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NOTATION

The following is a summary of some of the notation and conventions used throughout

this report: =

U

k_

I

i

!. The coordinate frames of the robot are labeled 1 3 (platform) and 4 - 9
, '::. .

(PUMA). Frame 0 is the inertial frame, and frame E is the end-effector frame.

2. kpl,j E _ is the vector describing theposifion Of frame j with respect to frame

i, expressed in the coordinates of frame k. Note that kpl,j = - kpj,i.

i _a×33. jR E is the rotation matrix describing the orientation of frame j with

respect to frame i.

4. _TE _×4 is the homogeneous transformation describing the position and

orientation of frame j with respect to frame i:

!T_ jR p_,j
0 1

5. k_i,j E _a,,3 is the cross product matrix associated with the vector _pi,j,

expressed in the coordinates of frame k:

k~ &
Pid = o l

- p_,s(_) p,.s(y)

kp_,j(z) 0 - p_.j(x)

- _p_,j(y) _p_._(:_) o

where kpi,j(z), kpi..i(y), and kpi..i(z) are the components of kPi,j .

product matrix", it ismeant that, for atl w E _a,

By "cross

k- k
Pi,jw= pi.j x w

Note that tR k_i,j _R = t_i,j.
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6. kdui,i E _s is the differential displacement of frame j with respect to frame

i, expressed in the coordinates of frame k. The first three components of this

vector are the differential translation and the last three are the differential

rotation:

kdui,.i _= Pl,.i

:: kd¢i,i

7. kJi,. i C=_s×,, is the Jacobian relating differential joint displacements to the

differential displacement of frame j with respect to frame i, expressed in the

coordinates of frame k.

8. k_j,t E _6×6 is the transformation that maps kJi,j to kJi,t:

k_j, t =
0 I

9. _R E N6xs is the transformation that maps kJi,j to "J.,,:--.

D

10. Trigonometric functions may be abbreviated by their first letter; for example,

Si = sin (qi) and Cij = cos (qi + qj).

m
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ABSTRACT

This report investigates the disturbance rejection control problem for a 6-DOF

PUMA manipulator mounted on a 3-DOF platform. A control algorithm is designed

to track the desired position and attitude of the end-effector in inertial space, sub-

ject to unkno_'n_., disturbances in the platform axes. Conditions for the stability of

the closed-loop system are derived. The performance of the controller is compared

for step, sinusoidal, and random disturbances in the platform rotational axis and in

the neighborhood of kinematic singularities.
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CHAPTER 1

INTRODUCTION

• i

--.2-

L_

1.1 Motivation

One of the main research objectives at the Center for Intelligent Robotic Sys-
-.° .

tems for Space Exploration (CIRSSE) is to demonstrate the feasibility of using

robotic manipulators for on-orbit tasks. In particular, robotic manipulators have

been proposed as a means of reducing the amount of extra vehicular activity (EVA)

time required for space station assembly and maintenance. The proposed scenario

involves a robotic manipulator attached to some mobile platform, such as a space-

craft, satellite, or the space station itself.

Although certain on-orbit tasks will require only joint-space control, others

will require motion with respect to an inertial or Local Vertical Local Horizontal

(LVLH) reference frame [1]. In the latter case, disturbances in the platform position

and attitude may prevent the manipulator from successfully completing the task.

One possibility is to make course corrections using reaction wheels or jets; however,

the disturbances may exceed the saturation limits of the reaction mechanism [2].

Additionally, this approach could lead to excessive attitude control fuel consump-

tion, limiting the useful on-orbit life of the system [3]. This report explores a second

possibility, namely, using the manipulator to compensate for platform disturbances.

w
1.2 Past Research

The problem of controlling a robotic manipulator on a mobile platform has

received considerable attention in the past few ye_.rs..Joshi and Desrochers [4. 5]

designed a nonlinear feedback control law to carry out tasks (with respect to the

robot base frame) in the presence of roII. pitch and yaw disturbances in the platform

OR!C_AL 71C'[ t£
OF POOR _ "' '
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axes. Dubowsky, Vance, and Torres [2] proposed a time-optimal planning algorithm

for a robotic manipulator mounted on a spacecraft, subject to saturation limits

in the attitude control reaction jets. Papadopoulos and Dubowsky [3] developed

a general framework for analyzing the control of free-floating space manipulator

systems. Most recently, Torres and Dubowsky [6] have presented a technique called

the enhanced disturbance map to find manipulator trajectories that reduce the effect

of disturbandes in 'the spacecraft position and attitude.

One common assumption in the literature is that the disturbance signal is

exactly known. If this is the case, then the end-effector location can be calculated

without relying on direct end-point sensing. However, this assumption is invalid if

there is a significant delay in the platform position and attitude measurements, or if

the kinematics of the platform are not Well known, or if the platform is a non-rigid

structure (such as the proposed Space Station Freedom [7]). In the more likely case

that only the nominal platform location and upper bound on the disturbance signal

are known, direct end-point sensing is needed to measure the end-effector location.

1.3 Report Objective and Organization

The goal of this report is to investigate the problem of controlling a robotic

manipulator _n the presence ofdisturbances in the" platform axes. Specifically, a

controller is designed to track the desired position and attitude of the end-effector

with respect to the inertial reference frame using end-point feedback. The platform

operating point and the maximum deviation from the operating pgint are assumed

to be known. The controller design, analysis, implementation, and performance are

illustrated for a 6-DOF PUMA manipulator mounted on a 3-DOF platform.

The remainder of this report is organized as follows:
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Chapter 2 defines a transformation from task space to joint space, called the ap-

proximate pseudoinverse Jacobian, which is both singularity-free and compu-

tationally efficient.

Chapter 3 examines the disturbance rejection control problem from a kinematic

perspective and develops a control law for disturbance rejection based on the

approximate pseudoinverse Jacobian.

Chapter 4 describes CIRSSE's robotic testbed and the software implementation

of'the controller on the testbed. ....

Chapter 5 presents several sets of experimental results. The performance of the

controller is compared for various classes of disturbance signals and at the

singularities of the Jacobian.

w

Chapter 6 summarizes this report and discusses some future directions for this

area of research.

m

m

m



W

CHAPTER 2

THE APPROXIMATE PSEUDOINV=ERSE JACOBIAN

mm
I

In the inertial-space control problem, the desired end-effector trajectory is specified

in task coordinates (in this case, inertial coordinates), while the actual control takes

place on the joint level. Hence, some mapping between task and joint space is re-

quired. For disturbance rejection, the transformation that maps the displacement
:, ± . =

of the end-effector to joint displacements, i.e., the inverse Jacobian, is of particular

interest. However, this transformation is ill-defined for certain manipulator con-
,=

figurations. This chapter presents an alternative mapping, called the approximate

pseudoinverse Jacobian, which is defined for all manipulator configurations.

There are five sections in this chapter. Section 2.1 discusses the forward and

inverse Jacobians for the 6-DOF PUMA arm. Section 2.2 reviews the singular

value decomposition and the pseudoinverse. Section 2.3 presents the definition and

properties of the approximate pseudoinverse Jacobian. Section 2.4 compares the

pseudoinverse and approximate pseudoinverse near singularities, as well as the cost

of computing each solution. Finally, Section 2.5 summarizes the main results from

this chapter.

2.1 Background

The Jacobian matrix (or Jacobian) is a mapping from joint space to task

(Cartesian) space. It maps differential changes in joint position to differential

changes in Cartesian position and orientation according to the following relationship:

du = J(q)dq (2.I)

where du E _6 is the differential Cartesian displacement vector (linear and angular),

4
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q E _" is the vector of joint positions, dq E _" is the vector of differential joint

displacements, and J E _s×,_ is the Jacobian matrix. The Jacobian also relates

joint velocities to Cartesian velocities.

The inverse mapping, when it exists, is given by

dq = J-l(q)du (2.2)
".?

In order for j-l to exist, J must be square (6 x 6) and full rank. The singularities of

J are those points where the Jacobian loses rank, i.e., rank(J) < 6. The singularities

of the PUMA Jacobian are discussed further in Section 2.1.4.

2.1.1 Coordinate Frames

The kinematic frames of the PUMA and platform are shown in Figure 2.1. The

coordinate frame assignments follow the Modified Denavit-Hartenberg convention,

in which coordinate frame i is attached to link i, with the origin on the axis of

joint i [8]. The kinematic parameters of the PUMA and platform are listed in

Table 2.1.

w

!.- _

_rame

number, i

O_i-1

1 -90 °

2 90 °

3 -90 °

4 900

5 -900

6 0°

7 90 °

8 -900

9 90 °

Table 2.1:

(m) (m)

0.32000 ql 0 °

0.00000 0.54400 q2

0.00000 0.00000 q3

0.00000 0.82800 q4

0.00000 0.24300 q5

0.43182 -0.09391 q6

-0.02031 0.43300 q7

0.00000 0.00000 qs

0.00000 0.00000 q9

Kinematic Parameters
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F]gure 2.1: Coordinate Frame Assignments
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2.1.2 Velocity and Coordinate Frame Transformations

The notation kduid will be used to denote the differential displacement of

-frame j with respect to frame i, expressed in the coordinates of frame k. With this

notation, Equation (2.1) is written as

kduid = kJidd q (2.3)

Frames i and j will be referred to as the reference frame and the velocity frame,

respectively. Frame k will be referred to as the coordinate frame.

The velocity frame of the Jacobian can be changed through the transformation

kj
i,l

A _j, kj"- ,,j (2.4)

where k,ffj,t is the cross product matrix associated with the position vector kpj,t (cf.

the Notation at the beginning of this report). This transformation is useful for

finding the differential displacement of the end-effector, kdu,,E, given the position

vector kpg,E (obtained from the tool transform) and the Jacobian _'Ji,9.

The coordinate frame of the Jacobian can be changed via the transformation

i

A m k

= k R Ji.j (2.5)

where _R is the rotation matrix describing the orientation of frame k with respect

to frame rn. Combining (2.4) and (2.,5) results in

rnl_ k _ . . k T
m Ji.: "-" k .t,. -r 2. _ uz,j (o..6)

u
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2.1.3 Forward and Inverse PUMA 3acobians : >_

Finding the Jacobian and its inverse expressed in any arbitrary coordinate

frame can be computationally expensive. However, it is possible to take advantage

of coordinate frame transformations to find the simplest Jacobian matrix [9]. For

the PUMA arm, the Jacobian matrix is simplest when expressed in frame 6 [10]:

-(ds +ds)Css dr + asSs dr 0 0 0

(d5 + d6)&s as + asCs as 0 0 0

ahCs + asChs + & Sss 0 0 0 0 0

- &s 0 0 0 - Sr Cr Ss

-Chs 0 0 -1 0 -Cs

0 1 1 0 Cr SrSs

(2.7)

Note also that this Jacobian matrix is in lower block triang'ular form. This is due to

the geometry of spherical wrist arms; i.e., the fact that the origins of the last three

frames coincide. The following compact notation will be used to denote the matrix

sj 3,9:

3,9 --

D E
(2.8)

where B, D, and E are 3 x 3 submatrices of the Jacobian.

The inverse Jacobian, when it exists, can also be written in block matrix form

(see Kailath [11], p. 656):

-1

= = (2.9)
D E -E-IDB -l E -I

This expression is only defined when J is full rank. or equivalently, when B and E

are full rank. The singularities of J are those points where either rank(B) < 3 or

rank(E) < 3.
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2.1.4 Singularities of the PUMA Jacobian

The singularities of the PUMA Jacobian can be found by solving for the roots

of the determinant of J:

:i:

w

i

w

det(J) = det(B)det(E)

= 0 (2.10)

When the first factor in (2.10) vanishes, the PUMA is at the Arm Fully Stretched

singularity. Setting this factor to zero and solving for q8 yields

'= +nr, n=0,4-1,+2,... (2.11)

The Arm Fully Stretched configuration is classified as a workspace boundary singu-

larity [8]. This singularity occurs whenever the arm switches between the flex and

the noflex configurations (see [12] for the definitions of the PUMA poses). At the

Arm Fully Stretched singularity, the end-effector cannot instantaneously move in

certain linear directions; for example, any differential translation dp which exceeds

the workspace boundary is physically unachievable.

The second factor in (2.10) corresponds to the Hand Over Head singularity.

Setting this factor to zero and solving for q5 yields

w

qs _. tan_l tas _l- a6C6 _ d'_S6 I_-- d_C_ + n-, , = 0,±l, i2,... (2.10.)

The Hand Over Head configuration is a classified as a u:orkspace interior singu-

larity [8]. and corresponds to changing between the right and lef*, configura-

tions [I2]. As in the Arm Fully Stretched singularity, certain instantaneous linear

directions cannot be achieved at the Hand Over Head configuration. For example, if
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q2 = qa = q4 = 0 and Equation (2.12) is satisfied, then instantaneous motion in the

inertial Y direction is ]mP0ssible. _

The third factor in (2.10) corresponds to the Wrist singularity. Setting this

factor to zero and solving for qs yields

m

m

m

m

qs =nw, n - 0, zkl,=k2,... (2.13)

The Wrist singularity also occurs in the workspace interior, when the arm switches

between the flip and noflip configurations [12]. At the Wrist singularity, certain

instantaneous angular directions cannot be achieved; for example, if the arm is in the

"home" position (as in Figure 2.1), the end-effector cannot instantaneously rotate

about the inertial X axis.

2.2 Pseudoinverse Jacobian

2.2.1 Motivation

The usual method of dealing with singularities of the Jacobian is to avoid

them. For example, Bailiieul, Hollerbach, and Brockett [13] proposed using kine-

matic redundancy 1 to steer around workspace interior singularities. This approach

is not applicable to the disturbance rejection problem, however, since a sufficientlY"

large disturbance could force the manipulator into a singular configuration. There

are practical problems with singularity avoidance as well. For instance, the manipu-

lator must avoid not just singular points, but singular regions, since the norm of j-i

becomes very large in the neighborhood of a Singularity. For disturbance rejection.

then, it would be desirable to have a mapping from task space to joint space which

is well-behaved near singularities. This section examines one such candidate, the

pseudoinverse Jacobian, denoted by ,I t.

IA kinematically redundant manipulator has more degrees of freedom than required to reach
every point in the workspace with arbitrary orient-ation: hence, n > =6.

l
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m
m
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In robotics literature, the pseudoinverse is often used in the context of path

planning or control for kinematically redundant manipulators, to overcome the dif-

ficulty of J being a nonsquare matrix. Roboticists usually define jt as

'4""

jT(jjT)-I

jt _- j-_

(jTj)-IjT

m<n

m-'n

rn> n

(2.14)

Clearly, this method of computing jt does not address the issue of singularities

since it still relies on matrix inversion. A more general approach to computing the

pseudoinverse, based on the singular value decomposition, is presented below.

w

2.2.2 The Singular Value Decomposition

The singular value decomposition (or "SVD') is the unique factorization of

any m × n matrix J into the product of two orthonormal matrices and a matrix:

whose off-diagonal elements are zero and whose diagonal elements are the singular

values of J. This factorization is expressed below:

J = UEV T (2.15)

where U is an m x m orthonormal matrix, V is an n x n orthonormal matrix, and E

is the m × n matrix of singular values. For notational purposes, it will be assumed

that m _< n, although all of the results are still valid for rn > n.

Since U and V are nonsingular, J and E have the same rank. Thus, if

rank(J) = r. the first r singular values of J will be nonzero and the last rn - r

equal to zero. Furthermore, it can be shown that the singular values are the non-

negative square roots of the eigenvalues of j jr [14]. Let the singular values be

ordered as o', > oh >_ ..- >_ o',_. Then. V is written as

m
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m

0-1

0"7" :I 0°1 2101

The singular values can be used to measure how close J is to being singular.

One such measure, the condition number, is defined below:

cond(J) a 0.1 (2.17)
0.m

A matrix is nearly singular or ill-conditioned when the condition number is very

.large (or infinite). Another measure of singularity, commonly used by roboticlsts, is

the measure of manipulabiIity [15]:

I

i

I

m
m

I

I

i
=

m

MOM(J) v/d t(ss I"- e 7"

= Jdet(:z_/

-- 0.10"2 " " " 0"rn

The measure of manipulability behaves like the inverse of the condition number, in

that MOM(J) ---, 0 as ¢ond(J) ---, oz. If J is square, it is easy to see that

MO;I(J)= det(i) (2.is)

2.2.3 Definition of the Pseudoinverse

Consider for the moment the task of inverting X when rn = n. If Z is full

rank, then all of the singular values will be nonzero, and the inverse is simply

a

m

I

E

m

|

i

m

i

z

i

m

m
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_-_ = diag(1, _ ,..., i) (2._9)
O"1 0"2 O"m

In the event that a singular value o'i is zero, E -1 does not exist. The pseudoinverse

is defined by replacing these 1/o'i's with zero:

w

g t " diag( 1 1 1= ----,...,--,0,...,0) (2.20)
-::; : . a. I_¢T 2 O"r

By this definition, a singular value must be exactly zero for H to be singular• How-

ever, _ will be numerically ill-conditioned when one or more of the ai's are very

small. In practice, it is useful to define a singular value threshold, _r,,,_,,, below which

any singular value is considered to be zero.

For the general case when H is not necessarily square, the pseudoinverse is

defined as

m

_t A

!

!
O" r

0

The concept of the pseudoinverse can easily be extended to arbitrary matrices.

Recall that the singular value decomposition factors J into the product UEV T.

Since the matrices U and V are orthonormal. U -1 = U T and V -1 = V T. Thus, the

pseudoinverse of J is

jt _ _tUr= v_ (2.22)
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2.2.4 The Moore-Penrose Conditions

The pseudoinverse can also be defined by four algebraic properties, known as

the Moore-Penrose conditions:

jjtj = j

jtjjt = jt

= i)t:

(2.23)

(2.24)

(2.25)

(jtj)T = jtj (2.26)

The first condition (Equation (2.23)) is also the definition of a generalized inverse.

That is, any matrix J- which satisfies the property JJ-j = J is a generalized

inverse of J. Similarly, (2.24) is the definition of a reflezive generalized inverse [15].

It is straightforward to verify that jt is the unique matrix that satisfies all four

conditions [14].

2.2.5 Properties of the Pseudoinverse

Several important properties of the pseudoinverse are listed below.

1. If J is square, then jt = j-I when J is nonsingular.

2. If J is singular and du E 7_(J), then there are an infinite number of vectors

dq that satisfy Equation (2.1). The pseudoinverse selects the least-squares

solution; that is, dq = Jtdu is the solution with the smallest 2-norm.

3. If J is singular and du _ _(J), then there are no vectors dq that satisfy (2.1).

The pseudoinverse constructs a -solution" vector that minimizes the norm of

the residual; that is, dq = Jtdu minimizes iIJdq - dune.

1

m

1

m
m

1

1

i
I

U

h
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m

1
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There are many other interesting properties of the pseudoinverse and the sin-

gular value decomposition that are not directly related to this discussion. The reader

is referred to [14] or [16] for additional information.

w

m

2.3 Approximate Pseudoinverse ,lacobian

2.3.1 Motivation
• ": :. • ,

J ,

The pseudoinverse has one serious drawback, which is the high cost of com-

puting the singularValue decomposition. The SVD algorithm uses a series of House-

holder transformations to reduce the input matrix to diagonal form [17]. Since this

is an O(N 3) operation, finding the SVD for the 6 × 6 Jacobian matrix can be too

costly to implement in real-time (see Table 2.2 at the end of this chapter).

This motivated the search for yet another alternative to the inverse Jaco-

bian, with the additional constraint that the number of computations be kept to

a minimum. The alternative presented in this section is called the approzimate

pseudoinverse Jacobian, and is denoted by J:.

w

2.3.2 Definition of the Approximate Pseudoinverse

The basic idea behind the approximate pseudoinverse is to use the partitioned

form of J (cf. Equation (2.8)) and perform the SVD on the submatrices B and E.

This reduces the number of computations by a factor of four, since two 3 × 3 singular

value decompositions is an 0(2(N/2) 3) operation•

The definition of the approximate pseudoinverse Jacobian is

= (2.27)
_E'DB _ E _,

where B, D, and E are defined as in (2.$). It should be noted that if J had a

block-diagonal instead of a block-triangular structure (i.e., if the linear and angular
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subspacesof _R6 were completely decoupled)then the approximate pseudoinverse

would be identical to the Pseudoinverse.

2.3.3 Properties of the Approximate Pseudoinverse

Severalpropertiesof the approximate pseudoinverseare stated below.

il

I

I!

II

1. J_; = J-_ when J is nonsingular.

.

,

J: does not satisfy the Moore-Penrose conditions when J is singular.

Properties (2) - (3) of Section 2.2.5 can be extended to the approximate

pseudoinverse by partitioning _s into the linear and angular subspaces. Let

dp, de E _ be the linear and angular components of du, respectively, and let

dql, dq2 E _3 be the components of dq. Then, the approximate pseudoinverse

solution is

R

m

m

l

m

I

I

m

!

i qlt[ 0ji ] ,22s 
dq2 - Et D B t E t d&

If J is singular, the approximate pseudoinverse finds the minimum norm solu-

tion as if dp and de were decoupled; that is, dq = J:du minimizes ]tBdql - dpll 2

and [[Edq_ - d¢[]2.

2.4 Comparison

2.4.1 Behavior Near Singularities

Figure 2.2 compares the 2-norm, or the maximum singular value, of jt (solid

curve), J: (dashed curve), and j-1 (dotted curve) in the vicinity of the Hand

Over Head singularity. Figures 2.3 and 2.4 show the behavior near the Arm Futlv

Stretched and Wrist singularities, respective!v.

i

I

B
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m
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The discontinuities in ]]Jill 2 and ][J:I[2 occur when the smallest nonzero singu-

lar value, cry, fails below the threshold value, am;.. This threshold is an important

parameter; setting cr,_i, to a relatively small value will shrink the width of the

"well" about the singular point, thus extending the range over which jt = j-t and

jt = j-1. The side-effect is that the norm will be very large and highly discontinu-

ous near the singularity. By the same token, setting _r,,,,, to a relatively large value

will reduce the discontinuity in the norm by increasing the width of the singular

re,on. A threshold value of cr,_i,_ = 0.1 was used to generate Figures 2.2 - 2.4.
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2.4.2 Bound on Approximation Error

. The pseudoinverse and approximate pseudoinverse .lacobians are iden:icaI only

when J is nonsingular. In order to characterize the difference in behavior at a

singularity, some measure of the approziraation error is needed.
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Recall from Section 2.2.4 that a generalized inverse J- of a matrix J is defined

by the property

JJ-J = J

u

=

Since the pseudoinverse satisfies this property, a reasonable way to measure the

approximation.e.rror is to see "how close" jt is to being a true generalized inverse

using the following norm:

IIJJ'J-6 =

An upper bound on the approximation error will now be derived using this norm.

Consider the matrix

u

jjtj =

Subtracting J yields

BBtB 0 ]
DBtB + EEtD(I - BtB) EEtE

D - (I - EEt)D(I - BtB) EEtE
(2.29)

jjtj _ j

-(I - EEt)D(I - BtB) EEtE - E

: _[ B(;-B,B) o ]L(;-mEt)D<i-B'B)(;-EEt)E

=_[,o oJ0 I-EE t D E 0 I
(2.so)

When both B and E are singular, the approximation error is bounded as follows:



2O
u

i

IJJ'J-JIl_=
I 0

0 I- EE*

-< llJll_

oo[,o
If B is nonsingular, a less conservative upper bound can be found:

HJJtJ - JII2
0

_< IIEII_

Likewise, when E is nonsingular the upper bound reduces to

(2.31)

(2.32)

m

E

[]

|

[]

I

m

z
m

U

t=

2

_< IIBII= (2.33)

Finally, if_both B and E are nonsingular, the approximate pseudoinverse is identical

to the pseudoinverse:

I_- Jll_=0 (2.34)

2.4.3 Computation Time

Table 2.2 compares the computation times of the the inverse, pseudoinverse,

and approximate pseudoinverse Jacobians for each coordinate frame. As predicted,

the approximate pseudoinverse is about four times faster to compute than the pseu-

doinverse. Note that the computation times are largest for frame 0, since the solution

is first computed in frame 6 and then transformed into the desired frame k using _R.
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u

n

Coordinate Frame Computation Time

IJ...... 1.3'1 ms ""_5.31 ms 6.38' ms

1 1.31 ms 25.31 ms 6.38 ms

2 1.19 ms 25.31 ms 6.25 ms

3 1.09 ms 24.98 ms 6.11 ms

4 0.97 ms 24.65 ms 5.98 ms

5 0.97 ms 24.65 ms 5.98 ms

6 0.88 ms 24.98 ms 5.98"ms

7 0.82 ms 24.98 ms 5.84 ms

8 0.81 ms 24.98 ms 5.85 ms

9 0.8"1 ms 24.65 ms 5.85 ms

E 0.95 ms 25.31 ms 6.11 ms

Table 2.2: Computation Times for k -1j:_,r, kjr, r, and kJ_, E

Hence, transforming the solution into frame O requires the most computationally ex-

pensive rotation matrix.

The inverse, pseudoinverse, and approximate pseudoinverse Jacobian solutions

were implemented in the C programming language using the GNU 2 gcc Version 2.2.2

compiler. The data in Table 2.2 was collected by timing the software on a Motorola

MVME 147SA-2 Single Board Computer.

2.5 Summary

A nonsingular mapping from task space to joint space, the approximate pseu-

doinverse Jacobian, was defined in this chapter. The approximate pseudoinverse was

compared to the inverse and pseudoinverse in terms of the computational cost and

the behavior of the norm near kinematic singularities. From this comparison, it can

be concluded that the approximate pseudoin_.erse is r_he clear choice for real-time

control.

:Copyright (C) 1989, 1991 Free Software Foundation. Inc., 675 Mass Ave, Cambridge. MA.

m
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CHAPTER 3

A KINEMATIC:CONTROL LAW FOIl D CE REJECTION

m

m

This chapter focuses on the development and analysis of a control law for disturbance

rejection based on the approximate pseudoinverse Jacobian. The organization of this

chapter is as follows. Section 3.1 gives an overview of the inertial-space disturbance

rejection control problem. Section 3.2 proposes a kinematic control law and develops

an expression for the closed-loop system. Section 3.3 derives an upper bound on the

control gain for closed-loop stability. Section 3.4 discusses several controller design

and implementation issues, and Section 3.5 summarizes this chapter.

B

l

B

3.1 Overview

3.1.1 Kinematic vs. Dynamic Control

Any inertial-space controller must take into account both the kinematics and

the dynamics of the manipulator. The design approach followed in this report is

to partition the control into two separate loops: a kinematic loop, which outputs

position setpoints for each joint based on the inertial-space error, and a dynamic

loop, which outputs torques for each motor based on the joint-space error.

There are several advantages to decoupling the control in this manner. First, it

allows the control designer to build and tune each loop independently. The dynamic

loop, for example, can be tuned by looking only at the joint-space errors, and the

kinematic loop can be tuned by assuming that the joint-level control is perfect. A

second advantage is that the two controllers can run in parallel and at different

sampling rates: provided that the position setpoints are buffered. For example, the

dynamic loop could be implemented in hardware at a faster sampling rate than the

22
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w

kinematic loop. Finally, a number of dynamic control laws, such as PID, PD-plus-

gravity, computed-torque, and sliding mode control, have already been developed

for robot manipulators [18]. The remainder of this chapter will concentrate on the

kinematic control loop, with the assumption that a dynamic controller is already

available.

m

m_

3.1.2 Probiem Formulation

The control problem that will be addressed in this chapter can be briefly stated

as follows. Consider a 6-DOF PUMA manipulator mounted on a 3-DOF platform.

The goal is to maintain the desired position and attitude of the end-effector with

respect to the inertial reference frame (frame 0), subject to arbitrary disturbances

in the platform axes. The following information is assumed to be available:

u

1. 8 E ._6, the PUMA joint positions

2. r/o E _, the nominal platform joint positions

3. 6 E "_, the maximum deviations from the nominal platform joint positions

4. °Uo,E E _6, the inertial end-effector location

w

Two factors contribute to the motion of the end-effector: the differential dis-

placement of the PUMA joints, which can be measured, and the differential displace-

ment of the platforfil joints, which is unknown. Let 5 denote the disturbance signal

and let dv be the component of the end-effector motion caused by the differential

displacement of the platform joints. Then, the differential end-effector displacement

can be written as

°du0, _ - °J3.z(rlo + 6, O)dO - ,iv

= _R(_o + 6)3J3.E(O)dO- dv
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Note that coordinate frame transformations have been applied to isolate the depen-

dence of the PUMA Jacobian on the platform joint positions.

3.2 Discrete-Time System Analysis

3.2.1 Discrete-Time Approximation

A discre!e-time model of the system will now be derived by approximating the

differential quantities in (3.1) with displacements. The underlying assumption here

is that the sampling periodi:&Ti is sufficiently small (i.e., the sampling rate is much

higher than the bandwidth of the system).

Define Auk as Auk zx= uk - uk-1, where the subscript k denotes the kth sample

step. In the limit as AT goes to zero, the displacement Auk equals the differential

du:

lim Au_ = du
AT--O

Similarly, AOk _ dO and Ark ---, dv as AT -.-* O.

proximation is

(3.2)

Therefore, the discrete-time ap-

=

z
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m
m

[]

m

[]

[]

!
[]

i

m

|
i
i

du _ Auk "-" _k _ ?lk-1

dO _. AOk=Ok--O_,t

dv _ Ark "-- Ok -- Uk-1

and the discrete version of (3.1) is

(3.3)

o
°ut - °u_--I = zR(rlo + _)3Js.E(O_).-X_z + _Xv_ (3.4)

where the subscripts denoting the reference and velocity frames of du have been

dropped to avoid confusion with the time index.
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3.2.2 Proposed Control Law

Let °u_ be the desiredpositionand orientationof the end-effectoralong some

specifiedtrajectory.The controlobjectiveisto drive the end-effectorto thisposition

and orientation:

:;.

m

0 0

:: uk ---, u_ as k ---, c_ (3.5)

Ideally, the control objective could be achieved in minimum time by computing

the PUMA joint displacements ASd needed to cancel out the inertial-space error.

However, exact cancellation would require complete knowledge of the disturbance

signal. The next best solution then is to compute a A0d which approzimateIy cancels

out the inertial-space error. With this goal in mind, the proposed control law is as

follows:

w

E

m

m

3 :_ 3 . 0 0
AOa= J_,E(O_)oR(rlo)[£c( ud- uk) (3.6)

where Kc E j_6×6 is a matrix of control gains. Note that Kc can be used to weight

certain components of the inertial-space error less than others; for example, set-

ting the first column of Kc to zero would eliminate any control in the inertial X

direction. Note also that this control law is essentially an inertial-space "spring",

whose "stiffness" is determined by Kc. (Damping is assumed to be provided by the

dynamic controller). Equation (3.6) will be referred to as the Jt control law in the

sequel.

3.2.3 Closed-Loop System

A simple expression for the closed-loop system can be derived by assuming

that there is a one period delay in the control actuation:

w

AO_+, =..k0_ (3.7)
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Equation (3.7) basically means that the joint-level servo control is assumed to be

"perfect"; i.e., the arm achieves the desired setpoint 6_ within one sample step of

the J_ controller. Substituting (3.6) and (3.7) into (3.4) results in

i

m

Ouk _ Ouk_, - °R(rlo+_Sk)3J3,_(O_)aJta,_(Ok_1)3oR()lo)Kc(°ud-°uk_,)-bAvk (3.8)

In order to simplit:y this expression, define the quantity

3 t 3
Mk,k-1 A 0-- 3R(r/o + _k)3J3,z(Ok) J_,E(Ok-a)oR(rlo)I(c (3.9)

Rewriting (3.8) in terms of Mk,k-1, it is easy to see that the closed-loop system is

linear with time-varying coefficients:

°uk = (I - Mk,k_,)°uk-i + Mk,k-, °ud + Avl,

A block diagram of the closed-loop system is shown in Figure 3.1.

(3.10)

._ J:): control _d=_ delay _==_ PUMAlaw Jacobian

end-point$cnsor

Figure 3.1: Block Diagram of Closed-Loop System
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3.3 Stability Analysis

3.3.1 Spectrum of Closed-Loop System

The stability of the closed-loop system can be completely characterized by

the spectrum of I - Mk,k-_. The necessary and sufficient condition for stability is

that, for all k > 0, the eigenvalues Ai of I - MJ,,k-1 must lie in the unit circle in the

A-plane: ::

=

!

m

IA(I- Mklk-1)l_<I Vk > 0 (3.11)

Equivalently, the eigenvalues Ai of Mk,k-1 must lie in a circle of unit radius centered

at the point (1.0,0.0) in the A-plane. This can be verified by defining Ai _ 1 - Ai

and substituting into the Characteristic polynomial:

E_

p(A,) = det(A,I- (I- Mk.k-,))

,: : _ ::_ := -det((1-A_)I-Mk,k__)

= - det(Ail - Mk,k-1) (3.12)

Hence, the Ai's are the eigenvalues of Mk,k-1.

The stability condition will now be expressed in terms of the matrix Mk,k-1.

Define a to be the maximum angle of rotation of the eigenvalues of Mk,k-l:

A
c_ = sup arg(A_) (3.13)

i,k

and let (Xo, yo) be a point on the shifted unit circle in the A-plane such that

arg(zo + jyo) = cr (see Figure 3.2). If p is the distance from the origin to (zo, yo).

then the stability criterion can be restated as follows:

a(Mk,_-,) < p W > 0 (3.14)

2 Z
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where #(?vIk,k-1) denotes the maximum singular value of Mk,_-.i.

_[A]

( Xo 'Yo )

- Re[A]

i

[]
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m
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m

Figure 3.2: Region of Stability in the A-Plane

z

J
l

It is straightforward to findarelationship between a and p. The point (Xo, Yo)

must simultaneously satisfy the following set of equations:

m
m

l

Solving for Xo and yo gives

Hence, a and p are related by

xo_+ yo_ = p' (3.15)

(_,o- 1): + yg = I (3.16)

(Xo, yo) = (P@, 1

O_ = tan-l( y° )
2:O

p2) (3.17)
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. -. _

or, solving for p,

= tan-'(Vq-=-; z)
P

(3.18)

2
P

-." x/tan 2 a + 1

The condition for stability can therefore be written as

(3.19)

2

a(M'k,k-1) _< _/tan2 a + 1 Vk > 0 (3.20)

This equation will be used in Section 3.3.3 to find an upper bound on the control

gain, K,. As a first step toward deriving this bound, it is necessary to examine the

6T 6T_.
spectrum of the matrix ,_3,9 _3,9"

3.3.2 Spectrum of 3J$

6}" 6T_Using the compact notation for 6J3.9, the matrix _'3,9 a3,9 can be written as

I 0 B t 0

17 E -EtDB t E t

BB t 0 1(I- EEt)DB t EE t
(3.21)

Since this matrix is block triangular, the spectrum is simply the union of the eigen-

values of BB t and EEt:

m

6 s
A( J3,9 J3,9)-" A(BBt) U ,\(EEt) (3.22)

The following theorem completely specifies the spectrum of an arbitrary matrix

times its pseudoinverse.
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Theorem 3.1 If A E _,nxn, with m < n, and rank(A) = r, then the spectrum of

AA t consists of m - r eigenvalues at zero and r eigenvalues at one.

Proof: Let A = UNV T be the singular value decomposition of A. Then,

w

!

m
m
m

AA t =:uEvTv_fu T

0 0 0 0

= U[ Iro o01uT
(3.23)

Partition U into the column vectors [ul us ... u.]. Equation (3.23) can then be

written as the sum of the outer products of the first r columns Of U:

'm

m

m

I

m

AA t = u,u T + u2u T +... + u,.u y

= _. u, )( u, (3.24)

The eigenvalues hi of AA t are the solutions to

m

mm

I

J

-- 9"(AAt)fi )_i_i (3.-o)

It will now be shown that the eigenvectors _i are the columns of U and the corre-

sponding eigenvalues are

1 I<i<r

0 r+l <_i<m
(3.26)

First, consider 1 < i < r. Since U is orthonormaI, then for all j, k E { 1... r},

t"

j 1 j - k
uTuk I o j#k

(3.27)
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Substitut!ng _i -ui in (3.25) and using Equations (3.24) and (3.27) results in

:..[_

" L

(AAt)u_ = (,,,,,T+ u_,T+... + u,_,T>,,

= ,,,uTu,+... + u,_,T_,+... u,uS,,
• : . : c _

which implies that Ai = 1. Now consider r + 1 < i < m. Since

uTuk = 0

for all j E {1...r} and k E {r + 1...m}, then

(3.28)

(3.29)

w

1

1

(AAt)ui = (u,u T + u2uT +... + u,uT)ui

= 0 (3.30)

which implies that Ai = 0.

Returning to the original problem, suppose that rank(B) = r and rank(E) = s.

6j 6jr isBy Theorem 3.1, the complete spectrum of 3,9 3,9

A(",1 "-_ ,= (_,o, o}3,9 °3,9] --.

r+$

3.3.3 Bound on Control Gain

One final condition is needed to find an upper bound on h'_.

since J is a continuous operator,

IlJ(OJ- J(e_-,)ll --o _ ]l_O.ii- o

(3.31)

Observe that,

(3.32)
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In other words, for ASk sufficiently small, J is approximately constant or slowly

time-varying. Thus, for sufficiently small joint displacements, Mk,k-1 ---* Mk, where

Mk is defined as

g

mm

II

m_ = 3R(r/o (3.33)

The results from Sections 3.3.1 and 3.3.2 can now be used to find a condition
°.

on Kc for stability. Applying velocity and coordinate transformations to (3.33),

M_ = °R(_o + *k,e_)"¢9.E(O_)6J3,9(O_)6JJ,9(O_)*%,E(Ok)-'_R('7o,O_)Ko

Since velocity and coordinate frame transformations are orthogonal,

(3.34)

_(MD < e( _ 0 6 * - "

_< s(Ko)

Hence, a sufficient condition for stability is

(3.35)
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3.4 Controller Design

3.4.1

2

a(I(_) < _/tan2_ + 1 (3.36)

• : . : =

Attitude Error _ _- : _

An important design consideration is the method used to calculate the attitude

error. So far, it has been assumed that the position and_orientation of the end-

effector are represented by the vectors 0p_ and °o_, and the inertial-space error is

computed as

Op_ _ Op_ 1
°ud- °uk = (3.37)JO_d -- °Ok

N

=
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If the orientation is represented by the rotation matrix o_R, however, then the com-

ponents of °¢k must be extracted from o_R before Equation (3.37) can be applied.

Unfortunately, this approach runs into singularity problems at certain orientations.

A more stable method is to use the attitude error matriz, defined as

ARZX0 o T= _R,_ sRk (3.38)

o and 0"where _R d _R k are the desired and actual rotation matrices. In the limit as the

rotations about the inertial X, Y, and Z axes approach zero, it can be shown [19]

that

AR ---, dR

1

A
-" de z

-dCy

-d¢_ d¢_

1 -de=

d_b= 1

(3.39)

The components de=, ddy, and d¢_ represent the differential rotations about the

inertial X, Y, and Z axes. Thus, for small (i.e., less than 180 °) rotations about X,

Y, and Z, the angular part of the inertial-space error can be formed by taking the

(3,2), (1,3), and (2,1) components of AR:

°¢d- °gk _ [ AR(3,2) AR(1,3) AR(2,1) IT (3.40)

T

w

3.4.2 Design Parameters

The J: controller has two design parameters: the control gain, /-f_, and the

minimum singular value, o',_,,. Some guidelines for selecting these parameters are

discussed below.

The selection of the control gain is greatly simplified by restricting I(= to be a

scalar times the identity matrix:

w
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Kc=kcI, 0_<k,_<2 (3.41)

The parameter kc controls the spectral radius of Mk. For example, if k¢ = 0.5, then

the eigenvalues of Mk will lie on a circle of radius 0.5 in the A-plane (or at zero, if J

is singular). The region of stability can then be found by applying Equation (3.18).

It is easy to verify that for kc = 0, the system can tolerate up to 90 ° rotation in

the eigenvalues of M_ (i.e., o = 90°), and for k¢ = 2, the system is marginally stable

(i.e., a = 0°). Thus, the choice of the control gain is a trade-off between performance

(large k_) and robustness (large a).

It is straightforward to choose a stable k_ if 6 is known a priori. (Recall that

is the vector of maximum deviations in the platform joint positions.) Let _ denote

°R( o+the spectrum of the matrix 6)o3R(r/o). By invoking the slowly time-varying

condition, a can be approximated as follows:

m

u

I

m

U

l
'U

m

=_

J

J

and k, is calculated as

m

a _ sup arg(_) (3.42) •
i

2
kc = (3.43)

v/tan2 a + 1

The selection of cr,,i,_ is essentially a trade-off between tracking accuracy and

the norm ofthe control signal. Recall from Section 2.4.1 that increasing a,_i, in-

creases the width of the singular region and consequently reduces the norm of jt at

the boundary of the singular region. In terms of disturbance rejection, increasing

a,_i,_ causes the control in the direction of the singularity to shut off earlier, result-

ing in a larger tracking error. The advantage to increasing _,_i, is that the norm of

hod will be smaller (and less discontinuous) at the boundary of the singular region.

Therefore, the selection of a,_i, should be based on the desired upper bound on the
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norm of ASd, which in turn is dictated by the saturation limits of the joint-level

controller.

3.5 Summary

The design and analysis of a kinematic control law for inertial-space distur-

bance rejection was described in this chapter. A discrete-time model of the closed-

loop system was derived, and a sufficient condition for closed-loop stability was

found. The selection of the controller design parameters and the computation of the

attitude error were also discussed.

L
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CHAPTER 4

IMPLEMENTATION ON A ROBOTIC TESTBED

ms

m

m

This chapter gives an overview of CIRSSE's robotic testbed and some of the software

used in the implementation of the J: controller on the testbed. Section 4.1 describes

ihe platforn4 carts and the PUMA arms. 'Secfion_4.2 details the hardware-level

interface and real-time operating systems, Sections 4.3 and 4.4 discuss the software

used to control the robots, and Section 4.5 summarizes this chapter.

4.1 Robot Hardware

4.1.1 Platform Carts

The platform system, custom built by K.N. Aronson, Inc. of Arcade, NY,

consists of two 3-DOF carts on a 12 ft linear track. The platform joints are labeled

1 - 3 for the left cart and 10 - 12 for the right cart. Joint 1 provides translational

motion for the left cart along the track, while joints 2 and 3 provide tilt and pan,

respectively. A diagram of the platform system is shown in Figure 4.1.

Rotational
,Axis
1

L 1 I L I

--- _"Axis

I I I I

.:,. Translational

Axis

Figure 4.1: 3-DOF Platform Carts
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4.1.2 PUMA Arms

Mounted on the platform system is a pair of 6-DOF PUMA arms, built by

Unimation, Inc. of Danbury, CT. The joints of the left arm (Unimation model 560)

are labeled 4 - 9 and the joints of the right arm (Unimation model 600) are labeled

13 - 18. The left PUMA and platform cart are shown in Figure 4.2.

Figure 4.2: Left PUMA and Platform Cart

v

Each PUMA arm is equipped with a force/torque sensor and a pneumatic

gripper. Additionally, two cameras are mounted on a bracket located at the flange of

the left PU._IA. The physical dimensions of the force/torque sensor, camera mount.

and gripper are taken into account by. the tool transform, E9T, which specifies the

position and orientation of the end-effector frame. For the left robot, the origin

E

L_
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of frame E is located between the jaws of the gripper, 23.9 cm from the origin of

frame 9 [20].

4.2 Computer Control System

4.2.1 Hardware Interface

The platform and PUMA robots are controlled from a VME chassis which

contains a number of hardware components distributed across the bus. The bulk of

the real-time computation takes place on three Motorola MVME 147SA-2 and two

Motorola MVME 135 Single Board Computers (SBCs), labeled CPU 0 - CPU 5.

A Motorola MVME 224-1 Shared Memory board provides a common address space

for the CPUs.

The platform encoders are accessed via three Whedco VME-3570-1 Dual Chan-

nel Encoder Interface boards. A Datel DVME-628V D/A hoard is used to drive the

platform servo motors. Digital lines, such as platform power, limit switches, and

emergency stop switches are interfaced through a VME Microsystems VMIVME-

2532A High-Voltage Digital I/O board.

The encoder, torque, and power signals for the PUMA robots are handled by

two Unimation controller boxes outside of the VME chassis. They are connected to

the VME chassis by two VMEbus to Q-Bus adapters.

The five SBCs are installed on an Ethernet backplane, which allows communi-

cation between the VME chassis, a separate Datacube VME chassis (for computer

vision), and the Sun workstations on the CIRSSE network.

4.2.2 Operating Systems

Each CPU runs under Vx\Vorks 1. a UNIX-compatible reaI-time operating sys-

tem. Among other things, the Vx\Vorks kerne! supports priority based scheduling;

IWind River Systems, Alameda. CA.
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intertask communication, synchronization, interrupt handling, and memory man-

agement.

However, VxWorks does not provide a mechanism for tasks on separate CPUs

to communicate with each other. In order to facilitate interprocessor communica-

tion, the CIRSSE Testbed Operating System (CTOS) was developed [21]. CTOS

enables tasks to communicate asynchronously via message passing.

In addition to interprocessor communication, CTOS also supports interchassis

communication. For example, CTOS allows a task on CPU 5 to send and receive

messages from a task on a Sun workstation (running under UNIX). This commu-

• nication bridges the gap between synchronous (real-time) and asynchronous (non-

real-time) tasks.

4.;3 Motion Control System

The Motion Control System (MCS) is a collection of real-time software com-

ponents that provides joint-level servo control, force/torque-based control, setpoint

interpolation, and trajectory generation. The portions of the MCS relevant to this

report, as well as the software implementation of the J: control law, are discussed

below.

The MCS is loaded onto CPUs 0 - 5 at boot-time and can easily be configured

to meet the needs of a particular experiment. For this thesis, the J: controller was

used in place of the standard MCS trajectory generator.

4.3.1 Channel I/O Drivers

The platform and PUMA channel drivers are responsible for handling the robot

I/0, including: torque commands, power and brake commands, emergency stop and

limit switch status, encoder positions, and encoder calibration. The channel drivers

run at the servo rate, which is typically 1/0.0045 s -_.
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The torque and position information for eachjoint is mappedonto a unique

slot in shared memory, and can be accessed using the library chanLib, This allows

tasks on other CPUs (e.g., servo controllers) to exchange data with the channel

drivers in a synchronous fashion. Asynchronous information, such as power and

calibration commands, is sent via CTOS messages.

4.3.2 Inertial End-Point Sensor Driver

A separate driver was written for this thesis to measure the location of the end-

effector in inertial space. In lieu of a direct end-point sensor, the forward kinematics

o
are used to compute _Tk, the homogeneous transform describing the current position

and attitude of the end-effector with respect to frame 0. (Note that this software is a

temporary substitute for direct end-point feedback; the forward kinematics can not

be used in practice since the platform joint positions are needed to calculate o_Tk-)

The end-effector transform is stored in a shared memory slot and can be accessed

via the library cha._IESLib. The inertial end-point sensor driver was implemented

with a sampling rate of 1/0.0036 s -1.

4.3.3 Joint-level Servo Controllers

The platform and PUMA controllers compute the torques required to servo

each joint to the desired setpoint. Position and velocity setpoints are passed to

the controllers via the library interpLib, which uses linear interpolation to smooth

the desired trajectory. The controllers run at the servo rate, in lock step with the

channel drivers.

The control algorithm for the PUMA is based on the well-known Proportional-

plus-Integral-plus-Derivative (PID) control law [22, 23]. To reduce the coupling

between the joints, the PID torques are multiplied by ".he diagonal terms of 3[(_),
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the mass matrix 2. Gravity compensation was also added to further reduce the

position error. Thus, the control law for the PUMA arm is

?. E.

=-3

.. r

k

F = M(Ok)(Ke(Od - 0;,) + Kz _-_(Od - Ok)&T + Ko(O_ - Ok)) + g(Ok)
i=0

where

F

M(Ok)

Od--Ok

Kp

KD

g(o )

AT

:is the 6x 1 vector of joint torques

is the 6 x 6 mass matrix (diagonal terms only)

is the 6 x 1 vector of position errors

is the 6 x 1 vector of velocity errors

is a 6 x 6 diagonal matrix of proportional gains

is a 6 x 6 diagonal matrix of integral gains

is a 6 x 6 diagonal matrix of velocity gains

is the 6 x 1 vector of gravity torques

is the sampling period

(4.1)

In addition, a first order low-pass filter is used to attenuate the noise in the joint

velocity estimates, 0"_. The control algorithm for the platform is identical to (4.1),

with M = I and 9 = 0.

4.3.4 J: Controller

The J: controller functions like a trajectory generator, in that it suppIies

position setpoints to the PUMA servo controller through the £nterpLib inter-

face (velocity setpoints are set to zero). The position setpoints are calculated by

adding the control vector 2,.0._ to the the current joint positions 0k, where _XO.: is

• ,-T 4computed as in Equation (3.6). The library ja,._.b, in particular the func:ion

jacPumaAprxPseudoInv(), is used to find the approximate pseudoinverse solution.

The sampling rate of this controller is I/'0.00SI s -z

2M(O) is the matrix that multiplies 0 in the Lagrang_Euler dynamics of the PUMA.

=
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The inputs to the J_; controller are the desired and current end-effector trans-

0 0
forms, ETd and ETk, from which the inertial-space error is extracted (cf. Sec-

tion 3.4.1). The current end-effector transform is read from shared memory using the

inertial end-point sensor library described in Section 4.3.2. The desired transform is

read from a file during controller initialization. Ideally, the desired transform would

be specified on-line by a task-space trajectory generator; however, this functionality
"?: :: : °

was not avalla.ble at the time of this thesis.

4.3.5 State Manager

The MCS State Manager coordinates the bootstrapping phase of the Motion

Control System by sending messages to the various components (channel drivers,

controllers, etc.) at boot'time. The State Manager also implements a simple state

machine for the testbed. The five states of the MCS are:

Cold - MCS initialization.

Reserve - Application reserves slots.

Active - Robot power on, brakes on.

Motion - Robot power on, brakes off.

Emergency Stop - Emergency stop button pressed. Robot power off.

5

4.4 Software Libraries

In addition to the Motion Control System, several libraries of routines were

used for this thesis. These libraries are briefly described below:

4.4.1 Transform Library

The Transform Library. or tramsLib, is a collection of routines that oper-

ate on homogeneous transforms. In particular, the routines tramslnver't() and
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tremsMultiply() are used by the jt controller to perform the transform inversion

and multiplication required to compute AR, the attitude error matrix. A CIRSSE

Technical Memorandum describing the Transform Library is forthcoming.

4.4.2 Kinematics Library

The Kinematics Library, or kiaLib, includes functions to perform the forward

and inverse kinematics. -The routine k±nFwd() is used by the inertial end-point

sensor driver to compute the current end-effector transform 0_T k. The functional

interface for the Kinematics Library is described in [12].

L

4.4.3 Jacobian Library

The Jacobian Library, or j acLib, contains routines for computing the solutions

to the forward, forward transpose, inverse, pseudoinverse, and approximate pseu-

doinverse Jacobian equations. The implementation details as well as the functional

interface for the Jacobian Library are explained in [24].

The approximate pseudoinverse solution uses an algorithm developed by Press,

Flannery, et al. [17] to perform the singular value decomposition. This algorithm

can be found in the library slvL±nEqn.

4.5 Summary

The major hardware and software components of the CIRSSE testbed were

described in this chapter. The real-time implementation of the joint-level PID con-

troller and the J* kinematic controller were discussed, as well as some of the sup-

porting software, such a_s the inertial end-point sensor library and Jacobian library.
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CHAPTER 5

EXPERIMENTAL RESULTS . ,

l

i

J

This chapter presents the results of four sets of experiments utilizing the testbed.

The goal of the experiments was to demonstrate the performance of the jt con-

trol law under w_rious operating .conditions. The first three sets of experiments

focused on the time response of the closed-loop system for the following classes of

disturbances:

1. Step disturbances in the platform joints

m

g

R

2. Sinusoidal disturbances in the platform joints

3. Random disturbances in the platform joints

The majority of disturbances that are likely to be encountered by the robot can be

decomposed into signals belonging to these three classes; for example, an impulsive

disturbance can be approximated as a combination of positive and negative step

disturbances. The fourth set of experiments was aimed at understanding the open-

loop characteristics of the control law in the neighborhood of singularities.

This chapter is organized into five sections. Sections 5.1 - 5.3 discuss the

performance of the J: control law for step, sinusoidal, and random disturbances

in the platform rotation. (Results for the platform translational and tilt axes are

qualitatively similar, and are excluded for the sake of brevity.) Section 5.4 examines

the behavior of the J: control law near the singularities of the PUMA. Section 5.5

presents some conclusions based on the experimental results.

In this chapter, the term orientation error will refer to the equivalent angle of

rotation o_ of the attitude error matrix AR (cf. Equation (3.3_q)). The orientation

error is found by computing the equivalent axis and angle representation of _R:
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AR=e k_', 0<¢_<180 ° (5.1)

where k E _3 is the normalized axis of rotation and ¢_ is the scalar representing the

equivalent angle of rotation. An algorithm for extracting _: and ¢¢ from an attitude

matrix is given in [19].

5.1 Step Disturbances in Platform Rotation

This section analyzes the time response of the closed-loop system for 10 °, 20 °,

and 30 o step disturbances in the platform rotation. For each case, the control gain

K_ was set to identity.

=

u

I

5.1.1 10 ° Step Disturbance

Figure 5.1 shows the inertial-space errors errors when a 10 ° step disturbance

is applied to the platform rotational joint. The linear (X, Y, and Z) components

of the error are shown in the upper plot and the orientation error in the lower plot.

The components of AOd, the control vector, are plotted in Figure 5.2.

X

Y

Z

Maximum ()vershoot 4% Settling Time

11527'x 10 +0 cm 1.54 s

3.825× 10 +° cm 0.84 s

6.366× 10 -1 cm 1.70 s

3.503× 10 +° deg 1.00 s

Table 5.1: Maximum Overshoot and 4% Settling Time for 10 ° Step
Disturbance in Platform Rotation

Table 5.1 lists the maximum overshoot and 4_ settling time for the .\', Y, Z,

and orientation errors. The 4_ settling time refers to the time required for the error

to enter and remain within -., of zero. where e is 4% of the peak absolute error.
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,5.1.2 20 ° Step Disturbance

Figures 5.3 and 5.4 show the inertial-space errors and control signals for a 20 °

step disturbance. The settling time and overshoot for X, Y, Z, and _, are listed in

Table 5.2.

0.I

A

E '-;0

-o.1
"_

25

2o

1o
"i

5

0
0

"].............................T..................................F............................i.....................................

:.,":................................;......................................i......................................i......................................
• i T

i 2 3 4 5 6 4

Time(P.c)

1 3 4 5 6 7

Time (sex:)

Figure 5.3: Position Error (X - solid curve; Y - dashed curve; Z - dot-

ted curve) and Orientation Error for 20 ° Step Disturbance
in Platform Rotation
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Table 5.2:

] Maximum Overshoot I 4% Settling Time [

X i 5.526x 10 +° cm i 1.60s i

Y [ 8.283x 10 +° cm { 1.33 s I

Z i 2.435 x I0 +° cm I 2.06 s I
6_ I 6.806x 10 "_° deg [ 1.27 s I

Maximum Overshoot and 4% Settling Time for 20 _ Step
Disturbance in Platform Rotation
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5.1.3 30 ° Step DiSturbance

The inertial-space errors and control signals for the 30* case are shown in

Figures 5.5 and 5.6. The maximum overshoot and settling time for each coordinate

are displayed in Table 5.3.

m

i

I

z
I

Maximum Overshoot 4% Settling Time

X 1.737x 10 .1 cm 1.97 s

Y 1.706x 10 +1 cm i 2.43 s

Z 1.253 x 10 +1 cm [ 1.66 s

¢¢ 2.055 x 10 +1 deg .....] 2.08 s

Table 5.3: Maximum Overshoot and 4% Settling Time for 30 ° Step

Disturbance in Platform Rotation

5.1.4 Comparison

The maximum overshoot and settling :1me provide a measure of the relative

degree of stability of the closed-loop system. For exam.ple, the maximum overshoot

in the X direction is about 1.5 cm for the I0 _ case. 5..5 cm for the 20* case, and

i7.4 cm for the 30 ° case. indicating that the degree of stabiIity decreases as the

magnitude of the disturbance increases. Likewise. the settling times are generally
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Figure 5.5: Position Error (X - solid curve; Y - dashed curve; Z - dot-

ted curve) and Orientation Error for 30 ° Step Disturbance
in Platform Rotation
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- dashed curves; A0_(:3), A0_(6) - dotted curves) for 30 ° Step
Disturbance in Platform Rotation
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longer for larger magnitude disturbances.

Figure 5.? shows a plot of the position error in the X- Y plane for 10",

20", and 30* step disturbances. This view corresponds to looking in the negative Z

direction, or "down", from directly above the robot (see Figure 2.1). It is interesting

to note that for the l0 ° case, the end-effector converges to the desired position along

a roughly straight-llne path, while for the 30 ° case, the pLth resembles a spiral. This

spiraling is caused by the error in the approximate pseudoinverse Jacobian matrix,

which is computed using the nominal platform position instead of the true platform

position•
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Figure 5.7: Position Errors for 10 ° (solid curve), 20 ° (dashed curve),

and 30 ° (dotted curve) Step Disturbances in Platform Ro-
tation
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5.2 Sinusoidal Disturbances in Platform Rotation

This section compares the time response of the system (with Kc = I) for 16 sec-

ond, 8 second, and 4 second period sinusoidal disturbances in the platform rotation.

5.2.1 16 Second Period Sinusoldal Disturbance

F!gure 5;8 shows the X, Y, and Z position errors, with and without distur-

bance rejection, for a 10 ° amplitude, 16 second period sinusoidal disturbance in the

platform rotation. The orientation error, with and without disturbance rejection, is

shown in Figure 5.9. Table 5.4 displays the largest absolute error and mean-square

e!:ror for each coordinate.

_ -0.05

_ 41.1

-0.1 '
0 1

Time (sec)

PositionError With Disturbance Rejection

2 3 4 5 6 7

Time (se.c)

Figure 5.8: Position Errors (X " solid curves; Y- dashed curves; Z -

dotted curves) for 10 ° Amplitude, 16 Second Period Sinu-

soldal Disturbance in Platform Rotation
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Figure 5.9:
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_cn_on ErrorWithout Di_a_ Reje,_.'.'on

1 2 3 4 5 6 7 8

Time (see)

Ofimmio_ Enor With Diam'b._-_c_Rcie_c_on

1 2 3 4 5 6 7 8

Time (see)

Orientation Errors for 10° Amplitude, 16 Second Period

Sinusoidal Disturbance in Platform Rotation
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m
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M

g

m
i

m
u

m

x
Y
Z

Without Disturbance Rejection
Max"Error MSE

4.414x 10 +° cm 9.641× 10 +° cm 2

1.200x 10 +1 cm 6.915x10 ÷1 cm 2

5.110x10 -1 cm 2.511x10 -lcm 2

1.034 x 10 +l deg !..5.332 x 10 +1 deg _

With Disturbance Rejection

Max Error MSE

3.240 x 10 -I cm 7.220 x 10 -3 cm 2

i.451x 10+° cm 1.275× 10 -_ cm _

6.900 x 10 -2 cm ] 4.364 × 10 -4 cm 2

! 1.0'57 x 10 +° deg i 7.178 x 10-e deg z

Table 5.4: Maximum and .'vIean'Square Errors for I0° Amplitude, 16

Second Period Sinusoidal Disturbance in Platform Rota-

tion
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5.2.2 8 Second Period Sinusoidal Disturbance

Figures 5.10 and 5.11 show the position and orientation errors for a 10 ° am-

plitude, 8 second period sinusoidal disturbance in the platform rotation. Table 5.5

shows the maximum and mean-square position and orientation errors.

With Disturbance RejectionWithout Disturbance Rejection

Max Error t MSE

I 3.924_ 10+°cm
1.298 x 10 +1 cm

1.900 x 10 -2 cm

Max Error MSE

3.251x 10 -2 cm 24.940 x 10 -x cm

2.171 x 10 ¥° cm

X | 4.230 x I0+° cm 2

Y I 8.166x 10+I cm 2

Z 3.459xi0 -4 cm 2 1.310x I0-I cm

¢,_ l.Ol4x I0+l deg 4.865x10 +' deg_' 1.665x I0+° deg

3.336 × 10-I cm 2

2.509 x 10-3 cm 2

2.172 xiO "x deg_

Table 5.5: Maximum and Mean-Square Errors for 10 ° Amplitude, 8

Second Period Sinusoidal Disturbance in Platform Rota-

tion

U

w

= =

5.2.3 4 Second Period Sinusoidal Disturbance

Figures 5.12 - 5.13 show the position and orientation errors for a 10 ° amplitude,

4 second period sinusoidal disturbance in the platform rotational joint. Table .5.6

shows the maximum and mean-square errors for each coordinate.

X

Y

Z

Without Disturbance Rejection With Disturbance Rejection

Max Error [ MSE Max Error MSE

4.365x10 +° cm I 5.135×10 *°cm _" 6.840x10 -1 cm r 1.136×10 -1 cm _

1.534×10 +1 cm t 7.602×10 _'1 cm: 2.989×10 +° cm ! 1.731x10 *°cm '_

4.610xI0 -_'cm I 6"6r97×i0--2 cm2 i 2-690_i0-I cm i 1.274xi0-:' cm 2

1.02S x i0+' deg I 4..512x 10" deg" [.2:4S6 x 1'0+° deg i 1.174 x l0 -° deg z

Table 5.6: Maximum and Mean-Square Errors for i0 ° Amplitude, 4

Second Period Sinusoidal Disturbance in Platform Rota-

tion
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Figure 5.10: Position Errors (X - solid curves; Y - dashed curves; Z -

dotted curves) for 10 _ Amplitude, 8 Second Period Sinu-
soidal Disturbance in Platform Rotation
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5.2.4 Comparison

Comparing Figures 5.8 - 5.13, it can be concluded that the quality of the dis-

turbance rejection diminishes as the frequency of the disturbance signal increases.

One measure of the quality of the disturbance rejection is the mean-square error
v

attenuation, defined as the ratio of the mean-square errors with and without distur-

bance rejection, expressed in decibels:

AMSEA2OIglo(¢MS/¢MS)=O ' dB (5.2)

where e_as and EMS are the mean-square errors with and without disturbance re-

jection, respectively. Table 5.7 lists the AMSE values for the 16, 8, and 4 second

period sinusoldal disturbances. Note that for the 8 second case, the AMSE value in

the Z direction is positive, indicating that the error was amplified instead of atten-

uated. However, the actual mean-square error in this case is only 2.5×10 -3 cm 2 (see

Table 5.5).

,

Y
z

¢,

T=16s

I -6.251× 10 *_ dB'

T=8s T=4s

-4.229 x 10"-1 dB i -3.122× I0+_ dB

-5.469× 10 +l dB -4.778× 10 +l dB [ -3.285× 10 .1 dB

-5.520 x 10 ÷I dB +1.721× 10 _'1 dB i -I.441 x 10 .1 dB

-5.742x10 .I dB -4.700x10 *x dB i -3.169×10"I dB

ID

m
m

J

N

z

m
I

i

m

U

I

R

Table 5.7: Attenuation of Mean-Square Errors for 16, 8, and 4 Second

PeriOd, 10 o Amplitude Sinusoidal Disturbances in Platform

Rotation

i
B

E
B

5.3 Random Disturbances in Platform Rotation
m

g

Two types of stochastic disturbance "_ _¢ " 's_..a,_ are co,nslderefi in this section: ran-

dom noise with a uniform distribution, and random noise with a normal distribution.

: 5

The control gain was set to identity, as in the previous sections.
u

m
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5.3.1 Random Disturbance With Uniform Distribution

Figures 5.14 and 5.15 show the position and orientation errors for a random

noise disturbance in the platform rotation, uniformly distributed in the interval

(-0.5 °, +0.5°). The notation Unif(-0.5 °, +0.5 °) will be used to represent this dis-

turbance signal. Table 5.8 lists the maximum and mean-square for each coordinate.

=

n

m

X

Y

Z

Without Disturbance Rejection With Disturbance Rejection
Max Error MSE Max Error MSE

1.1'84 x 10 +° cm 8.4:40 x 10-Y'cm

5.939x10 +° cm

2.384 x 10 -l cm _

6.511 x 10 +° cm 2

3.010x10 -1 cm 1.856x10 -2 cm 2

4.037 x 10 +° deg 2.966 x 10 +° deg'

3.799 x 10 +° cm

4.900 x 10 -2 cm

2.911 x 10 +° deg

1.062x 10 -1 cm =

2.362 x 10 +° cm _

4.681 x 10 -4 cm 2

1.397 x 10 +° deg z-

=

Table 5.8: Maximum and Mean-Square Errors for Unif(-0.5 °, +0.5 °)
Random Disturbance in Platform Rotation

u

W

w

5.3.2 Random Disturbance With Normal Distribution

Figures 5.16 - 5.17 display the position and orientation errors for a zero mean,

0.25 ° standard deviation Gaussian noise disturbance in the platform rotation (de-

noted by ,V'(0, 0.25°)). The maximum and mean-square errors are given in Table 5.9.

Without Disturbance Rejection With Disturbance Rejection
MSE Max Error MSEMax Error

i 1.664x 10 +° cm

5,501x 10 +° cm

[ 4.900 x 10"2 crn

¢_ [ 4.789x 10"° deg

6.275x 10 -1 cm 2 i 8.760 x 10 -_ cm

6.625 x 10 +° cm 2 [ 3.789 x 10 +° cm

1.304x10 -acre: t 1.590x10 -1 cm

5.332 x 10 -_ deg _ I 2.899x 10+° deg

1.373x 10 -t cm 2 I

2.534 x 10 +0 cm _ [

5.640x 10 -3 cm 2 f
1.515 x 10 +° deg "_ I

Table 5.9: Maximum and Mean-Square Errors for A'(0,0.25') Random
Disturbance in Platform Rotation

w
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Figure 5.14: Position Errors (X - solid curves; Y - dashed curves; Z -

dotted curves) for Unif(-0.5 °, +0.5 °) Random Disturbance
in Platform Rotation
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5.3.3 Comparison =

Table 5.10 displays the mean-square error attenuations for uniform and Gaus-

sian random noise in the platform rotation. The AMSE values indicate that the

performance is similar for both cases. In comparison with the results for sinusoidal

disturbances, however, the quality of disturbance rejection is significantly less, since

the random disturbance signals are of much higher bandwidth.

I

[]

m

R

I

Table 5.10:

.Unif(-0.5 °, +0.5 °)

X

Y

Z -3.196×10 +1 dB

Ce -6.542×10 +° dB

N(o, 0.25o)
-7.022×10 +° dB -1.320×10 +1 dB

-8.807× 10+°'dB -8.347x 10 +°dB

+1.272 × 10 +1 dB

-1.093 × 10 +I dB

Attenuation of Mean-Square Errors for Unif(-0.5°,+0.5 °)
and A/'(0, 0.25 °) Random Disturbances in Platform Rotation

i

I
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I

5.4 Behavior Near Singularities

In the experiments discussed so far, the manipulator was able to maintain the

desired end-effector position and orientation without being forced into a singular

configuration. This section examines the behavior of the J_ controller when the arm

is at or near each of the three PUMA singularities.

5.4.1 Arm Fully Stretched Singularity

Figure 5.18 shows the vector of open-loop control signals near the Arm Fully

Stretched singularity. The minimum singular value parameter. 0%,,_. was set to

0.1. At this value of ¢mi,_, the control in the directioz of the worksDace boundary

becomes very weak approximately 30 ° from the " _,,: -slno_a, point. This prevents the

end-effector from getting too close to the workspace boundary. Consequently, the

i

Z

I

|

I

z

m

m
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m

manipulator will not switch between the flex and noflex configurations while the

J: controller is running.

If the parameter #_i,_ is sufficiently small, however, the width of the singular

region will be reduced to the point where the control signal for joint 6 (A0d(3))

could drive the arm through the singularity. This may lead to an undesirable "chat-

tering" behavior, in which the arm rapidly oscillates between the flex and noflex

configurations:

e-

100

80

6O

4O

2O

0
4O

, , , , ,

=oideg i i i

o J 0 Geg ! _ " _ _ ! i

i!ii!; iiiii:ii:ii:iiii 
' ' ;o ' ' ' ' '50 60 80 I00 llO 120 130 140

Joint 6 Posidon (_g)

20

Joint 6 Posidon ((leg)

Figure 5.18: Behavior of l/tier(J) and Open-Loop Control Signals

(A0e(1), A0a(4) - solid curves; A0d(2), A0e(5) - dashed

curves; A0d(3), A0d(6) - dotted curves) Near Arm Fully

Stretched Singularity

5.4.2 Hand Over Head Singularity

Figure 5.19 shows the open-loop control signals in the viciniLv of the Hand

Over Head singularity, with o',,,i,_ = 0.1. At about 10 ° from the singular point, the

control in the "forbidden" directions (c.f. Section '_ '_.1.4; becomes very weak. Unlike
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the Arm Fully Stretched singularity, this does not prevent the manipulator from

changing configurations; however, it does mean that the end-effector will be unable

to track certain linear components of the desired trajectory while the arm is in the

singular region.
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- 40

20

Figure 5.19:
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5.4.3 Wrist Singularity

Figure 5.20 shows the open-loop control signals near the Wrist singularity,, with

o'_i,_ = 0.i. The control signals for joints 7 and 9 (,_04(4) and _0_(6)) go to zero
- z i

about 80 from the singular point. As in the Hand Over Head singularity', this does

affect the ability to change configurations. However. the end-effector will be unable

to track certain angular components of the desired trajectory when the position of

joint$ iswithin $o of zero.
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Figure 5.20: Behavior of 1/det(J) and Open-Loop Control Signals
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5.5 Summary

Several important conclusions can be drawn from the experimental results

presented in this chapter. These conclusions are summarized below:

m

i

1. The relative stability of the closed-loop system is a function of the amplitude

of the disturbance signal.

0

By comparing the maximum overshoot and settling time, it was argued that the

system was less stable for the 30 ° step input than for the 10 ° step input. This

observation agrees with the stability analysis presented in Section 3.3, since c_ is

directly related to the maximum disturbance amplitude (cf. Equation 3.42). With

I/'¢ = I, the system is stable for platform rotational disturbances less than 60 °.

2. The relative performance of the controller is a function of the frequency of the

disturbance signal. _ _

For the 16 second sinusoidal disturbance, the mean-square error attenuation was very
: 5

good (about -55 dB), but for the 4 second sinusoidal disturbance, the attenuation

was markedly less (about -30 dB). In other words, the jt controller is like a high-pass

filter; the lowest frequency components of the disturbance sigual are attenuated the

most.

3. The control in certain directions becomes very weak near singularities.

This implies that there may, be an unavoidable tracking error in the "forbidden"

directions when the arm is at or near a singularity. This also prevents the arm

from switching between the flex and noflex configurations near the workspace

boundary.
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CHAPTER 6

CONCLUSION
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6.1 Report Summary and Conclusions

This report described the design, analysis, implementation, and performance
= .

of a kinemat{d conl;roller for inertial-space disturbance rejection. First, the problem

of mapping end-effector displacements to joint displacements was considered. The

approximate pseudoinverse Jacobian was presented as a computationaIly efficient

and well-defined solution to this problem. Next, a kinematic control algorithm,
.. - _

the J: control law, was proposed. A discrete-time model of the closed-loop system

was derived, and the stability of the system was shown to be related to the upper

bound on the disturbance and the selection of the control gain. The real-time

implementation of the controller on CIRSSE's robotic testbed was then discussed,

as well as the hardware and software components of the testbed used in this thesis.

Finally, some experimental results were presented, comparing the performance of the

controller for step, sinusoidal, and random disturbances in the platform rotational

axis, and at the singularities of the PUMA.

In conclusion, the J: controller has been demonstrated to be very effective

for rejecting the low-frequency components of an arbitrary disturbance signal. The

controller was shown to be robust with respect to relatively large magnitude distur-

bances and in the neighborhood of kinematic singularities. The modest computa-

tional requirements of the algorithm, coupled with the fact that precise knowledge

of the disturbance signal is not required, suggest that this controller is a practical

solution to the inertial-space disturbance rejection control problem.

65



66

6.2 Future Research

Several recommendations for future directions in this area of research are dis-

cussed below.

1. Implement direct inertial end-point sensing. _

Recall from Section: 4.3.2-that the inertial end-point sensor driver calculates the

inertial end-effector position and attitude using the forward kinematics. In practice,
..... :; .... ; -- . 2 .....

however, additional sensors are needed to measure the end-effector location since

the platform joints are not exactly known.

..... direct end-point feedback is available.

This driver should be replaced when

2. Incorporate joint limit constraints into thekinematic control algorithm.

Although the joint limits of the manipulator are usually taken into account by the

path planner, a large enough magnitude disturbance could force one or more joints to

its limit. It would be desirable to avoid this situation by augznenting the kinematic

control law with joint limit constraints.

3. Design a better dynamic control algorithm.

The performance of the system could be improved by using a better joint-level

controller. The limiting factor in the PID control algorithm used for this research

appears to be velocity noise, which arises from backward differencing the joint po-

sitions. This noise could be reduced by Kalman filtering or by directly measuring

the joint velocities with tachometers.

4. Investigate alternative _inematic control algorithms.

Several alternatives to the approximate pseudoinverse Jacobian exist for transform-

ing between joint and task space. For instance, the inverse kinematics could be used
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to map the inertial-space position and attitude to joint positions, or the transpose of

the Jacobian could be used to map a _force-like" error (based on the inertial-space

error) to joint torques.

5. Extend the results to free-floating space manipulator systems.

i

There are three issues which arise when dealing with free-floating systems that were

not specificaliy a'ddressed in this report. First, the dynamics of free-floating systems

are more complicated than those of terrestrial systems; for example, there may be

significant dynamic coupling between the manipulator and spacecraft, causing the

spacecraft to react to manipulator motions. Second, the Jacobian of a free-floating

system depends not only on the joint angles and kinematic parameters, but on the

system mass and inertia properties [3]. Finally, a space manipulator may encounter

dynamic singularities, depending on the history of the manipulator motion [3, 25].

The results presented in this report should be extended to encompass free-floating

systems when these issues are better understood.
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Figure 5.16: Position Errors (X - solid curves; Y- dashed curves; Z -

dotted curves) for H(0, 0.25 °) Random Disturbance in Plat-

form Rotation
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Figure 5.17: Orientation Errors for A/'(0, 0.25 °) Random Disturbance in
Platform Rotation
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Figure 5.18: Behavior of 1/det(J) and Open-Loop Control Signals

(A0a(1), A0a(4)- solid curves; A0a(2), A0a(5)- dashed

curves; ASa(3), A_a(6) - dotted curves) Near Arm Fully
Stretched Singularity
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Figure 5.19: Behavior of 1/det(J) and Open-Loop Control Signals

(A0d(1), AOd(4) - solid curves; A0d(2), A0a(5) - dashed

curves; Aaa(3), A0d(6) - dotted curves) Near Hand Over

Head Singularity
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Figure 5.20: Behavior of 1/det(J) and Open-Loop Control Signals

(A0_(1), A0_(4)- solid curves; A0_(2), A0_(5)- dashed

curves; AOd(3), A0d(6) -- dotted curves) Near Wrist Singu-

larity
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