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This article presents a study of signal-to-noise ratio (SNR) degradation in the

process of square-wave subcarrier downconversion. The study shows three factors
that contribute to the SNR degradation: the cutoff of the higher frequency com-

ponents in the data, the approximation of a square wave with a finite number of

harmonics, and nonidead filtering. Both analytical and simulation results are pre-
sented.

I. Introduction

A square-wave subcarrier can be downconverted by us-

ing a method such as the one presented in [1]. The down-

conversion procedure is illustrated in Fig. 1. However, the

study in [1] was done under the following assumptions: (1)

the filters are ideal, (2) the data signal is band limited, and

(3) the power in the higher harmonics of the square wave

is negligible. These assumptions are not practical. The re-
laxation of these conditions will quantitatively change the

output results. A measurement of this change is the signal-

to-noise ratio (SNR) degradation. This article presents a

study of the SNR degradation in the square-wave subcar-

rier downconversion using realizable filters. A pseudoran-
dora sequence, which modulates a square-wave subcarrier

approximated by the first, third, and fifth harmonics, is

used as the input data. The definition of SNR degrada-
tion used here is

Two types of realizable filters will be considered here:

the infinite-duration impulse response (IIR) filters and the

finite-duration impulse response (FIR) filters. The IIR

filters are easy to implement but do not provide linear

phase. The output suffers distortion due to different group

delays for different frequency components. The FIR filters,

on the other hand, have linear phase but need a high filter

tap number, thus a long processing time.

Since the noise is additive and the downconversion sys-

tem is linear, the noise and the signal can be studied sep-

arately. Then the total SNR degradation can be obtained:

total SNR degradation (dB) = signal power loss (dB)

+ noise power gain (dB)

SNR degradation (dB) = SNRideal -SNRre_

where SNRideal and SNRre_l are the signal-to-noise ratios

in decibels at the output of the downconverter using ideal

and realizable filters, respectively.

II. Noise Power Change

Unlike ideal filters, a realizable bandpass filter does not
have a sharp frequency cutoff; therefore, some of the noise

in the stop band may be passed. On the other hand, a
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realizable filter does not have a flat magnitude in the pass
band; so, some of the noise in this region will be weakened,

assuming unity filter gain at the center frequency. Hence,

the output noise power may change as compared to the

ideal case. This change can be measured as the noise power

gain in decibels, defined as follows:

noise power gain = 10 log
noise power using real filter

noise power using ideal filter

When the value of the noise power gain is negative, the im-

plication is that the noise power is decreased, as compared
with the ideal case.

The noise power after filtering can be computed as fol-

lows: Assuming additive white noise with a power spectral
density of S(w) = No/2, the noise power theoretically be-

comes [2]

f7
noise power = N---2°l--_- IH(eJ_)12dw (1)

2 2r ,

where H(e j_) is the filter transfer function. In the down-

conversion process, both bandpass and lowpass filters are

involved, and each of them will be analyzed separately in

the following subsections.

A. Effect of Bandpass Filtering

For an ideal bandpass filter (BPF), the noise power be-
comes

noise power using ideal filter = IHI_fM($,/2)

where IHI = 1 is the filter magnitude, fB is the BPF

bandwidth, and f, is the sample rate.

For the IIR filter, the Butterworth bandpass filters

are chosen as an example since they have a maximally

flat magnitude. The integral can be computed through

an equivalent lowpass filter (LPF) transfer function [3,

p. 421]:

" Iv( )1 f"e j_ 2d60 =

tan(w/2)]1 + tan( , /2)J

dw

where wc is the cutoff angular frequency that takes values

from 0 to 7r, r corresponds to half of the sample frequency,
and N is the filter order.

If the FIR bandpass filters are used, the integrals can

be evaluated by using Parseval's theorem [3, p. 187]:

Foo 1 ig(do )12d
Ih["]l .

n_--OO

Since h[n] has a finite duration, the sum is over a finite
number of terms.

The IIR filters are obtained by converting the analog
Butterworth filters, using bilinear transformation with fre-

quency prewarping. The cutoff frequency is the half-power

or 3-dB cutoff frequency. The FIR filters are designed

using the classical method of windowed linear-phase FIR

filter design. A Hamming window is used in this case.

By varying the IIR filter order and the cutoff frequency,

a series of integrals is numerically evaluated, and the noise
power gain in decibels is computed at a sample rate of

260 kHz as shown in Table 1. For comparison, a simula-

tion of the bandpass filtering process is realized with white

Gaussian noise as the input. For the output variance to
be less than 0.02 dB, the simulation was run with 5 x 106

samples (see Appendix A) at a sample rate of 260 kHz.
The results are also shown in Table 1.

A similar series of results is obtained for the FIR filters.

The designed FIR filters, however, may not have the half-

power cutoff frequency matching the goal cutoff frequency.

For a fair comparison, the half-power cutoff frequencies are
obtained. The results are shown in Table 2.

Taking the difference of the analytical and simulation

results in Tables 1 and 2, it is found that the largest dif-
ference in decibels is about 0.03 riB.

B. Effect of Down-Mixing

Unlike the bandpass filtering, whose effect on the noise

power can be computed analytically, the effect of the down-

mixing process on the noise power can be studied more eas-

ily through simulation since the noise is no longer white.
The BPF's are assumed to have the same order and band-

width at different center frequencies. It is assumed that

the lowpass filter has the same order as the bandpass fil-
ters and that its bandwidth is three times that of the BPF.

The filter gain is assumed to be 1 at the center frequency.

The simulation was done with 5 x 106 samples at a sample
rate of 260 ktlz for filter bandwidths less than 5 kHz, and

at 270 kHz otherwise. The results are shown in Table 3.
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III. Signal Power Change

There are three factors that cause the degradation in

signal power: the cutoff of the data bandwidth, the finite

number of harmonics considered, and the nonideal filter-

ing. These are next discussed individually.

A. Data Bandwidth Cutoff

The bandwidth of the BPF should be greater than or

equal to the data bandwidth if the data are band limited.
However, this may not be satisfied in practice.

In the simulation, the signal consists of a square-wave

subcarrier modulated by a 1-kHz pseudorandom sequence

as data. A pseudorandom-noise (PN) shift register genera-

tor of length 10 associated with {3, 10} is used to generate
the data [4, p. 342]. The power spectral density of the PN

sequence is [4, p. 380]

Pp.(f)= -_(f)

+ sinc2(_rfTe) Z 6 f+'_c

where N is the sequence length, and T_ is the chip time.

Clearly, a PN sequence is not band limited. Hence, when

the BPF's are applied to a data modulated square-wave

suhcarrier, some of the signal power carried by the higher

frequency components is filtered out, which leads to a sig-

nal power degradation. In general, the wider the filter

bandwidth is, the lower the signal power degradation is.

This relationship is shown in Fig. 2. However, there are up-

per limits on the filter bandwidth so that the undesirable
harmonic terms can easily be separated from the desired

ones [1]. For instance, in the simulation, the restriction is

22.5 kHz-fB/2 > 3fB, which implies that the filter band-

width, fB, should not exceed 6.43 kHz because aliasing
may occur beyond this.point. An alternative downconver-

sion procedure (see Appendix B) may be used where no
upper limit on the filter bandwidth will apply. However,

the goal is to keep the bandwidth narrow for a low sample
rate.

B. Finite Number of Harmonics Considered

Another factor that causes the signal power degradation

is that only the first, third, and fifth harmonics are down-
converted. The first three harmonics of a square-wave sub-

carrier carries only 93.3 percent of the total power of the

square wave. So, there is about a 0.3-dB signal power

degradation in neglecting the higher order harmonics. Ta-
ble 4 shows the relationship between the power loss and

the harmonic number up to which the downconversion is
carried out.

C. Nonideal Filtering

Finally, the signal degradation, due to the nonideal fil-

tering, is analyzed through simulation. To separate the

nonideal filtering effect from the other two factors, the in-
put signal is considered to have the first three harmonics

only:

4 r 1
subcarrier ]sin(2_rft) + sin(27r x 3ft)

=_ L 5

1 ]+_ sin(2r × 5ft)

where f = 22.5 kHz for the Galileo signal. The simu-

lation results can be subtracted from the signal power

degradation due to the data-bandwidth cutoff computed
in Section III.A. The results obtained directly from the

simulation are shown in Table 5 and Figs. 3 and 4. These

results reflect the signal power degradation due to both

data-bandwidth cutoff and nonideal filtering. The signal

degradation due to only nonideal filtering is shown in Ta-
ble 6 and Figs. 5 and 6. This simulation was done with

5 x 106 samples at a sample rate of 260 kHz for filter band-

widths less than 5 kHz, and at 270 kHz otherwise.

Elliptic lowpass and bandpass filters have been simu-

lated as well. The results in signal power degradation are

lower than those using the same order Butterworth filters,
but the output is severely distorted.

IV. SNR Degradation

Finally, the total SNR degradation can be obtained by

adding the noise power gain in Table 3 to the signal power
loss in Table 5. The results are shown in Table 7 and

Figs. 7 and 8.

Note that the results in Table 7 exclude the effect of

the consideration of a finite number of harmonics for the

square wave.

V. Conclusion

This article presented an analysis on the SNR degra-
dation in the square-wave subcarrier downconversion pro-
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cess, as may be used in the Galileo S-band mission. There

are three factors that affect the SNR degradation: the
data-bandwidth cutoff, the approximation of a square

wave with a finite number of harmonics, and nonideal

filtering. The three factors were analyzed separately,
and the analytical and simulated results were presented.
The distortion effects on the detection were not consi-

dered.
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Table 1. Noise power gain (dB) due to IIR BPF.

Filter order

Filter bandwidth, kHz

2 3 4 5 6

6 (analytical) 0.1999 0.1993 0.1986 0.1977 0.1965

8 (analytical) 0.1120 0.1117 0.1114 0.1109 0.1104

10 (analytical) 0.0716 0.0714 0.0712 0.0709 0.0706

6 (simulated) 0.1760 0.1915 0.1899 0.2046 0.1957

8 (simulated) 0.1169 0.1004 0.1262 0.1108 0.1080

10 (simulated) 0.0926 0.0611 0.0785 0.1080 0.0732

Table 4. Signal power loss due to finite number of harmonics.

Harmonic number 1st 3rd 5th 7th 9th

Power loss, dB 0.9121 0.4545 0.3009 0.2246 0.1719

Harmonic number llth 13th 15th 17th 19th

Power Loss, dB 0.1489 0.1274 0.1113 0.0988 0.0888

Table 5. Signal power loss (dB) from simulation.

Filter order

Filter bandwidth, kHz

2 3 4 5 6

Table 2. Noise power galn (dB) due to FIR BPF.

Filter order

Intended filter bandwidth, kHz

2 3 4 5 6

IIR 6 0.5069 0.3554 0.2639 0.2105 0.1780

IIR 8 0.4816 0.3422 0.2484 0.1999 0.1661

IIR 10 0.4708 0.3351 0.2403 0.1946 0.1604

FIR 160 - 0.5851 0.4807 0.3857 0.2772

FIR 320 1.0134 0.5556 0.3120 0.2253 0.1813

160

320

Obtained filter bandwidth, kHz

2.2820 2.5420 3.0620 3.7640 4.6740

1.5280 2.3340 3.3480 4.3360 5.3500

Noise power gain, dB

160 (analytical) 0.2447 0.2678 0.1513 0.0915 0.0336

320 (analytical) 0.1583 0.0386 0.0129 0.0155 0.0266

160 (simulated) 0.2304 0.2646 0.1303 0.0998 0.0123

320 (simulated) 0.1560 0.0739 -0.0012 -0.0032 0.0198

Table 6. Signal power degraded (dB) due to nonldeal filtering.

Filter bandwidth, kIlz

Filter order

2 3 4 5 6

IIR 6 0.0517 0.0413 0.0393 0.0284 0.0295

IIR 8 0.0318 0.0281 0.0238 0.0178 0.O176

]IR 10 0.0210 0.0210 0.0157 0.0125 0.0119

FIR 160 - 0.1653 0.1643 0.1366 0.0462

FIR 320 0.4936 0.1134 0.0464 0.0063 -0.0136

Table 3. Noise power gain (dB) in downconverslon.

Filter bandwidth, kHz

Filter order

2 3 4 5 6

IIR 6 -0.0646 -0.0801 -0.0801 -0.0801 -0.0795

IIR 8 -0.0752 -0.0882 -0.0827 -0.0960 -0.0711

IIR 10 -0.0743 -0.0943 -0.0748 -0.0736 -0.0998

FIR 160 -0.1429 -0.1610 -0.1422 -0.1501

FIR 320 -0.1328 -0.1009 -0.1210 -0.0451 -0.0664

Table 7. Total SNR degradation (dB) In downconveralon.

Filter bandwidth, kHz

Filter order

2 3 4 5 6

IIR 6 0.4413 0.2753 0.1837 0.1304 0.0985

IIR 8 0.4064 0.2541 0.1657 0.1039 0.0950

IIR 10 0.3964 0.2407 0.1655 0.1210 0.0606

FIR 160 - 0.4422 0,3197 0.2435 0.1271

FIR 320 0,8806 0.4547 0,1910 0.1802 0.1149
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Fig. 1. Square-wave subcarrler down-conversion.
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Fig. 2. Signal power degradation due to the PN bandwidth cutoff.
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Appendix A

Number of Samples Needed in the Simulation

For N independent samples, zi, of a random variable, x,

the variance can be estimated by using an asymptotically

unbiased and consistent estimate [5], namely,

b2 1 N
= N _(x, _ _,)2 (A-])

i=1

where 37/is the mean estimate

N
1

i=1

Var{b 2} = l(E{x4} - E2{x2}) (A-2)
N

Assuming that the noise has a normal distribution,

E{x 4} = 3E2{z 2) [6]. Substituting tbe last expression

in Eq. (A-2),

Var{b2 } =_ 2, 2,2 (A-3)

or

" 2standard deviation{b 2} = a

The mean of the variance estimate is

E{b_ } = N-_____la_
N

where _r2 is the true variance, and the variance of the es-
timate is

where N is the number of independent samples. In this

case, at the BPF output, the number of independent sam-

ples reduces to approximately Ni,,fB/(f,/2), with Nin be-

ing the number of independent samples at the input, fB

being the BPF bandwidth, and ]'8 being the sample rate.
When Nin = 5 × l0 s and fj = 260 kHz, the deviations

(in decibels) of the estimated variance, b2, from the true
variance, _r2, in terms of fB are shown in Table A-1.

Table A-1. Deviation of the estimated variance (dB) at
output of BPF.

BPF bandwidth (kHz) 2 3 4 5 6

10 log (6"2/a 2) 0.0210 0.0180 0.0156 0.0140 0.0128
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Appendix B

An Alternative Downconversion Procedure

An alternative procedure for the square-wave subcar-

tier downconversion is shown in Fig. B-1. This procedure

differs from the one shown in Fig. 1 in the following ways:

The undesirable terms will reside in a farther region in the

frequency domain. For instance, assuming that the subcar-

rier frequency is smaller than the mixing signal frequency,

f, < f,,, then the lowest frequency of the undesirable

terms in the procedure of Fig. 1 is

7/, - 5f._ = 2A + 5(f, - f_)

whereas in the alternative procedure, this frequency is

A+lm = 2A +(1._- A)

The second term of the last two expressions are negative

and positive, respectively. This fact makes the lowest fre-

quency of the undesirable terms in the second case much

larger than the first case, which is desired since this may
lead to lesser interference from the undesirable terms when

nonideal filters are realized. From the hardware perspec-

tive, this procedure may need four multipliers and three

adders versus six adders and one multiplier in the proce-

dure shown in Fig. 1.

L._ 8PF

NOISE _

Fig. B-1. Alternalive procedure for square-wave subcarder
downconversion.
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