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Control of Elastic Payloads: 1-DOF Example

1-DOF rigid arm with 1-DOF elastic payload:

XA Kp

Arm l Payload

Force
Sensor

• M_ = Arm Mass

• Mp= Mp1 + Mp2 = Payload Mass

• Bpis small (lightly damped elastic mode)

Payload dynamics can be defined by its dynamic stiffness:

xp Kp Zp(,=)=Fp(S) = MpS2 S'+2_O_pS+O)p_ 2 fll,2

Xp(S) $= + 2_'DpS + _p mp

2 . r I + [ 1 2 Kp

(liP= KP[ MpI Mp2 ] _P= Mp2

Payload

• Equations of motion for arm/payload system can be expressed in terms of
the INDIVIDUAL arm & payload dynamics:

Payload- q

• Assume standard PD control for robot arm:

c
u =--kA(XA-- XA)--kRX A

• Arm is acting as a colocated actuator/

sensor pair for payload.

ELASTIC MODE ALWAYS STABLE

= tuned control _ mp

• detune_ _e,

-k A

kR

Payload closed-loop elastic mode is a function of the ratio
where:

mA = Rigid Arm Closed-
Loop Bandwidth

Qp = First Cantilevered
Vibration Frequency
of the payload

_P

Arm Acts as a:

I

,I free-flyingbase _'_

vibration

absorber

L0A

_p

inertially fixed
base

_ h e
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Control of Elastic Payloads: 1-DOF Example (cont'd)

For cases where arm controller is "detuned" ( _0A >> _e ), we can
implement an additional IMPEDANCE control law to actively damp the
payload's elastic mode:

PD Control Arm Payload I

Impedance
Control

• We Have:
C

Xp--__xv (High-Gain PD Control)

c -Fp
Xp - BI s + K I (Impedance Control)

Fp=-(Bts+KI) Xp

Force Fp applied to payload acts as a virtual spring/damper

selected by the user H

Root-Locus vs. Force

Sensor Gain:

P

_p

2)

KI

BI

With proper choice of I Kl, B_ 1

gains, payload elastic mode is

actively damped !
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Control of Elastic Payloads: Planar Arm Example

• Three DOF Arm with j

Elastic Beam Payload: _ Yr .._VWris t

(J'_--- -- _-_ Elbow
Shoulder OS

° Payload linearized dynamics model is obtained from FEM techniques

applied to elastic body on moving base:

1qr = Yc = rigid interface DOFs Fp = Fy -- external forces/torque exterted on payload

L0 cJ T _ by arm.

In summary:

Fxlsll [XclSl]
Fy(s)/=Z-(S)/Yo(S)/where Zp (s) = DYNAMIC STIFFNESS of ELASTIC PAYLOAD

To(s)J P [0c(s)j

• Arm dynamics linearized around given
configuration:

xc

y
Tw

_-JTs

T

M(fio) fi = TA +O (rio) Ec with

Can be transformed in terms of
end-effector coordinates xc:

-T

M_o) X_c=d _o) TA + Ec with

0 = OF_ TA = TE EC =ITyc_
O T LTod

M(fio) = 3x3 inertia matrix

d (rio) = dacobian matrix expressed
in end-effector frame

M _o) = "Cartesian" inertia matrix
-T T

= d (13o)M(flo) O _o)

• Coupled arm / payload dynamics:

Ta

Tw
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Control of Elastic Payloads: Planar Arm Example

3-DOF Harmonic
Drive Arm

ORIGINAL PAGE

BLACK AND WHITE PI"IOTOGI_APH
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Control of Elastic Payloads: Planar Arm Example

• System Block Diagram:

Joystick "_

Hand ControlJ

,
"_ I if Analog "_ F

Digital _ C,onlmller J _ /

Contro.e, I _ -I (Vel&TorqueI _1 PWM I _1
(poe,v., & I _ _ _ IControl Loops)I --I A_pS I _1
orce Control _ & Sensor J _ J

Loops) j/ I L Electronics J L

I
T DigitallAnalog t l ('_Accelerometers,'_

/ I / L -J Tachometers, I =

/ / L Strain Gauges J

Joint Vel J .. _ ,_

L L__ " Resolvers _ -

= _, ,)-
I

Force/Torque I ("_F°rce/T°rqua_'_ _Processor _ t TransducerJ

3-DOF 1

Hamlonic
Drive

Manipulator

Characteristic frequencies for

3-DOF Arm & Payload dynamic

system (derived using

TREETOPS multi-body software):

F1 (Hz) F2 (Hz) F3 (Hz)

Arm Joints 1.2 14.0 42.2
Locked i

|

Arm Joints 2.1 14.3 42.3 I
Free J

Arm Mass

Properties:

Link Mass
(kg)

Center of
Mass (m)

Shoulder 13.8 0.406 0.56

Elbow 10.1 0.37 0.607 0.56

Wrist 13.7 0.14

MOI Link Length
(kg-m 2) (m)

0.77

0.106 0.254

Payload
Mass

Properties:

Part Mass
(kg)

Beam

Tip Mass

Center of
Mass (m)

El

(N-m 2)

7.28

Link Length
(m)

0.4 0.38 0.765

0.7 .....
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Control of Elastic Payloads: Planar Arm Example (cont'd)

• Arm controller is designed assuming a rigid payload:

Independent analog torque loop controllers (elastic gearmotors behave as
direct drive actuators)

Standard nonlinear control law: Ta = Mr, ( e ) [- Kp ( 6 -e c) - KRI_ ]

• For a rigid arm, closed-loop dynamics is approximated by 3
decoupled second-order integrators.

• For a rigid arm with elastic payload, arm can be treated as a
virtual cartesian 3-dof colocated actuator/sensor pair.

• Dominant payload closed-loop elastic mode is a function of the ratio o_____
where: QP

03A = Rigid Arm Closed-
Loop Bandwidth

,Qp = First Clamped
Vibration Frequency
of the Payload

_P I

J
I

Arm Acts as a:

free-flying _ inertially fixed

base-/_vibrat!onl _ base

Ia sor err
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Experimental time responses for an initial payload elastic deformation-

Arm acts as a vibration absorber:

--. 2

(/)

E
v

-_ 0

U
o --1

CL

•.c, -2
2

E
Z

"-" 1
CT

no 0
C

¢n --1

1

0
"0

nO

-2

_A
-1

_p

1 2 3 4 5 6 7
time (sec)

Arm acts as a rigid base:
coA

-2
_p

.---, 2

.... [ .............. ..............

E
v

0

U
o --1

a.

'_ -2
1

E
Z

v 0
Cr

(/}
C

_n --2

.5

"G
cD

o
F

"O --.5

iV vlv v ,.
......_-...................4........................................

0 1 2 3 4 5 6 7
time (sec)



Control of Elastic Payloads: Planar Arm Example (cont'd)

• For cases where arm controller is detuned ((Oa > _p), we can implement an
impedance control law to actively damp dominant payload elastic modes:

Yo Matrix _ T_rnu_ _ Arm/ L_._"-_ _,_oup,erlT_,;_" I T.. -I Payload I --
(_o _ 15 HZ) " ---_- " Dynamos

End-Effeclor

TorqueSens#r

° We Have:
C

= _ (High-Gain PD Control)

c -T_

¢ - B s+ K_ (Impedance Control)

T _-(Bcs+K¢)_

I

=> Torque TO applied to payload acts as a virtual spring/damper I

selected by the user !! I

.-. 2

b3

E 1

Oo 0
O

CL

.5

E
Z

"-" 0
ET

"_ --.5

U3
C

-.5

,g

v

r
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Experimental time responses for an initial payload elastic deformation:

Impedance controller:
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Controt of Elastic Arms: Testbed Description

i

Elbow Direct

20x30 ft Epoxy
Fiat,Floor

Lnd-Potnl

Force;torque
_._ensor

ORi,:;trq,._.L r-'"p_,""'.,E"

8LACK ^"'m,_,_ WHITE PH()i-OGf_APN

424



Control of Elastic Arms: Testbed Description (cont'd)

• System Block Diagram:

Digital Controller

Modified Intel 310 System
Two Intel 386/12 CPUs

16/VD inputs

16 D/A Outputs

400 Hz Resolver Reference

ETHERNET Interface

120Mb Hard Disk, 320K Roppy
Menu-Driven User Interface

Engineering Workstations

• HP/Apotio Network, PC-AT,

FIT Signal Analyzer:

- Data Post Processing

- Simulation & Control Design

(Treetops, MATRIXx, Matlab)

-_Analog Controllers ._ Motor Ampllfler._._.__.s

• Analog Torque Loops I I " Current-Controllod

• Analog Velocity Loops I I PWM An_litiers
• By-Pass Switches I L

[
User Inputs

- Control Law

Subroutines

• Teleoperator
Hand Control

Devces

Analog Sensor Electronic

• Amplif_rs / Low-Pass Filters

(adjustable gain and rolloff)

• Resotver-to-Digital Converters

• Analog Integrators

(for acceterorneter outputs)

• Analog Differentiators

(for straingauge outputs)

Large Space Manipulator

• Actu_lo¢_:

- Sh: DC Gearmotor

(20:1 Gear Ratio)
- El: DC Direc_Drive

- Wr: DC Harmonic Drive

(80:1 Gear Ratio)

• Sefllorll:

- Joint Reso_vers

- Motor Tachometers

- Strain Gauges along Links

- Tip Accelerometers (X. Y)

- 2-D Tip Position Sensor

- Wnst Fome/Torque Sensor

• Payloads:

- Rigid aod/or Flexible

- Adjustable Mass Prope_lies
- Flu¢l Slosh Tanks

Control of Elastic Arms: Dynamic Modelling

• Modelling tool is the multi-flexible body dynamic analysis code TREETOPS:

Code developed by Dynacs for NASA-MSFC can simulate controlled
dynamics of a general chain of articulated rigid and elastic bodies.

Preprocessor generates finite element mass, damping and stiffness matrices
for each link with user-selectable end boundary conditions.

Linearized models can be loaded in the control analysis software packages
MATLAB and MATRIXx.

Nonlinear TREETOPS simulation can be run with the MATRIXx/System-Build
nonlinear simulator. This allows to easily design and simulate control laws
with the TREETOPS-generated dynamic models.

Simple analytical models have also been derived to understand the basic
characteristics of the system to control: linear and nonlinear models for a
1-DOF, and 2-DOF planar slender elastic arms with a rigid payload and with
nonlinear or linear geared actuators.
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Control of Elastic Arms: Dynamic Modelling (cont'd)

Equations of motion for 2-DOF elastic arm numerically assembled by TREETOPS:

where Xr and Xe are respectively the joint angles and the generalized elastic coordinates

Equations of motion are linearized around a given arm configuration. A
state-space model is derived with the two control actuators as inputs. The model
outputs are the joint angles, motor rates and linearized tip displacements (dx,dy).

Characteristic System frequencies: JL= free joints FF = joint locked.

Mode

No.
-7

,.)

3

4

5

6

System Frequencies (Hz) )

for No Payload Configuration I

O_ = 0° O_ = 90 ° 1

1.50 6.70

7.53 I 18.3

14.5 I 25.3

27.1 ] 40.9

o3615oot
0.94 /6.54 /
7.27 t8.2 I

14.3 25.1
266 i 409

Control of Elastic Arms: Colocated PD Control

• Closed-loop system block diagram:

PD controller with joint position and motor velocity feedback:

Te: ['po<0<0;>÷k.o0e]L2,<,>
where L2s and L2e are two second-order lag filters:

-)

_z z S

L2(s ) =

s"+ 2;p % s + _o"p_;
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Control of Elastic Arms: Colocated PD Control (cont'd)

Example of gain-stabilization of the 4th vibration mode (85 Hz) with PD

controller implemented at 200 Hz. Second-order lag filter provides

high-frequency roll-off in compensator:

Open-loop shoulder transfer function G (s) K (s)

6O

20

0

.20

29O

Sh_ Bmkm-Lo,_Trm_' Funcm_

100

0

-100

._00
.1

I i ; 'Jr1 i L I ' =1 ;_" I ;I ,

1 I0 100

N0Shap_ FiI_

.... WilhS_ F_'_r

i i

[- [ I J ili 1 I _ I I I _ L , , I L I L
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Control of Elastic Arms: End-point Controller

y= Lead-Lag [..

Compensator I-

Y -_Yl

x xt

• End-point controller is designed for configurations with the elbow angle nearly
equal to 90 degrees:

Tip sensor Xt channel is fed back to elbow actuator.
Tip sensor Yt channel is fed back to shoulder actuator.

For each channel, the tip controller consists of a second-order lead compensator
with motor rate feedback:

(s+a) c
Ti=" [kpi (s +b)(s +c) (zi- zi ) + kRi ei ] L2i(s)

with la << b & c} and L2i is a second-order lag filter.
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Control of Elastic Arms: PD Control vs End-point Control

Arm is commanded to move along a straight line in the y-direction:

A fifth-order spline command profile is used for the tip position command

For the independent joint controller, equivalent joint command profiles are
computed using inverse kinematics (assuming arm is rigid).

• Arm configuration for reference slew maneuver:

tip sensor _

.aid-of-view-"--=__ _

P1 = ( 2.1, -2--0 ) m

P2 = ( 2.1, -2.4 ) m

final

V "initial .,_Y S

_-\\\\\\\\\\\\\\',_ (a)
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Experimental Time Responses for Slew Maneuver

-1.9-

-2-

-2.1.

_= -2.2-

-2.3-

-2.4-

Cartesian End Point Responses

-- Desired
...... Tip Cntr!
............Jnt Cntrl

-2.5
,.8 _ig

Stop

Start

'k .

%.

""....

-\

'i
./

.y"

21,

X (m)

2:2 2;_ 2.4

2.3

Tip Sensor Responses

-- Desired

......Tip Cntrl

.........Jnt Cntrl

• - • i • - - , • - • , - - - , - - - , - - •

I-"

o

Control Torques

-2

4

A

',;-7/ '.......'_...........................]
/

t7 ......Tip Cntrl t

............ :::. _."!._."!,./

2-

o

--2"

. i'_. i- ,-
'_i ..', i '.. / '..

/j
i

I

i i ......._._o<.,
'J ..........Jnt Cntrl

Time (sec)

12
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Control of Elastic Arms: Disturbance Response to Tip Forces

• Experimental set-up:

I

I

I

I

r

constant tip force ____

___'__ e Fy Axt

,
I I

- The arm is under closed-loop control in a given configuration

(joint or tip control).

- A constant force is applied at the tip using a force gage.

- After steady-state has occurred, tip force is removed.
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Control of Elastic Arms: Disturbance Response toTip Forces (cont'd)

Experimental Data for 0.5 Lb Tip Force Applied along Y axis:

TIO Olllurbonce:O.5 Lb In Y-Olr

.06 i

a=

.03 ' -- Tip Cntrl

!' --- Jnt Cntrt

.02

o,_._ ",\/_x,
0 \ _"_ -

-O,o _ _
llmo

8 10

.06 Tip Ollturbgnce:O.S Lb In Y-DIr

i

.04 _- ........ ' -- Tip Cntrl i
...... Jnt Cr_lrl

\
.02 i

: i

: ]

-.02 [ , ..,. , , J

2 4 6 8 10

#1me

.04

.03 ! -- Tlp Cntrl

......Jnt Cnlrl

.01

-,01 _ _ .,_ ,i

0 2 4, 6 8

tlme

i

r

Io

Effective cartesian stiffness with tip position control is one order of
magnitude larger than with joint feedback.

With joint control, tip disturbance forces excite fundamental
low-frequency and the lightly-damped elastic mode of the arm (0.5 Hz
frequency). With tip controller, transient response is well damped.
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Conclusions

With additional sensing capability, simple and robust control laws can be
used for active damping of space robots:

wrist-mounted force/torques sensors can be used to damp out large elastic
payload vibration modes with a simple impedance control law.

sensors which directly sense the wrist motion can be used to damp out link
elastic modes for RMS-class arms.

output torque sensors can also be used to damp out gearmotor elastic
modes.

Experimental testbeds have been designed to validate modelling
techniques and to demonstrate in 2-D the feasibility of new
control/sensing implementation for FTS/SPDM-class and RMS-class
manipulators. These testbeds are useful as a complement to 3-D
simulation studies.

• Space-based experiments should be planned to demonstrate
CSI-technology for FTS/SPDM-class and RMS-class manipulators.
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