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REPORT ON THE PERIOD MAY 1, 1992 -- FEBRUARY 28, 1993

A. Research Accomplishments

I am pleased to report that we have greatly exceeded the original goals for the first year of this project.

1. Mathematical Theory of Grain Alignment

We have formulated a new mathematical technique for predicting grain alignment and polarization in molec-

ular clouds. The new technique is completely general, in the sense that it can be used to calculate the

efficiency of any alignment mechanism. It computes the "Rayleigh reduction factor," R, 1 by numerically

integrating the "Langevin equation for Brownian rotation." An algorithm for solving the Langevin equa-
tion has been developed and thoroughly debugged via benchmark calculations on special cases where exact

analytic solutions for R exist. The benchmark tests show that we are able to calculate R accurate to typi-

cally 2% (3a error) and that any systematic errors which may be present in our calculations correspond to

spurious predictions of alignment which are well below the limits of detectability. We have implemented our

algorithm on a parallel-processing machine with 2048 independent processors. Consequently, we now have
the capacity to produce more results in one month than the combined results of all previously published

work on grain alignment theory! This work has been submitted for publication.

2. Super-Paramagnetic Alignment of Molecular Cloud Grains

Before this project was funded, no calculations existed which could be used to compare near- and far-infrared

polarimetric observations with the predictions of one theory-- super-paramagnetic relaxation-- which is gen-

erally considered to be a viable model for grain alignment in molecular clouds. We have carried out such

calculations. The grains were modeled as refractory cores with ice mantles, where the core and mantle sur-

faces were represented as confocal, oblate spheroids of arbitrary eccentricity. We included a proper treatment
of the Barnett effect, rotational anelasticity, Larmor precession, gas-grain collisions, thermal evaporation of

molecules from the mantle surface, super-paramagnetic absorption, and thermal fluctuations in the grain

magnetization. We developed and incorporated a quantitative theory for the effects of thermal emission and

infrared absorption on the alignment of nonspherical grains. We also carried out an exhaustive numerical

study of the super-paramagnetic alignment scenario. Our calculations show that super-paramagnetic align-
ment, in the absence of suprathermal rotation, is not consistent with the degree of alignment inferred by

Lee and Draine (1985, ApJ, 290, 211) from an analysis of infrared extinction and polarimetry for the line of

sight toward the BN object. This conclusion is independent of any assumptions about the uncertain grain

magnetic properties. Our results were presented at the January, 1993 AAS meeting and a related paper

will be submitted-for publication before May 1. Calculations for another paper, on the analogous effects for

prolate spheroids, are in progress.

3. Theory of Grain Alignment by Ambipolar Diffusion

The differential motion of ions and neutral particles in a partially-ionized plasma is called "ambipolar dif-

fusion." A charged grain in such a plasma will also drift through the neutrals, with a gas-grain drift speed,

Vd, determined by the balance between the Lorentz and gas drag forces on the grain. Furthermore, if Vd is

comparable to the gas thermal speed, then the grains will become aligned by a process known as "Gold's

mechanism." Gas-grain drift at thermal speeds is predicted in recent theoretical models of protostars (by
Mouschovias and collaborators) and the neutral gas ring at the Galactic center (by Wardle and KSnigl). /t

follows that grain alignment and polarization are implicit predictions of these models which can be used to

test their validity.

One of our first-year goals was the development of a quantitative theory for grain alignment by ambipolar

diffusion. Such a theory has now been developed by us for spherical grains. An exact analytic solution

has been found for the alignment of spheres subject to the effects of ambipolar diffusion plus paramagnetic

or super-paramagnetic absorption and the other processes listed in item 1 above. This solution has been

aThe Rayleigh reduction factor is a statistic of the grain angular momentum distribution which measures the efficiency of

Mignment.





used, in conjunction with a model for the grain optical properties, to generate theoretical predictions of the

polarized, far-infrared emission from warm grains in a gas undergoing ambipolar diffusion. Our calculations

show that detectable linear polarizations (_ 1 - 5%) can be produced by this mechanism. A paper on

the basic physics of these processes will be submitted before May 1. Our results will be applied in Year 2

to calculate the far-infrared polarization which is predicted implicitly by the Wardle-KSnigl models of the

Galactic center gas ring. These predictions will be compared with far-infrared polarimetry of the ring by

Hildebrand and collaborators, thereby testing the Wardle-KSnigl models.

4. Publications

Roberge, W.G., DeGrsff, T.A., mad Flaherty, J.E. 1993, "The Langevin Equation and its Application to

Grain Alignment in Molecular Clouds," submitted to ApJ.

Roberge, W.G., DeGraff, T.A., and Flaherty, J.E. 1992, "Super-Paramagnetic Alignment of Core-Mantle

Grains," BAAS, vol. 24, no. 4, p. 1121 (abstr_t).

DeGraff, T.A., Roberge, W.G., and Flaherty, J.E. 1993, "Magnetic Grain Alignment in Molecular Clouds,"

to be submitted before May 1, 1993.

I_berge, W.G., Hanany, S., and Messinger, D. 1993, "Grain Alignment by Ambipolar Diffusion," to be

submitted before May 1, 1993.

B. Summary of Expenditures

Item Budget Actual

PI Summer Salary $5,954 $0

Grad Student Tuition 4,417 5,736

Grad Student Academic Yr. Salary 4,600 9,200
Grad Student Summer Salary 3,220 6,398

Typing and Clerical Assistance 350 353

Fringe Benefits 1,324 74

Travel (domestic) 1,200 1,251

Computer Usage 2,000 2,000

Publication Costs/Page Charges 1,500 38
Communications 175 163

Indirect Costs 10,260 9,787

Totals $35,000 $35,000

Differences between the actual and budgeted expenditures were due to the following:

The graduate student (Trudy DeGraff) had to be supported for a full year, not half a year as planned.
To cover the increase in grad student support, the PI did not pay himself summer salary. This had no

effect on the PI's level of commitment to the project and he did not receive summer salary from any
other sources.

The PI supported 2 grad students during summer, 1992 instead of one. DeGraff worked on the

mathematical theory of grain alignment and David Messinger worked on the theory of grain alignment
by ambipolar diffusion.

The page charges for Paper 1 have not been billed at this date.
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ABSTRACT

We describe a new computational method for solving problems in grain alignment the-

ory which uses numerical integration of the Langevin equation for Brownian rotation. The

new method is completely general in the sense that it generates the solution to a Fokker-

Planck equation with arbitrary diffusion coefficients. We derive accurate expressions for the

diffusion coefficients of refractory grains with ice mantles, on the ad hoe hypothesis that the

grains rotate with thermal kinetic energies. We include the effects of internal dissipation by

Barnett relaxation or rotational anelasticity, Larmor precession, gas-grain collisions, thermal

evaporation, and paramagnetic or super-paramagnetic absorption. We develop a quantita-

tive theory for the effects of thermal emission and infrared absorption on the alignment of

nonspherical grains and assess the relevance of these processes to polarization in molecular

clouds. We document the accuracy of our computational method by comparing numerical

solutions for the Rayleigh reduction factor of magnetically aligned grains with exact solutions

for spheres and thin disks.

Subject headings: polarization m interstellar: grains



1 INTRODUCTION

Interstellar polarization is intimately related to the rotational dynamics of dust grains.

Observational evidence shows unambiguously that, in both atomic and molecular regions of

the interstellar medium, polarization by dust is caused by nonspherical grains whose axes

are partially aligned with respect to B, the ambient magnetic field (e.g., Whittet 1992).

Because the direction of each grain's angular momentum vector, J, is tightly correlated with

the direction of the grain's principal axis of largest rotational inertia (Purcell 1979 [P79], see

also §3.4), the polarimetric observations imply further that J must be partially aligned with

respect to B. Thus, "grain alignment" means "angular momentum alignment." It can be

shown (Lee & Dralne 1985) that the degree of linear or circular polarization from a cloud of

dust depends on the grain angular momentum distribution only via the "Rayleigh reduction

factor,"

(Greenberg 1968), where/3 is the angle between J and B and the angle brackets denote the

average over an ensemble of identical grains. Thus, the P_yleigh reduction factor character-

izes the degree of alignment, with R varying from zero for an isotropic angular momentum

distribution to unity for a distribution with J perfectly aligned parallel to B. All observa-

tions of polarized extinction and emission by dust are presently consistent with R > 0, i.e.,

with the alignment of J preferentially parallel rather than normal to B (Hildebrand 1989;

Whittet 1992).

Grain alignment theory is a problem in statistical mechanics, the object of which is to

predict the angular momentum distribution and thus R in terms of the various torques which

act upon the grains. It is a remarkable fact that, more than forty years after the discovery

of interstellar polarization, a convincing theory of the alignment mechanism remains to be

established. While several physical processes are known which produce torques of the right

type to align the grains (see the reviews by Hildebrand 1988a,b), it is unclear whether any

of the processes which have been studied extensively can overcome the disaligument of J by

random gas-grain collisions. For example, alignment by paramaguetic torques as described in



the classicalDavis-Greenstein mechanism (Davis & Greenstein 1951 [DG]) can be ruled out

unequivocally in H Iclouds (Spitzer1978; Whittet 1992) and at leastsome molecular clouds

(Jones, Hyland, & Bailey 1984; Lee & Draine 1985). Similarly,itisdifficultto reconcilethe

near-ubiquityof interstellarpolarizationwith alignment eitherby gas-grainstreaming (Gold

1952; Purcell 1969),or by anisotropicradiationfields(Harwit 1970), both of which require

ratherspecialphysicalconditions.However, two variantsofthe classicalDG mechanism may

plausiblyexplain both the H Iand molecular cloud observations(Hildebrand 1989): Magnetic

alignment isgreatly enhanced ifthe grains contain small ferromagnetic inclusions,thereby

increasingthe aligningtorque to "super-pararnagnetic"values(Spitzer& Tukey 1951; Jones

& Spitzer 1967 [JS67];Purcell& Spitzer1971 [PS71];Duley 1978). Alternatively,or perhaps

in conjunction with super-paramagnetism, the grains may rotate at suprathermal kinetic

energies,thereby rendering J impervious to disalignment by gas-grain collisions(Purcell

1979 [P79], Spitzer & McGlynn 1979; Johnson et al. 1981; Johnson 1982). At present,

however, observational evidence regarding the super-paramagnetism and/or suprathermal

rotation of interstellar grains is inconclusive (Hildebrand 1989). _An unfortunate consequence

of the ambiguous cause of grain alignment is that the relation between the polarization-to-

extinction ratio and magnetic field strength in clouds is unknown.

The wealth of polarimetric data which have been acquired from molecular cloud obser-

vations during the past decade may provide important clues to the resolution of this problem.

For example, polarization is observed in cold, quiescent globules where the dust-to-gas tem-

perature ratio, T,dTg, is known to be close to unity (e.g., Jones et al. 1984). It is possible

that these observations are inconsistent with super-paramagnetic alignment, which vanishes

in the limit T,_/T# _ 1 unless the grains are also rotating suprathermally. Unfortunately,

however, there is presently no way to assess this possibility, because there are no theoret-

ical predictions on super-paramagnetic alignment in the absence of suprathermal rotation

which can be compared with the observations. In particular, the last extensive calculations

(PS71) preceded the discovery of physical processes (Dolginov & Mytrophanov 1976; P79)

which affectthe grain rotationaldynamics in qualitativeways. Clues to the originof grain

alignment are presumably alsocontained inother phenomena discovered via molecular cloud
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polarimetry, such as the relationship between the polarization-to-extinction ratio, P/A, and

the extinction in molecular clouds (Tamura et al. 1987) and the wavelength dependence of

linear polarization both in the near-infrared continuum (Wilking et al. 1980, 1982; Martin

& Whittet 1990) and in infrared grain spectral features (e.g., Aitken et al. 1985) to name

just a few examples.

This is the first paper in a two-part series on paramagnetic and super-paramagnetic

grain alignment in the absence of suprathermal rotation-- a scenario which we will refer to

as "thermal alignment" for brevity. Our objective is to provide calculations which can be

used to test this scenario, by comparing quantitative predictions with observations such as

polarimetry of quiescent globules. In this paper we describe our numerical solution tech-

niques (§2), discuss relevant physical processes in molecular clouds (§3), and describe some

benchmark calculations which calibrate the accuracy of our calculations (§4). Our results

are summarized in §5. In the second paper of this series (DeGraff, Roberge, & Flaherty

1993, hereafter Paper II), we present an exhaustive exploration of the parameter space for

thermal alignment and describe an unambiguous observational test.

2 THE LANGEVIN EQUATION FOR BROWNIAN ROTATION

In this section we introduce the Langevin equation as an alternativeto the Fokker-

Planck equation for calculationson grain alignment. For a more thorough descriptionof the

Langevin equation and itsequivalence to the Fokker-Planck equation, the reader isreferred

to the excellentmonographs by Chandrasekhar (1943) and Gardiner (1990). For discussions

of numerical solutiontechniques,see Fox (1987),Gard (1988),and referencestherein.

2.1 Equivalence of the Fokker-Planck and Langevin Equations

The Rayleigh reduction factor is a statisticof the distributionfunction, f(J,t), for

the grain rotationalangular momenta at time t. In principlef can be found accurately by

solvingthe Fokker-Planck (henceforthFP) equation,

Of 0 I 02
u, c,ai"_" +"fi-g'((AJi)/) = '2OJiOJ'_ ((AJiAJJ)f)' i=x,y,z (2.1)
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(JS67; Cugnon 1971), where sums are implied by repeated subscripts, J; is the i-th cartesian

component of J, and the mean torque,

/AJ,_ i=z,y,z, (2.2)
(AJ ) = \ At/'

and "diffusion tensor,"

(Aj, jj (AJ_AJ_) =_ _t /, i,j = z,y,z, (2.3)

are functions of J and t that can be found by evaluating the time averages denoted by angle

brackets (see §3). The random variable AJ is the incremental change in J which is caused

by the total external torque during the time interval At. Following common practice, we

refer to the mean torque and diffusion tensor collectively as the "diffusion coefficients."

Solving the FP equation directly is a formidable problem (JS67; Cugnon 197I, 1983,

1985) because R is extremely sensitive to numerical errors in the calculated distribution

function when the alignment is weak. For example, the linear polarization P .-. 1% which has

been detected in the far-infrared and submillimeter emission from grains is consistent with

R<_0.1 in some regions (Dragovan 1986). Now suppose that we wish to calculate R = 0.1

with modest accuracy, say 10%. Then it follows from eq. (1.1) that we must compute {cos 2 _)

with an accuracy ,,, 1%. Solving the FP equation for f(J, t) by finite difference methods

would obviously require a large number of grid points in angular momentum space to satisfy

even this modest accuracy requirement. It seems likely that perturbation methods could

be developed to handle the weak alignment limit, but then one would still need to perform

a finite difference calculation to find R when the grains are strongly aligned, a case which

is also of practical interest (Lee & Draine 1985). Monte Carlo simulations present a viable

method for calculating R (Purcell 1969; PST1), but are much less efficient than the techniques

described below.

In this paper we describe a computational approach which works whether the alignment

is strong or weak, yields R values accurate to typically .._ 1% with modest amounts of compu-

tation, and is no more difficult to implement than a Runge-Kutta algorithm for integrating

an ordinary differential equation. Our method relies upon the well-known mathematical



equivalence of the FP equation and the "Langevin equation,"

dJi = Ai(J,t)dt + Bij(J,t)dw_, i = z,y,z, (2.4)

which is a stochastic differential equation for the random variable J(t). Here the angular

impulse which is imparted to the grain during an infinitesimal time interval tit has been

written as the sum of its mean value plus a fluctuating part corresponding, respectively,

to the first and second terms on the right-hand side of eq. (2.4). As discussed below, a

simple quadrature scheme can be used to integrate eq. (2.4) numerically as an initial value

problem, yielding a pseudo-random, time-dependent variable, ,l(t), whose statistics converge

to those of J(t) as discussed below. Moreover, it can be shown (e.g., Gardiner 1990) that

the Langevin and FP equations describe the same random variable if one chooses A to be

the mean torque,

Ai =- (AJi}, i = x,y,z, (2.5)

and B to be the matrix square root of the diffusion tensor,

(BBT)o - (AJ iAJj), i,j = x,y,z, (2.6)

where B y is the transpose of B.

The statistical fluctuations in dJ are characterized by the random functions dwj in

eq. (2.4). The requirement that J(t) should satisfy the FP equation uniquely determines

{dwj} to be a vector of statistically independent "differential Wiener increments," which

are defined as follows. The Wiener process is a random variable, w(t), whose distribution

function satisfies the one-dimensional FP equation

Of_ _ 1 02f_ (2.7)
Ot 20w 2 '

i.e., the diffusion equation. The finite Wiener increment is defined to be the change in w,

- w(to+ At) - w(to), (2.8)

where to is some specified initial time, w(to) is assumed to be known with certainty, and

At -- t - to is an arbitrary but finite time interval. One may verify by direct substitution into
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the one-dimensional FP equation that the Wiener increments have a Gaussiaa distribution,

/_(Aw) = (2_ At) -1/_ exp [- (Aw) _ �2At], (2.9)

with zero mean,

and variance,

<Aw)=0, (2.10)

- At, (2.11)

a familiar result from the theory of random walks. The infinitesimal Wiener increment is

simply the limit of Aw a.s At ----, dr.

2.2 Numerical Integration Techniques

Suppose that we wish to solve the Langevin equation for the components of J(t) on

some time interval, [0, T], subject to the initial conditions

J_(O) = J_,o, i = x,y,z, (2.12)

where {J_,o}may be known with certaintyor may themselves be random variables. We

partitionthe interval[0,T] into the uniform grid t,,= nat, n = 0,...,N, where N isan

integerand At -- TIN. In the simplest numerical method for integratingeq. (2.4),called

the Euler-Maruyama scheme, we set J_(t_)_ J_,,_,where

Ji.o = Ji,o, • i = z,y,z (2.13)

and

(Gard 1988). The starting values are obtained by sampling from the appropriate distribu-

tion if the initial conditions are random and the Wiener increments are obtained by sampling

from the distribution given in eq. (2.9). Thus, the Euler-Maruyama scheme is a straightfor-

ward generalization of Euler's method for integrating nonrandom differential equations. The

analogous Runge-Kutta schemes of higher order also exist, but they can be used only if the
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diffusion tensor satisfies an additional symmetry condition and are not considered further

here.

Each pseudo-random variable Ji(t) is a numerical simulation of the time-dependent

"sample path" followed by Ji(t) as it traverses angular momentum space. If the diffusion

coefficients satisfy certain smoothness and growth conditions, then J_(t) converges to J_(t)

in the mean square square sense,

lim { [Ji(t) - Ji(t)]2) = 0 (2.15)
_,t---.O

(Gard 1988), where the angle brackets in eq. (2.15) denote expectation values at fixed t for a

sequence of identical trim calculations, not time averages. The numerical solutions converge

with the step size, At, at a rate such that the mean square error in ,]i,,_ is

(2.16)

where m = 2 for a single step (local error) and m = 1 for N steps (global error). The

smoothness and growth conditions cited above are mild (Gard 1988) and are satisfied for all

problems discussed in this and subsequent papers in this series (Paper II; Roberge & Hanany

1993).

For reasons discussed below (§4), we are interested only in the steady state angular

momentum distribution. Thus we compute the Rayleigh reduction factor from the sequence

{Ji,,,, n = 0,..., N} in the obvious way, by evaluating cos a/3 from the instantaneous value

of the vectorial angular momentum at each time step and then taking the ensemble average,

(cos 2/3), to be the time average of cos 2/3 over a long sequence of consecutive steps. The time

averaging begins at a time which is sufficiently large so that the grain has "forgotten" its

initial conditions, which are therefore arbitrary. The total averaging time, T, is determined

by the requirement that statistical fluctuations in the running average of (cos 2/3) should be

sufficiently small to guarantee the convergence of R to within a predefined tolerance. The

exact value of T and other details of our calculations are described in §4.

Integrating the Langevin equation is similar to the Monte Carlo method in that both

methods simulate the sample paths of J(t) and that the root-mean-square error in (cos 2/3)



is inverselyproportional to the square root of the total integrationor simulation time.1

I This assertionisjustifiedin §4 for the Langevin equation method.

However, the Langevin equation has several significant advantages over the Monte Carlo

technique. First, a computer code to integrate eq. (2.4) requires just a few lines of code to

perform the time step in eq. (2.14) plus instructions to evaluate A, B, the Wiener incre-

ments, and the running average of cos 2/_. In contrast, the Monte Carlo method requires

direct simulations of all relevant physical processes, each of which may require several steps.

For example, simulating a gas-grain collision involves choosing the arrival time, thermal ve-

locity, and collision site of the incident gas particle from the appropriate distributions and

then simulating the stochastic dynamics of the collision. Second, the convergence theorems

above guarantee that statistics such as R which are calculated numerically via the Langevin

equation converge to the statistics of the exact distribution, f, and provide guidance for es-

timating the dependence of statistical errors on At and T. Finally, integrating the Langevin

equation eliminates "coarse graining" procedures which are unavoidable in the Monte Carlo

method. For example, the number of gas-grain collisions (typically ,,_ 109 during each corre-

lation time of the random motion of a real grain) must be reduced to a manageable number

by arbitrarily scaling up the masses of the gas particles in a Monte Carlo simulation. The

only assumptions incorporated in the Langevin equation are those on which the FP equation

itself is based-- that J(t) is a Markovian random variable and has continuous sample paths.

3 DIFFUSION COEFFICIENTS FOR THERMAL GRAIN ALIGNMENT

In this section we calculate the diffusion coefficients for various physical processes on

the ad hoc assumption that the grain rotational energies are of order kTg, where Tg is the

gas kinetic temperature. Analogous calculations for the alternative, suprathermal alignment

scenario (P79) will be presented in a future paper.
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3.1 Assumptions

$.I.1 Grain Properties

We adopt a two-component model in which each grain consists of a refractory core sur-

rounded by a volatile ice mantle, both of which are at a common temperature, Ta. Because

the grain composition is controversial, we give analytic expressions for the diffusion coeffi-

cients wherein arbitrary grain models can be represented by appropriate choices of various

material properties. Thus in the present paper we treat the i-th grain component (where

i = c or m) as an unspecified, homogeneous solid with mass density p_, complex magnetic

susceptibility Xi = X_ + sX,'.', and complex dielectric function e(O(A) at wavelength A. We

assume that the imaginary component of X_ is given by an expression of the form

II = K, (3.1)

(JS67), where 12 isthe grain angular velocityand the quantity Ki sets the time scalefor

alignment by pararnagnetic or super-paramagnetic torques (cf.§3.7).For a broad range of

ordinary paramagnetic materials,

2.5 x 10-_2 Kelvin-s
K, _ (3.2)

(Purcell 1969; Spitzer 1978). For super-paramagnetic grains, Ki is larger by an uncertain

factor _< 10a-I0 s (JS67; Duley 1978) and the real part of Xi is similarly enhanced over typical

values for ordinary substances. We assume that the principle of superposition holds for the

volume susceptibility, so that

V,K, + V_K,,,
K = (3.3)

V

is the effective K-value for the grain as a whole, where V, and V,_ are the core and mantle

volumes, respectively, and V - V, + V,_ is the total grain volume.

The shapes of interstellar grains are constrained by models of the wavelength-dependence

of extinction and polarization in the vicinity of grain spectral features (Lee & Draine 1985;

Draine 1988). The limited observational evidence which is presently available on molecular

cloud grains (Aitken et al. 1985; Lee & Draine 1985; Hildebrand 1988b) suggests that they

11



are "typically"oblate, with modest axis ratios_-,2:1. In thispaper we model the grains

as oblate spheroids,there being no apparent reason for consideringellipsoidsor other more

complicated shapes? Following the notation of Draine _z Lee (1984), we take the mantle

2 That is,one can model observationsofinterstellarpolarizationsuccessfullywithout resort-

ing to more complicated shapes (Hildebrand 1988b). However the grain shape might have a

dramatic effecton the dynamics of alignment. For example, Mathis (privatecommunication)

has noted that suprathermal rotation might be driven by gas-graincollisionsand evapora-

tion from the large-scalesurface structureson a highly irregulargrain. Consideration of

thisinterestingpossibilityisdeferred to a futurepaper on suprathermal spinup processesin

molecular clouds.

surface to be a spheroid with semiaxes am parallel to the symmetry axis and bm > a,,_

perpendicular to the symmetry axis. We assume for simplicity that the core-mantle interface

is a spheroid confocal with the mantle surface and denote the core semi-axes by a¢ and be.

The eccentricity of the i-th component,

e, =--_/1 - (a,/b,) 2, (3.4)

may be different for i = c and i = m. The mass of our model grain is

and its inertia tensor has components

(3.6)

for rotation about the symmetry axis and

1_= 47r b4 (1 + a_/b_) e,_ (3.7)= 1--_p,na,_ ._

for rotation about any axis perpendicular to the symmetry axis, where the factors

e,,-l+
and

pc ac (bc'_ 4 (1+ 2 z
e,,,-l+ t,b,,,/

vary from unity for homogeneous grains to Pc/p,_ for bare grains with no ice mantles.

12



3.1.t_ Gas Properties

Our model grains are assumed to be located in a cloud which has a constant, uniform

number density,n, and magnetic field,B, and which iscomposed entirelyof H2 molecules

with mass m. The gas particlesare assumed to have a Maxwellian velocitydistributionwith

kinetictemperature T# in a referenceframe (the "gas frame") where the bulk velocityof

the gas iszero. We solve the Langevin equation for the components of J in the gas frame

under the assumption that the latterisan inertialreferenceframe; however, our cMculations

should also be accurate for acceleratingplasmas whenever the time scalefor accelerationis

much longer than the time to establishthe steady state angular momentum distribution.

The latterisstrictlylessthan the "gas damping time," tgo,(cf.eq. [3.31]),which in turn is

comparable to the time ittakes a grain to collidewith an amount of gas equal to itsown

mass. Numerical estimates of tg,,and some other relevanttime scalesaxe given in Table I.

The centerofmass (CM) velocityof the grainin the gas frame isassumed to satisfyvd << vth,

where the gas thermal speed isdefined to be

vth- _ • (3.10)

Radiation pressure and other forces can cause a grain to drift through the gas at speeds

v_ >_ t_th in some environments, with significant consequences for the alignment process

(Gold 1952; Purcell 1969; PS71). These effects will be studied in detail in a subsequent

paper (Roberge & Hana_ay 1993) but are not considered here.

3.2 Frames of Reference

We solve the Langevin equation in the gas frame but in some cases it is easier to

calculate the diffusion coefficients in a "body frame" whose axes are aligned instantaneously

with the grain's principal axes of inertia. Henceforth, vector and tensor components without

superscripts will refer to the gas frame, whose cartesian basis vectors, (_, _, _), have _ oriented

along the magnetic field and _ and _ oriented arbitrarily in the plane normal to B. Vector

and tensor components with a superscript "b" will refer to the body frame, whose basis

vectors, (_b, Ob,_b), have _b oriented parallel to the grain symmetry axis and the axes _b and
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_boriented arbitrarily in the equatorial plane. Henceforth we will refer to _b as the "major

axis of inertia" because I_, > I_. While the body frame axes are parallel to the principal

axes of inertia, they are defined to be stationary in the gas frame and so do not corotate with

the grain material. Thus the body frame is an inertial frame which is defined independently

at each time by the instantaneous grain orientation.

We specify the relative orientation of the gas and body frames in terms of the familiar

Eulerian angles (Fig. 1). In setting one of the Eulerian angles equal to 8, we have anticipated

the result (P79, §3.4) that d is closely aligned with the major axis of inertia at all times.

The cartesian components of the mean torque and diffusion tensor transform according to

and

aJ ) =a,. (aJ aJ:)az¢.

where the transformation matrix is given in terms of the Eulerian angles by

(3.1I)

(3.12)

G=CDE (3.13)

with

and

(Goldstein 1950).

-sine 0 )
C= cos¢ 0 , (3.14)

0 1

D

E

. COS

sin ¢

0

0 cos/_

0 sin/_

0

- sin

COS

costb -sin_b 0 /
sin_/, cos_b 0

0 0 1

(3.15)

(3.16)
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3.3 Fluctuation-Dissipation Theorem

There isa usefulrelationshipbetween the diffusioncoefficientsfor any physical process

which tends,in the absence of other processes,to establishthermal equilibrium (e.g.,Reichl

1980). In particular,the mean torque about the major axisof inertiaisgiven by

(cf.P79, eq. [I]),where the damping time,

tdamp "-

= -J ltd. , (3.17)

2I_,kT (3.18)

depends on the diffusiontensor and the temperature, T, at which thermal equilibrium pre-

vails. Analogous relationsexist for rotation about the other principalaxes, but are not

relevant here for reasons discussed below. Of course the alignment of interstellargrains is

inherentlya nonequilibrium situation,due to the differenttemperatures which axe generally

associated with differentprocesses. Nevertheless,one can use the Fluctuation-Dissipation

Theorem to find the mean torque for any individualprocess,such as thermal emission (see

§3.8.3),which ischaracterizedby a unique temperature.

3.4 Internal Dissipation of Rotational Energy

This term refers collectively to processes first described by Purcell (P79) which align

the major axis of inertia with J. According to Purcell's analysis, the most efficient of these

processes is associated with the Barnett effect, in which the transfer of angular momentum

from bulk rotation to aligned spins or orbits produces a magnetization

M =XI"I/"I (3.19)

in a grain rotating with angular velocity _. Here 7 is the magnetogyric ratio of the aligned

magnetic moments. Purcell observed that the magnetization in eq. (3.19) is identical to that

which would be produced by applying a "Barnett equivalent" magnetizing field HB_ = /'//7

and, further, that if J is not aligned along a principal axis of the grain then f/, and hence the

effective applied field, are nonsteady in a reference frame fixed to the grain. Magnetization
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of the grain material by such a nonsteady "field" leads to paramaguetic absorption and the

dissipation of rotational energy as in the Davis-Greenstein mechanism, except that the roles

which are played in the DG mechanism by B and J are played in Barnett relaxation by D

and the major axis of inertia, respectively. Further, because Barnett relaxation involves no

external torques, J is a conserved quantity. 3 The transformation of rotational kinetic energy

3 This statement is not strictly true. The quantity which is conserved is obviously the

total grain internal angular momentum, F, which includes not only rotation but also the

angular momentum S associated with the magnetization. However, for a homogeneous,

oblate spheroid with equatorial radius b_ composed of a paramaguetic or super-paramaguetic

substance with partially aligned electron spins, one can show that

S/J , 22 2 2 -4 , -I -2= 5x,nm_c /2e p,_b m _ 10 X,ap,,,obm,_5,

where e and rn_ axe respectively the electron charge and mass and the notation p,,,0 means

p,,,/10 ° gcm -3 and similarly for the values of other quantities in Gaussian cgs units. Thus,

even for super-paramaguetic grains, the ratio of spin-to-rotational angular momentum is only

S/J < 1%. We will therefore ignore the distinction between J and F, an assumption which

is also implicit in Purcell's (P79) discussion of Barnett relaxation.

into heat by Barnett relaxation drives the grain toward the state of smallest rotational energy

consistent with a given value of J, i.e., toward rotation about the major axis of inertia (P79).

For interstellar grains, the time scale, for Barnett relaxation is always many orders

of magnitude longer than the grain rotational period (Table 1). For spheroidal grains the

motion of D in grain coordinates is therefore essentially that of a free symmetric top over

times small compared to tt_. From this information one can easily compute the energy

dissipation rate and from it the rate of change of the angle 0 between F/and the major axis

of inertia. Applying Purcell's analysis to the case of an oblate, spheroidal, core-mantle grain,

we find that

dO VKh2(h - 1)J 2

d"_"= 72(i_,)3 sin 0 cos 0, (3.20)

where K is defined in eq. (3.3), V is the total grain volume, and

h = IL/I  . (3.21)
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We will define the Barnett alignment time to be

- _I (3.22)t_r
0 18=./4

A numerical estimate for molecular cloud grains is given in Table 1. As Purcell pointed

out, tb_r is typically so short in comparison to the time scales for J to be changed by

collisional or magnetic torques, that one may consider the axis of largest rotational inertia

to be aligned with J at all times. This conclusion, is reinforced if one includes the other

dissipative mechanism discussed by Purcell, rotational anelasticity, although the latter is

typically one to two orders of magnitude less efficient than Barnett relaxation (P79). We

note that this is the only consequence of internal dissipation on the alignment processes

considered here because, as discussed in the footnote above, Barnett relaxation and rotational

anelasticity conserve J to an excellent degree.

3.5 Larmor Precession

Barnett magnetization endows a spheroid rotating about its major axis of inertia with

a steady magnetic moment

x'V
= J, (3.23)

3' Izz

where X' - (VEX', + V,,,X')/V. The magnetic torque I_b,,,.xB causes J to precess about B

at the Larmor frequency, 121_, = 2_r/tt_, where the Larmor period is

2rr'Yl*bz (3.24)
tt_r- x'VB"

There is also a relatively small contribution to the magnetic moment from rotating surface

charges. For an oblate spheroid with charge Q uniformly distributed over its surface, the

neglected magnetic moment would be smaller than the Barnett moment by a factor

pch_._Zg= 3 Q 3' X (3.25)
Pb_r 8 lrc X' (a,,,/bm) b,,, '

where X is a numerical factor which varies from 2/3 for spheres to 1/2 for thin disks. The

ratio (3.25) is typically only O(10 -s) and we will neglect _tCh0. Representative values of the

Larmor period are given in Table 1.
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The Larmor period is always several orders of magnitude shorter than the time scales for

J to be changed by the collisional, parasnagnetic, and radiative torques discussed below. It

is therefore appropriate to average the diffusion coefficients for these torques over a uniform

distribution of the Larmor precession angle, _, in Fig. 1. This is the only effect of Larmor

precession on our calculations: once the diffusion coefficients for the other torques have been

Larmor-averaged, it becomes unnecessary to include the torque /_b_, × B explicitly in the

Langevin equation. (Note that Larmor precession has no effect on internal dissipation, even

though the Larmor period can be shorter than the Barnett alignment time scale. This is

because rotation about the axis of largest rotational inertia is the state of minimum kinetic

energy for a given value of J and the Larmor torque is conservative.)

For each of the processes considered below, the diffusion tensor is diagonal in the body

frame with cartesian components

0 0 /
0 0

<(Adbr)2> (3.26)

where the subscripts "11"and "±," respectively, denote body frame axes which are parallel

and normal tcr. the symmetry axis. Transforming these components to the gas frame using

eq. (3.12) and averaging over the phase angles _ for Larmor precession and _, for rotation,

we find the diffusion tensor in the gas frame. The latter is also diagonal with components

1
(3.27)

(3.28)

and

<(Adz)2) =sin2_/<(Ad_.) _> + cos2_<(AJl_)2). (3.29)

3.6 Gas-Grain Collisions and Thermal Evaporation

The diffusion coefficients for gas-grain collisions and thermal evaporation have been

calculated in Appendixes A-C under the following assumptions: (1) We assume that every
t
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collidingH2 molecule sticksto the surfacelong enough (i.e.,a few times the surfaceoscillation

period for physisorbed H2) so that its kineticenergy becomes thermalized at the grain

temperature; (2) we assume that every stickingcollisionisfollowed by thermal evaporation

and that the velocitydistributionof evaporating molecules is determined by the principle

of detailed balancing (Burke Ig Hollenbach 1983); (3) we assume that evaporation occurs

uniformly over the grain surface,i.e.,that there are no preferredevaporation sites;and (4)

we set the gas-graindriftvelocityto vd --0 as discussedabove. Assumptions (I)-(2)should

be excellentapproximations for H2 collidingat thermal energieseitherwith cold grains (with

3 < Td <_15 K) covered with H2 or with warmer grainswhose ice mantles axe devoid of H2

(seethe discussionin Tielens & Allaanandola 1987). Assumption (3) is consistentwith the

thermal alignment hypothesis under considerationin thispaper, but might be inappropriate

forrealgrainsifthe latterare highly irregular(seethe footnote in §3.1.i). Nevertheless,item

(3)isplausiblebecause any preferredevaporation sites,ifpresent,willgenerallyhave lifetimes

that are smaller than the time to establishsuprathermal rotation (which iscomparable to

tg_o).For example, thermal diffusionof the H2 molecules on a cold grain willrearrange the

surfacetopography on a time scale,t << I s,which isalways negligiblecompared to tg,,.For

warmer grains,the corresponding time scaleforH20 diffusionon an H20 surfaceisstillless

than tg,°ifTd _>30 K. See Tielens & Allamandola (1987) and referencestherein.

Within the above approximations, the the mean torque for collisionsplus evaporation

has gas frame components

(AJ,)c+¢" = -J,/tg.o (3.30)

where

3 (3.31)

is the gas damping time. The diffusion tensor is diagonal in the body-frame with components

(3.32)

: • (3.33)

and
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The only mathematical approximation used in deriving expressions (3.30)-(3.33) is the ne-

glect of terms of order _ and higher (Appendix C). The grain shape enters only via

the "eccentricity factors,"

and

(3.34)

rj.(e,,,) = _2 {7-e,_+_ (1 .... e_)g(e,)+ (1 2e_)[1 + e_ _ [1 (i e_)2g(e,)]]},

(3.35)

where

1 (1 + e,_)1 - e'_ (3.36)g(e.)- 2-cln

and e,_ is the eccentricity of the mantle surface. These functions have the limiting values

for spheres and

lim rll(e,,)= lim r_.(e,,,)= 1
¢m "'0 em-".O

(3.37)

3

lim Fil(e,,, ) = lim _ (3.38)
em'=*l era'=* I

for infinitely thin disks. The eccentricity factors are plotted in Fig. 2. One can easily

verify that the diffusion coefficients in eq. (3.30)-(3.33) satisfy the Fluctuation-Dissipation

Theorem and reduce to the expressions derived by Jones & Spitzer (JS67) for spheres in the

appropriate limit.

We obtain the gas frame components of the diffusion tensor by substituting eq. (3.32)-

(3.33) into eq. (3.27)-(3.29) with the result that

<(AJz)2>c+t v =Tnm O,_vth I + _ [(1 +cos 2 /_FII ,
(3.39)

and

/_ rx + cos2/_rll ] .

(3.40)

(3.41)
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3.7 Paramagnetic or Super-Paramagnetic Absorption

Jones & Spitzer (JS67) derived the diffusion coefficients for paramagnetic or super-

paramagnetic absorption in a spheroidal grain. The mean torque has gas frame components

(AJ,)_, = -Ji/t,_.,, i = z,y, (3.42)

and

=0.

The magnetic damping time for a core-mantle grain is

t,,,_ - KV B2 .

The diffusion tensor is diagonal with gas frame components

= 2kr vB K, ,,y,
m_g

and

(3.43)

(3.44)

(3.45)

=o. (3.46)

These diffusion coefficients satisfy the Fluctuation-Dissipation Theorem by construction.

3.8 Electric Dipole Emission and Absorption

The angular momentum of a grain is changed by the emission, absorption, and scat-

tering of photons. Purcell & Spitzer (PS71) pointed out that radiative processes generally

contribute to both the mean torque and diffusion tensor and estimated the diffusion co-

efficients for spherical grains in equilibrium with a thermal radiation bath at temperature

T, ad = T_. In view of the growing body of observations on polarized thermal emission from

dust, especially the warm dust with Td "_ 100 K near the Galactic center (Werner et al. 1988;

Hildebrand et al. 1990, 1992), it is appropriate to give a quantitative description of these

effects for nonspherical grains. We therefore calculate the diffusion coefficients for emission

from and absorption by oblate, spheroidal, core-mantle grains and consider explicitly the

nonequilibrium case where T,_d _ Td. The only assumption used in the following discussion
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is that the grain-photon interaction is in the R_yleigh limit. This is a good approximation

for bare silicategrains with radiibc _< 1 pm and graphite grains with radiibc _< 0.I /_m

ifthe photon wavelengths are A _>10 /_m (Draine & Lee 1984). The following discussion

thereforeapplies mainly to grains that are shielded from directsources of opticaland UV

photons. Grain alignment and disalignment by short-wavelength radiation (Harwit 1970),

which might be important in photodissociationregions,isnot considered here.

3.8.1 Electric Dipole Cross Section of a Rotating Dielectric Spheroid

In the electric dipole approximation, scattering is negligible and the grain absorption

cross section at frequency w is given by a simple analytic expression (van de Hulst 1981).

The cross section for a non-rotating grain interacting with a linearly polarized plane wave

whose electric field vector, E, lies parallel to the j-th principal grain axis is

Cj(w) -- 4_'_.__[m (a;j) j --I[,1, (3.47)
C

where w is the circular frequency of the wave and m_j is the electric polarizability of the grain

for E polarized along the j-th body frame axis. The polarizability tensor of a spheroidal

core-mantle grain can be expressed in terms of the dielectric functions of the core and mantle

materials,the grain eccentricity,and the core-to-mantlevolume ratio.For details,see Draine

& Lee (1984).

There is a small correction to expression (3.47) when the grain rotates, which arises

because the dielectric polarization of the grain depends on the frequency of E relative to the

grain material. Consider an oblate spheroid rotating about its symmetry axis with angular

velocity fl = J/l_z. Let E0 be the electric field amplitude of an incident plane wave and let

be the angle between the electromagnetic wavevector, k, and the grain rotation axis, _b.

It is useful to take the two independent polarization states of the incident wave to be the

states of positive and negative helicity, corresponding to left and right circular polarization,

respectively. Define a set of rotating basis vectors, (_, _r, ;F), which are fixed to the grain

material with ;F along the rotation axis and with _ and _r oriented arbitrarily in the grain's

equatorial plane. One can easily show by a suitable transformation of coordinates that the
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electric field components in the rotating frame attached to the grain are

and

1

E_(-t-)= _Eo { [cosC q:1]cos (w + ft)t

1

_(±) = -_E0 { [cos¢ _:1]sin(w + _)t -

+ [cos_ + i]cos(w - f_)t}, (3.48)

[cos_ 4- 1] sin (w- f_)t }, (3.49)

E;(+)= -Eosin¢cos t, (3.50)

where the upper (lower) sign choice corresponds to the case where the incident wave has

positive(negative)helicity.Thus ingeneral the grain material "sees"three waves: a wave at

the incidentfrequency,w, which islinearlypolarized along the grain rotation axis and two

waves at frequenciesw :I:f_which are circularlypolarizedin the plane normal to the rotation

axis.Ifwe assume the grain material to be a lineardielectric,then the crosssection forthe

sum of these waves isjust the sum of the crosssectionsforthe three frequency components

weighted by theirrespectivesquared amplitudes. Itfolows that

1 [cos("-4-1]' C±(w - N)1 [cosC :F 1]2 Cj.(w + ft) +c(c,±)=

1
+ sinz CQl(w), (3.51)

is the electric dipole absorption cross section for a circularly polarized wave propagating at

angle ¢"with respect to the symmetry axis, where the upper and lower sign choices correspond

to the positive and negative helicity states of the incident wave.

3.8._ Absorption in an Isotropic Radiation Field

Expression (3.51) implies that a rotating grain absorbing photons from an isotropic

radiation field will be slowed by rotational friction. The effect, which was first described by

Purcell &: Spitzer (PS71), is illustrated by the special case of a wave propagating parallel

to the rotation axis (( = 0). According to eq. (3.51), the absorption cross section for such

a wave is C(0, +) = C±(w - fl) if the wave has positive helicity and C(0,-) = Cj.(w + f_)

if it has negative helicity. Of course this is just what one expects in this special example:

the incident wave has E circularly polarized in the equatorial plane of the grain with E

23



rotating in the same (opposite) sense as the grain if the helicity is positive (negative). If

the electric dipole cross section increases with frequency 4 then the grain is more Likely to

4 At frequencies where this assumption is violated, the torque due to electric dipole absorp-

tion tends to spin up a rotating grain. Suprathermal spinup will occur if (a) Cl decreases

with _ over a sufficiently large fraction of the frequency range where photoabsorption is

important and (b) the photoabsorption damping time is small compared to the damping

time scales for other processes. However, neither (a) nor (b) is satisfied by the model silicate

grains considered below.

absorb the negative helicity wave. Recalling that in the electric dipole limit the photon

orbital angular momentum is negligible compared to its spin angular momentum and that

the spin of a positive (negative) helicity photon is parallel (antiparallel) to k, we see that

the cross section is larger for the absorption of photons which tend to decrease J. This is

the rotational friction noted above.

Now consider the mean torque, (AJlabs , due to photoabsorption in an unpolarized,

isotropic field. (The generalization to anisotropic radiation is obvious and will not be con-

sidered explicitly here.) The contribution to (AJ)_bs from a pencil beam of photons with

wavevectors in an infinitesimal solid angle dW centered about the unit vector _: and frequen-

cies in the infinitesimal interval dw centered about w has body frame components

h

d <AJb>_b, = -_ Iw [C(_, +) - C(¢,-)] ]¢_dW d_ (3.52)

where Iw is the monochromatic specific intensity of the radiation in photons cm -2 s -1 sr -1 s.

The term in eq. (3.52) which depends on the grain cross sections can be expressed in terms

of the electric dipole cross sections for linearly polarized light using eq. (3.51). The algebra

is simplified if we note first that 12 << w in all cases of practical interest. For example, if we

consider a homogeneous grain with rotational energy equal to the equipartition energy at

the gas temperature and take a typical photon energy to be kTr,a, then

_ ,,, ,r1/2 ^-1/2 k-s/2 (1 - 2 \-1/4f_ 10-s-9.1 t.._,o _._.-s e_} T_. (3.53)
w

The ratio in eq. (3.53) wll therefore be much less than unity even if the grain rotates at a
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highly suprathermal energy. Thus, to within an excellent approximation we may set

(3.54)

in expression (3.51), where
dC±

cl- no" (3.55)

Making use of approximation (3.54), we find that

c((,+)- c((,-) = --2aC:Lcos(. (3.56)

Substituting expression (3.56) into eq. (3.52), writing out the body frame components of k

and performing the integrals over solid angle, we find that

(AJ)=b. -- --J/tab., (3.57)

where the photoabsorption damping time is

31b= -*
t=b. = _ {foo_°C[l_dw} . (3.58)

In setting the upper limit of the frequency integral above to infinity, we are assuming the

radiation temperature to be sufficiently small so that the integrand is only significant at

frequencies where the electric dipole approximation is valid. For a thermal radiation field

with temperature T,.,,d <_ 100 K, the fraction of photons with wavelengths A < 10 pm is less

than 10 -4 .

The incremental contribution to the diffusion tensor from the monochromatic pencil

beam discussed above has cartesian components

d<AjbAj_>=bo h'= -_- I_ [C((, +) + C((,-)] k_ k_dW d_ (3.59)

in the body frame. Substituting expressions (3.51) for the cross sections into eq. (3.59),

writing out the body frame components of k, and performing the integral over solid angle,

we find that the diffusion tensor is diagonal with nonzero components
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and

= 1"_- fo [2CIl(W) + 3C±(_)] I,,,dw. (3.61)

One can easily verify that in the appropriate limit expressions (3.60) and (3.61) reduce to

the corresponding expression derived for spherical grains by Purcell & Spitzer (PS71, eq.

60).

3.8.3 Thermal Emission

The diffusion tensor for thermal emission can be deduced by noting that, in the hypo-

thetical situation where the grain is immersed in a blackbody field with T,,d = Td, the prin-

ciple of detailed balancing requires that emission and absorption should contribute equally

to the diffusion tensor. The components are therefore

and

=4,,,,__:jo-_,, 15
(3.62)

(3.63)

where

_2

Bw(Td) = 41r3c2 [exp(hw/kTd)- 1]-' (3.64)

is the specific intensity of a thermal radiation field with temperature Td.

The mean torque contributed by thermal emission can be computed using the Fluctuation-

Dissipation Theorem. Thus in thermal equilibrium at temperature Td, the damping time for

rotation about the symmetry axis due to absorption plus emission is

I_,kTd (3.65)

((.,) )...A_ b 2 '

where we have used the fact that thermal emission contributes half of the total diffusion

tensor in thermal equilibrium. But because the mean torques due to absorption and emission

are additive, the mean torque due to emission alone must be

(AJ)_,.,., = -J/t,,.,,, (3.66)
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where the damping time for thermal emission is related to the other time scales by

m -- tab m. (3.67)

We have plotted the photoabsorption and photoemission damping times in Fig. 3 and

Fig. 4, respectively, for the special but illustrative case of bare silicate grains with no ice

mantles. We used the "astronomical silicate" dielectric function of Draine (1987) to compute

the electric dipole absorption cross sections and chose pc = 2.5 g cm -s. We see from the

figures that in clouds where tgom _ 101° s, the time scales tabs and tern axe at least an order

of magnitude larger than tg,, unless the grains have radii bc _;_ 0.1 pm and the radiation

and dust temperatures are larger than 100 K. We conclude that photoabsorption and pho-

toemission typically have a negligible influence on the alignment of large dielectric grains

in warm clouds, but might be important in studies of polarized emission from very small,

transiently-heated grains.

4 THERMAL ALIGNMENT IN MOLECULAR CLOUDS

To assess the accuracy of our numerical methods, we consider a special case--- the

magnetic alignment of spheres and thin disks-- where our numerical results can be compared

with exact analytic solutions for R. Below we include all of the processes discussed in §3

except for photoabsorption and thermal emission.

4.1 Magnetic Alignment of Core-Mantle Spheroids

The number of independent physical parameters in the Langevin equation is minimized

by choosing appropriate dimensionless variables. Thus we define the dimensionless angular

momentum components in the gas frame by

J_
j i - _.r:"_'___ , i = x, y, z, (4.1)

and measure time in units of the gas damping time. When the diffusion coefficients from §3

are written in terms of these variables and the resulting expressions for collisions, evaporation,
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and param_netic or super-paramagnetic absorption are added together, one finds that the

total mean torque has gas frame components

and

where

(Ajl) =-(1 +6)j,, i=x,y, (4.2)

(Aj,) -------j., (4.3)

3KVB 2

6 - 4v_nrnvthb_rll (4.4)

is the ratio tg.o/t,_, e of the gas and magnetic damping times. The nonzero gas frame com-

ponents of the dimensionless diffusion tensor are

and

((Aj,) 2)=_ 1+_ _ + sin 2_ + 2 _'o $'
(4.5)

(4.6)

The coefficientswhich ai)pearin the Langevin equation,eq. 2.4,can be obtained from the

diffusioncoefficientsabove via eq. (2.5)-(2.6).

A&cording to eq. (4.2)-(4.7),the diffusioncoefficients,and hence the Rayleigh reduction

factor,depend only on three dimensionless parameters. These axe 6, Td/Tg, and the eccen-

tricityof the mantle surface (which determines the ratio Our resultsare identical

in thisrespect to the earlierwork of Purcell and Spitzer (PS7L), even though the present

work differsfrom PS71 in that we includeBarnett relaxationand Larmor precession.Notice,

however, that 6 as defined in thispaper differsfrom the quantity 6 in PS71 except for the

specialcase of spheres. This isbecause PS71 definedtg,mto be the damping time forrotation

about an axis perpendicular to the grain symmetry axis. The subsequent discovery (P79)

that Barnett relaxationaligns/'_parallelto the symmetry axisof an oblate spheroid implies

that the definitionof tgaoadopted here isappropriate.

The symmetry of the diffusioncoefficientsin j= and Jv shows that Larrnor precession

causes the angular momentum distributionto be axisymmetric about the the magnetic field
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as expected (Martin 1971). It might seem that one could exploit this symmetry to reduce

the number of coupled Langevin equations from three to two in number. For example, one

might introduce the variable

J, -- + (4.8)

and then evaluate

<<o.:j>: ((s,/s.)') (4.9)

by numerically computing the sample paths of jp and jz. This would amount to a change of

variables in the Langevin equation. Although {j_} are stochastic (hence non-differentiable,

cf. eq. 2.11) variables, such a change can indeed be performed if one uses "Ito's formula"

from the stochastic calculus (Gardiner 1990). However, an unfortunate consequence of this

procedure is that that the resulting Langevin equation for jp contains a term which becomes

singular when jp -- 0. While it seems likely that the Euler-Maruyama method could be

modified to handle this singularity, it is not clear how much these modifications would

reduce the potential computational savings-- which are in any case no more than 33%--

over the straightforward approach of computing j=, Jr, and jz. We therefore adopt the

straightforward approach here.

4.2 Benchmark Calculations for Spheres and Thin Disks

Jones & Spitzer (JS67, see also PS71) obtained an exact solution for the steady-state

angular momentum distribution of spheres under the influence of sticking gas-grain collisions,

evaporation, and paramagnetic absorption. The applicability to this paper of the JS67

solution follows directly from the fact that our diffusion coefficients reduce to those of JS67 for

spherical grains. Indeed, this correspondence is required by the fact that, for spheres, Barnett

relaxation does not occur and Larmor-averaging has no effect on the diffusion coefficients for

collisions and evaporation. In addition, we point out the rather surprising result that the

JS67 solution is also exact for thin disks. The latter conclusion follows from the fact that R

depends on the mantle eccentricity only through the ratio F±/FII (cf. eq. 4.4-4.7), and this

ratio is unity for both e,_ - 0 and e,, = 1 (cf. eq. 3.37-3.38). Thus, a thin disk and sphere

will be aligned with equal efficiency for equal values of the parameters 6 and Td/Tl. 5
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5 Of course this does not imply that spheres and thin disks will be aligned equally under a

given set of physical conditions. The parameter 6 is proportional to the grain volume, V,

which is zero if e,_ = 1. Thus the magnetic alignment of an infinitely thin disk is always zero

and, in this sense, the exact solution for thin disks is only of academic interest. However,

rx/Fii never differs from unity by more than about 15% (Fig. 2), suggesting that the exact

solution for spheres and disks may furnish a good approximation for grains of all intermediate

eccentricities. This possiblity is explored in the numerical calculations presented in Paper

II.

Although we willultimately be interestedonly in the steady-stateangular momentum

distribution,itisusefulto consider the time-dependent distribution,f(J, t),for the purpose

of estimating various time scalesof interest.It ispossible to find exact, time-dependent

solutionswhich satisfyvarious initialconditions and which reduce to the JS67 solution as

t ---+or. Here we will consider an arbitrary but representative example where

ji(O) = O, i= :r,,y,z, (4.10)

i.e., where the initial conditions are deterministic with the grains initially at rest. One can

easily show that the FP equation is satisfied if the distribution of each component, ji, is a

statistically independent Gaussian with zero mean value. The time-dependence enters via

the variances,which are

1 +(1 + 26)(Td/Tg) {1 - exp[-2(1 + 6)r]}, (4.11)2 2

or= -" ay = 2(1 + 6)

for the components normal to B and

1 + (Td/Tg) {1 - exp(-2v)} (4.12)2
O. z -- 2

for the component parallel to B, where r is dimensionless time in units of tzo,. Thus the

distributions of j= and Jv relax to a steady state on a time scale of order tzoo/(1 + $) while

the corresponding relaxation time for jz is tga,. The relaxation time is evidently just the

time scale on which rotational drag causes a grain to "forget" its initial angular momentum;

this time scale is determined by gas drag alone for the component parallel to B and by gas
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drag plus paramagneticabsorption for the components perpendicular to B. In the following

discussion, the term arelaxation time" wiU refer specifically to t_,o, i.e. to the larger of the

two relaxation times above. Henceforth we consider only the stationary distribution on the

assumption that the gas and grain properties are constant over time scales < tg.o (Table 1).

In a steady state,the statisticIcos2/_)on which R depends isgiven exactly by

; sinh -lz 1/2-1 , if z>0

if z<0

(4.13)

where

2 2
z =--o'Jo'_, - 1 (4.14)

(cf.PS71, eq. 23). The steady state autocorrelationfunction of ji(r)can be shown to be

= exp[-I"- (4.15)

where the dimensionless correlationtimes in units of tg,a are given by

1 if/=z,y

rco,., = (4.16)

1 ifi=z.

Henceforth, we will take the term %orrelation time," to mean the smaller of these time

scales, i.e.

1

r_o, -- 1 + 6" (4.17)

We expect, rougly spealdng, that the minimum time scale for fluctuations in cos 2 _ will be

of order r_..

Numerical estimates of (cos 2/_) for spheres and disks were obtained for comparison

with exact solutions as follows. Given values of the parameters 6 and Td/To, we calculated

N = 50 values of (cos 2 B) from N identical trial calculations. In each trial, we took the initial

conditions as in eq. (4.10) and then used the Euler-Maruyama scheme, eq. (2.14), to generate

a sample path ofj(t). The Box-Muller algorithm was used to generate the Wiener increments
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from a sequenceof uniform pseudo-random numbers and the latter were obtained, in turn,

using the portable random number generator referred to as "RAN3" in Press et al. (1986).

In each trial, we integrated the sample path initially for 100 relaxation times to let the grain

forget its initial conditions. Thereafter the time averaging of cos2/3 commenced and the

Langevin equation was integrated over an additional, dimensionless "averaging time," r_.g.

The error in each trial integration was characterized by E,,I, the relative error in (cos 2 f3/

determined by comparing the trial result with the exact solution. We expect the accuracy

of (cos _ j3) to depend on r_, on the dimensionless time step, Ar, and on systematic errors

caused by various effects such as spurious correlations in the random number generator. We

now consider each of these effects individually.

The dependence of errors on the averaging time is illustrated in Figure 5, where we have

plotted the root-mean-square value of the N = 50 values of E_,i as a function of r_,_. All of

the calculations in Fig. 5 pertain to spheres or thin disks with Ta/T e = 0.5, 6 = 1, and used

a time step Ar = 1 x 10-3r¢o,.. The str_ght line in Fig. 5 is a least squares fit to the plotted

points. Its slope, -0.47, is consistent to within the statistical errors in E_,_, with the scaling

law E,_o o¢ (r_8/r_o,) -1/_. Of course this is just the scaling one expects on the basis of the

Central Limit Theorem: the value of (cos 2/3) at the end of a trial is effectively the mean of

M statistically independent estimates, where each independent estimate corresponds to the

average over one correlation time and M = r_g/rco_ is the number of correlation times in

one trial integration.

The dependence of E_° on the time step is shown in Fig. 6. Each rms error was

determined as in Fig. 5 from the results of 50 identical trim integrations. The total integration

time for all points in Fig. 6 was r_,_e = 5 x 104root and the physical parameters were chosen to

be 6 = 1, Td/T 9 = 0.5. For large At, where the accuracy in (cos _/3} is limited primarily by

the time step, E,,_o scales approximately as (Ar/rco_) -"_, where m _ 1. As Ar decreases, the

rms error approaches a constant, reflecting the fact that the accuracy in (cos 2/3_ is eventually

limited by the integration time. Thus the minimum useful time step is about Ar = 10 -2 for

an integration time of r_,a --- 5 x 104r¢o,.. Note that the slight upturn in Er,,,o for the smallest

time step, Ar = 1 x 10-src_., is not statistically significant: The increase in log Er,_°, about
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0.05, is approximately equal to 1/_, where N = 50 is the number of independent trials

used to determine E,,,,,. That is, the upturn is only a "l_r" fluctuation.

Systematic errors due to spurious correlations in the random numbers, etc, should reveal

themselves as residual mean errors in calculations where the two effects discussed above are

small. An upper lindt on any systematic errors which may be present in our numerical results

can be inferred from the data in Figures 7 and 8. The histograms depict the distributions in

E,,l for N - 100 identical trials with At/Too, -- 1.0x 10 -3 and two different integration times.

All of the calculations in Fig. 7 and 8 pertain to the case _ = 3 and Td/T 9 - 0.9. In Fig. 7,

where I"o_8 - 6 × 104_'_,,the relativeerrorshave mean value _el = -I x 10-3 and standard

deviation #z - 5 x 10-3. In Fig.8, where _',_g- I × I06_,,' the corresponding statistics

are _,,, - -6 x 10-6 and #B = 1 x 10-3. We conclude from the smallness of i_,,ll/_; that

any systematic errorswhich may he present are much smaller than the statisticalerrors.

The "production calculations"presented inPaper II use a time step of A_" = i x I0-37"_,

and an integrationtime of r,_e -- 6 x 104_co,6. The histogram in Fig. 7 thereforereflects

s The reader may notice that our integrationtime does not warrant such a small time step

(cf.Fig.6). We choose a small time step to allow forthe possibilityof averaging our results

with additionalintegrationsifcomputer time becomes more plentifulin the future.

the distributionof relativeerrorsin our production runs. We conclude that our production

calculationshave a 2_rerrorin (cos2_) of about 2%, which translatesto a 2_rerror in R of

about 6% when R ---0.1. When R _:_0.1,the relativeerror in R isgenerallymuch larger

than 6% because (cos2_) _ 1/3 (cf.eq. [1.1]).This effectisshown in Fig. 9, where the

symbols depict R-values for sphericalgrains determined by numerical integrationand the

solidcurves give the exact analyticsolutionsforcomparison. The rms error in R (not logR)

for allpoints in Fig.9 is1.3% but the point with R - 5 x 10-3 has an error of about 25%.

We could reduce the errorsin very small R valuessomewhat by integratinglongerand with

a smaller time step,but there does not appear to be any incentivefor doing so at present.

The 25% errorin R - 5 x 10-3 isan extreme example which, in any case,has no observable

consequences. For example, the linearpolarizationin far-infraredor subrniUimeter emission

from aligned,oblate spheroids made of astronomical silicates(Draine 1987) would be about
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60R% for an axis ratio b,,/a_ = 2 if we neglected (unrealistically) effects which reduce the

effective degree of alignment, such magnetic field line inhomogeneities along the line of sight.

Even in this optimistic picture, the polarization corresponding to R = 5 x 10 -3 would be

near the limit of detectability (e.g., Hildebrand et al. 1992) and a 25% error in R would be

unobservable in this case.

5 SUMMARY

1. We have demonstrated a new method for obtaining accurate predictions of grain align-

ment theories which uses numerical integration of the Langevin equation. The new

method is easy to implement and superior in several respects to Monte Carlo tech-

niques or the direct solution of the Fokker-Planck equation.

2. We have calculated the Fokker-Planck diffusion coefficients for physical processes rele-

vant to super-paramagnetic grain alignment in molecular clouds, on the ad hoc hypoth-

esis that the grains do not rotate suprathermally. These calculations will be applied

in the next paper of this series to derive observational tests of this hypothesis.

3. We have developed a quantitative theory for the effects of thermal emission and far-

infrared absorption on the alignment of nonspherical, dielectric grains. These processes

generally have a negligible effect on grain alignment in molecular clouds.

4. We have performed benchmark calculations to calibrate the errors in our computational

methods. We have determined the dependence of errors in the Rayleigh reduction factor

on parameters in our numerical integration scheme. Any systematic errors that may

be present in our calculations correspond to spurious predictions of nonzero alignment

which are below the present limits of detectability.
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APPENDIX A

STICKING COLLISIONS ON AN INFINITESIMAL SURFACE

PATCH

We compute the incremental contributions to the mean torque and diffusion tensor

which are caused by sticking collisions onto an infinitesimal surface patch of the grain. The

results of this appendix apply to grains with arbitrary shapes, angular velocities, and gas-

grain drift velocities. (The effects of gas-grain drift are included for reference in future

work.) The incremental contributions are integrated over the surface of an oblate spheroid

in Appendix C to obtain the total diffusion coefficients for sticking collisions.

A.1 Differential Flux of Colliding Molecules

Let v = vth s be the velocity of a molecule in the gas frame (i.e., its thermal velocity),

where s is dimensionless and

vth - (A1)

is the gas thermal speed. If the distribution of thermal velocities is Maxwellian at the gas

temperature, then the mean flux of colliding particles with velocities in the range (s, s+d3s)

is nvth fc(s) d3s, where

- s)-h exp (-s 2) if (s- sp).fi < 0

otherwise

(A2)

and

sp = + s xr)/v,h (A3)

is the total translational plus rotational velocity of the patch in the gas frame in units of vth.

A..2 Incremental Mean Torque

Consider an infinitesimal surface patch of the grain with area dA, unit outward normal

fi, and position vector r relative to the grain CM. When a molecule with velocity Vth s sticks
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to the patch, the grain internal angular momentum increases by

6J(a) = -_,h [,x(s - s_)], (A4)

where nd= v, haa is the CM velocity of the grain in the gas frame. Multiplying expression

(A4) by the mean flux of colliding particles and then integrating over all thermal velocities

gives the patch's contribution to the mean torque due to sticking collisions. Its cartesian

components are

d(AJi),=nv, hdA f _Ji(s) f,(s)d3s, (A5)

where in this and subsequent expressions integrals over s are assumed to be definite integrals

over all of s-space. The integral in eq. (A5) can be evaluated analytically to give

d(AJi)c-nmv_h [a(sp.fi)(t.xfi)i - F(sp._)(rxsa)i] da,

where the functions F and G axe defined below in §A.4.

(A6)

A.3 Incremental Diffusion Tensor

The patch's incremental contribution to the diffusion tensor has cartesian components

d (AJi AJj) _ = n vo, dA f _Ji(s)6Jj(s) fc(s)d3s. (AT)

The integral can be evaluated analytically by straighforward calculation to show that

4

d(AJ, AJjl _ = _ d(AJ, AJj)_ _') , (A8)
k_-I

where

d ( AJi AJj)_ ') _-- ½nrn2v_hF(sp._)_l)dA, (A9)

d(AJi AJi)? ) = nm2v3th [H(sp.fi)- ½F(sv.fi)] Ti_2)dA, (A10)

d(/,J, _J_)_) = - =,_ a(,,._)z,_ _dA, (All)
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and

d (AJi AJj)_ 4) = nm2v3 hF(sp.h )T_ 4)dA. (A12)

The function H is defined below and T(1),..., T (4) are second-rank tensors with components

_i_ I) _- r2 (_ij -- rirj,

T,_2)- (, xh),(, x_)j,

T,_3)- (,x_),(,x.,)i + (,x.,),(,x_)j,

and

_,_')-- (, x.,),(, x._)i,

where 61j is the Kronecker delta symbol.

(A13)

(A14)

(A15)

(A16)

A.4 Special Functions

The function

F(x)- _(1 +erfx)+ _exp(-_2) (A17)

is just the dimensionless particle flux integrated over all thermal velocities for a patch whose

velocity in the.. gas frame has a component x = sp.h along its own outward normal. The

limiting behavior of F for large and small Ix[ is

_-2exp(-x _) x -_ -_

F(z) --. _ + _x' x _ O (A18)

z + _ z-: exp (-x:) z --, +¢¢.

The function

q(x)--_ 1+ (_,x 2 x2v_

is defined in terms of the incomplete gamma function,

1

fo_t _-' exp(-t)dt, (A20'P(a,u) =_ r(_)
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and hasthe limiting forms

The function

G(x)--_

exp (--z 2)

1
-_ + 4=--_. exp (-x2)

H(x)-_z 1+ P(_,x 2

HCz) --_

has the limiting behavior

exp (-x 2)

½x+ _ exp(-x _)

X "-=# _00

x--+O

z ---_ ÷oo.

1 (l÷x2)exp(-z 2)+

2--+ --(DO

z-_O

z _ +oo.

(A21)

(A22)

(A23)
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APPENDIX B

THERMAL EVAPORATION FROM AN INFINITESIMAL SURFACE

PATCH

Here we compute the contribution of an infinitesimal surface patch to the diffusion coef-

ficients for thermal evaporation. The results of this appendix apply to grains with arbitrary

shapes, angular velocities, and gas-grain drift velocities. The total diffusion coefficients for

thermal evaporation from an oblate spheroid are derived in Appendix C by integrating the

results of this appendix over the grain surface.

B.1 Differential Flux of Evaporating Molecules

Let v' = v,_ s' be the velocity of an evaporating molecule in the frame of reference of

the surface patch, where s' is dimensionless and

v_v -_ _ (BI)

is a characteristic thermal speed for evaporation. Consider first the hypothetical situation

where the gas and grain temperatures are equal and the patch is at rest in the gas frame.

In this special case, the principle of detailed balancing requires that every evaporation with

velocity v' should be accompanied, on average, by a sticking collision with velocity -v'. The

velocity distribution of evaporating molecules is therefore proportional to

2

,'.fi exp [-(s') 2] if s'.fi > 0

f.,,(°')= (B2)

0 otherwise,

which is equal, apart from a normalization factor discussed below, to the flux of sticking

collisions, eq. (A2), with s' = -s and the patch velocity, s_, set to zero. Although it was

derived assuming that Td = T 9, expression (B2) is correct for all Td and Tg because the evap-

oration spectrum is obviously independent of the gas temperature. We will also assume that

expression (B2) is correct for a rotating surface patch. The neglect of any possible dynamical

coupling between grain rotation and evaporation should be an excellent approximation for

grains rotating at thermal angular velocities, because the centrifugal potential of a molecule
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rotating along with the grain surface is only of order (m/Ma) kTo. We have defined f_ to

be normalized so that

/ .f_(g) _d -- 1, (S3)

where in thisand subsequent expressionsit isassumed that integrationover d means in-

tegration over allof g-space. The differentialflux is therefore_ f,_(g), where _ is the

mean number of evaporations cm -_ s-l integrated over all d. Ifthe evaporation rate is

independent ofpositionon the grain surface,which isthe case of interestin thispaper where

suprathermal rotation is not considered, then _ is set by the requirement that the total

collisionand evaporation rates integratedover the surfacemust balance. Thus

7b -- nvth f F(sp.fi) dA
S ' (B4)

where vth is the gas thermal speed, S is the total grain surface area, the integral is over the

grain surface, and the function F(sp.fi) is defined in Appendix A.

B.2 Incremental Mean Torque

A molecule which evaporates with dimensionless velocity s' relativeto the rotating,

driftinggrain surface has a (dimensional) velocity

v = v_.s' + _xr (BS)

relative to the grain CM and its departure changes the grain internal angular momentum by

= -,, { (, x,') + rx (sTxr) }. (B6)

The incremental mean torque due to evaporation from a single surface patch therefore has

cartesiancomponents

d(AJi)_,, = _dA f 6J,(8') f.,,(s')ds'. (B7)

Straightforward evaluation of the integral above shows that

d(AJ,)_,--m_, --_-v_(l'Xfi), + (T0).a); dA, (B8)

where (T0)°/7) denotes the scalar product of 17 with the second-rank tensor TO) (cf.Ap-

pendix A).
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B.3 Incremental Diffusion Tensor

The patch's incremental contribution to the diffusion tensor has cartesian components

d (A J, AJj),_ = _ dA f _SJ,(s')_SJ3(s') f_.(s') ds'. (B9)

When the integration over s _ is performed, the cartesian components are found to be

3

d (AJ, AJj),_ = _ d (Agi AJi)_k_ ) , (B10)
k=l

where

1 22 _. (Bll)

and

dA, (B12)

(B13)
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APPENDIX C

DIFFUSION COEFFICIENTS FOR STICKING COLLISIONS AND

EVAPORATION FROM/iN OBLATE SPHEROID

C.1 Oblate Spheroidal Coordinates

Here we compute the diffusion coefficients for sticking collisions and thermal evaporation

by integrating the incremental diffusion coefficients from Appendixes A-B over the surface

of an oblate spheroid. In the present paper we will assume that the grain center of mass

is at rest in the gas frame (rd = 0) and that the grain is rotating about its symmetry axis

due to the effects of internal dissipation. The surface integrals are easy to evaluate if one

specifies the position of a surface element by its oblate spheroidal coordinates, (y, _), where

rl E [-7/2, 7/2] and _ E [0, 27] (see, e.g., Arfken 1970). Thus the vector r(rl,_) from the

grain CM to the mantle surface at (rl, _) has body-frame coordinates

The length of r. is

Zb(y,_) = b_ cosy cos

yb('/, _) = b,_ cos 77sin

zb('/,_) = a., sin,7.

r('/,() = b_ [cos2'/ + (1-e_)sin2'/] 1/_,

the unit outward normal to the surface at r has body-frame coordinates

_b(r/._) - [sin2r/+(1-e_)cos2'/]-'/2

_(y._) = [sin', + (1- _)co_'/] -'/_

_.*.(y._)= [sin_ + (1- _)cos_'/]-'/_

(1 - e_) _/2 cos,/cos¢

(1 - e_) 1/2 cosy sin_

sin 7,

and the differential element of surface area is

dA(y,_) = e,.,, b_ r/(1 e 2 )

t

(c1)

(c2)

(c3)

(C4)
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C.2 Sticking Collisions

C.2.1 Mean Torque

The mean torque is obtained by using expressions (C1)-(C4) to write the incremental

diffusion tensor of a surface patch, eq. (A6), as a function of its oblate spheroidal coordinates

and then integrating over r/and _. First we note that sp.fi = 0 everywhere on the mantle

surface because vd = 0 and the grain is a surface of revolution which is rotating about its

symmetry axis. Noting also that the second term in (A6) vanishes when vd = 0, and that

G(sff_) = G(0) = -1/4 is just a constant, we see that the mean torque due to collisions has

cartesian, body-frame components

1
rnv_, /(rXfi)_ dA. (C5)

The integral above vanishes for any surface of revolution. We conclude in agreement with

PST1 that the mean torque due to sticking collisions is zero,

=o, (c6)
for any surface of revolution which is rotating about its symmetry axis.

C._.2 Diffusion Tensor

To integrate expression (A8) over the grain surface, we first make use of the fact that

sd = 0 and s_.h = 0 as noted above, from which it follows that two of the tensors in (A8)

vanish,

and also that the functions

and

T TM= 7 -(4) = 0, (C7)

1

F(s,.,_)- 2v"_ (C8)

are just constants.

components given by the surface integral

1 m2 ,.,-(2,_,), _)} dA(_, _).<AJ_ AJ_>= : _ n v;h / {T/_"b)(r/,#)+ 'ij (r/,

1

H(s,.h) = 2v/¥ (C9)

The diffusion tensor for sticking collisions therefore has body-frame

(c10)
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The integralscan be evaluated analyticallyfor each / and j by firstwriting out the tensor

components as functionsof (7/,_) using eq. (C1) and (C3). Straightforward calculationshows

_.._(_:,__#_)0i,di_go_,withcompo°_n_

<(aJi})'>o= _-_-.,.'b;o,_r,,(,..) (Cll)

and

((z_Ji))= _m2b_,_hr±(e.), (C12)

where the subscripts "ll" and ".L," respectively, denote body frame axes parallel and normal

to the symmetry axis. The shape dependence of the diffusion tensor is expressed in the

functions

r,l(e_ ) =_ 3 ( 3+4(1- e_)g(e..)- e;, 2 [1- (1 - e_)2g(e._)]}, (G13)

and

r±(e.) = {, -e_ + (1 -e'_),(,_)+ (1 - 2e_)[1 + e;,2 [1-(a -e_)',(e.)]]},

(Ca4)

where

9(e_) - _ln . (C15)
2e,,, - em

C.3 Thermal Evaporation

G.3.1 Mean Torque

The integrationof the incremental mean torque over the mantle surfaceissimplifiedby

noting that, because sp.Ct- 0 everywhere on the surface,the mean evaporation fluxisjust

B_th

,i, = 2--_ (c_6)

The firstterm in eq. (B8) vanishes when integratedover the mantle surfaceas noted above.

Integrationof the remaining term shows that

(_J;). - o
4 z" 4(AJ_)_, = -_nmv, hb_ru(e..)ft,

(c17)
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where we used the fact that f/= f_,_ due to the effects of internal dissipation. Thus

(AJ),_ = -J/tg_,, (c18)

where the gas damping time is defined to be

t_, =_ 4if'; nmvthb_rll(e,_)
(C19)

and we have dropped the superscript %" in eq. (C18) because it is written in a form which

is valid in any coordinate system.

C.3.2 Diffusion Tensor

Our assumption that the grain rotational energy is of order kTg implies that magnitudes

of expressions (Bll), (B12), and (B13) are in the approximate ratio I:V/"_/Md:m/M_. Thus

the diffusion tensor for evaporation is approximately

1

<AJ/bAJ_>_ = --ff--_nm2vthv,_ / (T/_'"'(r/,_)+ T/_2")(r/,_)} da(,7,_), (C20)

where, in neglecting the contributions due to expressions (B12) and (B13), we have intro-

duced a relative error which is typically of order 10 -4 for large grains with b,_ > 0.1 #m.

Comparing eq. (C20) with eq. (C10), we see that the diffusion tensors for collisions and

evaporation are related by

Tg

This result also could have been deduced from the principle of detailed balance (see, e.g.,

JS67), i.e. without performing the integration in eq. (C20). We derived expression (C21)

directly as a check on the complicated series of calculations which yielded the diffusion tensor

for collisions.
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Table 1

Time Scales for an Oblate Spheroidal Grain _

Symbol Definition Value

trot

tlar

tbar

tga#

Grain Rotation Period

Larmor Precession Period

Barnett Relaxation Time

Gas Damping Time

_,,-1/2 1/2 b2 _1/26.3 × 10 -s "/g,1 am,-5 m,-$ vz,

3.Tx -1 0..

3.3 x 10_' K-?13T_,_a,,_,-s b6,,,,-s 0,,2 h-'(h - 1) -1

T-1126.2 x 109 n_ 1 _,1 a,,,,-5 O,,

_Time scales in seconds for an oblate, spheroidal, core-mantle grain rotating about its sym-

metry axis with kinetic energy kTg/2. The notation "B-5" means B/10 -s G and similarly

for other quantities in Gaussian cgs units. Core and mantle densities are assumed to be

pc = 2.5 g cm -3 and p,,, = pJ3. Magnetic properties X' and K are volume averages over

core plus mantle and are scaled appropriately for ordinary (non-superparamagnetic) sub-

stances. For super-paramagnetic grains, tt_, and tbo, should be reduced by a factor < 10 s.
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FIGURE CAPTIONS

Fig. 1 -- Relationship betwee the basis vectors (_,0,_) of the gas frame and (%b,_b,_b) of

the body frame. The transformation of vectors and tensors between the two frames depends

on the Eulerian angles, 3, _b, and _.

Fig. 2 -- Eccentricity factors, F± and Fii, defined by eq. (3.34)-(3.35), plotted vs. the mantle

eccentricity. The efficiency of grain alignment by collisions, evaporation, plus paramagnetic

absorption (§4) depends on grain shape only via the ratio V±/FII, which is also plotted.

Fig. 3 -- Photoabsorption damping time, eq. (3.58), for silicate grains immersed in a thermal

radiation bath with temperature T,_,d. For simplicity we consider bare silicate grains with

density Pc = 2.5 gcm -3 and axis ratios of 1:1 (solid), 2:1 (long dash), and 5:1 (short dash).

In each case we consider three radii, b_ = 0.02, 0.1, and 0.5/Jm. The largest and smallest

damping time for each axis ratio correspond, respectively to the largest and smallest radius.

Fig. 4 -- Similar to Fig. 3, but the quantity plotted is the photoemission damping time,

eq. (3.67).

Fig. 5- Symbols: Root-mean-square value of the relative errors in (cos 2 3) obtained from

50 identical trial calculations for spherical grains. E,,,,, is plotted as a function of r_,,g/rco,.,

the averaging time in units of the correlation time. All calculations pertain to spheres with

Ta/Tg = 0.5, 6 = 1 and used a dimensionless time step of Ar/_'co, = 1 x 10 -3. Solid curve:

Least squares fit of a straight line to the symbols. The line has slope -0.47.

Fig. 6 -- Similar to Fig. 5, but E,_° is plotted as a function of the integration step size in

units of the correlation time. All other parameters have values as in Fig. 5, except that the

averaging time is 5 x 10%'_,.

Fig. 7 -- Histogram: Distribution of the relativeerrors in (cos23) for 100 trialswith

A_'/7"_, = I x 10-3 and %_8/I"co,= 6 x 104. All calculationspertain to spheres with
\

51



Td/T 9 = 0.9 and _ = 3. The plotted error distributionhas mean value E,_o = -1.1 x 10-3

and standard deviation o'E -- 5.1 x 10-3. Dashed curve: Gaussian distributionwith zero

mean, standaxd deviation equal to as, and normalization chosen to have the saxne area as

the histogram.

Fig. 8 -- Similar to Fig. 7, but the averaging time for each trial is r,,_9/rco, = 1 x l0 s.

The error distribution indicated by the histogram has mean value _,_, = -5.8 x 10 -6 and

standard deviation cr_ --- 1.3 x 10 -3.

Fig. 0 -- Rayleigh reduction factor for spherical grains plotted vs. 6. Symbols: Numerical

results obtained by integrating the Langevin equation with Ar/rco, = i x 10 -3 and r_g/r_o_ =

5 x 104. Solid curves: Exact solution for spheres obtained from eq. (4.14). The root-mean

square relativeerrorinthe numerical valuesof R (not logR) is1.3%. Notice that the relative

errorsare largerfor small R-values because (cos2/_)--,1/3 as R ---*0 (cf.eq. [1.1]).
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