@ https://ntrs.nasa.gov/search.jsp?R=19930010868 2020-03-17T08:19:52+00:00Z

e T /50 3 /7

N—ASA Techmcal Memorandum 105985 o
— -~ AIAA-93-0653 . . T7 f . ./

o "::_-_---_—_—M Ehtesham Hayder and Eli Turkel o
- Institute for Computatzonal Mechamcs m Propuisron o
o= Lewis Research Center~ =~ """ T T
o 'Cleveland Ohlo T T T T

5 4

7édd' (NASA-TM-105985) NUMERICAL N93-20057
G o . STMULATION OF A HIGH MACH NUMBER
JET FLOW (NASA) 17 p

~——--—Lewis Research Center
Cleveland, Ohio == _ - G3/34 0150317

i

o Prepared for the 3lst Acrospace Sciences Meeting and Exhibit i o
~ " ‘sponsored by the American Institute of Aeronautics and Astronautics ) .

Reno, Nevada, January 11-14, 1993

o o e - Cese Western
- [ R “”ON‘UHW"'RY







Numerical Simulations of a High Mach Number Jet Flow
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Abstract
Two dimensional simulations of plane and ax-
isymmetric jets are presented. These simula-
tions were made by solving full Navier-Stokes
eqautions using a high order finite difference
scheme. Simulation results are in good agree-
ment with the linear theory predictions of the

growth of instability waves.

1. Introduction

The recent efforts to develop accurate nu-
merical schemes for transition and turbulent
flows are motivated, among other factors, by
the need for accurate prediction of flow noise.
The success of developing high speed civil trans-
port plane (HSCT) is contingent upon our un-
derstanding and suppression of the jet exhaust
noise. The radiated sound can be directly
obtained by solving the full (time-dependent)
compressible Navier-Stokes equations. How-
ever, this requires computational storage that
is beyond currently available machines. This
difficulty can be overcome by limiting the solu-
tion domain to the near field where the jet is
nonlinear and then use acoustic analogy [e.g.,
Lighthill!] to relate the far-field noise to the
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near-field sources. The later requires obtaining
the time-dependent flow field.

The other difficulty in aeroacoustics compu-
tations is that at high Reynolds numbers the
turbulent flow has a large range of scales. Di-
rect numerical simulations (DNS) cannot ob-
tain all the scales of motion at high Reynolds
number of technological interest. However,
it is believed that the large scale structure
is more efficient than the small-scale struc-
ture in radiating noise [see, e.g., Bishop et.
al?, Crington3, Goldstein*, Hussain®®, Kibens’,
Liu®®, Mankbadi and Liu!®, Mankbadill13,
Mollo-Christensen!®, and Zaman'4!%]. Thus,
one can model the small scales and calculate
the acoustically active scales. The large scale
structure in the noise-producing initial region of
the jet can be viewed as a wavelike nature, the
net radiated sound is the net cancellation after
integration over space. As such, aeroacoustics
computations are highly sensitive to errors in -
computing the sound sources. It is therefore es-
sential to use a high-order numerical scheme to
predict the flow field.

The present paper presents the first step in a
ongoing effort to predict jet noise. The empha-
sis here is in accurate prediction of the unsteady
flow field. We solve the full time-dependent
Navier-Stokes equations by a high order finite
difference method. Time accurate spatial simu-
lations of both plane and axisymmetric jet are
presented. Jet Mach numbers of 1.5 and 2.1
are considered. Reynolds number in the sim-
ulations was about a million. Our numerical
model is based on the 2-4 scheme by Gottlieb
& Turkel'®17, Bayliss et al.!® applied the 2-4
scheme in boundary layer computations. This



scheme was also used by Ragab and Sheen!® to
study the nonlinear development of supersonic
instability waves in a mixing layer.

In this study, we present two dimensional di-
rect simulation results for both plane and ax-
isymmetric jets. These results are compared
with linear theory predictions. These computa-
tions were made for near nozzle exit region and
velocity in spanwise/azimuthal direction was as-
sumed to be zero. Computational domain of the
present study is shown in Figure 1.

2. Governing Equations

The flow field of the technologically impor-
tant high-Reynolds-number compressible jet is
governed by the compressible Navier-Stokes
equations, which can be written as

Lg =20 (1)
Where L is a three-dimensional operator and Q
is the solution vector. Here we present the two
dimensional form of the operator L pertaining
to our formulations in the polar coordinates.
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F and G are the fluxes in x and r directions
respectively, and S is the source term that arises
in the cylindrical polar coordinates, and 7;; are
shear stresses.

3. Numerical Scheme

3.1 Discretization

For problems in computational acoustics one
needs to use high order (at least fourth or-
der) schemes. Hence, in this study, Gottlieb
and Turkel’s extension!®!? of MacCormack’s
scheme is used. The extension is fourth-order
accurate in space and second order accurate in
time and is known as the 2-4 scheme. For three
dimensional computations, operator L in equa-
tion (1) is split into three one-dimensional op-
erators and the 2-4 scheme is applied to each of
the three operators as

Predictor step

. . At
Qi =Qr + g‘&;{“ w1 — K-
(Fiiq — Fiy)} + AtS; (8)

Corrector step

QP = 21Qu+ QF + g {T(FY = Fy)

B}

—(FLy = FL,)} + AtS] (9)

This scheme becomes fourth-order accurate
in the spatial derivatives when alternated with
symmetric variants. We define L, as an one
dimensional 2-4 scheme operator with forward
difference in the predictor and backward differ-
ence in corrector. Its symmetric variant L, uses
backward difference in predictor and forward
difference in the corrector.

For two dimensional computations, one di-
mensional sweeps are arranged with alternate
symmetric variants as

Q**t! = L. L,, Q" (10.1)

Q"*? = L[y, L, Q™! (10.2)

Our scheme has a truncation error of the

form O(At((Az)* + (At)? + (At)(Az)?)). For

At = O((Az)?) as Az — 0, this scheme be-
comes fourth order accurate.

3.2 Boundary Conditions

The 2-4 scheme uses one sided differences of
the fluxes. For a computational domain extend-
ing from i=1 to m, fluxes are needed at m+1,



m+2, -2, -1 in addition to the interior points.
The fluxes at points outside the computational
domain are estimated using cubic extrapolation
from the interior, i.e.,

Fm+1 = 4Fm —GFm_l +4Fm_3 - Fm-—3 (111)
Frtr = 4F 41 —6F, +4F,, 1 — Fno2 (11.2)

At the centerline, a new set of equations
are derived from the original equations using
L’Hospitals rule to circumvent numerical prob-
lems associated with geometric singularity in
the formulation.

Physical boundary conditions for the com-
putations are derived using linearized charac-
teristics. For supersonic flows, all character-
istics travel in ‘the flow direction. At inflow
all variables are given. For outflow, the vari-
ables are calculated applying the 2-4 scheme at
the boundary. Extrapolations of variables out-
side the domain are done using equation (11).
We stress that extrapolation of fluxes to artifi-
cial points is identical to using one sided differ-
ences. The extrapolation is used for program-
ming convenience only. For subsonic flows, one
characteristic variable propagates against the
flow direction while the rest follow the flow di-
rection. For inflow, three characteristic vari-
ables are specified and the other one is extrap-
olated from interior. We formulated our out-
flow boundary conditions following the results
of Bayliss and Turkel?°. In particular, we solve
equation (12) to predict the flow variable at the
boundaries.

Pi—pcug =1 (12.1)
Pi+pcu =¥, (12.2)
P—cpi=7 (12.3)

Y =74 (12.4)

The derivatives of P,u,v,p -are then con-
verted to derivatives of the conservative vari-
ables. The right hand side of the above equa-
tions are calculated from the solution obtained
by applying the 2-4 scheme at the boundaries.
If the flow at a point at the outflow boundary
is subsonic, 4; is set to zero. If the flow at the
boundary is supersonic, the value of v, is kept

unchanged. Equation (12) is then solved to get
corrected temporal derivatives at the bound-
ary. Thus, for supersonic flow (12} is equiva-
lent to using the PDE at the outflow with one
sided differences. For subsonic flow a nonre-
flecting boundary condition is used. In a fu-
ture paper several nonreflecting boundary con-
ditions will be compared. These all are in-
cluded in generalizations of (12.1). We ob-
tained the present form of (12.1) by simplifying
the Bayliss-Turkel formulation?® and neglecting
spatial detivatives. Flow at the top boundary
is always subsonic and a similar characteristic
boundary condition is applied.

4. Results

In this study, our primary goal is to simu-
late aerodynamic noise associated with a super-
sonic jet flowing into a subsonic free stream. In
the short term, we are interested in comput-
ing growth rates of the disturbances imposed at
the inflow. These computations are done in two
stages, (a) first a mean (steady) state of the
field with steady inflow condition is obtained
and then (b) transient behavior of the flow with
periodic excitations at the inflow is calculated.

" For the mean state calculations, we start with
an initial field which is homogeneous in the axial
direction. The initial axial velocity is specified
as

() = 311+ uan) = (1 vco)

tanh(a(y — w) (13)

and corresponding temperature is specified by
the Busemann-Crocco integral of energy equa-
tion as

T(y) = Too + (To = Too) (8 = te0)/(1 = )

+.5(y - )M} (1 —a) (i — ue)  (14)

The parameter “a” in the equation (13) deter-
mines the sharpness of the velocity profile. The
axial velocity is normalized by its initial value
at the center of the jet. At location y; at the
inflow plane, axial velocity is the average of the
jet center and free stream value. Throughout
the whole simulation, variables at the boundary,
including those at the inflow are updated using
characteristics boundary condition described in
§ 3.2. We assume Prandlt number to be 1, and



the kinematic viscosity is calculated using Sur-
therland law. The initial static pressure is as-
sumed uniform across the field and density is
calculated from the equation of the state. Ini-
tial radial/transverse velocity in the field is set
to be zero.

Once the steady state of the field is reached,
a time varying disturbance is applied at the in-
flow. In our present study, only the axial veloc-
ity is perturbed. It is done by prescribing the
axial velocity at the inflow as

u{y, 1) = &(y)(1 + € sin(wt)) (14)

Other variables at the inflow are kept at their
steady state values. Depending on the value
of the forcing frequency (w), input disturbance
undergoes either amplification or decay. For an
amplifying disturbance, the initially growth is
linear. However, as the amplitude of the distur-
bance grow, the process becomes nonlinear and
disturbances with other frequencies appear in
the field. Smaller values of ¢ delays the appear-
ance of nonlinear effects downstream. Corre-
sponding to a forcing frequency (w) of the input
disturbances, there are some disturbance eigen-
functions (®,) of the flow variables. Distur-
bances with shapes of the eigenfunction exhibit
dominant growth. The shape of the disturbance
as given in equation (14), is different from those

of the eigenfunctions. With our choice of input

disturbance, we left the simulation to generate
the correct mode shape of the instability eigen-
functions. Study of instability mode growth
with input disturbances as eigenfunction shapes
in all the variables are in progress. In the follow-
ing we present simulation results in this study.

4.1 Plane Jet

A case of a coflowing plane jet is considered
first. The jet Mach number, based on axial
velocity at the center of jet was 1.5, velocity
ratio (uo/ug) and temperature ratio (T /7o)
were .74 and 2 respectively. This combination
made Mach number at the free stream about
the half of the jet Mach number. Parameter
“a” {equation (13)] in the initial axial velocity
profile was 4. The computational domain ex-
tended 50 jet thickness in the downstiream direc-
tion and 2.5 jet thickness in the transverse direc-
tion. We used 600 mesh points in axial and 60
mesh points in transverse direction. The mesh
was uniform in axial and stretched in transverse
direction. Reynolds number based on the jet

thickness and the inlet axial velocity was 1.27
million.

4.1.1 steady state simulation

Parameters for our simulation were chosen
to given very small spreading of the jet. This
condition is ideal for comparison of the simula-
tion results with weakly nonparallel linear the-
ory. Profiles of axial velocities at three down-
stream locations are shown in Figure 2. These
velocities were computed after the steady state
was reached. Differences in these profiles are
insignificant. Contour plots of steady state vor-
ticity and axial velocity for the whole domain is
shown in Figure 3. The y axis in these figure is
magnified to show the the whole domain. The
flow remains virtually parallel and spreading of
the jet or any tread towards the formation of
the potential core is not noticeable. If the flow
is not well resolved, numerical (truncation) er-
rors inject disturbances in the flow and that in
turn could give rise to different flow structures
in the solution. OQur choice of grid results in
well resolved flow for the present study. Small
linear growth of both momentum and vortic-
ity thicknesses was observed in the steady state
flow field. Vorticity thickness as defined by

§, = (Uo - Uw)/(du/dy)maz

varied between .5 and .505. Also, momentum
thickness defined as

_ [ #llUs — U)(U = Ua)
5m = / O(UO — Uw)z dy

varied between .086 and .087. Once the steady
state solution is established, we concentrate on
the unsteady state simulation.

4.1.1 Time dependent simulation

Now we shall discuss results of a time de-
pendent simulation with periodic disturbance
for w = x/5 and ¢ = .001. Contour plots of
vorticity and axial velocity are shown in Fig-
ure 4. Input disturbance grows spatially and
causes vorticities to form. These structures be-
comes prominent downstream. Near the out-
flow, the input disturbance reached its maxi-
mum strength and made the flow to oscillate.
Care should be taken in boundary treatment,
since numerical reflections at the boundary also
contribute to such oscillations.

Figure 5 shows mean axial velocities at three
downstream locations. These were obtained by

«



computing the zeroth Fourier mode of the un-
steady axial velocity. As expected, mean axial
velocity remained at their steady state values.
After long time, the flow field became spatially
nonhomogeneous but time periodic about its
steady state. Since the shape of the inflow per-
turbation did not correspond to any eigenfunc-
tion of instability wave, the flow underwent an
adjustment region where the simulation picked
up the correct mode shape of instability waves
downstream. In Figure 6 the mode shape of
the eigenfunction ($) corresponding to the forc-
ing frequency (w) at two downstream locations
are compared with the linear theory prediction.
Mode shapes form the direct numerical simula-
tions are obtained by taking Fourier transform
in time. As expected, DNS prediction of these
shapes improved as the flow moved away from
the inlet region. There is, however, a small
phase shift between the DNS prediction and the
linear theory predictions. In Figure 7, we ex-
amine the growth of the instability mode ($.)
corresponding to the forcing frequency, whose
shape is given in Figure 6. For the DNS, growth
rate is calculated along y=y; line. At this verti-
cal location, the shear in the mean axial velocity
profile is the highest. There is a good agreement
between the simulation and the linear theory.
DNS predictions differ from the linear theory
predictions near outflow. This may be due to
excitation of instability waves at other frequen-
cies or non-linear effects in the flow. Growth

rate (-oy) predicted by both the linear theory.

and DNS at X =50 is .054. As the distur-
bances grow spatially downstream, non-linear
effects excited other instability modes. Two
such modes for the simulation are shown in Fig-
ure 8. For our simulation, any such mode was
significant only near the outflow boundary.’

Simulations were also performed for Jet Mach
number 2.1 and higher velocity ratios. Com-
parisons of one such simulation results with the
linear theory are shown in Figures 9 & 10. Ve-
locity and temperature ratios were .2 and 1 1e-
spectively. Parameter “a” in the initial axial
velocity profile was 6. Computational domain
extended 35 jet thickness downstream and 2.5
jet thickness in the transverse direction. Mesh
size in the axial and the transverse directions
were 400 and 150, and stretching was used in
both directions. For the unsteady calculations,
we used w = x/8 and ¢ = 105,

4.1 Axisymmetric Jet

Results of the axisymmetric jet simulations
aré similar to those in the plane jet case. Here
we present results of an axisymmetric jet simu-
lation with Mach number 1.5 in the jet, veloc-
ity ratio (ug/uo) = .75 and temperature ratio
(Tww/To) = 2. “a” in the axial velocity pro-
file equation was 4. The computation domain
extended 100 radii downstream and 5 radii in
radial direction. 400 grid points were used in
axial and 100 grid points were used in radial di-
tection. The grid spacing was uniform in axial
and stretched in radial direction. The Reynolds
number of this flow was the same as in plane jet
case. :

4.1.1 steady state simulation

Contour plot of the vorticity for the steady
state simulation is shown in Figure 11. The
Y (radial) axis in these figures is magnified to
show the whole computational domain. As in
the case of plane jet, in steady state simulation,
the flow remained virtually parallel.

4.1.1 Time dependent simulation

A time dependent simulation with w = x/4
and € = .005 was made to study the growth of
disturbance mode. Contour plots of vorticity
and axial velocity of the time dependent field
are shown in Figure 12. These plots show spa-
tial growth of oscillatory flow structures caused
by instability modes. Growth of disturbance
corresponding to the forcing mode is compared
with the linear theory predictions in Figure 13.
Agreement between the linear theory and DNS
predictions are similar to those in plane jet case.
Small discrepancy between linear theory and
DNS near inlet is likely due to the fact that
the flow underwent an adjustment region, be-
cause the input disturbance did not have correct
shape of an instability eigenfunction. Discrep-
.ancy near outflow region are likely because of
the similar reasons as in plane jet case. Growth
rate (-a;) predicted by both the linear theory
and DNS at X =501is .035. Comparison of mode
shape as predicted by the linear theory and DNS
simulations at 50 radii downstream is given in
Figure 14. Except close to the center of the jet,
DNS prediction of the mode shape is in good
agreement with the linear theory. Excitation of
two modes due to nonlinear effects are shown in
Figure 15. DNS r1esults in Figures 14 & 15 are
obtained exactly as their counterparts in plane
jet simulations.



5. Conclusions

In this study, we have presented a set of
Navier Stokes simulations for both two dimen-
sional plane and axisymmetric jets. Parame-
ters were so chosen to give almost parallel mean
flow. This enabled us to compare our results
with weakly nonparallel linear theory. Agree-
ment with the linear theory are quite good. We
imposed time periodic disturbances which did
not correspond to the instability eigenfunction
shape. Nevertheless, the simulation was able to
generate the correct mode shape after an adjust-
ment region (~ 10 diameters) and comparison
with linear theory afterward is good.

The boundary condition is very important
for jet simulation. We formulated the outflow
boundary condition by simplifying the Bayliss-
Turkel?® nonreflecting boundary condition. Ef-
forts to improve the outflow boundary condition
are in progress.

Acknowledgements

The linear stability -theory results were ob-
tained using a code developed by Dr. Lennart
S. Hultgen. We gratefully acknowledge his help
using the code.

References

1Lighthill, M. J., (1952), “On Sound Gener-
ated Aerodynamically, Part I, General Theory”,
Proc. Roy. Soc. London, Vol 211, pp 564-587.

?Bishop, K. A., Ffowcs-Williams, J. E., and
Smith, W. (1971), “On the Noise source of Un-
suppressed High Speed Jet”, J. Fluid Mech, Vol
50, pp 21-31.

3Crighton, D.G. (1981). “Acoustics as a
Branch of Fluid Mechanics”, J. Fluid Mech, Vol
106, pp 261-298.

4Goldstein, M.E. (1984) “The Aeroacoustics
of Turbulent Shear Flows”, Annual Review of
Flyid Mechanics.

SHussain, A. K. M. F., (1983), “Coherent
Structures - Reality and Myth”, Physics of Flu-
ids, Vol 26, pp 2816-28.

®Hussain, A. K. M. F., (1986), “Coherent

Structures and Turbulence”, J. Fluid Mech., vol
173, pp 303-356.

7Kibens, V., (1980), “Discrete Noise Spec-
trum Generated by an Acoustically Excited
Jet™, ATAA J., Vol 18, pp434-441.

8Liu. J.T.C., (1971), “Nonlinear Develop-
ment of an Instability Wave in a Turbulent
Wake”, Phys of Fluids, Vol 14, pp 2251-2257.

9Liu, J.T.C., (1974), “Developing Large-
Scale Wavelike Eddied and the Near Jet Noise
Field”, J. Fluid Mech., Vol 62, pp 437-464.

1Mollo-Christensen, E., (1967),”Jet Noise
and Shear Flow Instability Seen from an Exper-
imental Viewpoint”, J. Appl. Mech., Vol 89, pp
1-7.

11Zaman, K. B. M. Q., (1985), “Far-Field
Noise of a Subsonic Jet Under Controlled Exci-
tation”, J. Fluid Mechanics, Vol 152, pp83-112.

13Zaman, K. B. M. Q., (1986), “Flow Field
and Near and Far Sound Field of a Subsonic
Jet”, J. Sound and Vibration, Vol 106, pp 1-6.

" 13Mankbadi, R. R. and Liu J.T.C, (1984),
“Sound generated Aerodynamically Revisited:
Large-scale Structures in a Turbulent Jet as a
Source of Sound”, Phi Trans Roy Soc London,
A, Vol 311, pp 183-217.

14Mankbadi, R. R., (1990}, “ The Self Noise
from Ordered Structures in a Low Mach Num-
ber Jet”, J Appl Mech Vol 57, pp 241-246.

1Mankbadi, R. R. (1992), “Dynamics and
Control of Coherent Structure in Turbulent
Jets”, Appl Mech Rev, Vol 45, No 6, pp 219-

248.

18Gottlieb, D. and Turkel, E. (1976), “Dissi-
pative Two-Four Methods for Time Dependent
Problems”, Math. Comp, Vol 30, pp 703-723.

17Bayliss, A., Paresh, P., Mastrello, L., and
Turkel, E., (1985), “A Fourth-order Scheme
for Unsteady Compressible Navier-Stokes Equa-
tions”, ICASE report 85-44.

18Bayliss, A., Maestrello, L. A., Parikh, P.
and Turkel, E. (1986), “Numerical Simulation of
Boundary Layer Excitation by Surface Heating
and Cooling”, AJAA J., Vol 24, pp 1095-1101.

19Ragab, S. A. and Sheen, S. (1992), “The
Nonlinear Development of Supersonic Instabil-
ity Waves in a Mixing Layer”, Phys. Fluids A
Vol 4(3),pp 553-566.

30Bayliss, A. and Turkel, E., (1982), “Far
Field Boundary Condition for Compressible

Flows”, Journal of computational Physics, Vol
48, pp 182-199.



at

Axidl Velocity in Steady State Simulation

Nozzle

Nonreflecting (ocharacteriatic) boundary

Subsonioc flow

Supersonic flow |

1.00 ==y

Fig 1: Computational Domain

% |
i === X =25 7
— X =50
i~ G —© X =75
i Bmareas = o =
0.0 1.0 2.0 3.0 4.0

Transverse location (YY)

Figure 2: Axial velocity profile in Plane Jet

Outfiow (characteristic) boundary



Vorticity Funcrion for Steady Plane Jer

Axial Momentum for Steudy Plane Jet

Figure 3: Contour Plots for Steady Plane Jet
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Figure 4: Contour Plots for Unsteady Plane Jet
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