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1. Summary of Research Work

The research program for the first year of this project (see the original research proposal)

consists of developing an explicit marching scheme for solving the parabolized stability

equations (PS E). Performing mathematical analysis of the computational algorithm includ-

ing numerical stability analysis and the determination of the proper boundary conditions

needed at the boundary of the computation domain are implicit in the task. Before one can

solve the parabolized stability equations for high-speed mixing layers the mean flow must

first be found. In the past instability analysis of high-speed mixing layer has mostly been

performed on mean flow profiles calculated by the boundary layer equations. In carrying

out this project it is believed that the boundary layer equations might not give an accu-

rate enough nonparallel, nonlinear mean flow needed for parabolized stability analysis. A

more accurate mean flow can, however, be found by solving the Parabolized Navier-Stokes

equations. The advantage of the Parabolized Navier-Stokes equations is that its accuracy

is consistent with the PSE method. Furthermore, the method of solution is similar. Hence

the major part of the effort of the work of this year has been devoted to the development

of an explicit numerical marching scheme for the solution of the Parabolized Navier-Stokes

equation as applied to the high-seed mixing layer problem.

The Dispersion-Relation-Preserving finite difference scheme developed recently by one

of the principal investigators has been identified to be a suitable method for solving the

Parabolized Navier-Stokes equations and the PSE. The numerical stability limit of the

scheme when applied to the mixing layer problem has been determined. Analysis reveals

that radiation boundary conditions are needed at the boundaries of the computation do-

main. They can easily be incorporated into the marching scheme. Numerical results of the

mean flow of high-speed mixing layers based on the Parabolized Navier-Stokes equations

and on the boundary layer equations are found. The u-velocity and temperature profiles

calculated by the two sets of equations are ahnost identical. The v-velocity component

(very small in amplitude) computed by the two systems of equations is, however, qualita-

tively very different. That given by the boundary layer equations appears to be unphysical

(the fast stream is entraining fluid from the mixing layer instead of the other way around)

whereas that calculated by the Parabolized Navier-Stokes equations is physically accept-

able. This result suggests that boundary layer solutions of the mixing layer should not be

used for nonparallel flow instability computation.

The parabolized stability equation was originally formulated for incompressible bound-

ary layer flows. Recently it has been extended by a number of investigations to compressible

boundary layer flows. When applied to compressible flows especially for mixing layers the



best way to formulate the equationsbecomesnot obvious. We haveexplored this question

and found that the best waycould be different dependingon one'sobjective. The question

ties closely with mathematical and numerical instability and boundary conditions. We

plan to study this further in the forthcoming year.

2. The Parabolized Navier-Stokes Equations and the Dispersion-Relation-

Preserving Scheme

At high temperature the viscosity and thermal conductivity of a gas are temperature

dependent. On using a power law relation i.e. # ,-_ T n and k ,,_ T m the dimensionless

Parabolized Navier-Stokes equations may be written in the form
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(subscript 1 refers to the ambient condition of the high-speed stream).

According to the Dispersion-Relation-Preserving (DRP) scheme the y-derivatives are

to be discretized as (7 point scheme)

1 _ ajfm+j (2)

where the subscript rn denotes the index in the y-direction and Ay is the mesh size. If

equation (1) is rewritten in a vector form e.g.
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then the marching schemein the x-direction is discretized as

3
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(4)

where the superscript denotes the index in the x-direction and Ax is the marching step

size.

It is easy to show within the long wave range that the Fourier-Laplace transform of

the partial differential equation (1) and that of the finite difference equations (2) and (3)

are identical. Thus as long as the profiles are sufficiently smooth (no short waves) the

discretized marching scheme (4) and (2) will provide accurate solution of the Parabolized

Navier-Stokes equations (1).

3. Numerical Results

To illustrate the feasibility of using the DRP scheme to solve the Parabolized Navier-Stokes

equations, numerical results of equations (4) and (2) are provided below. The ease under

consideration consists of two parallel streams. The fast stream with a Mach number of 2.0

is on top. The slow stream has a Math number of 1.2. The static temperature is assumed

to be the same in both streams. The initial velocity, u, is given by a hyperbolic tangent

profile with momentum thickness O and v is zero. In the numerical computation Ay is

taken to be O/40. the calculated velocity and temperature profiles at x = 1.60, 8.00

and 16® are provided. It can easily be seen that the u-velocity and temperature profiles

given by the boundary layer equations and the Parabolized Navier-Stokes equations are,

for all intents and purposes, identical. The y-velocity component, v, (which is very small)

is, however, very different. The solution of the Parabolized Navier-Stokes equations is

negative in the upper layer and positive in the lower layer indicating that fluid is entrained

into the mixing layer from the upper as well as the lower stream. The solution of the

boundary layer equations (with boundary condition v = 0 at y = 0) is positive for all

values of y. The implication is that fluid flows from the bottom uniform stream into the

mixing layer. But at the same time, fluid flows from the mixing layer into the uniform

upper stream. This is, of course, unphysieal and must be rejected. This example suggests

that one should use the solution of the Parabolized Navier-Stokes equations as mean flow

in performing nonparallel flow instability computation of mixing layers.
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