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NOTATION

The following is a summary of some of the notation and conventions used throughout

this report:

1. The coordinate frames of the robot are labeled 1 - 3 (platform) and 4 - 9

(PUMA). Frame 0 is the inertial frame, and frame E is the end-effector frame.

2. *p;; € R3is the vector describing thé;rposifion of frame j with respect to frame
t, expressed in the coordinates of frame k. Note that kp,-_j = -kpj,,-.

3. ;R € ®%%3 is the rotation matrix describing the orientation of frame j with
respect to frame 1.

4. ;T,e, R4x4 is the hombgérié&l;tréhs;farrhé.tiirdn describing the position and
orientation of frame j with respect to frame i:

. t}2 p!'"

e

0 1
5. kﬁ;,,- € R¥3 is the cross product matrix associated with the vector kp;,j,

expressed in the coordinates of frame k:

0 —*p:i(z)  Fpiily)
k-~ &
Pis=| *pij(z) 0 —*p: j(z)
—*pii(y)  Fpij(z) 0

where *p;;(z), *pi;(y), and *pi;(z) are the components of *pi;j. By “cross

product matrix”, it is meant that, for all w € R2,
k~ k
Pijw= pij Xw

Note that (R *5;; fR = 'p: ;.

X
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6. "du.-,,- € R is the differential displacement of frame j with respect to frame
1, expressed in the coordinates of frame k. The first three components of this

vector are the differential translation and the last three are the differential

rotation:

k
k a dp;,;
du,-, i = X
déi,;

7. ¥J;; € RE*" is the Jacobian relating differential joint displacements to the
differential displacement of frame j with respect to frame i, expressed in the

coordinates of frame k.

8. k@j‘l € R6%8 is the transformation that maps "J,-.j to kJ,»,I:

9. PR € 6% is the transformation that maps *J;; to ™J;;:

‘R0
m k
‘R E

0 MR

10. Trigonometric functions may be abbreviated by their first letter; for example,

S; = sin(¢;) and C; = cos (q; + ¢;).
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ABSTRACT

This report investigates the disturbance rejection control problem for a 6-DOF
PUMA manipulator mounted on a 3-DOF platform. A control algorithm is designed
to track the desired position and attitude of the end-effector in inertial space, sub-
ject to unkn‘g:);v'}rfn‘ disturbances in the platform axes. Conditions for the stability of
the closed-loop= ﬁsrstem are derived. The performance of the controller is compared
for step, sinusoidal, and random disturbances in the platform rotational axis and in

the neighborhood of kinematic singularities.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

One of the main research objectives at the Center for Intelligent Robotic Sys-
tems for Spa’c::: Ekploration (CIRSSE) is to demonstrate the feasibility of using
robotic manipulators for on-orbit tasks. In particular, robotic manipulators have
been proposed as a means of reducing the amount of extra vehicular activity (EVA)
time required for space station assembly and maintenance. The proposed scenario
involves a robotic manipulator attached to some mobile platform, such as a space-
craft, satellite, or the space station itself.

Although certain on-orbit tasks will require only joint-space control, others
will require motion with respect to an inertial or Local Vertical Local Horizontal
(LVLH) reference frame [1]. In the latter case, disturbances in the platform position
and attitude may prevent the manipulator from successfully completing the task.
One possibility is to make course corrections using reaction wheels or jets; however,
the disturbances may exceed the saturation limits of the reaction mechanism [2].
Additionally, this approach could lead to excessive attitude control fuel consump-
tion, limiting the useful on-orbit life of the system [3]. This report explores a second

possibility, namely, using the manipulator to compensate for platform disturbances.

1.2 Past Research

The problem of controlling a robotic manipulator on a mobile platform has
received considerable attention in the past few years. Joshi and Desrochers (4. 3]
designed a nonlinear feedback control law to carry out tasks (with respect to the

robot base frame) in the presence of roll. pitch and vaw disturbances in the platform

ORIGINAL T30F 1§
OF PQOOR GitaliTY
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axes. Dﬁbowsky, Vance, and Torres (2] proposed a time-optimal planning algorithm
for a robotic manipulator mounted on a spacecraft, subject to saturation limits
in the attitude control reaction jets. Papadopoulos and Dubowsky [3] developed
a general framework for analyzing the control of free-floating space manipulator
systems. Most recently, Torres and Dubowsky [6] have presented a technique called
the enhanced disturbance map to find manipulator trajectories that reduce the effect
of disturbanée;iﬁ the spacecraft position and attitude.

One common assumption in the literature is that the disturbance signal is
exactly known. If this is the case, then the end-effector location can be calculated
without relying on direct end-point sensing. However, this assumption is invalid if
there is a significant delay in the platform position and attitude measurements, or if
the kinematics of the plétform are not well known, or if the platform is a non-rigid
structure (such as the proposed Space Station Freedom [7]). In the more likely case
that only the nominal platform location and upper bound on the disturbance signal

are known, direct end-point sensing is needed to measure the end-effector location.

1.3 Report Objective and Organization

The goal of this report is to investigate the problem of controlling a robotic
manipulator in the presence of disturbances in thé:'platfo‘rmr axes. Specifically, a
controller is designed to track the desired position and attitude of the end-effector
with respect to the inertial reference frame using end-point feedlﬁck. The platform
operating point and the maximum deviation from the operating point are assumed
to be known. The controller design. analysis. implementat;on, and performance are
illustrated for a 6-DOF PUMA manipulator mounted on a 3-DOF platform.

The remainder of this report is organized as follows:

Wi . W
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Chapter 2 defines a transformation from task space to joint space, called the ap-
proximate pseudoinverse Jacobian, which is both singularity-free and compu-

tationally efficient.

Chapter 3 examines the disturbance rejection control problem from a kinematic
perspective and develops a control law for disturbance rejection based on the

approximate pseudoinverse Jacobian.

Chapter 4 describes CIRSSE’s robotic testbed and the software implementation

" of the controller on the testbed.

Chapter 5 presents several sets of experimental results. The performance of the

controller is compared for various classes of disturbance signals and at the

singularities of the Jacobian.

Chapter 6 summarizes this report and discusses some future directions for this

area of research.



CHAPTER 2
THE APPROXIMATE PSEUDOINVERSE JACOBIAN

In the inertial-space control problem, the desired end-effector trajectory is specified
in task coordinates (in this case, inertial coordinates), while the actual control takes
place on the joiqt level. Hence, some mapping between task and joint space is re-
~quired. For disturbance rejection, the transformation that maps the displacement
sf the end-effector to joint displacements, i.e., the inverse Jacobian, is of particular
interest. However, this transformation is ill-defined for certain manipulator con-
figurations. This cixapfef pf:esents an alrtérnativé'-mapping, caHedr fhe approximate
pseudoinverse Jacobian, which is defined for all manipulator configurations.

There are five sections in this chapter. Section 2.1 discusses the forward and
inverse Jacobians for the 6-DOF PUMA arm. Section 2.2 reviews the singular
value decomposition and the pseudoinverse. Section 2.3 presents the definition and
properties of the approximate pseudoinverse Jacobian. Section 2.4 compares the
pseudoinverse and approximate pseudoinverse near singularities, as well as the cost
of computing each solution. Finally, Section 2.5 summarizes the main results from

this chapter.

2.1 Background

The Jacobian matrix (or Jacobian) is a mapping from joint space to task
(Cartesian) space. It maps differential changes in joint position to differential

changes in Cartesian position and orientation according to the following relationship:

du = J(q)dq (2.1)

where du € R® is the differential Cartesian displacement vector (linear and angular).

s ®n w o W wmr W 1
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g € ®" is the vector of joint positions, dg € R" is the vector of differential joint
displacements, and J € R6*" is the Jacobian matrix. The Jacobian also relates
joint velocities to Cartesian velocities.

The inverse mapping, when it exists, is given by

dg = J7Y(q)du | (2.2)

In order for J-! to exist, J must be square (6 x 6) and full rank. The singularities of
J are those points where the Jacobian loses rank, i.e., rank(J) < 6. The singularities

of the PUMA Jacobian are discussed further in Section 2.1.4.

2.1.1 Coordinate Frames

The kinematic frames of the PUMA and platform are shown in Figure 2.1. The
coordinate frame assignments follow the Modified Denavit-Hartenberg convention,
in which coordinate frame i is attached to link 7, with the origin on the axis of
joint i [8]. The kinematic parameters of the PUMA and platform are listed in
Table 2.1.

frame Q-1 a;—1 d,‘ 0,‘
number, : (m) (m) 7
1 —90° | 0.32000 ¢ 0°

90° | 0.00000 | 0.54400 | ¢,
-90° | 0.00000 { 0.00000 | g3
g0° | 0.00000 | 0.82800 | g4
—90° | 0.00000 | 0.24300 | gs
0° | 0.43182 | -0.09391 | ¢s
90° | -0.02031 | 0.43300 | ¢-
—90° | 0.00000 | 0.00000 | g¢s
90° { 0.00000 | 0.00000 | g9

W O~ U ]l D

Table 2.1;: Kinematic Parameters



Figure 2.1: Coordinate Frame Assignments
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2.1.2 Velocity and Coordinate Frame Transformations

The notation *du,; will be used to denote the differential displacement of

-frame j with respect to frame ¢, expressed in the coordinates of frame k. With this

notation, Equation (2.1) is written as

kdu;; = *J; jdq (2.3)

Frames ¢ and j will be referred to as the reference frame and the velocity frame,
respectively. Frame &k will be referred to as the coordinate frame.

The velocity frame of the Jacobian can be changed through the transformation

I —*5;
kJi,I - Pl kJ,',J'
0 I
S %90 (2.4)

where kﬁj‘[ is the cross product matrix associated with the position vector kp,-,I (cf.
the Notation at the béginning of this re;;ort). This transformation is useful for
finding the differential displacement of the end-effector, *du, ;. given the position
vector *pg ; (obtained from the tool transform) and the Jacobian *Jis.

The coordinate frame of the Jacobian can be changed via the transformation

. 0
mJi,j — k k-]i,j
0 R
£ TRJ, (2.5)

where " R is the rotation matrix describing the orientation of frame % with respect

to frame m. Combining (2.4) and (2.5) results in

"= PR, 5 (

o



2.1.3 Forward and Inverse PUMA Jacobians — =~

Finding the Jacobian and its inverse expressed in any arbitrary coordinate
frame can be computationally expensive. However, it is possible to take advantage
of coordinate frame transformations to find the simplest Jacobian matrix [9]. For

the PUMA arm, the Jacobian matrix is simplest when expressed in frame 6 [10]:

[ _(ds+ds)Css  drtasSs dr 0 O 0 |
(ds + dg)Sse ag+asC¢ ag 0 0 0
6J3,9 _ a5Cs + agCss + d7Sss 0 0 O 0 0 2.1
—Sse 0 0 0 =57 (C:5
—Cse 0 0 -1 0 —Cs
i 0 1 1 0 G S5:5 |

Note also that this Jacobian matrix is in lower block triangular form. This is due to
the geometry of spherical wrist arms; i.e., the fact that the origins of the last three
frames coincide. The following compact notation will be used to denote the matrix

[
Jsvg:

B 0
D FE

where B, D, and E are 3 x 3 submatrices of the Jacobian.

6
Jag =

(2.8)

The inverse Jacobian, when it exists, can also be written in block matrix form

(see Kailath [11], p. 636):

-1

6 B 0 B! 0
-1
J3.9 = =
D FE ~E-1DB-t E-!

This expression is only defined when J is full rank. or equivalently, when B and E

(2.9)

are full rank. The singularities of J are those points where either rank(B) < 3 or

rank(E) < 3.

2l
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2.1.4 Singularities of the PUMA Jacobian

The singularities of the PUMA Jacobian can be found by solving for the roots

of the determinant of J:

det(J) = det(B)det(E)
AR as(aeSe — d7C6)(asCs + asCse + d7.5s6)Ss
. ” (2.10)

When the first factor in (2.10) vanishes, the PUMA is at the Arm Fully Stretched

singularity. Setting this factor to zero and solving for ¢s yields

gs = tan™! (ﬁ) +nm, n=0=+1,+2,... (2.11)

as

The Arm Fully Stretched configuration is classified as a workspace boundary singu-
larity [8]. This singularity occurs whenever the arm switches between the flex and
the noflex configurations (see [12] for the definitions of the PUMA poses). At the
Arm Fully Stretched singularity, the end-effector cannot instantaneously move in
certain linear directions; for example, any differential translation dp which exceeds
the workspace boundary is physically unachievable.

The second factor in (2.10) corresponds to the Hand Over Head singularity.

Setting this factor to zero and solving for g5 yields

= tan-! (B + a6C + drSs
gs a655 b d';'Cs

The Hand Over Head configuration is a classified as a workspace interior singu-

) +nx, n=0,=1,£2,... (2.12)

larity [8]. and corresponds to changing between the right and left configura-
tions [12]. As in the Arm Fully Stretched singularity, certain instantaneous linear

directions cannot be achieved at the Hand Over Head configuration. For example. if
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g2 = g3 = ¢4 = 0 and Equation (2.12) is satisfied, then instantaneous motion in the
inertial Y direction is impossible.

| The third factor in (2.10) corresponds to the Wrist singularity. Setting this
factor to zero and solving for g yields

g =nm, n=02I,42,... (2.13)

The Wrist sin‘gul:arity also occurs in the workspace interior, when the arm switches
between the f1ip and noflip conﬁgurationé [12]. At the Wrist singularity, certain
instantaneous angular directions cannot be achieved; for example, if the arm is in the
“home” position (as in Figure 2.1), the end-effector cannot instantaneously rotate

about the inertial X axis.

2.2 Pseudoinverse Jacobian

2.2.1 Motivation

The usual method of dealing with singulérities of the Jacobian is to avoid
them. For example, Baillieul, Hollerbach, and Brockett [13] proposed using kine-
matic redundancy’ to steer around workspace interior singularities. This approach
is not applicable to the disturbance rejection problem, however, since a sufﬁcientl_;'
large disturbance could force the manipulator into a singular configuration. There
are practical problems with singularity avoidance as weH. For instance, the manipu-
lator must avoid not just singular points, but singular regions, since the norm of J~!
becomés very large in the neighborhoodl of a singularity. For disturbance rejection.
then, it would be desirable to have a mapping from task space to joint space which

is well-behaved near singularities. This section examines one such candidate. the

pseudoinverse Jacobian, denoted by J'.

1A klnematlcally redundant manipulator has mors degrees of freedom than required to reach
every point in the workspace with arbitrary orientation: hence, n > 6.
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In robotics literature, the pseudoinverse is often used in the context of path
planning or control for kinematically redundant manipulators, to overcome the dif-

ficulty of J being a nonsquare matrix. Roboticists usually define J* as

JUJITYY m<n
J'l m=n (2.14)
PR : (JTH-WJT m2n

>

JT

Clearly, this method of computing J! does not address the issue of singularities
since it still relies on matrix inversion. A more general approach to computing the

pseudoinverse, based on the singular value decomposition, is presented below.

2.2.2 The Singular Value Decomposition

The singular value decomposition (or “SVD”) is the unique factorization of
any m x n matrix J into the product of two orthonormal matrices and a matrix
whose off-diagonal elements are zero and whose diagonal elements are the singular

values of J. This factorization is expressed below:

J=UzvT (2.13)

where U is an m x m orthonormal matrix, V is an n x n orthonormal matrix, and &
is the m x n matrix of singular values. For notational purposes, it will be assumed
that m < n, although all of the results are still valid for m > n.

Since U and V' are nonsingular, J and ¥ have the same rank. Thus, if
rank(J) = r. the first r singular values of ./ will be nonzero and the last m —r
equal to zero. Furthermore, it can be shown that the singular values are the non-
negative square roots of the eigenvalues of JJ7 {14]. Let the singular values be

ordered as oy > 0y > --- 2 0. Then. T is written as
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0
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The singular values can be used to measure how close J is to being singular.

One such measure, the condition number, is defined below:

cond(J) 2 gl (2.17)

A matrix is nearly singular or ill-conditioned when the condition number is very
large (or infinite). Another measure of singularity, commonly used by roboticists, is

the measure of manipulability [15]:

MOM(J) & \fdew(7J7)

= /det(TZT)

= C102° T

The measure of manipulability behaves like the inverse of the condition number, in

that MOM(J) — 0 as cond(J) — oo. If J is square, it is easy to see that

MOM(J) = det(J) (2.18)

2.2.3 Definition of the Pseudoinverse

Consider for the moment the task of inverting © when m = n. If T is full

rank, then all of the singular values will be nonzero, and the inverse is simply

1/ L[
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- . 1 1 1
Tl = dxag(a—l,;-z-,...,a_—-) (2.19)

In the event that a singular value o is zero, £~! does not exist. The pseudoinverse

1s defined by replacing these 1/0;’s with zero:

1
gt & diag(ail,o_iz,...,;-,o,...,O) (2.20)

By this definition, a singular value must be exactly zero for £ to be singular. How-
ever, ¥ will be numerically ill-conditioned when one or more of the o,’s are very
small. In practice, it is useful to define a singular value threshold, op;,, below which
any singular value is considered to be zero.

For the general case when X is not necessarily square, the pseudoinverse is

defined as

e

I
1
tL
[ ]

0

L -

The concept of the pseudoinverse can easily be extended to arbitrary matrices.
Recall that the singular value decomposition factors J into the product UTVT.
Since the matrices U and V are orthonormal, U'~! = U'T and V~! = V'T. Thus, the

pseudoinverse of J is

JteyoieT (2.22)
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2.2.4 The Moore-Penrose Conaitions

The pseudoinverse can also be defined by four algebraic properties, known as

the Moore-Penrose conditions:

JIJ = J (2.23)
Cgtagt = gt (2.24)
PN =gt o 2

Jtt = Ju o (226)

The first condition (Equation (2.23)) is also the definition of a generalized inverse.
That is, any matrix J= which satisfies the property JJ=J = Jis a generalized
inverse of J. Similarly, (2.24) is the definition of a reflezive generalized inverse [13].
It is straightforward to verify that J! is the unique matrix that satisfies all four

conditions [14].

2.2.5 Properties of the Pseudoinverse

Several important properties of the pseudoinverse are listed below.

1. If J is square, then J' = J~! when J is nonsingular.

2. If J is singular and du € R(J), then there are an infinite number of vectors
dg that satisfy Equation (2.1). The pseudoinverse selects the least-squares

solution; that is, dg = J'du is the solution with the smallest 2-norm.

3. If J is singular and du € R(J), then there are no vectors dq that satisfy (2.1).

The pseudoinverse constructs a “solution™ vector that minimizes the norm of

the residual; that is, dg = J'du minimizes [[Jdg — dull,.

Wil Wi 0 W SEDE o mENE NI EET W0 MRID MONE W0 mNE0 ED W0 min E



There are many other interesting properties of the pseudoinverse and the sin-
gular value decomposition that are not directly related to this discussion. The reader

is referred to [14] or [16] for additional information.

2.3 Approximate Pseudoinverse Jacobian
2.3.1 Motivation

The pseudoinverse has one serious drawback, which is the high cost of com-
puting the singular value decomposition. The SVD algorithm uses a series of House-
holder transformations to reduce the input matrix to diagonal form [17]. Since this
is an O(N3) operation, finding the SVD for the 6 x 6 Jacobian matrix can be too
costly to implement in real-time (see Table 2.2 at the end of this chapter).

This motivated the search for yet another alternative to the inverse Jaco-
bian, with the additional constraint that the number of computations be kept to

a minimum. The alternative presented in this section is called the approzimate

pseudoinverse Jacobian, and is denoted by J*.

2.3.2 Definition of the Approximate Pseudoinverse

The basic idea behind the approximate pseudoinverse is to use the partitioned
form of J (cf. Equation (2.8)) and perform the SVD on the submatrices B and E.
This reduces the number of computations by a factor of four, since two 3 x 3 singular
value decompositions is an O(2(V/2)3) operation.

The definition of the approximate pseudoinverse Jacobian is

B 0
~E'DB' E°

JH e (2.27)

where B, D, and E are defined as in (2.3). It should be noted that if J had a

block-diagonal instead of a block-triangular structure (i.e., if the linear and angular
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subspaces of R® were completely decoupled) then the approximate pseudoinverse

would be identical to the pseudoinverse.

2.3.3 Properties of the Approximate Pseudoinverse

2.4

2.4.1 Behavior Near Singﬁlaritié:s 7

Several properties of the épproximate pseudoinverse are stated below.

. J* = J=!.when J is nonsingular.
. J* does not satisfy the Moore-Penrose conditions when J is singular.

- Properties (2) - (3) of Section 2.2.5 can be extended to the approximate

pseudoinverse by partitioning R° into the linear and angular subspaces. Let
dp,d¢ € R° be the linear and angular components of du, respectively, and let
dg,dg; € R be the components of dg. Then, the approximate pseudoinverse

solution is ' ’ ' ' ’

d [ Bt o0 ][4
Ll P (2.28)
dg, _E'DB' Et || do

If J is singular, the approximate pseudoinverse finds the minimum norm solu-
tion as if dp and d¢ were decoupled; that is, dg = J*du minimizes || Bdg, — dp|l,
and ||Edg; — dol,.

Comparison

Figure 2.2 compares the 2-norm, or the maximum singular value, of J! (solid

curve), J* (dashed curve), and J-! (dotted curve) in the vicinity of the Hand

Over Head singularity. Figures 2.3 and 2.4 show the behavior near the Arm Fully

Stretched and Wrist singularities, respectively.

| o m ow om i W o= o s o« w |y .
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Figure 2.4: 2-Norms of J' (solid curve), J* (dashed curve), and J-!
(dotted curve) Near Wrist Singularity

The discontinuities in “J’”2 and ”J’"2 occur when the smallest nonzero singu-
lar value, o, falls below the threshold value, Omin. Lhis threshold is an important
parameter; setting omi, to a relatively smallrvalue will shrink the width of the
“well” about the singular point, thus extending the range over which J' = J-! and
J* = J~1. The side-effect is that the norm will be very large and highly discontinu-
ous near the singularity. By the same token, setting Omin t0 @ rela,tlvelw large value
will reduce the discontinuity in the norm by increasing the w1dth of the singular

region. A threshold value of omin = 0.1 was used to generate Figures 2.2 - 2.4.

2.4.2 Bound on Approximation Error

. The pseudoinverse and approximate pseudoinverse Jacobians are identical only
when J is nonsingular. In order to characterize the difference in behavior at a

singularity, some measure of the approzimation erroris needed.

B MW W WO B0 w0 mN0 R W0 WO W W0 om0 wEE om0 W@



19

Recall from Section 2.2.4 that a generalized inverse J~ of a matrix J is defined

by the property
JI=J=J

Since the pseudoinverse satisfies this property, a reasonable way to measure the
approximation error is to see “how close” J* is to being a true generalized inverse

using the folléWiﬁg norm:
-,

An upper bound on the approximation error will now be derived using this norm.

Consider the matrix

BB!B 0
| DB'B+ EE'D(I - B'B) EE'E

JI' =

(2.29)

[ BB'B 0
| D-(I-EEYD(I-B'B) EE'E

Subtracting J yields

BB'B-B 0
JIN —J

—(I-EEYD(I - B'B) EE'E-E

~

B(I - B'B) 0
| (I-EEYD(I-B'B) (I - EEY)E

{ [-B'B 0 J
(2.30)
0 I

(1 0
0 71-EE

B 0
D FE

When both B and E are singular, the approximation error is bounded as follows:
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-], -

I 0 B 0 I-B'B 0
0 I-EE! D E -0 I ,

< WVl (2.31)

If B is nonsingular, a less conservative upper bound can be found:

I 0 0 0
0 I-EE? OE2

< 1Y, (2.32)

pra-a], -

Likewise, when E is nonsingular the upper bound reduces to
I-B'B 0
prsts- 4], -

B 0
0 0 o If|
< Bl (2.33)

Finally, ifboth B and E are 'nornsingiular, the approximate pseudoinverse is identical

to the pseudoinverse:

|grir-J| =0 (2.34)

2.4.3 Computation Time

Table 2.2 compares the conllﬁprutati.on times of the the inverse, pseudoinverse,
and approximate pseudoinverse Jacobians for each coordinate frame. As predicted.
the approximate pseudoinverse is about four times faster to compute than the pseu-
Eloinverse. Note tha‘t the computa‘:tian tirﬁe's; are largest for frame 0, since the solution

is first computed in frame 6 and then transformed into the desired frame k using {R.

;i



Coordinate Frame Computation Time

k Ui | ke | “Ji.

0 1.31 ms | 25.31 ms | 6.38 ms
1 1.31 ms | 25.31 ms | 6.38 ms
2 1.19 ms | 25.31 ms | 6.25 ms
3 1.09 ms | 24.98 ms | 6.11 ms
4 0.97 ms | 24.65 ms | 5.98 ms
5 0.97 ms | 24.65 ms | 5.98 ms
6 0.88 ms | 24.98 ms | 5.98 ms
7 0.82 ms | 24.98 ms | 5.84 ms
8 0.81 ms | 24.98 ms | 5.85 ms
9 0.81 ms | 24.65 ms | 5.85 ms
E 0.95 ms | 25.31 ms | 6.11 ms

Table 2.2: Computation Times for *J;1, *JI ., and *Jj,

Hence, transforming the solution into frame Q requires the most computationally ex-
pensive rotation matrix.

The inverse, pseudoinverse, and approximate pseudoinverse Jacobian solutions

compiler. The data in Table 2.2 was collected by timing the software on a Motorola

MVME 147SA-2 Single Board Computer.

2.5 Summary

A nonsingular mapping from task space to joint space, the approximate pseu-
doinverse Jacobian, was defined in this chapter. The approximate pseudoinverse was
compared to the inverse and pseudoinverse in terms of the computational cost and
the behavior of the norm near kinematic singularities. From this comparison, it can
be concluded that the approximate pseudoinverse is the clear choice for real-time

control.

2Copyright (C) 1989, 1991 Free Software Foundation, Inc., 675 Mass Ave, Cambridge. MA.



o ~ CHAPTER3
A KINEMATIC CONTROL LAW FOR DISTURBANCE REJECTION

i

This chapter focuses on the development and analysis of a control law for disturbance
rejection based on the approximate pseudoinverse Jacobian. The organization of this
chapter is as follows. Section 3.1 gives an overview of the inertial-space disturbance
rejection control ;‘)ro?rl?g. Section 3.2 proposes a kinematic control law and develops
an ex;;;eééion for the cigéed-Ioo;; ;ystem. Section 3.3 defives an upper bound on the
control gain for closed-loop stability. Section 3.4 discusses several controller design

and implementation issues, and Section 3.5 summarizes this chapter.

3.1 Overview
3.1.1 Kinematic vs. Dynamic Control

Any inertial-space controller must take into account both the kinematics and
the dynamics of the manipulator. The design approach followed in this report is
to partition the control into two separate loops: a kinematic loop, which outputs
position setpoints for each joint based on the inertial-space error, and a dynamic
loop, which outputs torques for each motor based on the joint-space error.

There are several advantages to decoupling the control in this manner. First, it
allows the control designer to build and tune each loop independently. The dynamic
loop, for example, can be tuned by looking only at the joint-space errors, and the
kinematic loop can be tuned by assuming that the joint-level control is perfect. A
second advantage is that the two controllers can run in parallel and at different
sampling rates, provided that the position setpoints are buffered. For example, the

dvnamic loop could be implemented in hardware at a faster sampling rate than the
- 2

Q%]
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kinematic loop. Finally, a number of dynamic control laws, such as PID, PD-plus-
gravity, computed-torque, and sliding mode control, have already been developed
for robot manipulators [18]. The remainder of this chapter will concentrate on the
kinematic control loop, with the assumption that a dynamic controller is already

avallable.

3.1.2 Problem Formulation

The control problem that will be addressed in this chapter can be briefly stated
as follows. Consider a S-DOF PUMA manipulatof mounted on a 3-DOF platform.
The goal is to maintain the desired position and attitude of the end-effector with
respect to the inertial reference frame (frame 0), subjrect to arbitrary disturbances

in the platform axes. The following information is assumed to be available:
1. § € R6, the PUMA joint positions
2. 7, € R, the nominal platform joint positions
3. § € R, the maximum deviations from the nominal platform joint positions
4. %ug s € RE, the inertial end-effector location

Two factors contribute to the motion of the end-effector: the differential dis-
placement of the PUMA joints, which can be measured, and the differential displace-
ment of the platform joints, which is unknown. Let 6§ denote the disturbance signal
and let dv be the component of the end-effector motion caused by the differential
displacement of the platform joints. Then. the differential end-effector displacement

can be written as

dug: = °Jazln. +8,6)df = dv

SR(7, + 8)°J3.5(8)d8 + du (3.1)
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Note that coordinate frame transformations have been applied to isolate the depen-

dence of the PUMA Jacobian on the platform joint positions.

3.2 Discrete-Time System Analysis
3.2.1 Discrete-Time Approximation

A discrete-time model of the system will nov? be derived by approximating the

differential quantities in (3.1) with displacements. The underlying assumption here

. xs fhaf the saiﬁpling 7périroidf,rfAT; is s_ufﬁciexitly smé;ll (i.e., VtheA sﬁﬁpling rate is much
higher than the bandwidth of the system).

Define Auy as Auy < Uk — Uk-1, where the subscript & denotes the kth sample

step. In the limit as AT goes to zero, the displacement Au, equals the differential

du:

AI}IEO Au, = du - (3.2)

Similarly, A6, — df and Avy — dv as AT — 0. Therefore, the discrete-time ap-

proximation is

du = Aug = uy — Up_1
df =~ Agk = Hk -_ 9,’;;1

dv =~ Avk = Vp — Vi (33)

- and the discrete version of (3.1) is

ui = Puisy = JRn, + 66) 3 T5.2(0.) 00, + A (3.4)

where the subscripts denoting the reference and velocity frames of du have been

dropped to avoid confusion with the time index.

]
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3.2.2 Proposed Control Law

Let %uy be the desired position and orientation of the end-effector along some
specified trajectory. The control objective is to drive the end-effector to this position

and orientation:

%u = %uy as k— oo (3.3)

Ideally, the control objective could be achieved in minimum time by computing
the PUMA joint displacements A, needed to cancel out the inertial-space error.
However, exact cancellation would require complete knowledge of the disturbance
signal. The next best solution then is to compute a A8y which approzimately cancels
out the inertial-space error. With this goal in mind, the proposed control law is as

follows:

Dby = *JF 5(6) oR(mo) Ko "ua — ") (3.6)

where K. € R°*¢ is a matrix of control gains. Note that K, can be used to weight
certain components of the inertial-space error less than others; for example, set-
ting the first column of K. to zero would eliminate any control in the inertial X
direction. Note also that this control law is essentially an inertial-space “spring”,
whose “stiffness” is determined by A".. (Damping is assumed to be provided by the
dynamic controller). Equation (3.6) will be referred to as the J* control law in the

sequel.

3.2.3 Closed-Loop System

A simple expression for the closed-loop system can be derived by assuming

that there is a one period delay in the control actuation:

A9k+1 = Agd (37)
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Equation (3.7) basically means that the joint-level servo control is assumed to be
“perfect”; i.e., the arm achieves the desired setpoint 8; within one sample step of

the J* controller. Substituting (3.6) and (3.7) into (3.4) results in

Oup — %upy = gR(Tlo + 5k)3.]3'5(0;,)3J§'E(0k_1)gR(qo)Kc(°ud — %u_q) + Av (3.8)
In order to si‘m‘pl‘if:y this expression, define the quantity

Mk,k—l é gR(ﬂo + 5k)3J3,a(9k)SJai.s(Gk-l)gR(Uo)Kc (3-9)

Rewriting (3.8) in terms of Mix_1, it is easy to see that the closed-loop system is

linear with time-varying coefficients: B

Oup = (I = Miso1) "ot + Micsor "ua + Avi (3.10)

A block diagram of the closed-loop system is shown in Figure 3.1.

A v
+
Yoo+ 7% conwrol | 2% A% | puMma Ay
law delay Jacobian > —
oF
end-point
Sensor

Figure 3.1: Block Diagram of Closed-Loop System
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3.3 Stability Analysis
3.3.1 Spectrum of Closed-Loop System

The stability of the closed-loop system can be completely characterized by
the spectrum of I — Mg x-1. The necessary and sufficient condition for stability is
that, for all k£ > 0, the eigenvalues A; of I — Mj x—; must lie in the unit circle in the

A-plane:

AL = Mig-1)| <1 YVE>0 (3.11)

Equivalently, the eigenvalues A; of M x_; must lie in a circle of unit radius centered
at the point (1.0,0.0) in the A-plane. This can be verifled by defining A; £1-4A

and substituting into the characteristic polynomial:

p(A) = det(Aid — (I = Mixs))
o= =det((1 = AT — My k1)

= —det(\] = Mix_1) (3.12)

Hence, the A;’s are the eigenvalues of M ;_;.
The stability condition will now be expressed in terms of the matrix M x_;.

Define a to be the maximum angle of rotation of the eigenvalues of M x_1:

a £ sup arg(A;) (3.13)

ik
and let (zo,y0) be a point on the shifted unit circle in the A-plane such that
arg(zo + jyo) = a (see Figure 3.2). If p is the distance from the origin to (zq, yo).

then the stability criterion can be restated as follows:

F(Miz1) S p VE>0 | (3.14)



28

where &( My x—1) denotes the maximum singular value of Mgy

Im[A]

A
1 (x45.%)

» Re[A]

y

Figure 3.2: Region of Stability in the A-Plane

It is straightforward to find a relationship between & and p. The point (zo, yo)

must simultaneously satisfy the following set of equations:

2492 = p? (3.15)
(zo=172+ys = 1 (3.16)
Solving for z and yo gives
PP 1 : .
7 (z0, Yo) =,(,—‘>:’§p ”%—p‘) (3.17)
Hence, a and p are related by
a = tan'l(&)
Io

\
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M)

p
ta -1(,/% —1) (3.18)

= tan”!(
n

or, solving for p,

2

= 3.19
P Vvtan’a + 1 (3.19)
The condition for stability can therefore be written as
7(M, ) < 2 Vk>0 (3.20)
agid - ——_— P4
S VtanZa +1

This equation will be used in Section 3.3.3 to find an upper bound on the control
gain, K.. As a first step toward deriving this bound, it is necessary to examine the

spectrum of the matrix 6J3'96J§'9.

3.3.2 Spectrum of J.ﬁ

Using the compact notation for ®J;4, the matrix 6J3‘96.]§,9 can be written as

[ B 0 Bt 0
D E [—E*DBT Ef
:):1 0

| (I- EEYDB! EE*]

8 6
Jag J§,9 =

(3.21)

Since this matrix is block triangular, the spectrum is simply the union of the eigen-

values of BB' and EEt:

A e J5e) = MBBY |J MEE) (3.22)

The following theorem completely specifies the spectrum of an arbitrary matrix

times its pseudoinverse.
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Theorem 3.1 If A € R™*", with m < n, and rank(A) = r, then the spectrum of

AA' consists of m — r eigenvalues at zero and r eigenvalues at one.

Proof: Let A=UTVT be theﬁsvirngular value decomposition of A. Then,

AAt = yzvTvsty?

‘p;t: - [ zr 0 z;-l 0 T
RSN = U U
0 0] 0 o
(1, 0] .
= U U (3.23)
(0 0 |
Partition U into the column vectors [u; uz ... u,]. Equation (3.23) can then be

written as the sum of the outer products of the first r columns of U:

AAY = ulu{ + ugug +...+ u,uz'

i u; ) u; (3.24)

=1

The eigenvalues A; of AA' are the solutions to

(AANE = A& (3.25)

It will now be shown that the eigenvectors §; are the columns of U and the corre-

sponding eigenvalues are

(1 1<i<r
A= (3.26)
0 r+1<:i<m
First, consider 1 <7 < r. Since U is orthonormal, then for all j,k € {1...r},
1 3=k
u;‘-ruk = (3.27)
0 j#k
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Substituting & = u; in (3.25) and using Equations (3.24) and (3.27) results in

(AANu; = (uul +wul +.. 4yl )y
= ulufu; +...4+ u;u?u; +... u,.ufu.-

= u (3.28)

which implieé'thét A; = 1. Now consider r +1 < ¢ < m. Since

ulu, =0 (3.29)

forallje{l...r}and k€ {r+1...m}, then

(AANw; = (wu? +uul + ... +uul)y,

~ 0 (3.30)

which implies that A; = 0. |

Returning to the original problem, suppose that rank(B) = r and rank(Er) =s.

By Theorem 3.1, the complete spectrum of ®J3 4 6.];{9 is

AM® e J5g) = {1....,1,0,...,0} (3.31)

r4s

3.3.3 Bound on Control Gain

One final condition is needed to find an upper bound on A’.. Observe that,

since J is a continuous operator,

17(8:) = J(9e-) = 0 as [|A6:] — O (3.32)
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In other words, for Ad, sufficiently small, J is approximately constant or slowly
time-varying. Thus, for sufficiently small joint displacements, M; ,_; — M,, where

M, is defined as

My 2 SR(7o + 6)5,0(0) K (04 3R (n6) K- (3.33)
The results from Sections 3.3.1 and 3.3.2 can now be used to find a condition

on K, for stability. Applying velocity and coordinate transformations to (3.33),

My = GR(70 + &, 6) *®a,2(0k) *J3.0(604) ° 3 0(6:) "5 5 () gR (7o, B) K. (3.34)

Since velocity and coordinate frame transformations are orthogonal,

F( M)

IN

&(°Tas(0:)° I3 o(64))5(K2) N
F(K.) (3.33)

IA

Hence, a sufficient condition for stability is

2]
5(Ke) € —mmeee 3.
o) s F= (3:36)

3.4 Controller Desigh

3.4.1 Attitude Error

An important design consideration is the method used to calculate the attitude
error. So far, it has been assumed that the position and orientation of the end-
effector are represented by the vectors °pi and °o:. and the inertial-space error is

computed as

Ou; = %up = (3.37)

Y

| [
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If the orientation is represented by the rotation matrix gR, however, then the com-
ponents of °¢; must be extracted from JR before Equation (3.37) can be applied.
Unfortunately, this approach runs into singularity problems at certain orientations.

A more stable method is to use the attitude error matriz, defined as

T
ARZ2 R, °R, (3.38)

where R, and OR, are the desired and actual rotation matrices. In the limit as the

_ rotations about the inertial X, Y, and Z axes approach zero, it can be shown [19]

that

AR — dR
1 —dg, do,
£ | d. 1 -do. (3.39)
~dd, dén 1

The components d¢,, dg,, and d¢, represent the differential rotations about the
inertial X, Y, and Z axes. Thus, for small (i.e., less than 180°) rotations about X,

Y, and Z, the angular part of the inertial-space error can be formed by taking the

(3,2), (1,3), and (2,1) components of AR:

°6a~ o1 = [ AR(3,2) AR(1,3) AR(2,1) ]T (3.40)

3.4.2 Design Parameters

The J* controller has two design parameters: the control gain, i., and the
minimum singular value. omin. Some guidelines for selecting these parameters are
discussed below.

The selection of the control gain is greatly simplified by restricting K, to be a

scalar times the identity matrix:
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K.=klI, 0<k <2 (3.41)

The parameter k. controls the spectral radius of M;. For example, if k. = 0.5, then
the eigenvalues of M, will lie on a circle of radius 0.5 in the A-plane (or at zero, if J
is singular). The region of stability can then be found by applying Equation (3.18).
It is easy to wverify that for k. = 0, the system can tolerate up to 90° rotation in
the eigenva.hi;s of M, (i.e., @ = 90°), and for k. = 2, the system is marginally stable
(i.e., @ = 0°). Thus, the choice of the control gain is a trade-off between performance
(large k.) and robustness (large a).

It is straightforward to choose a stable k. if & is known a priori. (Recall that 5
is the vector of maximum deviations in the platform joint positions.) Let X denote
the spectrum of the matrix SR(n, + 8)3R(n,). By invoking the slowly time-varying

condition, & can be approximated as follows:

a = sup arg(A) (3.42)

and k. is calculated as

2
\/ta.nya 7+ 1

The selection of o, is essentially a trade-off between tracking accuracy and

ke = (3.43)

the norm of the control signal. Recall from Section 2.4.1 that increasing Omin in-
creases the width of the singular region and consequently reduces the norm of J* at
the boundary of the singular region. In terms of disturbance rejection, increasing
Omin causes the control in the direction of the singularity to shut off earlier, result-
ing in a larger tracking error. The advantage to increasing omin is that the norm of
Af, will be smaller (and less discontinuous) at the boundary of the singular region.

Therefore, the selection of o, should be based on the desired upper bound on the
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norm of A6y, which in turn is dictated by the saturation limits of the joint-level

controller.

3.5 Summary

The design and analysis of a kinematic control law for inertial-space distur-
bance rejectig.gf was described in this chapter. A discrete-time model of the closed-
loop system was derived, and a sufficient condition for closed-loop stability was
found. The selection of the controller design parameters and the computation of the

attitude error were also discussed.



CHAPTER 4 o
IMPLEMENTATION ON A ROBOTIC TESTBED

This chapter givés an overview of CIRSSE’s robotic testbed and some of the software
used in the implementation of the J* controller on the testbed. Section 4.1 describes
the platform carts and the PUMA arms. Sectlbn 4.2 details the hardware-level
interface and real-time operating systems. Sections 4.3 and 4.4 discuss the software

used to control the robots, and Section 4.5 summarizes this chapter.

4.1 Robot Hardware

4.1.1 Platform Carts

The platform system, custom built by K.N. Aronson, Inc. of Arcade, NY,
consists of two 3-DOF carts on a 12 ft linear track. The platform joints are labeled
1 - 3 for the left cart and 10 - 12 for the right cart. Joint 1 provides translational
motion for the left cart along the track, while joints 2 and 3 provide tilt and pan,

respectively. A diagram of the platform system is shown in Figure 4.1.

A Rotational
1 Axis
1
| a———— | S

; .
T Tilt

ek s ek <

/W Axis /\
]
[ i 1 ]
> Translational
AXis

Figure 4.1: 3-DOF Platform Carts
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_:_ 4.1.2 PUMA Arms

: Mounted on the platform system is a pair of 6-DOF PUMA arms, built by

- Unimation, Inc. of Danbury, CT. The joints of the left arm (Unimation model 560)
are labeled 4 - 9 and the joints of the right arm (Unimation model 600) are labeled

- 13 - 18. The left PUMA and platform cart are shown in Figure 4.2.

0

“ Figure 4.2: Left PUMA and Platform Cart

- Each PUMA arm is equipped with a force/torque sensor and a pneumatic

e gripper. Additionally, two cameras are mounted on a bracket located at the fange of
the left PUMA. The physical dimensions of the force/torque sensor. camera mount.

— and gripper are taken into account by the tool transform, 2T, which specifies the

L position and orientation of the end-effector frame. For the left robot, the origin
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of frame E is located between the jaws of the gripper, 23.9 cm from the origin of

frame 9 [20].

4.2 Computer Control System

4.2.1 Hardware Interface

The platform and PUMA robots are controlled from a VME chassis which
contains a nurﬁb& of hardware components distributed across the bus. The bulk of
the real-time compufation takes place on three Motorola MVME 147SA-2 and two
Motorola MVME 135 Single Board Computers (SBCs), labeled CPU 0 - CPU 5.
A Motorola MVME 224-1“Shared Memory board provides a common address space
for the CPUs.

The platform encoders are accessed via three Whedco VME-3570-1 Dual Chan-
nel Encoder Interface boards. A Datel DVME-628V D/A board is used to drive the
platform servo motors. Digital line_s, such as platform power, limit switches, and
emergency stop switches are interfaced through a VME Microsystems VMIVME-
2532A High-Voltage Digital I/O board.

The encoder, torque, andrporweva; signals for the PUMA robots are handled by
two Unimation controller boxes ou,t,sjde of the VME chassis. They are connected to
the VME chassis by two VMEbus to Q-Bus adapters.

The five SBCs ;.re installed on é.n Ethernet backplane, which allows communi-

cation between the VME chassis, a separate Datacube VME chassis (for computer

vision), and the Sun workstations on the CIRSSE network.

4.2.2 Operating Systems

Each CPU runs under VxWorks'. a UNIX-compatible real-time operating sys-

tem. Among other things. the VxWorks kernel supports priority based scheduling,

1Wind River Systems, Alameda. CA.
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intertask communication, synchronization, interrupt handling, and memory man-
agement.

However, VxWorks does not provide a mechanism for tasks on separate CPUs
to communicate with each other. In order to facilitate interprocessor communica-
tion, the CIRSSE Testbed Operating System (CTQOS) was developed [21]. CTOS
enables tasks to communicate asynchronously via message passing.

In additl'i'(;h't;) interprocessor communication, CTOS also supports interchassis
communication. For example, CTOS allows a task on CPU 5 to send and receive

messages from a task on a Sun workstation (running under UNIX). This commu-

- nication bridges the gap between synchronous (real-time) and asynchronous (non-

real-time) tasks.

4.3 Motion Control System

The Motion Control System (MCS) is a collection of real-time software com-
ponents that provides joint-level servo control, force/torque-based control, setpoint
interpolation, and trajectory generation. The portions of the MCS relevant to this
report, as well as the software implementation of the J* control law, are discussed
below.

The MCS is loaded onto CPUs 0 - 5 at boot-time and can easily be configured
to meet the needs of a particular experiment. For this thesis, the J* controller was

used in place of the standard MCS trajectory generator.

4.3.1 Channel I/O Drivers

The platform and PUMA channel drivers are responsible for handling the robot

[/O, including: torque commands. power and brake commands, emergency stop and

limit switch status, encoder positions, and encoder calibration. The channel drivers

run at the servo rate, which is typically 1/0.0045 s~1.
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The torque and position informqftjon for each joint is mapped onto a unique
slot in sharea memory, and can be accessed using the library chanLib. This allows
tasks on other CPUs (e.g., servo controllers) to exchange data with the channel
drivers in a synchronous fashion. Asynchronous information, such as power and

calibration commands, is sent via CTOS messages.

4.3.2 TInertial End-Point Sensor Driver

A separate driver was written for this thesis to measure the location of the end-
effector in inertial space. In lieu of a direct end-point sensor, the forward kinematics
are used tb compute JT,, the hémogeneous transform describing the current position
and attitude of the end-effector with respect to frame 0. (Note that this software is a
temporary substitute for direct end-point feedback; the forward kinematics can not
be used in practice since the platform joint positions are needed to calculate ng.)
The end-effector transform is stored in a shared memory slot and can be accessed
via the library chanIESLib. The inertial end-point sensor driver was implemented

with a sampling rate of 1/0.0036 s-1.

4.3.3 Joint-level Servo Controllers

The platform and PUMA controllers compute the torques required to servo
each joint to the desired setpoint. Position and velocity setpoints are passed to
the controllers via the library interpLib, which uses linear interpolation to smooth
the desired trajectory. The controllers run at the servo rate, in lock step with the
channel drivers.

The control algorithm for the PUMA is based on the well-known Proportional-
plus-Integral-plus-Derivative (PID) control law (22. 23]. To reduce the coupling

between the joints, the PID torques are multiplied by the diagonal terms of 3/{6),

W
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_the mass matrix?. Gravity compensation was also added to further reduce the

position error. Thus, the control law for the PUMA arm is

k v -
T'= M(8,)(Kp(8s— 8x) + K1 D>_(8s — 0)AT + Kp(6s — 0k)) + g(6k) (4.1)
i=0
where
T -.is the 6 x 1 vector of joint torques

M(8:) is the 6 x 6 mass matrix (diagonal terms only)
0, — 8, is the 6 x 1 vector of position errors

éd - 9';: is the 6 x 1 vector of velocity errors

Kp is a 6 x 6 diagonal matrix of proportional gains
K, is a 6 x 6 diagonal matrix of integral gains
Kp is é, 6 x 6 diagonai matrix of velocirty gains

g(b:) s the 6 x 1 vector of gravity torques

AT is the sampling period

In addition, a first order low-pass filter is used to attenuate the noise in the joint
velocity estimates, d;. The control algorithm for the platform is identical to (4.1),

with M = [ and g = 0.

4.3.4 J* Controller

The J* controller functions like a trajectory generator, in that it supplies
position setpoints to the PUMA servo controller through the interpLib inter-
face (velocity setpoints are set to zero). The position setpoints are calculated by
adding the control vector A§; to the the current joint positions 8, where Af: is
computed as in Equation (3.6). The library jaclib. in particular the {function
jacPumaAprxPseudoInv(). is used to find the approximate pseudoinverse solution.

The sampling rate of this controller is 1,/0.0031 s~

2M(8) is the matrix that multiplies § in the Lagrange-Euler dynamics of the PUMA.
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The inputs to the J* controller are the desired and current end-effector trans-
forms, 2T, and JT,, from which the inertial-space error is extracted (cf. Sec-
tion 3.4.1). The current end-effector transform is read from shared memory using the
inertial end -point sensor hbrary descrlbed in Sectlon 4 3 2. The desxred transform is
read from a file during controller 1mt1ahzatxon Ideally, the desired transform would
be specified on- hne by a task- -space trajectory generator, however, this functionality

was not avaxla.ble a.t the time of this thesis.

4.3.5 State Manager

The MCS State Manager coordinates the bootstrapping phase of the Motion
Control System by sending messages to the various components (channel drivers,
controllers, etc.) at boot-time. The State Manager also implements a simple state

machine for the testbed. The five states of the MCS are:

Cold - MCS initialization.

Reserve - Application reserves slots.
~Active - Robot power on, brakes on.
Motion - Robot power on, brakes off.

Emergency Stop - Emergency stop button pressed. Robot power off.

4.4 Software Libraries

In addition to the Motion Control System, several libraries of routines were

used for this thesis. These libraries are briefly described below.

4.4.1 Transform Library

The Transform Library, or transLib, is a collectxon of routines that oper-

ate on homogeneous transforms. In partxcular the routines transInvert() and
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b

i



-~

43

transMultiply() are used by the J* controller to perform the transform inversion
and multiplication required to compute AR, the attitude error matrix. A CIRSSE

Technical Memorandum describing the Transform Library is forthcoming.

4.4.2 Kinematics Library

The Kinematics Library, or kinLib, includes functions to perform the forward

and inverse kinematics. The routine kinFwd() is used by the inertial end-point
sensor driver to compute the current end-effector transform J7T,. The functional

interface for the Kinematics Library is described in [12].

4.4.3 Jacobian Library

The Jacobian Library, or jacLib, contains routines for computing the solutions
to the forward, forward transpose, inverse, pseudoinverse, and approximate pseu-
doinverse Jacobian equations. The implementation details as well as the functional
interface for the Jacobian Library are explained in [24].

The approximate pséudoinverse solution uses an algorithm developed by Press,
Flannery, et al. [17] to perform the singular value decomposition. This algorithm

can be found in the library slvLinEqn.

4.5 Summary

The major hardware and software components of the CIRSSE testbed were
described in this chapter. The real-time implementation of the joint-level PID con-
troller and the J* kinematic controller were discussed, as well as some of the sup-

porting software, such as the inertial end-point sensor library and Jacobian library.



CHAPTER 5
EXPERIMENTAL RESULTS - -

This chapter presents the résults of four sets of experiments utilizing the testbed.
The goal of the experiments was to demonstrate the perfg}'m?pce of the J* con-
trol law under various operating conditions. The first three sets of experiments
focused on the time response of the closed-loop system for the following classes of

disturbances:

1. Step disturbances in the platform joints
2. Sinusoidal disturbances in the platform joints

3. Random disturbances in the platform joints

The majority of disturbances that are likely to be encountered by the robot can be
decomposed into signals belonging to these three classes; for example, an impulsive
disturbance can be approximated as a combination of positive and negative step
disturbances. The fourth set of experimeﬁts was aimed at understanding the open-
loop characteristics of the control law in the neighborhood of singularities.

This chapter is organized into five sections. Sections 5.1 - 3.3 discuss the
performance of the J* control law for step, sinusoidal, and random disturbances

in the platform rotation. (Results for the platform translational and tilt axes are

qualiié;tix'efy similar,r and éﬂrr';;c’crluiciied fbr the sake 6f brevity.r) Srércsior;s.é examines
the behavior of the J* control law near the singularities of the PUMA. Section 3.3
presents some conclusions based on the experimental results.

In this chapter, the term orientation error will refer to the equivalent angle of
rotation ¢. of the attitude error matrix AR (cf. Equation {3.38)). The orientation

I

error is found by computing the equivalent axis and angle representation of AR:
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AR =", 0< 4. <180° (5.1)

where k € R is the normalized axis of rotation and ¢, is the scalar representing the
equivalent angle of rotation. An algorithm for extracting k and ¢, from an attitude

matrix is given in [19)].

5.1 Step Disturbances in Platform Rotation

This section analyzes the time response of the closed-loop system for 10°, 20°,
and 30° step disturbances in the platform rotation. For each case, the control gain

K. was set to identity.

5.1.1 10° Step Disturbance

Figure 5.1 shows the inertial-space errors errors when a 10° step disturbance
is applied to the platform rotational joint. The linear (X, Y, and Z) components
of the error are shown in the upper plot and the orientation error in the lower plot.

The components of Ady, the control vector, are plotted in Figure 3.2.

Maximum Overshoot | 4% Settling Time |
X 1.527x10%° cm 1.54 s
Y 3.825x10%° cm 0.84 s
A 6.366 x 10~! cm 1.70 s
Oe 3.503x10%° deg 1.00 s

Table 5.1: Maximum Overshoot and 4% Settling Time for 10° Step
Disturbance in Platform Rotation

Table 5.1 lists the maximum overshoot and 4% settling time for the X, YV, Z.
and orientation errors. The 1% settling time refers to the time required for the error

to enter and remain within x¢ of zero, where ¢ is 4% of the peak absolute error.
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Figure 5.1: Position Error (X - solid curve; Y — dashed curve; Z - dot-
ted curve) and Orientation Error for 10° Step Disturbance
in Platform Rotation
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Figure 5.2: Control Signals (A8,(1), Ad4(4) — solid curves; Ad,(2:, Ad4(3)
— dashed curves; A0,(3), 20;(6) — dotted curves) for 10° Step
Disturbance in Platform Rotation
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5.1.2 20° Step Disturbance

Figures 5.3 and 5.4 show the inertial-space errors and control signals for a 20°

step disturbance. The settling time and overshoot for X, Y, Z, and 4. are listed in

Table 5.2.

o
—

M ' \,'/ ‘"‘--E-
=R ) S —
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£ 02t
0 % 3 :1 5 é 7
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] T
® ‘
g 20\ e S
L
8 w\
3 \ :
E 5 ‘}\ :
0 2 3 4 5 é 7
Time (sec)

Figure 5.3: Position Error (X - solid curve; ¥ — dashed curve; Z - dot-
ted curve) and Orientation Error for 20° Step Disturbance

in Platform Rotation

| Maximum Overshoot

4% Settling Time |

X 5.526 x10*° cm 1.60 s
Y 8.283x10*? cm 1.33 s
VA 2.435x10%° cm 206s
O 6.306 x 1070 deg | 1.27 s

Table 5.2: Maximum Overshoot and 4% Settling Time for 20° Step

Disturbance in Platform Rotation
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Figure 5.4: éontrol Signals (A84(1), A84(4) — solid curves; A84(2), Ab4(5)
— dashed curves; A84(3), Af4(6) — dotted curves) for 20° Step
Disturbance in Platform Rotation

5.1.3 30° Step Disturbance

The inertial-space errors and control signals for the 30° case are shown in

Figures 5.5 and 5.6. The maximum overshoot and settling time for each coordinate

are displayed in Table 5.3.

Maximum Overshoot | 4% Settling Time |
X 1.737x10%! cm 1.97 s
Y 1.706 x 10*! cm 2.43 s
Z 1.253x10*! em 1.66 s
O 2.055x 10! deg 2.08 s

Table 5.3: Maximum Overshoot and 4% Settling Time for 30° Step
Disturbance in Platform Rotation

5.1.4 Comparison

The maximum overshoot and settling :ime provide a measure of the relative
degree of stability of the closed-loop system. For exarple. the maximum overshoot
in the .X' direction is about 1.5 cm for the 10° case. 3.3 cm for the 20° case, and

17.4 cm for the 30° case. indicating that the degree of stability decreases as the

magnitude of the disturbance increases. Likewise. the settling times are generally
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Figure 5.5: Position Error (X - solid curve; Y — dashed curve; Z — dot-
ted curve) and Orientation Error for 30° Step Disturbance
in Platform Rotation
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Figure 5.6: Control Signals (Af8,(1), Ad.(4) - solid curves; A8;(2), A§.:(3)
— dashed curves; A¢,(3), A9;(6) — dotted curves) for 30° Step
Disturbance in Platform Rotation
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longer for larger magnitude disturbances.
Figure 5.7 shows a plot of the pos1t10n error in the X - Y plane for 10°,
°, and 30° step disturbances. This view corresponds to looking in the negative Z
direction, or “down”, from directly above the robot (see Figure 2.1). It is interesting
to note that for the 10° case, the end-effector converges té the desired position along
a roughly straight-line path, while for the 30° case, the path resembles a spiral. This
spiraling is caused by the error in the appr-oximate pseudoinverse Jacobian matrix,

which is computed using the nominal platform position instead of the true platform

position.
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02 y : .
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03 02 0.1 0 0.1 02 03
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Figure 5.7: Position Errors for 10° (solid curve), 20° (dashed curve),
and 30° (dotted curve) Step Disturbances in Platform Ro-
tation
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5.2 Sinusoidal Disturbances in Platform Rotation

This section compares the time response of the system (with K. = I) for 16 sec-

ond, 8 second, and 4 second period sinusoidal disturbances in the platform rotation.

5.2.1 16 Second Period Sinusoidal Disturbance

Figure 5.8 shows the X, Y, and Z position errors, with and without distur-
bance rejectioﬁ, for a 10° amplitude, 16 second period sinusoidal disturbance in the
platform rotation. The orientation error, with and without disturbance rejection, is
shown in Figure 5.9. Table 5.4 displays the largest absolute error and mean-square

error for each coordinate.

0.05 . Ppsil:ion En'or Without Disturbance checﬁgn
T s N AN N NUU N .
P S
L 0.05 i g o
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20.15 H ;
0 1 2 3 4 5 6 7 8
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Figure 5.8: Position Errors (X - solid curves; Y — dashed curves; Z —
dotted curves) for 10° Amplitude, 16 Second Period Sinu-
soidal Disturbance in Platform Rotation
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Figure 5.9: Orientation Errors for 10° Amplitude, 16 Second Period
Sinusoidal Disturbance in Platform Rotation

Without Disturbance Rejection With Disturbance Rejection
Max Error MSE Max Error MSE
X | 4414x10% cm | 9.641x10*% cm?® | 3.240x107" cm | 7.220x 1073 cm?
Y | 1.200x10* cm | 6.915x 107 cm? | 1.451x10%% em | 1.275x 107‘1 cm?
Z | 5.110x107" cm | 2.511x107" cm® | 6.900x107% cm | 4.364x10~* cm? |
¢. | 1.034x10*" deg | 5.332x 10*" deg® | 1.057x 1079 deg ! 7.178x 10~? deg’ |

Table 5.4: Maximum and NIean-Square; Errors for 10° Amplituae, 16
Second Period Sinusoidal Disturbance in Platform Rota-
tion
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5.2.2 8 Second Period Sinusoidal Disturbance

Figures 5.10 and 5.11 show the position and orientation errors for a 10° am-
plitude, 8 second period sinusoidal disturbance in the platform rotation. Table 5.5

shows the maximum and mean-square position and orientation errors.

Without Disturbance Rejection With Disturbance Rejection
Max Error MSE Max Error | MSE
X | 3.924x10%° cm | 4.230x10%° cm? | 4.940%x 10! ecm | 3.251 x 10~2% cm?
Y | 1.298x10%! cm | 8.166 x 107! ¢cm? | 2.171x107° e¢m | 3.336 x 10T cm?
Z | 1.900x107% cm | 3.459x 10~ ¢cm® | 1.310x10~T ¢cm | 2.509x 103 cm2
3. | 1.014 x 107" deg | 4.865x 107" deg? | 1.665x 1070 deg | 2.172x 10-T deg?

Table 5.5: Maximum and Mean-Square Errors for 10° Amplitude, 8
Second Period Sinusoidal Disturbance in Platform Rota-
tion

5.2.3 4 Second Period Sinusocidal Disturbance
Figures 5.12 - 5.13 show the position and orientation errors for a 10° amplitude,

4 second period sinusoidal disturbance in the platform rotational joint. Table 5.6

shows the maximum and mean-square errors for each coordinate.

Without Disturbance Rejection With Disturbance Rejection
Max Error | MSE Max Error | MSE
X | 4.364x10% cm | 4.135x10™% cm® | 6.840x 10" cm | 1.136 x 10~} cm?
Y | 1.434x10" cm | 7.602x 107 cm® | 2.989x 1070 cm | 1.731 x 107° cm?
Z | 4610x107" cm | 6.697Tx 1072 cm? | 2.690x 10" cm | 1.274x 1072 cm?
6. | 1.028 x 10*! deg | 4.512x 107! deg” | 2.486 x 107 deg ' 1.174 x 107° deg” |

Table 5.6: Maximum and Mean-Square Errors for 10° Amplitude, 4
Second Period Sinusoidal Disturbance in Platform Rota-
tion
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Figure 5.10: Position Errors (X - solid curves; Y — dashed curves; Z -
dotted curves) for 10° Amplitude, 8 Second Period Sinu-
soidal Disturbance in Platform Rotation
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nusoidal Disturbance in Platform Rotation
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Figure 5.12: Position Errors (X - solid curves; Y — dashed curves; Z -
dotted curves) for 10° Amplitude, 4 Second Period Sinu-
soidal Disturbance in Platform Rotation
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nusoidal Disturbance in Platform Rotation



5.2.4 Compgrflsonr

Comparmg Flgures 3.8 - 5.13, it can be concIuded that the quality of the dis-
turbance reJectlon d;mmlshes as the frequency of the dlsturbance signal increases.
One measure of the quality of the disturbance rejection is the mean-square error
attenuation, defined as the ratio of the mean-square errors with and without distur-
bance rejection, expressed in decibels:

AMsE 2 20 logw(e;ws/sms) dB (5.2)

where €5 and eys are the mean-square errors with and without disturbance re-
jection, respectively. Table 5.7 Iisté the Aysg values for the 16, 8, and 4 second
period sinusoidal disturbances. Note that for the 8 second case, the Aysg value in
the Z direction is positive, indicating that the error was amplified instead of atten-
uated. However, the actual mean-square error in this case is only 2.5x1073 c¢m? (see

Table 5.5).

T=16s T=38s | T=4s |
X | -6.251x10"' dB | —4. .7.29><10"'1 dB | =3.122x 107! dB
Y | —5.469x 107! dB | —4.778 x10"! dB | —=3.285x10"! dB
Z | =5.320x 10" dB | +1.721x 107! dB | —1.441x 107! dB
0. | =5.742x 107 dB | —=4.700x 107! dB | =3.169x 10%! dB

Table 5.7: Attenuation of Mean-Square Errors for 16, 8, and 4 Second
Period, 10° Amplitude Sinusoidal Dlsturbances in Platform
Rotation

5.3 Random Disturbances in Platform Rotation

Two types of stochastic disturbance signals are considered in this section: ran-
dom noise with a uniform distribution. and random noise with a normal distribution.

The control gain'\'vas set to identity, as in the previous sections.

([T (] &N Wl W oW owm aE W

Wil Wi



r

|V [
|

|”
1

]

(N

[l

5.3.1 Random Disturbance With Uniform Distribution

Figures 5.14 and 5.15 show the position and orientation errors for a random
noise disturbance in the platform rotation, uniformly distributed in the interval
(—=0.5°,+0.5°). The notation Unif(—0.5°,+0.5°) will be used to represent this dis-

turbance signal. Table 5.8 lists the maximum and mean-square for each coordinate.

Without Disturbance Rejection With Disturbance Rejection

Max Error MSE Max Error | MSE
1.184 x10™ cm | 2.384%107 ! cm? | 8.440x 10" cm | 1.062x 10~! cm?
5.939x10%% ¢cm | 6.511 x107° ¢cm? | 3.799x10%° cm | 2.362x10%° cm
3.010x10"" cm | 1.856x 1072 cm? | 4.900x 1072 cm | 4.681 x10~* cm?
P | 4.037x 101 deg | 2.966 x 107 deg” | 2.911 x 10%° deg | 1.397 x 10*° deg

N[ >e

Table 5.8: Maximum and Mean-Square Errors for Unif(-0.5°, +0.5°)
Random Disturbance in Platform Rotation

5.3.2 Random Disturbance With Normal Distribution

Figures 5.16 - 5.17 display the position and orientation errors for a zero mean,
0.25° standard deviation Gaussian noise disturbance in the platform rotation (de-

noted by V(0,0.25°)). The maximum and mean-square errors are given in Table 5.9.

Without Disturbance Rejection With Disturbance Rejection
Max Error MSE Max Error | MSE
X [ 1.664x10™ cm | 6.275x 10" em?® | 8.760x 10~ cm | 1.373x 10~" cm?
Y | 5.501x10"° cm | 6.625x107° cm? | 3.789%x10*° cm | 2.334x10™° cm?
Z | 4.900x107% cm | 1.304x 1073 cm® | 1.5390x 10" cm | 5.640x 10~3 cm?
b, | 4.789x10%° deg | 5.332x 107V deg” | 2.899 x 10*7 deg | 1.515 x 107° deg’

Table 5.9: Maximum and Mean-Square Errors for .\'{0.0.23°) Random
Disturbance in Platform Rotation



-
0.06 =
£ 0.04 _
= =
E 0.02 .
& o
= >
‘B i
£ 002 :
=
-0.04 :
0 1 2 3 4 5 6 7 8
Time (sec) _
0.06 Position Error With Disturbance Rejection -
E 0.04f- 4 B
bt —=
S 0.02 =
5
=
3 —
& =
8
Time (sec) ;
, —
Figure 5.14: Position Errors (X - solid curves; Y — dashed curves; Z —
dotted curves) for Unif(-0.5°,+0.5°) Random Disturbance =
in Platform Rotation -
Orientation Error Without Disturbance Rejection %
= : : : :
3 ~
5 =
g
k]
g i
; =
4
Time (sec) ) —
Orientation Error With Disturbance chcc(iqn . %
= : : : :
2 - —
5 =
5 =
£
k| _
3 =
s

Figure 5.15: Orientation Errors for Unif(—-0.3°,+0.3°; Random Distur-
bance in Platform Rotation




lw " e [!1 1

Iu ‘\ I

NN

Position Error Without Disturbance Rejection

Position Error (m)

0.04 - 7
3 : . i o
1 N N 1) , -
’E‘ 0.02 g ¢ "-‘ ;' oo oo - 4 "n - .,.' 4
~ n R Ly ARy ."\’\/\.' H 4 o
Nt B SN St N e g O '
‘g 0 ~ "T:\/uf". ,""\j‘l ",—\f"." :" v ,‘I ) Tath of !‘(“ M : -“ LY
VI Vot - vy SANLL P
E 0.02F -y Ao \ :
= vy Y v '
G o : .
£ 0.04 - ‘
0.06 H i i i F
0 1 2 3 4 5 6 7 8

Time (sec)

Figure 5.16: Position Errors (X - solid curves; Y — dashed curves; Z —
dotted curves) for A(0,0.25°) Random Disturbance in Plat-
form Rotation

Orientation Error (deg)

Time (sec)

5 , Orientation Error Wilh’ Dismrbang: chccu'qn

Onentation Error (deg)

| f\;f\'/w

Time (sec)

L

Figure 5.17: Orientation Errors for .\’(0.0.25°) Random Disturbance in
Platform Rotation



60

5.3.3 Comparison

Table 5.10 displays the mean-square error attenuations for uniform and Gaus-
sian random noise in the platform rotation. The Amsg values indicate that the
performance is similar for both cases. In comparison with the results for sinusoidal
disturbances, however, the quality of disturbance rejection is significantly less, since

the random disturbance signals are of much higher bandwidth.

[Unif(=0.5>,+0.5°) | N(0,0.25°) |
X | —7.022x107° dB | —1.320x 10! dB
Y | —8.807x1070 dB | —8.347 x 10°° dB
Z | —3.196x107T dB | +1.272x 107" dB
$. | —6.542x1070 dB | —1.093x 107! dB

Table 5.10: Attenuation of Mean-Square Errors for Unif(—0.5°,+0.5°)
and N(0,0.25°) Random Disturbances in Platform Rotation

5.4 Behavior Near Singularities

In the experiments discussed so far, the manipulator was able to maintain the
desired end-effector position and orientation without being forced into a singular
configuration. This section examines the behavior of the J* controller when the arm

Is at or near each of the three PUMA singularities.

5.4.1 Arm Fully Stretched Singularity

Figure 5.18 shows the vector of open-loop control signals near the Arm Fully
Stretched singularity. The minimum singular value parameter. o,,.. was set to
0.1. At this value of 7,,;,. the control in the direction of the workspace boundaryv
becomes very weak approximately 30° from the singular point. This prevents the

end-effector from getting too close to the workspace boundary. Consequently, the

Y &l al i W e e W

i1
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manipulator will not switch between the flex and noflex configurations while the
J* controller is running.

If the parameter o, is sufficiently small, however, the width of the singular
region will be reduced to the point where the control signal for joint 6 (A84(3))
could drive the arm through the singularity. This may lead to an undesirable “chat-

tering” behavior, in which the arm rapidly oscillates between the flex and noflex

configurations.
100 T ; :
3338 Geg
dg = dsay \
2 W '
0 H H H H H H H ;
40 50 6 70 8 9 100 110 120 130 140

Joirt 6 Position (deg)

“ -l P

Control Signal (deg)
=)

40 50 60 70 80 90 100 110 120 130 140
Joint 6 Position (deg)

Figure 5.18: Behavior of 1/det(J) and Open-Loop Control Signals
(A64(1), Abf4(4) — solid curves; Af4(2), Aby(5) — dashed
curves; Af4(3), Afy(6) — dotted curves) Near Arm Fully
Stretched Singularity

5.4.2 Hand Over Head Singularity

Figure 3.19 shows the open-loop control signals in the vicinity of the Hand
Over Head singularity. with omi»n = 0.1. At about 10° from the singular point. the

control in the “forbidden™ directions (c.f. Section 2.1.4) becomes very weak. Unlike
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the Arm Fully Stretched singularity, this does not prevent the manipulator from
changing configurations; however, it does mean that the end-effector will be unable
to track certain linear components of the desired trajectory while the arm is in the

singular region.

e T

L

it

T SRREE
N
-~

1/det)
o 8 & 8.8

-90 -80 -70 -60 -50 -40 -30 -20 -10 0
Joint § Position (deg)

60 5
§ wopi et :
'E 20 L o ~
.9-0 NN S —
2 o .
g L ;
é 2 . \J

40 H i H H i H H

% 8 70 6 50 40 30 20 10 0
Joint 5 Position (deg)

Figure 5.19: Behavior of 1/det(J) and Open-Loop Control Signals
(A04(1), AB84(4) — solid curves; A4(2), Ay (3) — dashed
curves; A6y(3), Af84(6) ~ dotted curves) Near Hand Over
Head Singularity

5.4.3 Wrist Singularity o

Figure 3.20 shows the open-loop control signals near the Wrist singularity, with
omin = 0.1. The control signals for joints 7 and 9 (A8;(4) and A84(6)) go to zero
about 8° from the singular point. As in the Hand Over Head siinguiafity. this does
affect the ability to change configurations. However, the end-effector will be unable
to track certain angular components of the desired trajectory when the position of

joint 8 is within 8° of zero. _
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larity
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5.5 Summary

Several important conclusions can be drawn from the experimental results

presented in this chapter. These conclusions are summarized below:

1. The relative stability of the closed-loop system is a function of the amplitude

of the disturbance signal.

By comparing the maximum overshoot and settling time, it was argued that the
system was less stable for the 30° step input trhan for the 10° step input. This
observation a.gfees with the stability analysis presenterd;_irn Section 3.3, since « is
directiy ééia;ted to the maximum disturbance z@mplitude: 7(cf. Equaﬁon 3.42). With

K. = I, the system is stable for platform rotational disturbances less than 60°.

2. The relative perforrﬁance of the controller is a function of the frequency of the

disturbance signai.

Fér the 16 second sjnusoidal disturbance, the mean-square error attenuation was very
good (about -557dB)7,7 but for the 4 second srijnusbid,,a,ulr,di;sgtﬁurbﬁance, the attenuation
was markedly less (aboui -30 dB) In other words, t};e J* controller is like a high-pass
filter; the lowest frequency components of the disturbance signal are attenuated the

most.
3. The control in certain directions becomes very weak near singularities.

This implies that there may be an unavoidable tracking error in the “forbidden”
directions when the arm is at or near a singularity. This also prevents the arm

from switching between the flex and noflex configurations near the workspace

boundary.
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CHAPTER 6
CONCLUSION

6.1 Report Summary and Conclusions

This report described the design, analysis, 1mplementat10n and performance

of a kmematxc controller for mertlal -space dlsturba.nce rejection. First, the problem

of mapping end eﬁ'ector displacements to joint dlsplacements was considered. The
approximate pseudomverse Jacobian was presented as a computationally efficient
and well-defined solution to this problem Next, a kinematic control algonthm

the J* control law, was proposed. A discrete-time model of the closed loop system
was derived, and the stability of the system was shown to be related to the upper
bound on the disturbance and the selection of the control gain. The real-time
implementation of the controller oni CIRSVSEi’s robotic testbed was then discussed,
as well as the hardware and software cornponents of the testbed used in this thesis.

Finally, some experimental results were presented, comparing the performance of the
controller for step, sinusoidal, and random disturbances in the platform rotational
axis, and at the singularities of the PUMA.

In conclusion, the J* controller has been demonstrated to be very effective
for rejecting the low-frequency components of an arbitrary disturbance signal. The
controller was shown to be robust with respect to relatively large magnitude distur-
bances and in the neighborhood of kinematic singularities. The modest computa-
tional requirements of the algorithm, coupled with the fact that precise knowledge
of the disturbance signal is not required, suggest that this controller is a practical

solution to the inertial-space disturbance rejection control problem
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6.2 Future Research

Several recommendations for future directions in this area of research are dis-

cussed below.
1. Implement direct inertial end-point sensing.

Recall from Sectlon 4.3.2 that the inertial end-pomt séhsor drlver calculates the
inertial end- eﬁ'ector position and attitude using the forward kmematxcs In practice,
waever, additional sensors are needed to measure the end-effector locatlon since
the platform joints are not exactly I\nown Thxs drxver shouId be replaced when

direct end- pomt feedback is available.
2. Incorporate joint limit constraints into the kinematic control algorithm.

A:lthougHﬂ”tEe joint limits of the -m‘ani’pulator are usually taken into account by the
path planner, a large enough magnitude disturbance could force one or more joints to
its limit. It would be desirable to avoid this situation by augmenting the kinematic

control law with joint limit constraints.
3. Design a better dynamic control algorithm.

The perforrnance of the systern could be 1mpr0ved by using a better joint-level

~ controller. The limiting factor in the PID control algorithm used for this research

appears to be velocxty noise, which arises from bacl\ward d1fferencm0 the joint po-
sitions. This noise could be reduced by Kalman filtering or by directly measuring

the joint velocities with tachometers.
4. Investigate alternative kinematic control algorithms.

Several alternatives to the approximate pseudoinverse Jacobian exist for transform-

ing between joint and task space. For instance, the inverse kinematics could be used

-
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to map the inertial-space position and attitude to joint positions, or the transpose of
the Jacobian could be used to map a “force-like” error (based on the inertial-space

error) to joint torques.
3. Extend the results to free-floating space manipulator systems.

There are three issues which arise when dealing with free-floating systems that were
not speciﬁéaltl:y'a.(ddressed in this report. First, the dynamics of free-floating systems
are more complicated than those of terrestrial systems; for example, there may be
significant dynamic coupling between the manipulator and spacecraft, causing the
spacecraft to react to manipulator motions. Second, the Jacobian of a free-floating
system depends not only on the joint angles and kinematic parameters, but on the
system mass and inertia properties [3]. Finally, a space manipulator may encounter
dynamic singularities, depending on the history of the manipulator motion [3, 25].
The results presented in this report should be extended to encompass free-floating

systems when these issues are better understood.
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Figure 5.3: Position Error (X - solid curve; ¥ — dashed curve; Z — dot-
ted curve) and Orientation Error for 20° Step Disturbance
in Platform Rotation
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Figure 5.4: Control Signals (Af4(1), A8s(4) — solid curves; A8;(2), A8,(3)
— dashed curves; A8,(3), A§,(6) — dotted curves) for 20° Step
Disturbance in Platform Rotation
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Figure 5.5: Position Error (X - solid curve; Y — dashed curve; Z - dot-
ted curve) and Orientation Error for 30° Step Disturbance

in Platform Rotation
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Figure 5.6: Control Signals (A84(1), Af,(4) - solid curves; A8;(2), A8y(3)
— dashed curves; A8,(3), A8,(6) - dotted curves) for 30° Step
Disturbance in Platform Rotation
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Figure 5.8: Position Errors (X - solid curves; ¥ — dashed curves; Z —
dotted curves) for 10° Amplitude, 16 Second Period Sinu-
soidal Disturbance in Platform Rotation
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Figure 5.9: Orientation Errors for 10° Amplitude, 16 Second Period
Sinusoidal Disturbance in Platform Rotation
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Figure 5.10: Position Errors (.X — solid curves; Y — dashed curves; Z —
7 dotted curves) for 10° Amplitude, 8 Second Period Sinu-
soidal Disturbance in Platform Rotation
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Figure 5.11: Orientation Errors for 10° Amplitude, 8 Second Period Si-
nusoidal Disturbance in Platform Rotation
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Figure 5.12: Position Errors (X - solid curves; Y — dashed curves; Z —
dotted curves) for 10° Amplitude, 4 Second Period Sinu-
_ soidal Disturbance in Platform Rotation
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Figure 5.13: Orientation Errors for 10° Amplitude, 4 Second Period Si-
nusoidal Disturbance in Platform Rotation
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Figure 5.14: Position Errors (X — solid curves; Y — dashed curves; Z -
dotted curves) for Unif(-0.5°,+0.3°) Random Disturbance
in Platform Rotation
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Figure 5.15: Orientation Errors for Unif(-0.5°, +0.5°) Random Distur-
~ bance in Platform Rotation
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Figure 5.18: Behavior of 1/det(J) and Open-Loop Control Signals

(A04(1), Ab4(4) - solid curves; Af4(2), Ab4(5) — dashed
curves; Af4(3), A84(6) — dotted curves) Near Arm Fully
Stretched Singularity
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Figure 5.19: Behavior of 1/det(J) and Open-Loop Control Signals

(A64(1), Ab4(4) — solid curves; Af4(2), Aby(5) — dashed
curves; Afy(3), Aby(6) — dotted curves) Near Hand Over
Head Singularity
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