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Abstract

Two dimensional simulations of plane and ax-

isymmetric jets are presented. These simula-

tions were made by solving full Navier-Stokes

eqautions using a high order finite difference

scheme. Simulation results are in good agree-

ment with the linear theory predictions of the
growth of instability waves.

1. Introduction

The recent efforts to develop accurate nu-
merical schemes for transition and turbulent

flows are motivated, among other factors, by

the need for accurate prediction of flow noise.

The success of developing high speed civil trans-

port plane (HSCT) is contingent upon our un-

derstanding and suppression of the jet exhaust

noise. The radiated sound can be directly

obtained by solving the full (time-dependent)
compressible Navier-Stokes equations. How-

ever, this requires computational storage that

is beyond currently available machines. This

difficulty can be overcome by limiting the solu-

tion domain to the near field where the jet is

nonlinear and then use acoustic analogy [e.g.,

Lighthill 1 ] to relate the far-field noise to the
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near-field sources. The later requires obtaining

the time-dependent flow field.

The other difficulty in aeroacoustics compu-

tations is that at high Reynolds numbers the

turbulent flow has a large range of scales. Di-

rect numerical simulations (DNS) cannot ob-
tain all the scales of motion at high Reynolds

number of technological interest. However,

it is believed that the large scale structure
is more efficient than the smail-scale struc-

ture in radiating noise [see, e.g., Bishop et.

al 2 , Crington s, Goldstein 4 , Hussain s,e, Kibens 7 '

Liu s,9, Mankbadi and Liu l°, MankbvAi TM,

MoUo-Christensen ts, and Zaman14,ts]. Thus,
one can model the small scales and calculate

the acoustically active scales. The large scale

structure in the noise-producing initial region of

the jet can be viewed as a wavelike nature, the
net radiated sound is the net cancellation after

integration over space. As such, aeroacoustics

computations are highly sensitive to errors in -

computing the sound sources. It is therefore es-

sential to use a high-order numerical scheme to

predict the flow field.

The present paper presents the first step in a
ongoing effort to predict jet noise. The empha-

sis here is in accurate prediction of the unsteady

flow field. We solve the full time-dependent

Navier-Stokes equations by a high order finite

difference method. Time accurate spatial simu-

lations of both plane and axisymmetric jet are

presented. Jet Mach numbers of 1.5 and 2.1

are considered. Reynolds number in the sim-
ulations was about a million. Our numerical

model is based on the 2-4 scheme by Gottlieb

& Turkel tS,t_. Bayliss et al.ts applied the 2-4

scheme in boundary layer computations. This



schemewasalso used by Ragab and Sheen t9 to

study the nonlinear development of supersonic

instability waves in a mixing layer.

In this study, we present two dimensional di-
rect simulation results for both plane and ax-

isymmetric jets. These results are compared

with linear theory predictions. These computa-

tions were made for near nozzle exit region and

velocity in spanwise/azimuthal direction was as-

sumed to be zero. Computational domain of the

present study is shown in Figure 1.

2. Governing Equations

The flow field of the technologically impor-

tant high-Reynolds-number compressible jet is

governed by the compressible Navier-Stokes

equations, which can be written as

LQ = 0 (1)

Where L is a three-dimensional operator and Q

is the solution vector. Here we present the two

dimensional form of the operator L pertaining

to our formulations in the polar coordinates.

where

OQ oF OG
0-7+ _ + _ = s (2)

pE/

pu 2 - r=, + p (4)
F = r puv - rzT

pull - urzz - t'rz, - _T=

pv 2 -- T_, + p

pvH - ur=, - vr,, - .'(T,

I°l0

s = p - re0 (7)
0

0

F and G are the fluxes in x and r directions

respectively, and S is the source term that arises

in the cylindrical polar coordinates, and rO are
shear stresses.

3. Numerical Scheme

3.1 Discretization

For problems incomputational acousticsone

needs to use high order (at least fourth or-

der) schemes. Hence, in this study, Gottlieb
and Turkel's extension t°,t7 of MacCormack's

scheme is used. The extension is fourth-order

accurate in space and second order accurate in
time and is known as the 2-4 scheme. For three

dimensional computations, operator L in equa-

tion (1) is split into three one-dimensional op-

erators and the 2-4 scheme is applied to each of
the three operators as

Predictor step

At 7 n
_+ = Q? + 6-_{ (F_+_- F?)-

(Fi% - F_"+l)}+ AtS, (8)

Corrector step

qt +x = [(_, + Q_ + 6-_-_z{7(Fi - F;"_t)

-( ,-t - Ft-_)} + AtS,] (0)

This scheme becomes fourth-order accurate

in the spatial derivatives when alternated with

symmetric variants. We define Lt as an one

dimensional 2-4 scheme operator with forward

difference in the predictor and backward differ-

ence in corrector. Its symmetric variant L2 uses
backward difference in predictor and forward
difference in the corrector.

For two dimensional computations, one di-

mensional sweeps are arranged with alternate

symmetric variants as

q,++x = LxzLt,Q,_ (10.1)

q,++2 = L2,L2_Q,,+t (10.2)

Our scheme has a truncation error of the

form O(At((Az) 4 + (At)_+ (At)tAx)2)). For

At = O((Az) ;) as Az --.0, this scheme be-
comes fourthorder accurate.

3.2 Boundary Conditions

The 2-4 scheme uses one sided differences of

the fluxes. For a computational domain extend-

ing from i=l to m, fluxes are needed at m+l,



m+2,-2, -1 in addition to the interior points.

The fluxes at points outside the computational

domain are estimated using cubic extrapolation

from the interior, i.e.,

Fm+l = 4F, n-6Fm_l +4F,_-_-F,,_-3 (11.1)

F,_+_ = 4Fm+l-6Fm +4Fro-1 -Fro-2 (11.2)

At the centerline, a new set of equations

are derived from the original equations using

L'Hospitals rule to circumvent numerical prob-

lems associated with geometric singularity in
the formulation.

Physical boundary conditions for the com-

putations are derived using linearized charac-
teristics. For supersonic flows, all character-
istics travel in 'the flow direction. At inflow

all variables are given. For outflow, the vari-

ables are calculated applying the 2-4 scheme at

the boundary. Extrapolations of variables out-

side the domain a_e done using equation (11).

We stress that extrapolation of fluxes to artifi-

cial points is identical to using one sided differ-

ences. The extrapolation is used for program-

ruing convenience only. For subsonic flows, one
characteristic variable propagates against the
flow direction while the rest follow the flow di-

rection. For inflow, three characteristic vari-

ables are specified and the other one is extrap-
olated from interior. We formulated our out-

flow boundary conditions following the results

of Bayliss and Turkel 2°. In particular, we solve

equation (12) to predict the flow variable at the
boundaries.

Pt L pcu, = 7t (12.1)

Pt + pcu, = _/2 (12.2)

Pt - c2Pt = 7a (12.3)

vt = 3'4 (12.4)

The derivatives of P, u, v,p -are then con-
vetted to derivatives of the conservative vari-

ables. The right hand side of the above equa-
tions are calculated from the solution obtained

by applying the 2-4 scheme at the boundaries.

If the flow at a point at the outflow boundary

is subsonic, 7t is set to zero. If the flow at the

boundary is supersonic, the value of 7t is kept

unchanged. Equation (12) is then solved to get
corrected temporal derivatives at the bound-

ary. Thus, for supersonic flow (12) is equiva-

lent to using the PDE at the outflow with one
sided differences. For subsonic flow a nonre-

flecting boundary condition is used. In a fu-

ture paper several nonreflecting boundary con-

ditions wiU be compared. These all are in-

cluded in generalizations of (12.1). We ob-

tained the present form of (12.1) by simplifying

the Bayliss-Turkel formulation 2° end neglecting
spatial derivatives. Flow at the top boundary

is always subsonic and a similar characteristic

boundary condition is applied.

4. Results

In this study, our primary goal is to simu-

late aerodynamic noise associated with a super-

sonic jet flowing into a subsonic free stream. In
the short term, we are interested in comput-

ing growth rates of the disturbances imposed at
the inflow. These computations are done in two

stages, (a) first a mean (steady) state of the
field with steady inflow condition is obtained

and then (b) transient behavior of the flow with

periodic excitations at the inflow is calculated.

For the mean state calculations, we start with

an initial field which is homogeneous in the axial

direction. The initial axial velocity is specified
as

1

= - (1 - uoo)

tanh(a(y - Yl)] (13)

and corresponding temperature is specified by

the Busemann-Crocco integral of energy equa-
tion as

T(y) = Too + (To - Too)CfL - uoo)/(1 -- uoo)

+.5(_' - 1)M2(1 - a)(,2 - u=) (14)

The parameter "a" in the equation (13) deter-
mines the sharpness of the velocity profile. The

axial velocity is normalized by its initial value

at the center of the jet. At location Yl at the

inflow plane, axial velocity is the average of the

jet center and free stream value. Throughout
the whole simulation, variables at the boundary,

including those at the inflow are updated using

characteristics boundary condition described in

3.2. We assume Prandlt number to be 1, and



the kinematic viscosity is calculated using Sur-

therland law. The initial static pressure is as-

sumed uniform across the field and density is

calculated from the equation of the state. Ini-

tial radial/transverse velocity in the field is set
to be zero.

Once the steady state of the field is reached,

a time varying disturbance is applied at the in-

flow. In our present study, only the axial veloc-

ity is perturbed. It is done by prescribing the

axial velocity at the inflow as

= + (14)

Other variables at the inflow are kept at their

steady state values. Depending on the value

of the forcingfrequency (_v),input disturbance

undergoes eitheramplificationor decay. For an

amplifying disturbance, the initiallygrowth is

linear.However, as the amplitude ofthe distur-

bance grow, the process becomes nonlinear and

disturbances with other frequenciesappear in

the field.Smaller valuesof • delays the appear-

ance of nonlinear effectsdownstream. Corre-

sponding to a forcingfrequency (_) ofthe input

disturbances,there are some disturbanceeigen-

functions (@o,) of the flow variables. Distur-

bances with shapes of the eigenfunctionexhibit

dominant growth. The shape ofthe disturbance

asgiven in equation (14),isdifferentfrom those

ofthe eigenfunctions.With our choiceofinput

disturbance,we leftthe simulation to generate

the c0rrectmode shape of the instabilityeigen-

functions. Study of instabilitymode growth

with input disturbancesas eigenfunctionshapes

inallthe variablesare inprogress.In the follow-

ing we presentsimulation resultsin thisstudy.

4.1 Plane Jet

A case of a coflowing plane jet isconsidered

first. The jet Mach number, based on axial

velocityat the center of jet was 1.5,velocity

ratio (uao/u0) and temperature ratio (T_/To)
were .74 and 2 respectively. This combination
made Mach number at the free stream about

the half of the jet Mach number. Parameter

"a" [equation (13)] in the initial axial velocity

profile was 4. The computational domain ex-

tended 50jet thickness in the downstream direc-

tion and 2.5jet thickness in the transverse direc-

tion. We used 600 mesh points in axial and 60

mesh points in transverse direction. The mesh
was uniform in axial and stretched in transverse

direction. Reynolds number based on the jet

thicknessand the inletaxialvelocitywas 1.27

million.

4.1.1 stead_/ state simulation

Parameters for our simulation were chosen

to given very small spreading of the jet. This
condition is ideal for comparison of the simula-

tion results with weakly nonparallel linear the-

ory. Profiles of axial velocities at three down-

stream locationsare shown in Figure 2. These

velocitieswere computed afterthe steady state

was reached. Differencesin these profilesare

insignificant.Contour plotsofsteady statevor-

ticityand axialvelocityforthe whole domain is

shown in Figure 3.The y axisin these figureis

magnified to show the the whole domain. The

flow remains virtually parallel and spreading of

the jet or any tread towards the formation of

the potential core isnot noticeable.If the flow

isnot well resolved,numerical (truncation)er-

rorsinjectdisturbancesin the flow and that in

turn could giveriseto differentflow structures

in the solution. Our choice of grid resultsin

wellresolvedflow for the present study, Small

lineargrowth of both momentum and vortic-

itythicknesseswas observed inthe steady state

flow field.Vorticitythicknessas definedby

_. = (Uo - U_)/Cdu/dy)_,..

variedbetween .5 and .505. Also, momentum

thicknessdefinedas

p(Uo- u)(u- u®)

varied between .086 and .087. Once the steady

state solution is established, we concentrate on

the unsteady state simulation.

4.1.1 Time dependent simulation

Now we shall discuss results of a time de-

pendent simulation with periodic disturbance

for _o = a-/5 and e = .001. Contour plots of

vorticityand axialvelocityare shown in Fig-

ure 4. Input disturbance grows spatiallyand
causesvorticitiesto form. These structuresbe-

comes prominent downstream. Neat the out-

flow, the input disturbance reached its maxi

mum strength and made the flow to oscillate.

Care should be taken in boundary treatment,

sincenumerical reflectionsat the boundary also
contributeto such oscillations.

Figure 5 shows mean axialvelocitiesat three

downstream locations.These were obtained by



computing the zeroth Fourier mode of the un-
steady axial velocity. As expected, mean axial

velocity remained at their steady state values.

After long time, the flow field became spatially

nonhomogeneous but time periodic about its

steady state. Since the shape of the inflow per-

turbation did not correspond to any eigenfunc-

tion of instability wave, the flow underwent an

adjustment region where the simulation picked

up the correct mode shape of instability waves

downstream. In Figure 6 the mode shape of

the eigenfunction (4,) corresponding to the forc-

ing frequency (w) at two downstream locations
are compared with the linear theory prediction.

Mode shapes form the direct numerical simula-

tions are obtained by taking Fourier transform

in time. As expected, DNS prediction of these

shapes improved as the flow moved away from

the inlet region. There is, however, a small

phase shift between the DNS prediction and the

linear theory predictions. In Figure 7, we ex-

amine the growth of the instability mode (@_,)
corresponding to the forcing frequency, whose

shape is given in Figure 6. For the DNS, growth

rate is calculated along Y=Yl line. At this verti-

cal location, the shear in the mean axial velocity

profile i_ the highest. There is a good agreement

between the simulation and the linear theory.

DNS predictions differ from the linear theory

predictions near outflow. This may be due to

excitation of instability waves at other frequen-
cies or non-linear effects in the flow. Growth

rate (-ai) predicted by both the linear theory
and DNS at X =50 is .054. As the distur-

bances grow spatially downstream, non-linear

effects excited other instability modes. Two

such modes for the simulation are shown in Fig-

ure 8. For our simulation, any such mode was

significant only near the outflow boundary.

Simulations were also performed for Jet Much

number 2.1 and higher velocity ratios. Com-

parisons of one such simulation results with the

linear theory are shown in Figures 9 & 10. Ve-

locity and temperature ratios were .2 and 1 re-

spectively. Parameter "a" in the initial axial

velocity profile was 6. Computational domain

extended 35 jet thickness downstream and 2.5

jet thickness in the transverse direction. Mesh
size in the axial and the transverse directions

were 400 and 150, and stretching was used in

both directions. For the unsteady calculations,

we used ,, = _r/8 and • = 10 -s.

4.1 Axisymmetric Jet

Results of the axisymmetric jet simulations

are similar to those in the plane jet case. Here

we present results of an axisymmetric jet simu-

lation with Much number 1.5 in the jet, veloc-

ity ratio (uoo/u0) = .75 and temperature ratio

(Too/To) = 2. "a" in the axial velocity pro-

file equation was 4. The computation domain
extended 100 radii downstream and 5 radii in

radial direction. 400 grid points were used in

axial and 100 grid points were used in radial di-

rection. The grid spacing was uniform in axial

and stretched in radial direction. The Reynolds

number of this flow was the same as in plane jet
Case.

4.1.I steady sta_e simala_ion

Contour plot of the vorticity for the steady

state simulation is shown in Figure 11. The

Y (radial) axis in these figures is magnified to

show the whole computational domain. As in

the case of plane jet, in steady state simulation,

the flow remained virtually parallel.

4.1.1 Time dependent simulation

A time dependent simulation with w = r/4

and e = .005 was made to study the growth of

disturbance mode. Contour plots of vorticity

and axial velocity of the time dependent field

are shown in Figure 12. These plots show spa-

tial growth of oscillatory flow structures caused

by instability modes. Growth of disturbance

corresponding to the forcing mode is compared

with the linear theory predictions in Figure 13.

Agreement between the linear theory and DNS

predictions are similar to those in plane jet case.

Small discrepancy between linear theory and

DNS near inlet is Likely due to the fact that

the flow underwent an adjustment region, be-

cause the input disturbance did not have correct

shape of an instability eigenfunction. Discrep-

ancy near outflow region are likely because of

the similar reasons as in plane jet case. Growth

rate (-al) predicted by both the linear theory

and DNS at X =50 is .035. Comparison of mode
shape as predicted by the linear theory and DNS

simulations at 50 radii downstream is given in

Figure 14. Except close to the center of the jet,

DNS prediction of the mode shape is in good

agreement with the linear theory. Excitation of
two modes due to nonlinear "effects are shown in

Figure 15. DNS results in Figures 14 & lS are

obtained exactly as their counterparts in plane

jet simulations.



5. Conclusions

In this study, we have presented a set of
Navier Stokes simulations for both two dimen-

sional plane and axisymmetric jets. Parame-

ters were so chosen to give almost parallel mean

flow. This enabled us to compare our results

with weakly nonparallel linear theory. Agree-

ment with the linear theory are quite good. We
imposed time periodic disturbances which did

not correspond to the instability eigenfunction
shape. Nevertheless, the simulation was able to

generate the correct mode shape after an adjust-

ment region (~ 10 diameters) and comparison

with linear theory afterward is good.

The boundary condition is very important

for jet simulation. We formulated the outflow

boundary condition by simplifying the Bayliss-

TurkeF ° nonreflecting boundary condition. Ef-

forts to improve the outflow boundary condition

are in progress.
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