proceedings of the Eighth Annual National Conference on Ada Technology,
March 1990

1Basili, V. R., "Models and Metrics for Software Management and Engineering,"

ASME Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering.

New York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the

First Pan-Pacific Computer Conference, September 1985

7Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of

Maryland, Technical Report TR-2244, May 1989

I016106_)

BI-6

7Basili,V.R., Software Development." A Paradigm for the Future, University. of Maryland,

Technical Report TR-2263, June 1989

8Basili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development,"

[EEE Software, January 1990

1Basili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution

and Resource Estimation Problems ? ," Joumal of Systems and Software, February 1981,

vol. 2, no. 1

9Basili, V. R., and G. Caldiera, A Reference Architecture for the Component Factory,

University of Maryland, Technical Report TR-2607, March 1991

1Basili, V. R., and K. Freburger, "Programming Measurement and Estimation in the

Software Engineering Laboratory," Journal of Systems and Software, February 1981.

vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and

Other Variables in the SEL," Proceedings of the International Computer Software and

Applications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in

the SEL Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical

Investigation," Communications of the ACM, January 1984, vol. 27, no. 1

lBasili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Soft-

ware Engineering Laboratory," Proceedings of the ACM SIGMETRICS Symposium/

Workshop: Quality Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, 'SMRROWSMITH-P--A Prototype Expert System for

Software Engineering Management," Proceedings of the IEEE/MITRE Expert Systems

in Government Symposium, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of

Maryland, Technical Report TR-1442, September 1984

Basili, V..R., and R. Reiter, "Evaluating Automatable Measures for Software Develop-

ment," Proceedings of the Workshop on Quantitative Software Models for Reliability,

Complexity, and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals

and Environments," Proceedings of the 9th International Conference on Software Engi-

neering, March 1987

5Basili, V. R., and H. D. Rombach, "T A M E: Tailoring an Ada Measurement Envi-

ronment," Proceedings of the Joint Ada Conference, March 1987

_0000229

1016/0640

BI-7

5Basih,V.R., andH. D. Rombach,"TAM E: Integrating MeasurementInto Software
Environments," University of Maryland, TechnicalReport TR-1764,June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-
Oriented SoftwareEnvironments," [EEE Transactions on Software Engineering, June
1988

7Basili, V. R., and H. D. Rombach, TowardsA Comprehensive Framework for Reuse: A

Reuse-Enabling Software Evolution Environment, University of Maryland, Technical

Report TR-2158, December 1988

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:

Model-Based Reuse Characterization Schemes, University of Maryland, Technical

Report TR-2446, April 1990

9Basili, V. R., and H. D. Rombach, Support for Comprehensive Reuse, University of

Maryland, Technical Report TR-2606, February 1991

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Charac-

teristic Software Metric Set," Proceedings of the Eighth International Conference on Soft-

ware Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W Selby, Jr., Comparing the Effectiveness of Software Testing Strate-

gies, University of Maryland, Technical Report TR-1501, May 1985

3Basili, V. R., and R. W Selby, Jr., "Four Applications of a Software Data Collection

and Analysis Methodology," Proceedings of the NATO Advanced Study Institute, August
1985

5Basili, V. R., and R. Selby, "Comparing the Effectiveness of Software Testing Strate-

gies," IEEE Transactions on Software Engineering, December 1987

9Basili, V. R., and R. W. Selby, "Paradigms for Experimentation and Empirical Studies

in Software Engineering," Reliability Engineering and System Safety, January 1991

4Basili, V. R., R. W. Selby, Jr., and D. H. t-Iutchens, "Experimentation in Software

Engineering," IEEE Transactions on Software Engineering, July 1986

2Basili, V. R., R. W. Selby, and T Phillips, "Metric Analysis and Data Validation Across

FORTRAN Projects," IEEE Transactions on Software Engineering, November 1983

2Basili, V. R., and D. M. Weiss,A Methodology for Collecting Valid Software Engineering

Data, University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engi-

neering Data," IEEE Transactions on Software Engineering, November 1984

1Basili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objec-

tives," Proceedings of the Fifteenth Annual Conference on Computer Personnel Research,

August 1977

;0OOO229

!016/0S40

BI-8

Basili, V.R., andM. V.Zelkowitz, "Designing aSoftwareMeasurementExperiment,"
Proceedings of the Software Life Cycle Management Workshop, September 1977

1Basili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Labora-

tory," Proceedings of the Second Software Life Cycle Management Workshop, August
1978

1Basili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics

in the Local Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz_ '_nalyzing Medium Scale Software Development,"

Proceedings of the Third International Conference on Software Engineering. New York:

IEEE Computer Society Press, 1978

9Booth, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Imple-

mentation Concepts," Proceedings of Tri-Ada 1991, October 1991

9Briand, L. C., V. R. Basili, and W. M. Thomas,A Pattern Recognition Approach for Soft-

ware Engineering Data Analysis, University of Maryland, Technical Report TR-2672,

May 1991

5Brophy, C. E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada-

Oriented Design Methods," Proceedings of the Joint,Ida Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the

Implementation Phase of a Large Ada Project," Proceedings of the Washington Ada

Technical Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size,"

Computer Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estima-

tion," Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D.N., "A Software Technology Evaluation Program," Annais do XVIII

Congresso Nacional de Informatica, October 1985

5Card, D. N., and W. W. Agresti, "Resolving the Software Science Anomaly," The Jour-

nal of Systems and Software, 1987

6Card, D. N., and W. W. Agresti, "Measuring Software Design Complexity," The Jour-

nal of Systems and Software, June 1988

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical Study of Software Design

Practices," IEEE Transactions on Software Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, '_ Software Engineering

View of Flight Dynamics Analysis System," Parts I and II, Computer Sciences Corpora-

tion, Technical Memorandum, February 1984

1OOOO229

1018/0B40

BI-9

Card,D. N.,Q.L. Jordan,andV.E.Church, "Characteristicsof FORTRAN Modules,"
Computer SciencesCorporation, TechnicalMemorandum,June 1984

5Card, D.N., E E. McGarry, and G.T. Page, "Evaluating Software Engineering

Technologies," IEEE Transactions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and E E. McGarry, "Criteria for Software Modularization,"

Proceedings of the Eighth International Conference on Software Engineering. New York:

IEEE Computer Society Press, 1985

1Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engi-

neering Methodologies," Proceedings of the Fifth International Conference on Software

Engineering. New York: IEEE Computer Society Press, 1981

4Church, V.E., D.N. Card, W. W. Agresti, and Q. L. Jordan, "An Approach for

Assessing Software Prototypes," ACM Software Engineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through

Dynamic Variables," Proceedings of the Seventh International Computer Software and

Applications Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of

Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godf:rey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada

Project," Proceedings of the 1988 Washington Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for NAFPAK, Higher Order

Software, Inc., TR-9, September 1977 (also designated SEL-77-005)

5Jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical

Association of Software Data, University of Maryland, Technical Report TR-1848, May
1987

6jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Pro-

ceedings of the Tenth International Conference on Software Engineering, April 1988

5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering,

University of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering

Information Bases From Software Process and Product Specifications," Proceedings of

the 22nd Annual Hawaii International Conference on System Sciences, January 1989

5McGarry, E E., and W. W. Agresti, "Measuring Ada for Software Development in the

Software Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii

International Conference on System Sciences, January 1988

7McGarry, E, L. Esker, and K. Quimby, "Evolution of Ada Technology in a Production

Software Environment," Proceedings of the Sixth Washington Ada Symposium
(WADAS), June 1989

_0000229

101_01_0

BI-10

3McGarry,E E., J.Valett, andD. Hall, "Measuring theImpact of Computer Resource
Quality on the Software Development Processand Product," Proceedings of the

Hawaiian International Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA Software Research

Technology Workshop (Proceedings), March 1980

3page, G., E E. McGarry, and D. N. Card, '_ Practical Experience With Independent

Verification and Validation," Proceedings of the Eighth International Computer Software

and Applications Conference, November 1984

5Ramsey, C. L., and V. R. Basili, An Evaluation of Expert Systems for Software Engi-

neering Management, University of Maryland, Technical Report TR- t708, September

1986

3Ramsey, J., and V. R. Basili, ".Analyzing the Test Process Using Structural Coverage,"

Proceedings of the Eighth International Conference on Software Engineering. New York:

IEEE Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure on

Maintainability," IEEE Transactions on Software Engineering, March 1987

8Rombach, H. D., "Design Measurement: Some Lessons Learned," IEEE Software,

March 1990

9Rombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth

Journal of Information and Software Technology, January/February 1991

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An

Industrial Case Study," Proceedings From the Conference on Software Maintenance,

September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis

for Generating Customized SE Information Bases," Proceedings of the 22nd Annual

Hawaii International Conference on System Sciences, January 1989

7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance

Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical

Report TR-2252, May 1989

6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings

of the 1987 Conference on Object-Oriented Programming Systems, Languages, and

Applications, October 1987

5Seidewitz, E., "General Object-Oriented Software Development: Background and

Experience," Proceedings of the 21st Hawaii International Conference on System

Sciences, January. 1988

1OOOO229

1016/0840

BI-11

6Seidewitz,E., "General Object-Oriented SoftwareDevelopment with Ada: A Life
Cycle Approach," Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X,"

Ada Letters, March/April 1991

4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Develop-

ment Methodology," Proceedings of the First International Symposium on Ada for the

NASA Space Station, June 1986

9Seidewitz, E., and M. Stark, '_,a Object-Oriented Approach to Parameterized Soft-

ware in Ada," Proceedings of the Eighth Washington Ada Symposium, June 199l

8Stark, M., "On Designing Parametrized Systems Using Ada," Proceedings of the

Seventh Washington Ada Symposium, June 1990

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse,"

Proceedings of TRI-Ada 1989, October 1989

5Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle,"

Proceedings of the Joint Ada Conference, March 1987

8Straub, P. A., and M. V. Zelkowitz, "PUC: A Functional Specification Language for

Ada," Proceedings of the Tenth International Conference of the Chilean Computer Science

Socie_, July 1990

7Sunazuka, T., and V. R. Basili, Integrating Automated Support for a Software Manage-

ment Cycle Into the TAME System, University of Maryland, Technical Report TR-2289,

July 1989

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Develop-

ment Data, Data and Analysis Center for Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compendium, Data and

Analysis Center for Software, Special Publication, April 1981

5Valett, J. D., and E E. McGarry, "A Summary of Software Measurement Experiences

in the Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii

International Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of

Changes: Some Data From the Software Engineering Laboratory," IEEE Transactions

on Software Engineering, February 1985

5Wu, L., V. R. Basili, and K. Reed, '_ Structure Coverage Tool for Ada Software Sys-

tems," Proceedings of the Joint Ada Conference, March 1987

1Zelkowitz, M. V., "Resource Estimation for Medium-Scale Software Projects," Pro-

ceedings of the Twelfth Conference on the Interface of Statistics and Computer Science.

New York: IEEE Computer Society Press, 1979

1OOO0229
1016/(]040

BI-12

2Zelkowitz, M.V., "Data Collection and Evaluation for Experimental Computer
ScienceResearch,"Empirical Foundations for Computer and Information Science (Pro-

ceedings), November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study," Pro-

ceedings of the 26thAnnual Technical Symposium of the Washington, D. C., Chapter of the

ACM, June 1987

6Zelkowitz, M. V., "Resource Utilization During Software Development," Journal of

Systems and Software, 1988

8Zelkowitz, M. V., "Evolution Towards Specifications Environment: Experiences With

Syntax Editors," Information and Software Technology, April 1990

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of a Software Measurement

Facility," Proceedingsof the Software Life Cycle Management Workshop, September 1977

10000229

101610840

BI-13

NOTES:

1This article also appears m

Volume I, July 1982.

2This article also appears m

Volume II, November 1983.

SEL-82-004, Collected Software Engineering

SEL-83-003, Collected Software Engineering

3This article also appears m SEL-85-003, Collected Software Engineering

Volume 111, November 1985.

4This article also appears m SEL-86-004, Collected Software Engineering

Volume 1_, November 1986.

5This article also appears m SEL-87-009, Collected Software Engineering

Volume V, November 1987.

6This article also appears m SEL-88-002, Collected Software Engmeering

Volume VI, November 1988.

7This article also appears m SEL-89-006, Collected Software Engineering

Volume VII, November 1989.

8This article also appears m SEL-90-005, Collected Software Engineering

Volume VIII, November 1990.

9This article also appears m SEL-91-005, Collected Software Engineering

Volume IX, November 1991.

Papers:

Papers:

Papers:

Papers:

Papers:

Papers:

Papers:

Papers:

Papers:

I01e4'0640

BI-14

