
N93-19404,

1992 NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

JOHN F. KENNEDY SPACE CENTER

UNIVERSITY OF CENTRAL FLORIDA

DEVELOPMENT OF A TASK ANALYSIS TOOL TO

FACILITATE USER INTERFACE DESIGN

PREPARED BY:

ACADEMIC RANK:

UNIVERSITY AND DEPARTMENT:

NASA/KSC

DIVISION:

BRANCH:

NASA COI.LEAG[JE:

DATE:

CONTRACT NUMBER:

Dr. Jean C. Scholtz

Assistant Professor

Portland State University

Computer Science Department

Shuttle Project Engineering Office

Process Integration Branch

Arthur E. Bcllcr

August 21, lt,_)2

University of Central Florida

NASA-NGT-(_'X12 Supplement: 8

"M._J

421

https://ntrs.nasa.gov/search.jsp?R=19930010215 2020-03-17T08:15:26+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42808776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

I would like to thank Dr. Loren Anderson and Ms. Kari Stiles of the University of

Central Florida and Ms. Carol Valdes of the Kennedy Space Center for their efforts in

making the NASA/ASEE Summer Faculty Fellowship Program an enjoyable and

educational summer. I would also like to thank the many NASA, Boeing and Lockheed

personnel who provided answers to a wide variety of questions, demonstrated software

systems and provided hardware and software support. The list of names is too long to

include here but without the expertise of all this work could not have been accomplished.

I would especially like to thank all the employees in the Shuttle Project

Engineering Office for making me feel so welcome during the summer. Having a

sunmaer professor in this area was a first but hopefully, will not be the last.

V

422

Abstract

A good user interface is one that facilitates the user in carrying out his task. Such

interfaces are difficult and cosily to produce. The most hnponant aspect in producing a

good interface is the ability to communicate to the software designers what the user's task

is. The Task Analysis Tool is a system for cooperative task analysis and specification of

the user interface requirements. This tool is intended to serve as a guide to development

of initial prototypes for user feedback.

423

Summary

The user interface is an extremely hnportant part of software. Computer users

today are not, in general, computer experts but experts in other domains who are

dependent on computer software to facilitate their tasks. Developing interfaces for these

users is an expensive and time consuming task. It is often difficult for the software

developers to understand the user's domain well enough to come up with a usable

interface. An iterative design process based on the concept of prototyping is becoming

popular today. In this methodology a rapidly developed Version of the software is used

to obtain user feedback. This version lacks much of file eventual functionality and is

used mainly to test out ideas the designers have about how the user interface should look.

While the use of prototyping has proven to be valuable in the production of good

interfaces, designers are still faced with the problem of developing initial prototypes and

incorporating user feedback into the design of the interface.

This work presents a tool to be used in cooperative task analysis. End users and

human-computer interaction personnel work together with the Task Analysis Tool to

produce a task analysis and a rough sketch of an interface to support these tasks. The

tool holds promise as a communication medium between end users and software

designers. Better communication means fewer iterations in the interface design while

still producing more usable interfaces.

H

V

V

424

V

Table of Contents

I. Introduction ..

1.1 The Design of User Interfaces ...

1.2 Obstacles to Iterative Design ...

1I. Task Analysis ...

2.1 Description of Task Analysis ..

2.2 Obstacles in Performing Task Analysis ..

III. The Task Analysis Tool ..

3.1 Objective of the Task Analysis Tool ..

3.2 Information Collection in the Task Analysis Tool

3.3 Status of the Task Analysis Tool ..

3.4 Description of the Task Analysis Tool ...

IV. Example of the Use of TAT ...

4.1 Description of the Example Task of Electronic Review and Approval

4.2 Example of the Process used to Sketch an Interface

V. Future Plans for Testing and Using TAT ...

5.1 Uses for TAT Output ...
5.2 Additions to TAT ..

5.3 Functionality Needed ...
5.4 An Initial Test of TAT ...

5.5 Testing ...

VI. Conclusions ..

VII. References ...

425

Figure

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

List of Figures

Title

Initial Display of TAT _................................

Initial Display of TAT Fully ExpandEd ,

Information Collection Display of TAT ..

Template for Inte_aceSketqh

TAT HelpScreen ...

Another TAT Help Screen ,...,...,, ,

TAT Display for Information Types ...

TAT End Display ..

TAT Display for Example and Blank Template for Interface
Sketch ..

Information Collection Display from TAT for Task "review".

Sketch of Display Generated for "review".

Sketch of Display Generated for "select". ..

Sketch of Display Generated for "approval".

Portion of Dala Generated for Review and Approval Process

Viewpoint 2: Review and Approval from Engineering View

Viewpoint 2: Sketch of Interface for "create".

V

426

I. Introduction

7

1.1 The Design of User Interfaces

An important consideration in software development today is the interaction of

the user with the software. This concem has emerged due to the changing nature of users

of computer systems and the increasing complexity of current software systems. Today's

users are not restricted to "computer hackers" ; they arc, in fact, using software systems

merely as a tool to aid in different aspects of their jobs. Therefore, the amount of time

users have to devote to learning and using the system is limited, as is the amount of

frustration they will tolerate. To add to this problem software systems are becoming

increasingly complex. This presents a problem for both users and developers. Users

often have a difficult time in accessing all the desired functionality. As the interface is

essentially the view that the user has of a system, he must be able to clearly see through

this interface to the functionality of the software (Shackel, 1988). instead many of the

systems today present a bewildering array of choices for the user. Developers are also

faced with maintaining and augmenting complex code. The end result is that dealing

with the software either as a user or developer requires a large amount of time and hence

is a costly effort.

In order to address these problems an iterative process of software development is

stressed. The underlying principle is that changes to the software are easier and less

costly to make early in the development cycle. Prototyping is one way of collecting

infonnation from the user about the usability of the system early in the software design

process (Wilson and Rosenberg, 1988). The user's view of a given software system is

detennined largely by the interface to that system. That is, system functionality that is

not readily accessible in the interface is nonexistent as far as the user is concerned. The

software interface should provide a good match with the task that the user must perform

with the software. A prototype of the interface is often used to collect users' reactions

and feedback to such things as terminology and arrangement of menu items, format of

information presented and sequence of movement. This information is then quickly

incorporated into the prototype and more user feedback is collected.

Boker and Gronbaek (1991) have studied the use of cooperative prototyping.

They contrast this approach to one where designers develop prototypes on their own

using information supplied by users. They view cooperative prototyping as a way to

overcome problems in developing applications that more closely match user tasks. Initial

prototypes are used to make the views of the participants concrete. Prototypes can be

refined or replaced as users and designers actively participate in the design process. HCI

(human-computer interaction) personnel in this approach need to become familiar with

the tasks of the users. Initial prototypes are set up by the designers based on their

understanding of the user's tasks. The authors found that both well constructed

prototypes which display sample user data and mock-ups which allowed more flexibility

in hlteraction were helpful in obtaining feedback. This approach still relies on an

iterative method with the designers having the responsibility for construction of the

initial prototype.

427

1.2 Obstacles to Iteratlve Design

This iterative procedure results in an interface that the user is pleased with mad in

timely feedback to the developers. There are, however, several obstacles to an efficient

use of such a procedure in the real world. In many instances, software is developed on a

contractual basis. This means that the product is agreed upon prior to any design. This

agreement usually takes the form of written requirements based mainly on the

functionality which the software is to provide. Specifications for the user interface

usually do not exist, or if they do, they are merely platform and style specifications. In

addition, the requirements are usually generated at the management level. The

management level on the developmental side agrees to these. The actual software

developers and the actual end users may or may not have participated in this interaction.

Therefore, the interface produced often differs drastically from what the users may have

expected. /
Changes in design are difficult to make in this tYl_ of environment. Developers

are often removed from the end users both organizationally and physically. Time

constraints often make it difficult for the users to schedule large blocks of time or a series

of sessions to work with the developers. Therefore, there is little chance for iterative

development. Even when iteration exists, the necessary changes may not be incorporated

due to the contractual agreement.

Large product development organizations also contain obstacles to user

involvement as documented by Grudin (1991). Product development organizations are

companies that develop and sell interactive software applications. The development

process is separated into two parts: events prior to the st_ 0fihe project and events

during development. Although the time line that separates these processes is difficult to

define, budgets and personnel are allocated according to these distinctions. The high

level product description used in the early stage generally does not include the user

interface despite the fact that it is difficult to draw a line between functionality and the

interface. User involvement and interface issues are, therefore, issues that are addressed

during development.

Moving some of this involvement to the design phase is a goal of HCI personnel.

In Grudin's study rapid prototyping was found to be a useful tool in facilitating

cooperative design. Moreover, the need to communicate information about computer

use of the user directly to the developer was identified. Therefore, tools and

methodologies that can be used to move user involvement to an earlier phase in the

software development process are needed. Methods for developing and communicating

user interface specifications to software developers are also greatly needed. The work

presented here discusses a tool to accomplish this. This tool captures task analysis

infonnation directly from the end user and develops a rough initiM prototype of the
inlerface.

V

V

428

II. Task Analysis

- j

2.1 Description of Task Analysis

Task analysis is a methodology for describing and analyzing performance

demands made on the human element of a system. The goal of task analysis is a total

human-machine system consisting of human performance requirements, hardware

performance requirements and software performance requirements. Hardware and

software requirements are much easier to obtain than are the human performance

requirements and their interactions with the rest of the system.

The main objective of task analysis is to explore the relationships between the

user's performance and the properties of the system. The focus is on designing a user

interface to a system which is efficient and compatible with the view the user has of task

performance. Design of dialogs in the interface is also a branch of task analysis. Maddix

(1990) states that much dialog is based on an incomplete understanding of what kinds of

interaction might take place between a typical user and the system. In doing task

analysis the user's interaction with a given system is viewed with respect to the objects in

the system and operations that the user performs on those objects. States in the system

are changed by performing a sequence of operations on a series of objects. A goal can

be described as a certain state within the system. This goal can be achieved by applying

sequences of operations to objects in a given state. Guindon (1988) identifies these steps

in task analysis:

I. Identify objects

2. Identify operations

3. Identify the sequence of operations used

The human constituents of a system are responsible for recognizing and interpreting

states produced by the hardware and software systems. If these states have not produced

the desired goals then it is necessary for the human to interact with the software to

produce this state. Human error in carrying out these functions can not be completely

eliminated but providing systems that are well matched to the users' tasks help in

reducing the margin for error.

Don Norman(1986) identifies the gulf of execution and the gulf of evaluation in

human-computer interaction. The gulf of execution results when the user is unable to

correctly select the necessary sequence of operations to perform in order to produce the

desired goal. The gulf of evaluation results from an incorrect interpretation or

recognition of the state produced by a sequence of operations. The user bases this

interpretation on the feedback produced by the system. The gulf is created by the

difference between the user's view of what is happening and what is actually happening

in the system. This distance is reduced a,s the user's view more closely matches the

system view. Therefore, the interface and, consequently the dialog, between the user anti

the system must be the vehicle that maps the user's task into the functional components

provided by the software.

A task analysis can be used to provide data about the user component of the

system. The major problem then becomes how to map this task analysis data into an

hlterface description that can be used to guide software developers in system design and

429

implementation. The data produeed by a task analysis can take many forms depending

upon tile purpose for which that data was collected. In the case of this work, the concern

is with tile user interface so the task analysis will focus on interface items such as data

displayed, format of the data, actions or operations on that data and the sequence it1

which the tasks are perfonned.

2.2 Obstacles In Performlng Task Analysls

In order to produce a task analysis human-computer interaction personnel need to

observe the user carrying out the task and to identify the objects, operations and

sequences used. Additionally, in carrying out a task analysis for development of a

software system, one must keep in mind that the current task will be changed by this

automation. This means that the present task analysis must be examined to ascertain the

effects that automation will have or that flexibility will have to be built into the system to

accommodate future changes in task performance.

Many tasks involve a cognitive aspect. Users choose objects and operation in the

system based on domain knowledge. In order to produce an effective interface it is

necessary to understand these decisions. As the domains become increasingly complex

this presents a larger obstacle to carrying out representative task analyses. Either the

human-computer interaction person needs to learn the domain or the domain experts need

to learn how to do task analysis.

In addition, domain experts often have difficulty in explicitly stating portions of

their task. Portions of any expert's job become routine after a period of time and these

routine cognitive tasks become difficult to verbalize. The human-computer interaction

personnel is therefore responsible for recognizing missing portions and probing further to

extract this knowledge from the expert. This puts additional demand on HCI personnel
to understand the domain.

- $ g : : :

43O

III. The Task Analysis Tool

3.1 Objective of the Task Analysis Tool

The main objective in the development of a tool to use in task analysis is to

facilitate communication between the domain expert, HCI personnel, and the software

designer. The following is a quote from Walsh, Lim and Long (1988):

"Human factors engineers complain that their contribution to

iterative systems design is typically sought late, that is following

system implementation. Software engineers, in contrast, complain

that the human factors contributions to system design are neither

timely, appropriate nor implementable. "

The Task Analysis Tool (TAT) is designed to be used interactively by the

domain expert under HCI supervision. Data collected during an interactive session will

be analyzed by HCI personnel and given to the software designer to user as a guide to

design of the interface. The data collected is saved in two forms: textual information

that can be analyzed later for consistency issues within and between interfaces.

Additionally, and more importantly for the user, a rough sketch of the interface is

generated as information is entered. These screens can then be played back by the end

user to help ensure that the displays give complete information in order to accomplish the

given task. The Task Analysis Tool can serve as a useful tool to help the end user form a

concrete description of his task. As visual feedback is provided immediately the user can

match these results to his conceptual model. Corrections can be made to the interface
sketch if the user finds that it is incorrect.

The fact that a rough sketch of the interface is produced serves to give a version

to the user that is easier to survey for completeness than lists of functional requirements.

The rough sketch can be used, in addition to functional requirements, to drive design.

Having this sort of information at an early stage of design should mean that a better

prototype can be initially developed. This serves in cutting down on the number of

iterations that will be needed in obtaining user information. When given to the software

developer this rough interface design serves to illustrate the control flow that the user

follows. The task analysis tool is also a vehicle for agreement of expectations between

users and developers.

3.2 Information Collection In the Task Analysis Tool

There are many definitions of tasks hut a general agreement is that a task is

composed of a set of human actions that contribute to some objective and ultimately to

the output goal of a system. The content of a task can be more specifically defined once

the objective of a task is identified.

Drury, Paramore, Van Cott, Grey anti Corlett (1987) give the following

characteristics useful in defining tasks :

431

"1. Task actions are related to each other not only by their

objective but also by their" occurrence in time. One of the concerns

of task analysis is to establish and evaluate the time distribution of

actions within and across tasks. Task actions include percel_tions,

discriminations, decisions, control actions, arut communications.

Every task involves some combination of these different types of

cognitive and physical actions.

2. Each task has a starting point that can be identified as a

stimulus or cue fi_r task initiation. A cue is often not a single item

of data or information. It may consist of several data points,

received closely in time or dispersed over a longer time, which

together have significance as a cue that an action is to be taken.

3. Each task has a stopping point that occurs when infornultion or

feedback is received that the objective of the task has been

accomplished.

4. Task cues and feedback may be provided by instrumentation or

direct sensory perception, or they may be generated

adminisu'atively, say, by a supervisor or co-worker.

5. A task is usually, but not necessarily, defined as a unit of action

performed by one individual"

V

The Task Analysis tool captures much of the information deemed characteristic of

tasks. Some of this information is included in the sketched interface while other portions

of it are included in the data file produced.

Tasks are of thlee types: discrete or procedural, continuous or tracking, and

branching. Discrete tasks require that a series of actions be executed in response to a

sthnuli or procedure element. A continuous task extends over a long period of time,

often cycling through a series of actions. A branching task is determined by the outcome
of a certain action within the task.

The prototyped version of the Task Analysis Tool is most useful for discrete or

procedural task and continuous tasks. Branching tasks cannot currently be handled but

the addition of multiple path links will support this. The example presented in this paper

contains an instance of a branching task. Therefore, a link that currently exists in the

example might, in reality, not appear.

3.3 S_Ialus of the Task Analysis Tool

The Task Analysis Tool (TAT) currently exists in a prototyped version. While

there are many features that have already been identified for addition into the system, this

pr0iotype should illustrate theusefuiness of such a tool_ Features sl, ggested for inclusioli

in a developed version are discussed in section V.

TAT is designed to operate as two side by side displays. The screens that collect

/affonnation constitute one set of displays. These are presenied beside of the interface

being sketched. The prototype of TAT was created using Toolbook by Asymetrix
(1989) under Windows 3.1. N

V

432

"x...J
The figures that are included in this paper were printed using the print facilities of

Toolbook. Unfortunately, menu bars do not print out. Therefore these have been

separately constructed and included in figures where needed to illustrate the functionality

of TAT. The operable version of TAT, therefore, looks slightly different than the

version depicted here. In addition, Toolbook does not include the capability to print out

dialog boxes. The example indicates which buttons are dialog boxes and describes the

choices that are presented. In addition, the sizes of the displays have been adjusted

slightly in the printed version in order to accorrunodate difference in the type size

displayed on the screen and the printed type size.

A data file produced from a session with TAT contains information about the

task, actions, infonnation displayed and sequencing. Ideally this data could be examined

to help in designing interfaces that will accommodate several viewpoints. Moreover, if

several applications are to be used concurrently, examination of the data could be used to

suggest commodities that should be considered in designing a common user interface.

The current file produced is a labeled ASCII file. An example of this data file is

included in Figures 14 and 20 and discussed more in section IV.

3.4 Description of the Task Analysis Tool

The Task Analysis Tool asks the user to identify the different tasks used to carry

out a given process. These tasks are input as menu items in the constructed interface. A

display is created for each discrete task. Figure 1 shows the initial display that is used to

collect information about the names and numbers of tasks that makeup the process.

Currently, the prototyped version of TAT allows ouly eight tasks per process. Figure 2

shows the complete set of forms that would be displayed if the user had indicated that

eight tasks constituted this particular process. The user is asked to enter the tasks in

some sort of meaningful order - either sequentially or in order of frequency of use. This
is due to the order in which the items are entered into the menu of the sketched interface.

For each task, a display is presented (see Figure 3) that collects the information to

be viewed and the type and format of the information. A task allows for two primary

infommtion sources, two secondary information sources and four status indicators. Each

task can have up to six actions that are carried out on the information displayed. These

actions are presented as sub menu items under the task menu item. The information that

the users specifies is to be on the display is roughed out and presented according to the

in|portance (primary, secondary or status) that tile user assigns to the infi_nnation.

Control flow in the system is represented by users specifying the tasks that

precede and succeed the current task. These tasks are presented to the user in a dialog

box that is constructed using the task names initially input on the first display in TAT. in

tile interface begin generated the displays for these tasks will be linked in the

corresponding fashion so that the user can later play this back to assess if the flow

accommodates the process correctly.

Figure 4 contains a template on which each interface display is sketched. For

each new task in the process, this page is filled in with information collected from the

user.

Figures 5, 6, and 7 are examples of help screens that are provided with TAT. The

prototyped version contains no error handling capabilities. Although error detection and

more help information will be included in the actual implementation of the software,

433

more help informalion will be included in the aetu_d implement.ation of the software,

TAT is intended to be used under the guidance of ! ICI personnel.

Figure 8 shows the screen that TAT displays when the user has finished typing in

the information. At this point in time, the user can exit the system or can run the

sketched interface to determine its correctness. If the user chooses to exist at this point,

the interface will be saved and can be run later. The name of the data file selected by the

user will also be displayed on this screen.

V

V

434

I

c

m

o

t4
@

0 "_
N

® 0
Z:
4J

U

•,'4 @

W} J_ @

' . Jr" -,4

tl @
@ tl
_ U

_ ¢_ ,q_ ix) to i_ o_

4J AJ _ 4.) ._ 4.1 _ ._j

[-,
,<
[..,

0

E

=_

i:o
: ,..=,=.

m

o

@

o

@

I 0 --

4J

a.i

0 _ _
• _ J_

F_

0

u

&

435

j.J

E
o

c:
..,4

1o
4.J

I:
o

4J

o

.,4

iJ
a
l.J

I
iJ

i.i

@
Z

,I

m

o
-el

®
1.1

u

2_

L,,

E

,i/

°_
L_

o

e

@
e

o

o

EriO

m w

ii _ : :_zt

-I
i7:1_7|l:!:_:/_:]S

;ii

y _i! o
::-:: e)!;!il

_;:l 0

:tU i_

t:tO
t ..

/; JMi

0

¢:®

iO

@ U --
,_ ,:_i 7!:;.
: _ :._4

<

0

b

121

0

_l

L._

436

0

O_

u

o00
o_a

o_o
0 -_

?S: :

C_

0

_J

_J

o

g

m

@

@

..,4

-,q
14
@

M

U

14
®
I.I
e.

III

0

®

o
1,4

@
.,c

1,4
o

q.4

c:
@
g

.c:

®

u

@

I1

-H

-_1

E:

IV")

C_

F-,

u

1,1.

437

o_

t.l:l

oo

om

®

F*'O

0
.

.o _.) .,-4

,_o _
0.,_

0 •
_0

_U,Q
O_

-,_O0
m._m
14 m ,-i
• a

Of* ._

._0_
.-i •

_o

0 _4 .,4
•H _0

'_ _-_1
'_ -.-I

@.._ _.

I:_:_:I

/= !

121

[-,
<

H

0

!

[

v

N

|

,!

:=

[
!

i
14

8
,_.)

If) e')

•- :-ll

438

o

6:

U_

u

OF POOR QUALITY

IV. Example of the Use of TAT

-,,..j

4.1 Description of the Example Task of Electronic Review and Approval

The example presented here is an interface sketch for doing electronic review and

approval. The following sections discuss the electronic review and approval process, the

example, and an informal collection session using an early paper version of TAT.

In order to make changes to processes in the Shuttle Processing Environment at

KSC, change requests must be generated and approved by the systems that are affected.

Changes are done at various times before and during any given flow and range in size

from large volumes of documentation to changes to a single operation or a change in

sequence. A revision to a document is generated by selecting the portions of a master

document that are to be used in this particular shuttle flow. Revisions include any

changes that were generated previously to operations included in this flow. After a

revision has been produced, changes that are made are termed deviations. A deviation

may be a change in sequencing or a change to an individual step or steps. Deviations

may be temporary. That is, the change is made only for this flow. A permanent

deviation means that the change should be incorporated into this operation for all

succeeding revisions. Currently these changes (revisions and deviations) are generated

by engineering personnel and distributed to NASA personnel and other engineering

teams for review and approval.

The review and approval process consists of suggesting changes to the text if

necessary, making comments as appropriate or approving the change. During this

process a reviewer may wish to see the comments or changes that other reviewers have

generated. This procedure is an iterative one as comments and changes may need to be

incorporated into the change and the change again distributed to the reviewers.

A computer based version could speed up the process. Reviewers could be

notified electronically that a change was ready for review. The individual or group who

initiated the change would be able to distribute it to the reviewers without having to

either mail or hand deliver hard copies to the various individuals. Comment and changes

made by the reviewers would be sent back electronically and could be directly

incorporated into the change description. Reviewers would be able to qu!ckly view other
comments and the status of the change could be tracked electronically.

4.2 Example of the Process used to Sketch an Interface

The TAT example presented here uses the electronic review an(! approval

process. Two interfaces are sketched here. These interfaces are from two different

viewpohlts: from the view of an engineering generating the change and from the point of

view of a NASA reviewer. The software interface generated must support both views.

Soliciting information from both viewpoints will yield data on cormnonalties that exist

and the different emphasis that exists for the different views.

The first viewpoint presented is that of the reviewer: Figure 9 contains the initial

information collection display. Re name of the process input by the user is used to

name the data file that will contain the information collected. The three tasks in the

review and approval process are • select, review and approval. As these tasks are

439

entered by the user, these names appear in the menu bar of the sketched display. This is

illustrated in the menu bar of the template for the interface sketch. In addition, a blank

display is created on which the interface for each will be sketched. The viewpoint button

is a dialog box which queries the user as to his position. In this case, the choices are •

engineer, NASA, quality, NASA Test Director, documentation, and other.

Figure 10 contains a portion of the information collected for the task

Figure 11 contains the interface generated by TAT that corresponds to the data entered in

Figure 10. The first field on the display in figure 10 collects of the name of the various

sources of information needed on the display. The form_at of information button ks a

dialog button that queries the user as to the way information is presented. The choices

currently display in this dialog box are graphical, text, labeled data, tabular data and

schematic data. The about infv and importance of info buttons are a pair. The

importance of info is a dialog box that asks whether the user considers a particular piece

of information to be of primary or secondary to the task at hand. A third option would

be to view the information as status only. TAT contains parameters which limit the

number of primary, secondary and status pieces of information that can be concurrently

displayed. The limitations in place now are rather arbitrary. In any given domain better

limitations could be selected depending on display size, screen resolution and frequency

and duration of use. The _button is linked to a display (see Figure 7) that keeps

track of the number of different information types presently selected for a given display.

When the importance of information choice has been made and the OK button pressed, a
labeled box will be drawn on the interface sketched. The size of the box will differ

depending on whether the importance is secondary or primary. The box is also labeled as

to ;how the data will be presented. Status only information appears as a button. If the

user wished to enter more information sources, pressing the more info button clears the
text field mad focuses the cursor there.

When all the information sources have been entered, the user is prompted to enter

actions that will be performed. These actions are entered as sub menu items. In order to

see these, the user must highlight the task menu item in the sketched interface. The

previou_ task and the l!¢.ALlig_buttons are dialog buttons that present the user with the

list of tasks he has identified as being in this process. In the case of previous task, the list

is augmented with start and in the case of next task the list will also contain

Selecting a choice from these dialog boxes will result in a previous task and next task

button being drawn on the interface sketch and in those buttons being linked to the

correct display. This facilitates running the application. By pressing the previous or next

task button, the user can simulate stepping through the process.

Pressing the format next display button brings up a blank information collection

screen for the next task (in the order originally entered by the user on the first display)

and a blank template for the interface sketch. After the information has been filled in for

all the tasks in the process, the users can select the _ button. Several things will then

happen. First, infonnati0n collected will be written to the specified data file. Then the

user is asked Whether he wishes to ruhthe application just Createdl ITfie chooses not to,

he can always retrieve this later from the "info.tbk" file and execute it.

Figures 12 and 13 are additional displays generated for the tasks of selecting

items to review and approving or rejecting the changes. Figure 14 contains a portion of

V

44O

v

the data file that was generated during this session. It contains information about the

tasks, the information sources, the actions and the sequence of flow.

Figure 15 shows the initial display that was used to collect the tasks from the

engineer's viewpoint. Notice that a task labeled create now exists and is used to initiate

the change. In addition a release task exists where notification about an approved change

and its incorporate into the master file is accomplished. Figure 16 is the display

generated for the task of creating a change.

441

V

LI

0

,i

m

o,

!

!

e

QJ
U
0

0

IJ

e.

1,4
o

e
iii

o

1,4
@

0

@ 0
J_

U

-d @

t_
@ _

. _ -,-t

l.J u

_ L_:_

O! :0

,-4

•d o Ol

Cu

E

I,I

c_

121

d;

°_

V

442

-.,....-

t) o
-,4
4J
d9

o

¢,

el

4J _J

r_
®

0

I, o

I< _ ,.-,i iN
@ -,,-4.,-4 I @

_ J_

,,'4

1.1

1:1
,,t
M II

___._____.

e,
o

o

-,4

[
*fiu

M
@

m

I

:?ii_:!

:0 .I
:3 : .,_,_ 1
0 ' _ !

®

;>

121

0

.,...,(

,..,-.4

..4

®

o

o
o

o
-,'4

"_ _

e_.,. I

!:::0

: :7::.

i

" j
:_ ¸¸¸,!

0 _

aJ -':I

I o

::, I ": :'1_ !

I

@
Is, _| r,

• _ 1_

l_ f r"
,,4 ,

@

o iiiiiii! i i::
"1_ _ .,::.._ :.
c ® -_i:

::,"11 ::

oo

llu

@ :.:,aO

•_ o _ :.iYO

1,1 ®

r._ Io

;>

F-
<
F-,

° ,...i

121

tu

@

N
g

d5

443

U_

o

o

_' -.4
C_

i!

1,¢
o •

u
o ®
nO

o
._l
.LJ

.Q

..4

l,-t .,4

0
-,4

0

1.1
x
®

.::>

Z

e)

@ ;:;

. l lli) _:'i

I-i

C_

c)

r_
u

T./)

e_

o

t_

o

0

.__
>

I

o

_JC
e e_

e_ U

@

0

0

Xl
el

@

o
-,4

o

-e4

m
,8.1
g_

,!
N ' l l [: I"

• _ =1

0 '_

-.-I

@ '1

(/)

_J

o

u

rj-j

b_j

444

d

The process being described is:el-rv-ap

this process if from the viewpoint of:NASA

taskl in this process is:review

Task2 is :approval .
Task3 is :select ..

the current task is:review

this information is needed:documents

the information is to be presented asztext

the importance of this information Is primary
the current task istreview

this information is needed:comments

the information i8 to be presented as:text

the importance of this information is primary

tile current task is:review

this information is needed:distribution list

the information is to be presented as:text

the importance of this information is secondary
the current task is:review

this information is needed:list of files

the information is to be presented as:text

the importance of this information is secondary
the current task is:review

this information is needed:status of change
t.he information i_ to be presented as:text

the importance of this in£ormation is status only

the following actions are performed on this info:redline

the following actions are performed on this into:comment

the following actions are performed on this into:distribute

the following actions are performed on this into:display

the following actions are performed on this into:save

the following actions are performed on this into:compare

the following actions are performed on this into:print

the previous task is:select

the task that follows this one is:approval

the current task is:approval
this information is needed:document

the information is to be presented as:text

the importance of this information is primary

the current task Is:approval
this information is needed:comments

the information is to be presented as:text

the importance of this information is primary

the current task is:approval _ .r

this information i_ needed:distribution list

the information is to be presented as:text

the importance of this information is .secondary

Figure 14: Portion of Data Generaled for Review mad Approval Process

445

I.)

_J

-,-I

4J

(0

I

0

-,-I U

0

,-4
•,4 .-4

I

@

@
_J

),
4

.0

• __
"Z

el i:.':i
4-)

i

U

U

0

0

/4

>

0_

_ V

>

..V 0

0 ®

0

@

0 "a

=I ® o

n_l u

I I "d @
qPi :_

_.1 19 e-

d_

o II'

®

® -I @
@ I,-4 > ,,,-4

I ® IP @

,-4 {'_ _ ,_

;>

<

;>

>

446

o_

V. Future Plans for Testing and Using TAT

5.1 Uses for TAT Output

As was previously stated, the TAT output is meant to serve several purposes.

First of all, the sketched interface serves to give a more concrete aspect to the task

analysis in a form that is easily understood by the user. Using this sketch, the user

should be able to assess it for completeness and correctness. The interface could be used

in a representative scenario of the process which the user could work through. This

sketch should accompany functional requirements given to the developers to facilitate

design of the user interface.

Analysis programs could be written to scan the data Ides generated. This would

be particularly useful in the case where several viewpoints are being examined or where

several applications are to be run concurrently. The data files can be exami,ed to see

conflicts and co_mnonahies in information sources and presentation methods. In

particular, common tasks or sinlilar tasks should possess similar actions. Consistency in

h,erface design has been recognized as beneficial to success of software companies

(Tognazzini, 1989). Consistency in presentation and actions can be analyzed using the
TAT data files.

5.2 Additions to TAT

The prototyped version of TAT is a very rough version. There is much work yet

to be done on determining what kinds of information should be collected. Information

about feedback desired from a given action seems a likely candidate as does information

on the frequency and duration of the task. In order to determine the completeness of

information collecting in TAT it will be necessary to try it out in many different
domains.

5.3 Functionality Needed

There are many functions that need to be included in a coded version of TAT.

The functionality of the current version is lhnited due to the nature of the prototyping

tool used to implement it and the time limitations during which TAT was constructed.

Functionality that is seen as needed includes:

1. The ability to display labels on status buttons and task link buttons in the
interface sketch.

2. The ability to link up tasks in multiple paths.

3. The ability to save and display sub menu items in the interface sketch.

Currently this information is saved in the data file but once the interface

sketch is closed, they do not appear in the saved sketch.

4. There should be a way to associate actions with a particular piece of

information. This type of knowledge could be useful if deciding to break

the task into several displays in the final design of the interface.

5. The user should be able to easily change the choices displayed in the

dialog boxes on viewpoint and information type. These choices are

447

dependeni on the domain in which TAT is being used. In addition the

user should be able to easily change the parameters concerning the

number of tasks and information sources.

V

5.4 An Initial Test of TAT

The information used in generating this example was produced mainly from

informal interviews with personnel involved in Shuttle Flow Processing. This was due

mainly to the limited time frame for development of the prototype. However, a paper

version was used in one instance to obtain information about the review and approval

process. Several observations were made during this process. First, a new step in the

review process, that of comparing initial changes and comments to the newly distributed

change, was identified. Perhaps this step would have eventually been discovered through

further interviews but having to simplify one's thoughts about the task and flow seemed

to clarify the process.

The ability to be able to distribute the change to a person other than the originator

was identified as was the capability of seeing which jobs were currently being worked

when reviewing changes.. While TAT does not currently capture all this information it is

rewarding that using this approach elicited this information. This suggests that using

TAT along with note taking or audio/video recordings would be a beneficial approach.

5.5 Testing

In order to determine how useful TAT is, it must be used in the development of

several prototypes and these compared to the prototypes developed without this tool. In

addition, it needs to be determined what kinds of analysis should be performed on the

data files and what, if any, other information should be collected that will be useful. It is

expected that TAT will evolve as it is used in more varied domains. Testing the benefits

of using TAT will be a difficult task. In the best scenario software would be developed

with and without using TAT. Performing these kinds of parallel developmental tests in

the real work are difficult if not impossible. Therefore, the most realistic situation would

be to use it in as many varied situations as possible and use feedback from the users,

developers and HCI personnel to determine the benefits.

448

_V J

VI. Conclusions

Development of good interfaces in soflware means tile ability to closely map tile

user's task to interface elements. This depends on producing a good task analysis and

upon an iterative design process. Unfortunately there are obstacles to being able to

accomplish both of these. Producing a good task analysis is especially difficult in cases

where the domain is complex and in which much user training is needed. The person

conducting the task analysis is often given information from the user with no way of

assessing its completeness or its relative importance. Moreover, being able to translate

this information into an initial prototype is difficult. This is especially the case in

situations where no system is currently in place.

hi addition it is important to have the ability to communicate to the developer the

user's expectations of an interface as early as possible in the design cycle. This helps to

reduce the iterative design process and hence lessen efforts and costs.

The Task Analysis Tool is a step in the proper direction. Although sirnplistic in

nature, it serves to obtain feedback from the end user at an early point in the design

cycle. This feedback can be easily communicated to software designers to use as a basis

for initial prototypes and interface designs. Further refinements of the Task Asmlysis

Tool will be done. Then its benefits in facilitating interface developmen! will be
assessed.

449

VII. References

1. Asymetrix Corporation. (1989). Toolbook. Computer Software.

2. Boker, S. and Gronbaek, K. (1991). Cooperative prototyping: umrs and designers in

mutual activity. International Journal of Man-Machine Studies, 34, 453-478.

. Drury, C., Paramore, B, Van Cott, H., Grey, S mid Code,, E. (1987). Task Analysis.

In Salvendy, G. (Ed.), Handbook of Human Factor. (pp. 370-401). New York:

Wiley and Sons.

, Grudin, J. (1991). Obstacles to user involvement in software product development,

with implications for CSCW. International Journal of Man-Machine Studies. 34,
435-452.

5. Guhadon, R. (1988). Cognitive Science and It's Application fi_r Human-Comt,uter

Interaction. Hillsdale, NJ. Lawrence Erlbaum Associates.

, Maddix, F. (1990). Human-Computer h_teraction: Theory and Practice. West

Sussex, UK: Ellis Horwood Lhnited.

. Nommn, D. (1986) Cognitive engineering. In D. A. Norman & S. W. Draper (Eds.),

User centered system design. (pp. 31-61). Hillsdale, N J: Lawrence Erlbaum

Associates.

. Shackel, B. (1988). Introduction to the design of end-user interfaces. In N. Heaton

and M. Sinclair (Eds.) Designing end-user interfaces.(pp. 97-109). Maidenhead

Bershire, UK: Pergamon Infotech Limited.

. Tognazzini, B. (1989). Achieving Consistency for the Macintosh. In J. Nielsen (Ed.)

Coordinating User interfaces for Consistency. (pp. 57-74). San Diego, CA:
Academic Press.

I0. Walsh, P., Lim, K., Long J. and Carver, M. (1988). Integrating human factors with

system development. In N. Heaton and M. Sinclair (Eds.) Designing end-user

intetfaces.(pp. 111-119). Maidenhead Bershire, UK: Pergamon Infolech Limited.

11. Wilson, J. and Rosenberg, D. (1988). Rapid Prototyping for User Interface I)esign.

In M. Helander (Ed.) Handbook of Human-Computer Interaction. (pp. 859-875).

Amsterdam: Elsevier Science Publishers (Nonh Holland).

450

