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ASTEROID ORBITAL ERROR ANALYSIS: THEORY AND APPLICATION f

K. Muinonen and E. Bowell

Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001, U.S.A.

We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability
. density of the orbital elements is derived from the noise statistics of the observations. For Gaussian

noise in a lineaxized approximation the probability density is also Ganssian, and the errors of

the orbital elements at a given epoch axe fully described by the covariance matrix. The law of

error propagation can then be applied to calculate past and future positional uncertainty ellipsoids

(Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991).

To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element

estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a

priori information to be formally present in the final estimation. However, Bayesian estimation does

give the same results as Fisherian estimation when no a priori information is assumed (Lehtinen

1988, and references therein). _ _. _ \

BAYESIAN THEORY OF ORBIT ESTIMATION

Assume that N pairs of right ascensions and declinations £ = ('_l,61;...;aN,6N) T have been

observed for a certain asteroid at times t = (tl,...,tN) T. Let the corresponding computed sky-

plane positions be described by the vector L(P) for the orbital elements P = (r,w, f_,i, e,a) T.
The orbital elements are, respectively, the time of perihelion, argument of perihelion, longitude of

ascending node, inclination, eccentricity, and semimajor axis. The astrometric observations and

computed positions are related to each other through the so-called observation equation

where e describes the noise.

£ = LCP)+¢

Following Bayesian estimation, or statistical inversion theory, the a posteriori probability density

of the orbital elements is related, via Eq. (1), to the a priori and noise probability densities through

ppo,t(P) o¢ pp_(P) P2N(E) -- Ppr_(P) p2N(e-- L(P)). (2)

The a priori probability density can be assumed constant, so no constraining assumptions are made

about the orbital elements. Eq. (2) describes the entire solution of the orbit inversion problem in

terms of probability densities.

Next, assume that the noise probability density is Ganssian with a diagonal covariance matrix; i.e.,

the noise is not correlated. In spite of this simplifying assumption, it is evident from Eq. (2) that

the a posteriori density for orbital elements is rather complicated. In the present context, we do

not study the general probability density but proceed by linearizing the sky-plane positions in the

neighborhood of the ephemeris from a least-squares orbit solution P0. The resulting a posteriori

probability density for the orbital element deviations is Gaussian and has inverse covariance matrix

N

= c°s t 1 a6_"-P:P,i = a_ 0--_i(Po, k)_-p_j(Po,tk) + p_ _i(Po, tk)_-_j(Po, tk), (3)

in which ak and Pk axe the standard deviations in right ascension and declination, respectively.

Numerical inversion of this matrix yields the covariance matrix of the orbital elements.
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Instead of using a priori error estimates of the observations to obtain ak and pk for Eq. (3), the
following self-consistent method of determining the standard deviations can be used: Determine

the orbit by the usual means of differential correction, in which equal weight is given to each

observation; compute the rms errors a (allowing for cos 5) and p, and then set ak = a, Pk = P,
k = 1,..., N in the error analysis.

A number of analytical results can be derived from the covarlance matrix in a two-body orbit ap-

proximation (With minor changes, the results are valid for perturbed orbits). For example, as an ob-

servational arc (T) is lengthened, the £ccuracy of the semimajoraxis is improved faster (_3_a o( T -3)
than that of the other orbital elements (_3pipi o(T'2). This is analogous to lightcurve error anal-

ysis, in which the period improves faster than the Fourier coefficients (Karttunen and Muinofien

1991). Moreover, the variances of the mean, eccentric, and true anomalies have a quadratic time

dependence. It is also worth noting that the correlations among the orbital elements are relatively

insensitive to the arc length. This arises from geometric restrict]0ns of the optical groundbased

observations, and could be alleviated by radar or spacecraft observations, :: -

In the general formalism, the probability density for the range R, declination 6, and right ascension

& at tlme t can be Obtained from the a postefi0ri probability density of the orbital elements from

= k cos dP p,o,,(P) - - 6(P, ))6o(a - (4)
: c :

where SD is Dirac's function. The factor preceding the integral derives from the spherical coordinate

system. The numerical computation of this integral is straightforward, though time-consuming.

Note that to compute the real uncertainties for a future observation, the probability density in

Eq. (4) should still be convolved with the noise of that observation.

Using the linearized approximation for the orbital elements and linearizing the Dirac function

arguments, a Gaussian probability density results for the equatorial spherical coordinates (from
the integral part of Eq. (4)) with covariance matrix

/ OR 06 Oa \

)OR 06 Oc_
Oa Oa

(5)

Here, for a prediction at time t, the partial derivatives must be evaluated at (P0, t). It should be

noted that the linearized approach is an approximation that fails, for example, when a long time

has elapsed from the observations and the uncertainties have become very large. The Covariance

matrix A gives an error ellipsoid in three-dimensional space. As is well known, the sky-plane

error ellipse is usually very elongated and aligned with the line of variation. Using Eq. (5), it _can

be shown that, asymptotically, the range, declination, and right ascension uncertainties increase

linearly with time in the two--body approximation.

MARS TROJAN 1990 MB

As an example, we study the orbit of the Mars Trojan asteroid 1990 MB using 43 observations

spanning 1979 Nov. 21 through 1990 Oct. 14. A two-body orbital error analysis gives the following

error estimates for the orbital elements at epoch 1991 Dec. 10.0 (B1950.0 for w, f_, and i)"

v = 1992 Sep. 15.268874-0.00184 i = 20?28098 4- 0?00007

w = 95?39992 4- 0?00137 e = 0.0647663 + 0.0000028 (6)
fl = 244?44755 + 0700007 a = 1.5235591AU + 0:0000003AU
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Note that the semimajor axis is very accurately known, as predicted by the error analysis. Because

of the rather small eccentricity, the argument of perihelion has a larger error than the longitude

of the ascending node. The error in the time of perihelion also reflects the small eccentricity. The

covariance matrix reveals high correlations between semimajor axis and eccentricity, as well as

between time of perihelion and argument of perihelion.

Figure la shows the sky-plane l-a uncertainty _/Aaa cos 2 6 + A6_ in position prediction for a 10-yr
interval. The maxima correlate well with the minimum geocentric distance, which suggests that, for

optimum ephemeris improvement, future observations should be made near the minimum distance

of the object. As a demonstration, we simulated a pair of observations on 1992 Jul. 26, close to

opposition. There is a three-fold improvement in the orbit. For a simulated pair of observations far

from opposition on 1992 Mar. 26, there is virtually no ephemeris improvement. Figure lb shows

the present and simulated 1-a uncertainties V/-2_ in range prediction. Since the true orbit is not

the least-squares solution, orbital and ephemeris errors are somewhat underestimated.
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Fig. 1. Sky-plane (a) and range (b) uncertainty predictions for the Mars Trojan 1990 MB over

an interval of 10 years (solid lines). The uncertainties after adding a simulated pair of observa-

tions on 1992 Jul. 26 (dashed line, close to opposition) and on 1992 Mar. 26 (dotted line, far from

opposition) underscore the importance of observation date and geometry.

FUTURE WORK AND APPLICATIONS

In future work, the two-body partial derivatives should be checked against integrated derivatives.

It will be important to compare the uncertainty predictions with approximate and accurate deriva-
tives. The linearized approximation should be checked against the general Bayesian approach.

Finally, we suggest that a public-domain file of covariance matrices of orbital elements, together

with computer programs for error analysis and position prediction, be established. Information

about the orbital uncertainties and covariance matrices could also be published in the Minor Planet

Circulars.
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We summarize selected applications of the orbital error analysis as follows:

• In orbit computation, the behavior of the covariance matrix serves as a guide for

eliminating poor observations and suggests a way to automate the process.

• In the case of newly discovered asteroids, a strategy for follow-up or recovery can be

devised. For example, one may decide whether an asteroid having a one-apparition

orbit is recoverable using a narrow- or wide-field instrument and what the extent of

the search should reasonably be (Bowell and Muinonen 1991).

• A :figure: of merit is associated with ea_hpo_slbl e future observation , thereby sug-

gesting an observati0nal=strategy to optimize orbTt improvement and to avoid making

observations that would not contribute significantly.

• A criterion for numbering an asteroid can be established on the basis of the predicted

ephemeris uncertainty over a suitable interval (Muinonen and BoweU 1991). For

example, an ephemeris accuracy of 10 arcsec or better over 20 years, independent

of singl_n_ apparitions, might be required. The Mars Trojan 1990 MB would

qualify for numbering after successful observations on two nights near opposition in

1992 (Figure 1).

• A criterion for determining whether an asteroid is unrecoverable can be established

in a corresponding way by defining an obser_tlonal lifetime for each asteroid-.

• A strategy for a recovery attempt of an asteroid having a large sky-plane uncertainty

can be planned with the help of orbital error analysis (Bowell and Muinonen 1991).

• Ephemeris uncertainty predictions can be used for fields observed in the past, thus

aiding the identification of images on archive plates.

• Knowledge of the accuracy of orbital elements can be :used to decide whether it is

appropriate to calculate proper elements.

Uncertainties in occultation ground tracks can be determined.

Rigorous spacecraft trajectory error analysis can be undertaken.
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