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Abstract

The development of a gridless computational fluid

dynamics (CFD) method for the solution of the two- and
three-dimensional Euler and Navier-Stokes equations is

described. The method uses only clouds of points and

does not require that the points be connected to form

a grid as is necessary in conventional CFD algorithms.
The gridless CFD approach appears to resolve the ineffi-

ciencies encountered with structured or unstructured grid

methods, and consequently offers great potential for ac-

curately and efficiently solving viscous flows about com-

plex aircraft configurations. The method is described in

detail and calculations are presented for standard Euler

and Navier-Stokes cases to assess the accuracy and effi-

ciency of the capability.

Introduction

Considerable progress in developing computational

fluid dynamics (CFD) methods for aerodynamic analysis

has been made over the past two decades. 1 The major-

ity of work that has been done in CFD over the years

has been on developing methods for use on computa-

tional grids that have an underlying geometrical structure

and thus are referred to as "structured". For example,

Fig. l(a) shows a structured grid for the NACA 0012 air-

foil. The grid is of C-type topology, has 159 points in the
wraparound direction, and 49 points in the outward direc-

tion. Methods developed for structured grids have been

applied to a wide variety of geometrical configurations

ranging from simple analytically-defined airfoil sections
such as the NACA 0012 airfoil to complex aircraft such

as the F-16A fighter. 2 Although applications of struc-

tured grid methods to complex configurations are indeed

possible they generally require more sophisticated mesh-

ing methodologies such as blocked, patched, chimera, or
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hybrid-type grids. For example, the F-16A fighter calcu-

lations reported in Ref. 2, which included the engine inlet

and boundary layer diverter as well as the wing, fuselage,

and tail in the geometrical modeling, used 27 blocks of

structured cells to make up the grid. These more so-

phisticated meshing methodologies, in turn, significantly

complicate the solution algorithms of the structured grid
methods.

An alternative approach is the use of unstructured

grids. 3-7 In two dimensions, unstructured grids typically

are constructed from triangles, and in three dimensions,

they consist of tetrahedral cells. The triangles or tetra-

hedra may be oriented in an arbitrary way to conform

to the geometry, thus making it possible to easily gener-

ate grids about very complicated shapes. Although not

a complicated shape, Fig. l(b) shows an example of an
unstructured grid for the NACA 0012 airfoil. The total

grid has 3300 nodes and 6466 triangles. An advantage

of methods developed for unstructured grids is that they

may be applied to complex aircraft configurations with-
out having to make changes to the basic solution algo-

rithm. Numerous calculations for complex configurations

performed using various Euler codes have been reported

by several researchers. 3-7 However, applications to three-

dimensional configurations using unstructured grid Euler
codes have tended to be inefficient because the meshes

have an excessively large number of cells. The excessive
number of cells is due, in part, to the current state-of-the-

art in generation of unstructured tetrahedral grids, which

produces meshes that are much finer in the spanwise di-

rection (for a given streamwise density) than is necessary

for accurate flow computation. To alleviate the prob-
lem, the cells may be stretched in the spanwise direction

when generating the mesh to reduce the number of cells.

However, the stretching can create convergence and ac-

curacy problems for the flow solver. The basic problem

is that the tetrahedron is an inefficient geometrical shape

(whereas the triangle tends to be an efficient shape in two

dimensions). A more efficient shape for an isolated wing

application is a prismatic cell defined by a polyhedron

with a triangular cross-section. A mesh of this type uses

triangles which form prisms when connected in the span-

wise direction to grid the planes of the airfoil sections

of the wing. This approach, though, not only puts struc-

ture back into the mesh, it is not generally applicable to

complex three-dimensional configurations.



(a) structured.

(b) unstructured.

Fig. 1 Partial view of meshes about the NACA 0012 airfoil.

Another problem with the unstructured-grid method-

ology is encountered in extending the methods for solving

the Euler equations to the solution of the Navier-Stokes

equations, especially in three dimensions. For viscous ap-

plications, grids generally need to be fine near the body
in the outward direction to resolve the boundary layer but

less fine in the direction along the surface of the body.

This naturally leads to cells of high aspect ratio which
tends to exacerbate the inefficiency of three-dimensional

solution algorithms on tetrahedral meshes. Specifically,

the use of tetrahedra for viscous flow applications results

in an unreasonably large number of cells. The number of

cells is in fact absurdly large in comparison to grids that

are generated for Euler calculations (which are already

inefficient because of a large number of cells as previ-

ously discussed) because of the additional requirement

that the mesh be fine near the body. To alleviate this

problem, a hybrid approach has been developed recently

using prismatic cells for the solution of the Navier-Stokes

equations) ,9 In this approach, the surface of the geome-

try under consideration and the outer boundaries of the

mesh are gridded using triangles, and instead of gener-

ating tetrahedra to fill the interior of the computational

domain, the triangles on the inner and outer boundaries

of the mesh are connected to form prisms. 8 The prisms,

of course, require the same number of triangles on the

inner and outer boundaries. While this hybrid approach

is a viable solution to alleviate the inefficiency created by

using tetrahedral cells to solve the Navier-Stokes equa-

tions, it is not necessarily the best approach, since it again

puts structure back into the mesh and limits some of the

advantages of the unstructured grid methodology, such

as the ability to use spatial adaptation in regions of large

flow gradients.

What is required to truly advance the CFD technol-

ogy to treat complex configurations in viscous flows is

not to take a step backward toward gridstructure, but to

take a bold step forward to develop methods that do not

require the use of grids at all. Hence the solution to the

above-mentioned problems with structured and unstruc-

tured grids is the development of algorithms for solv-

ing the Navier-Stokes equations based on using only grid

points and not on the connectivity information that relates
all of the points to one another. This type of approach,
which may be referred to as "gridless" CFD, has dis-

tinct advantages over methods that require grids. Since

only points are required, or specifically clouds of points
as suggested by Chakravarthy, _° gridless CFD methods

offer the greatest potential for accurately and efficiently

solving viscous flows about complex aircraft configura-

tions. It is noted parenthetically, that if finally the grid

points too were not required by the solution algorithm,
then the ultimate flexibility in methodology could be at-

tained. This type of method might then be referred to as

"pointless" CFD.

The purpose of the paper it to report the develop-

ment of a gridless method for the solution of the two-
and three-dimensional Euler and Navier-Stokes equations.

The method uses only clouds of points and does not re-

quire that the points be connected to form a grid as is nec-

essary in conventional CFD algorithms. The governing

partial differential equations (PDEs) are solved directly,

by performing local least-squares curve fits in each cloud

of points, and then analytically differentiating the result-

ing curve-fit equations to approximate the derivatives of
the PDEs. H The method is neither a finite-difference nor

a finite-volume type approach since differences, metrics,

lengths, areas, or volumes are not computed. The method

is described in further detail and calculations are pre-

sented for standard cases to assess the accuracy and ef-

ficiency of the capability.

Governing Equations

In this study the flow is assumed to be governed

by the three-dimensional laminar Navier-Stokes equations

which may be written in differential form as

-_- + _xx(E - _y(F - F_) + (C - C_) : 0
(i)
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whereQ is the vector of conserved variables given by

E, F, and G are the inviscid fluxes in the x, y, and z

directions, respectively, defined by

pu 2 + P

E = puv

puw

(e + P)u

puv

F = pv 2 + p

pvw

(e + P)V

puw ]

G = pvw
pw 2 + P [
(_ + p)_ )

and E_, F_, and G_ are the viscous fluxes in the x, y,

and z directions, respectively, defined by

{ ° /"rzx

Ev = 7"zy
rxz

urz. + vrz v + wrzz -- qz

( o }_v
F_= ryy

ry,

urxv + vrvv + wry_ - qv

{ ° /r_z

G_ = rw

urz_ + vrvz + wrzz - q_

In the viscous fluxes the shear stresses and heat flux terms

are defined by
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In these equations, Moo is the fie.stream Mach num-

ber, Re is the Reynolds number, Pr is the Prandtl num-

ber, and p is the molecular viscosity determined using

Sutherland's law. The Euler equations are obtained by

setting the viscous fluxes equal to zero; and the two-
dimensional versions of the Euler or the Navier-Stokes

equations are obtained by omitting the y-momentum

equation and deleting all terms pertaining to the y-
direction.

Spatial Discretization

Derivatives

The spatial derivatives in the governing equations

(Eq. (1)) are approximated as follows. In each cloud of

points, each term of the fluxes is assumed to vary linearly

according to

f(x, y, z) = ao + alx + a2y + a3z (2)

where the coefficients ao, al, a2, and a3 are determined

from a least-squares curve fit. Performing a least-squares

fit in a given cloud results in four equations represented

in matrix form by

EZi Y]X2 ExiYi EXiZi I al rzlfi

Xyi _xiyi _y? _yizi/ a2 = _Yifi
_Z i Zxiz i Eyiz i EZ_ J a 3 E-ifi

(3)
where n is the number of points in the cloud and the

summations are taken over the n points. The solution of

Eqs. (3) requires the inversion of a 4 x 4 matrix which is

performed for every cloud in the computational domain.

Having solved these equations for no, al, a2, and a3, the

spatial derivatives are now known since by differentiating

Eq. (2) it is obvious that

Of Of Of

--Ox ----al _Oy = a2 _Oz = a3 (4)

Equations (3), however, are of the form

1
" (ATA)a = ATI (5)



whichcanbetroublesomenumericallytosolvesincethe
matrixon theleft-hand-siderepresentedby ATA may

be ill conditioned. _2 It is more appropriate to solve the

equations starting with

Aa = f (6)

wherein the matrix A generally is not square. The so-

lution procedure involves using a QR-decomposition to
rewrite A as

A =QR (7)

such that QTQ = I (the identity matrix) and R is a

square upper triangular matrix. Hence, the least squares

problem now is defined as

QRa = f (8)

or by pre-multiplying both sides of the equation by QT
as

Ra = QT f (9)

The coefficients represented by a are solved then by

simple back substitution (since R is an upper triangular

matrix).

In addition to approximating the spatial derivatives

of the governing equations by differentiation of the least-

squares curve fits, the shear stresses and heat flux terms

are calculated the same way. Since these terms involve

first derivatives of the velocity components or pressure

divided by density, the shear stresses and heat fluxes can

be approximated by defining f to be equal to u, v, w, or

p/p, and solving the least-squares problem. The resulting
values for al, as, and a3 are the derivatives of the spec-

ified quantity with respect to z, y, and z, respectively,

within a given cloud of points.

Artificial Dissipation

The unsteady Euler equations are a set of nondis-

sipative hyperbolic conservation laws that require some

form of artificial dissipation to prevent oscillations near

shock waves and to damp high frequency uncoupled er-

ror modes. The unsteady Navier-Stokes equations also

require artificial dissipation for similar reasons because

the physical viscosity generally is limited to the boundary

layer. Since the method of the present work is conceptu-

ally analogous to a central-difference type approach, the
artificial dissipation must be added explicitly to the solu-

tion procedure. This is accomplished by adding harmonic
and biharmonic terms to the governing equations, corre-

sponding to second and fourth differences of the con-
served variables, respectively. These dissipation terms

are defined by

where A is the local maximum eigenvalue of the govern-
ing equations, and e(2) and e(4) are local dissipation coef-
ficients that are formulated similar to those of Jameson)

Furthermore, the above treatment of the artificial dissi-

pation constitutes an isotropic dissipation model (inde-

pendent of coordinate direction) which generally is only
applicable to the Euler equations. For the Navier-Stokes

equations, an anisotropic model is required due in part to
the close spacing of points normal to the surface relative

to the tangential distribution of points (analogous to high

aspect ratio cells in structured or unstructured grid meth-
ods). Thus an anisotropic dissipation model was devel-

oped for use when solving the Navier-Stokes equations

on clouds of points,

Temporal Discretization

Time Integration

The governing flow equations are integrated in time
numerically using an explicit multi-stage Runge-Kutta

time-stepping scheme) Typically a four-stage scheme

is used to solve the Euler equations with the artificial

dissipation evaluated only during the first stage. A five-

stage scheme is used to solve the Navier-Stokes equations
with the artificial dissipation evaluated during the first,

third, and fifth stages.

Residual Smoothing

The Runge-Kutta time-integration scheme described

in the previous section has a step size that is limited

by the Courant-Friedricks-Lewy (CFL) condition corre-
sponding to CFL numbers of approximately 2.8 and 3.6

for the four-stage and five-stage schemes, respectively.

To accelerate convergence to steady state, the CFL num-

ber may be increased by averaging the residual R with

values at neighboring points} This is accomplished by

replacing R with the smoothed residual R given by

- eV2R= R (11)

where e is a constant which co_ntrol_s the amount of

smoothing and V _ is an h_monic operator similar t0 that

used in the dissipation model. Also similar to the dissi-

pation model, an anisotropic form of the harmonic op-

erator is used when solving the Navier-Stokes equations.

Equation (11) is solved approximately using several Ja-
cobi iterations. Convergence to Steady state is further

accelerated using enthalpy damping (only for the Euler

equations) and local time stepping.

!
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Fig. 2 Partial view of field of points about the NACA 0012
airfoil•

(a) unstructured mesh of triangles.

Fig. 3
airfoil.

(b) corresponding field of points and

ghost points for boundary conditions.

Close-up view near the nose of the NACA 0012

Boundary Conditions

To impose the boundary conditions along the surface

of the geometry being considered, ghost points that are

located inside of the geometry are used. The locations of

these ghost points are determined by a simple reflection

of the flow field points that are close to the surface about

the edges (2D) or faces (3D) that define the boundary.

A similar procedure is used near the outer boundary to

determine the locations of ghost points at which to impose

the far-field boundary conditions.

Along solid surfaces, the velocity components at the

ghost points are determined from the values at the corre-

sponding flow field point adjacent to the surface. When

solving the Euler equations, the velocity components at

the ghost points are determined by imposing a flow tan-

gency or slip condition which requires that the veloc-

ity normal to the surface vanishes. When solving the

Navier-Stokes equations, the velocity components at the

ghost points are determined by imposing a no-slip con-

dition which simply changes the sign of the values of

the components at the adjacent flow field points. In ei-

ther case (Euler or Navier-Stokes), pressure and density at

the ghost points are set equal to the values at the adjacent

flow field points. Additional conditions are imposed us-

ing the ghost points to accurately treat the shear stresses

and heat flux terms, as well as the artificial dissipation

terms.

In the far field, a characteristic analysis based on

Riemann invariants is used to determine the values of the

inviscid flow variables at the ghost points that are located

outside of the outer boundary. This analysis correctly

accounts for wave propagation in the far field which is

important for rapid convergence to steady state. Values

of the viscous flow quantifies at these ghost points are set

equal to the values at the corresponding flow field points

adjacent to the outer boundary.

1. M,c = 0.8. o = 0"

2. M_=0.85, o=1"

0F 3. Moe=0.8, o= 1.25'

4. M==1.2, o=7'

-4 _..

I

t 4 " \ 1
_1o
-12/ I I i I I

0 2 4 6 8 10

CPU time (rain.)

Fig. 4 Convergence histories from the gridless Euler solu-
tions for the NACA 0012 airfoil.



Results and Discussion

Results are presented for standard Euler and Navier-

Stokes cases to assess the accuracy and efficiency of

the capability. All of the results were obtained using

the Cray-YMP computer (Reynolds) at the Numerical

Aerodynamic Simulation Facility located at the NASA
Ames Research Center.
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Fig. 5 Pressure distributions from the gridless Euler solu-
tions for the NACA 0012 airfoil.

Two-Dimensional Results

Two-dimensional results were obtained first by solv-

ing the Euler equations for flows about the NACA 0012

airfoil. The field of points that was used to model the flow

about the airfoil is plotted in Fig. 2. For convenience,
the locations of these points were determined by using

the cell centers from the unstructured grid of Fig. l(b),

and the cloud of points for each point was taken to be

the cell centers of the three triangles that share edges

with a given triangle, To more clearly demonstrate this,
Fig. 3(a) shows a close-up view of the unstructured grid

near the airfoil nose, and Fig. 3(b) shows the points de-

termined from the cell centers. Figure 3(b) also shows

ghost points that are located inside of the airfoil in order

to impose the surface boundary conditions. The compu-

tational domain has a total of 6,500 points, 134 of which

are ghost points. It is emphasized that the unstructured

grid of Fig. l(b) was used to determine the field of points

of Fig. 2 only for convenience. In general, any method

to determine the points is acceptable. Efficient generation

procedures to determine clouds of points have yet to be

developed.
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Fig. 6 Streamwlse velocity distribution from the grldless
Navier-Stokes solution for a flat piaie at M,o = 0.5 and
Re = I0,000.

Euler results were obtained using the points of Fig. 2
for four standard NACA 0012 airfoil cases corresponding

to various combinations of freestream Mach number Moo

and angle of attack a including: (1) Moo = 0.8, c_ = 0";

(2) Moo = 0.85, c_ = 1°; (3) Moo = 0.8, o_ = 1.25°;

and (4) Moo = 1.2, o_ = 7 ° . All four cases were run

using a CFL number of 5.0 with local time-stepping,

residual smoothing, and enthalpy damping to accelerate

convergence to steady state. Figure 4 shows the result-

ing convergen.ce histories plotted as the log of the L2-

norm of the density residual versus the CPU time in

minutes. The convergence histories indicate that conver-

gence to steady state is obtained in only several minutes

of CPU time; thus, the method is reasonably efficient in

comparison with accepted runtimes of more conventional

Euler methods (without multigrid acceleration). As fur-

ther shown in Fig. 4, the slowest convergence is for case

2 (Moo = 0.85, c_ = 1"), which is because the solution

contains two shock waves (upper and lower surfaces of

the airfoil) of moderate strength. Therefore, it is slightly



harder to converge the solution of case 2 in comparison
with the solutions of the other cases. Figure 5 shows the

corresponding pressure coefficient distributions Cp versus
the fractional chordlength :c/c for the four NACA 0012

airfoil cases. The pressure distributions for cases 1, 2,
and 3 indicate that the shock waves are sharply captured
with only one interior point, which is somewhat surpris-
ing for a method that corresponds essentially to central
differencing. The pressures for all four cases indicate
that the generally-accepted Euler solutions have been ob-
tained, which suggests that the gridless CFD method is
accurate as well as efficient for such applications•

(a) unstructured mesh of triangles.

(b) corresponding field of points.

Fig. 7 Partial view of computational domains for the NACA

0012 airfoil.

Two-dimensional results were obtained next by solv-
ing the Navier-Stokes equations first for a fiat plate and,
then for the NACA 0012 airfoil. For the fiat plate,
a solution was obtained initially toassess the gridless

Navier-Stokes capability by making comparisons with
the exact Blasius solution. The field of points that was
used in these calculations was generated simply from a
structured mesh of grid points, that were uniformly dis-
tributed along the flat plate, but clustered near the plate
in the normal direction to resolve the boundary layer.
The calculations were performed for M_ = 0.5 and
Re = 10,000. The resulting streamwise velocity com-
ponent u (normalized by the freestream value Ue), plot-
ted versus the similarity variable (V/z)v"-R-_, is shown in
Fig. 6 at x/l = 0.233, 0.383, 0.533, 0.683, and 0.833.
The gridless results, represented by the symbols, indicate
that the similarity solution for a fiat plate boundary layer
is correctly obtained, and that the solution agrees well
with the Blasius solution.

\ ,,

-.¢.\

(a) unstructured mesh of triangles.

(b) corresponding field of points.

Fig. 8 Close-up view near the nose of the NACA 0012

airfoil.

Navier-Stokes results also were obtained for a stan-

dard laminar case for the NACA 0012 airfoil correspond-
ing to M_ = 0.5, a = 0", and Re = 5000. Again the



field of points that was used to model the flow about the
airfoil was determined for convenience by using the cell

centers from an unstructured grid of triangles. A partial

view of the unstructured grid is shown in Fig. 7(a) (gen-

erated from a structured grid of C-type topology), and the

corresponding view of points for the gridless method is
shown in Fig. 7(b). Close-up views near the airfoil nose

of the unstructured grid and the gridless field of points

are shown in Figs. 8(a) and 8(b), respectively. The com-
putational domain in the latter case has a total of 30,720

points, 608 of which are ghost points. Navier-Stokes

2[-

0

log -I

-41 1 I I ! t
0 _0 20 30 40 50

CPU time (rain.)

(a) convergence history.
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-I .5 _L
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(b) pressure distribution.

Fig. 9 Gridless Navler-Stokes solution for the NACA 0012
airfoil at M_ : 0.5; of : 0", and Re = 5000.

results were obtained using a CFL number of 4.0 with

local time-stepping and residual smoothing to acceler-
ate convergence to steady state. Figure 9(a) shows the

resulting convergence history plotted as the log of the

L2-norm of the density residual versus the CPU time

in minutes. The convergence history indicates that ac-

ceptable convergence is obtained in less than one hour
of CPU time which is reasonable considering that the

method does not currently use multigrid to accelerate

convergence to steady state. Figure 9(b) shows the cor-

responding pressure distribution which indicates that the

generally-accepted Navier-Stokes solution involving sep-

arated flow near the trailing edge has been obtained by.

using the gridless CFD method. To more clearly see the

flow solution in the trailing-edge region, velocity vectors

are presented in Fig. 10. The flow separates near 82%

chord along the upper and lower surfaces of the airfoil,

and the velocity vectors indicate that there are small re-

circulation bubbles downstream of the trailing edge. This
solution is consistent with the Navier-Stokes solutions re-

ported by other researchers obtained for this case using
structured (Ref. 13) and unstructured (Ref. 14) grids.

Fig. 10 Velocity vectors near the trailing edge of the NACA
0012 airfoil at M_ -- 0.5; _ ----0 °, and Re : 5000.

Three-Dimensional Results

Three-dimensional results were obtained first for the

two-dimensional cases that were presented in the previous

section. The computational domains in 3D were created

from the 2D fields of points (y = 0.0) by using two

additional planes of points at y = ±1.0. The points

in these planes were taken to be additional ghost points

that were used to impose symmetry conditions on either

side of the flow field points and effectively produce two-
dimensional solutions. The 3D calculations for the 2D

cases agreed to plotting accuracy with the 2D results and,

hence, are not presented here.

Results were obtained next for the ONERA M6

wing 15 for Moo : 0.84 and o_ = 3.06 °. This case is
an AGARD standard case for the assessment of inviscid

flowfield methods, 15 where experimental steady pressure

data are available for comparison with calculated pres-

sures. The M6 wing has a leading edge sweep angle of

30% an aspect ratio of 3.8, and a taper ratio of 0.562.

The airfoil section of the wing is the ONERA "D'" air-
foil which is a 10% maximum thickness-to-chord ratio

conventional section. The results were obtained using a

field of points that was created for convenience from an
existing unstructured mesh of tetrahedra) 6 The locations

of the points were determined by using the cell centers
of the tetrahedra, and the cloud of points for each point

was taken to be the cell centers of the four tetrahedra

that share faces with a given tetrahedron. The compu-

tational domain has a total of 108,705 points, 10,388 of

which are ghost points. The ghost points that are used to

model the surface of the wing and the symmetry plane



areshowninFigs.11and12,respectively.Theseghost
pointsarenotdistributedin anoptimalwaysincethe
pointsaretoocoarsein thestreamdirection(leadingto
possibleinaccuracyduetotoofewpoints)andtoofine
in thespandirection(leadingto inefficiencyduetoun-
necessarypoints).Thisis a consequenceof usingan
unstructuredtetrahedralmeshtocreatethefieldofpoints
totestthegridlessmethod.Nonetheless,it allowsanad-
equatetestof themethod,although,in thefuture,better
fieldsof pointswill begeneratedto exploittheadvan-
tagesof thegridlessapproach.Figure13showssurface
pressurecoefficientcomparisonswiththeexperimental
dataatthe17= 0.2,0.44,0.65,and0.9spanstations.In
theseplotstheEulerresultsaregivenbythesolidcurves
whereplussignshavebeenincludedtoindicatetheac-
tualghostpointvalues,neartheparticularspanstation,
whichareconnectedwithstraightlinesegments.Theex-
perimentaldataisrepresentedbythecircles.Forr/= 0.2,
showninFig.13(a),therearetwoshockwavesalongthe
chord.Theforwardshockwaveis wellpredicted.The
secondshockwaveis predictedslightlydownstreamof
theexperimentalshocklocationwhichistypicalofinvis-
cidmethodsfor thiscase.Also, the lower surface pres-

Fig. 11 Ghost points for upper surface of the ONERA M6

wing.
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Fig. 12 Ghost points for symmetry plane of the ONERA

M6 wing.
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Fig. 13 Comparison of calculated and experimental pres-
sure coefficients for the ONERA M6 wing at M_ ---- 0.84
and _ ----3.06 °•



surecoefficientsagreewellwiththedata.At rI = 0.44,

shown in Fig. 13(b), the shock locations have begun to

coalesce. The leading edge suction peak is well predicted

and both shock waves are captured sharply. At r/= 0.65,

shown in Fig. 13(c), the forward shock wave near 20%

chord is predicted to be downstream of the experimental
location and the second shock wave is near midchord.

Furthermore, the lower surface pressure coefficients are

predicted accurately. At r/ = 0.9, shown in Fig. 13(d),

the two shocks have merged to form a single, relatively

strong, shock wave near 25% chord. Here the shock is

sharply captured and the calculated pressures again agree

reasonably well with the experimental data. Finally, the

gridless results of Fig. 13 are of comparable accuracy in

comparison with results obtained using an unstructured
grid method for this case. 16

Concluding Remarks

The development of a gridless CFD method for the
solution of the two- and three-dimensional Euler and

Navier-Stokes equations was described. The method uses

only clouds of points and does not require that the points
be connected to form a grid as is necessary in conven-

tional CFD algorithms. The gridless CFD approach ap-

pears to resolve the inefficiencies encountered with struc-

tured or unstructured grid methods, and, consequently, of-

fers great potential for accurately and efficiently solving
viscous flows about complex aircraft configurations. The
method was described in detail and calculations for stan-

dard cases were presented to assess the accuracy and effi-

ciency of the capability. The capability was tested for the

solution of the Euler equations and for the solution of the

laminar Navier-Stokes equations. These solutions were

found to be reasonably accurate and efficient in compar-
ison with solutions from conventional CFD methods.

The gridless method is not faster on a per point ba-

sis in comparison with advanced methods developed for

structured or unstructured grids. (For example, the 3D

Euler code required approximately 2%us/iteration/point

and the 3D Navier-Stokes code requires approximately

35#s/iteration/point.) The advantage of the gridless
method is that it allows the use of fields of points where

the points are more appropriately located and clustered,

leading to far fewer points to solve a given problem in

comparison with an unstructured grid method. This ad-

vantage may be realized while retaining the advantages of

the unstructured grid method, namely, general-geometry

treatment in a single-block computational domain, and

ease in implementing a spatial adaptation capability. A

disadvantage of the gridless approach, though, i_ that

it requires an indirect addressing system to point from

clouds to points, similar to the indirect addressing used by

unstructured grid methods. (The 3D Euler/Navier-Stokes

code requires approximately 82 array locations/point.)

However, the memory overhead that the indirect address-

ing produces is quite small in comparison to the memory

savings that can be realized by using fewer points.

Finally, conservation of mass, momenta, and energy

is a concern for the gridless approach since this is an ob-

viously desirable property for any numerical method for
the solution of the Euler or Navier-Stokes equations. The

current gridless method solves the conservation law form
of these equations but it is not clear that the method is

conservative, at least not in the same sense as conserva-

tive finite-volume methods. In a finite-volume method,
the flux out of one cell is the identical flux into the next

cell through the common face, and hence conservation is

ensured. However, the gridless approach is more like a

finite-element (FE) method with some aspects of a finite-

difference (FD) method. Consequently, the gridless ap-

proach is expected to have similar properties with re-

spect to the conservation issue as FE and FD methods.

Nonetheless, this question requires further investigation.
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