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ANALYSIS OF THE SPACE SHUTTLE MAIN ENGINE SIMULATION

J. Alex DeAbreu-Garcia and John T. Welch
Univeristy of Akron

Akron, Ohio 44325

ABSTRACT

This report analyzes the digital code used to simulate dynamic
performance of the Space Shuttle Main Engine. This simulation

program is written in Fortran. The purpose of the analysis is to

identify a means to achieve faster simulation execution, and to

determine if additional hardware would be necessary for speeding up

the simulation. The analysis included the use of custom inte

grators based on the Matrix Stability Region Placement method. In

addition to speed of execution the accuracy of computations, the

useability of the simulation system, and the maintainability of the

program and data files were examined. A revised code implementing

the study recommendations was implemented but not verified for

accuracy.



i. INTRODUCTION

This is a final report on an analysis of the Space Shuttle
Main Engine Program, a digital simulator code written in
Fortran. The research was undertaken by the authors in ultimate
support of future design studies of a shuttle life-extending
Intelligent Control System (ICS). These studies are to be
conducted by NASA Lewis Space Research Center.

The primary purpose of the analysis was to define the means
to achieve a faster running simulation, and to determine if
additional hardware would be necessary for speeding up simula-
tions for the ICS project. In particular, the analysis was to
consider the use of custom integrators based on the Matrix
Stability Region Placement (MSRP) method.

In addition to speed of execution, other qualities of the
software were to be examined. Among these are the accuracy of
computations, the useability of the simulation system, and the
maintainability of the program and data files.

Accuracy involves control of truncation error of the methods,
and roundoff error induced by floating point operations. It also
involves the requirement that the user be fully aware of the
model that the simulator is implementing.

The useability of the simulation system affects the
productivity of ICS designers. The simulation system should
support a large number of runs, with reliable tracking,
archiving, and retrieval of run results. Setting up simulation
runs and reviewing results should be easy to do, and not be
subject to hard to detect errors.

Simulation of intelligent control methods for the main
shuttle engine i_ expected to involve considerable manipulation
of the shuttle engine control systems. The ICS design studies
will take into account new perturbation modes, and may consider
variations in shuttle engine design.

Thus the studies will place high maintainability requirements
on the simulation code. The SSME Simulation Program must be
readable, and organized to permit easy and safe alteration.

Long exposure to the SSME code compels us to acknowledge with
special appreciation the work of Ten-Huei Guo of NASA Lewis Space
Center, whose extensive interpretive comments made the source
intelligible enough for analysis. We have preserved most of his
commentary in the report version. A careful reading of the SSME
simulation code, as received by NASA Lewis Space Center, would



affirm that our criticisms of the coding do not apply to Dr.
Guo's work, or that of NASA Lewis Research Center.

Organization of this Report

The report begins with a summary of results and recommend-

ations. It ends with a suggested implementation and tuning
sequence for the simulation.

The next three chapters are devoted to numerical integration

methods. Multi-step integration methods and the basis for their

analysis are explained in Chapter 3. The next chapter presents

the analysis results obtained in the study. Chapter 5 then

describes the integration function module of the report version,

explaining the numerical and coding techniques implemented.

The remaining chapters cover interpolation methods, energy

balance monitoring and control, exponentiation, and simulation

output.

The remainder of the report is a set of appendices defining a

Fortran 77 code and set of supporting data files. This represents

the form of the simulation recommended for ICS design studies.

This version is also delivered with the report as ASCII files on

diskette. For convenient reference, the appended listing will be

called "the report version" throughout this report. The code and

run data we received from NASA Lewis, for purposes of study, we
will call "the study version".

The research was expected to produce analysis results, rather

than a revised code. However, it became obvious on examination

of the study version that the line-by-line optimization and

the new function modules required could not be adequately defined

without a full code revision. The report version is a revised

code fully implementing the immediate recommendations, but is not

verified to be in accurate running condition, as this report goes
to print.

The report version code is itself an important product of the

research study. It shows in specific detail how the recommen-

dations may be followed, and can contribute directly to their

full implementation. If a majority of the recommendations are

accepted, then the report version would certainly be a time-saving

source of implementation code, if not the basis for a rapid
implementation.
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2. SUMMARYOF RESULTS

Study of the SSME Simulation Program revealed many problems
that could seriously impede ICS development, if left uncorrected.
In the form given to us, the program

- is unacceptably slow in running time.

- produces too much output for reasonable review and handling
of results.

- is difficult to set up accurately.

- is of questionable numerical accuracy in some subsystems.

- is difficult to maintain as a testbed simulator for new
control methods.

The report version of the system, reprinted in Appendix A,
addresses all of these issues in specific terms.

Speedup Results

Slow running time was a primary focus of the study. Lack of
significant improvements in this area would have indicated a
requirement for hybrid computing hardware. The original proposal
anticipated analyis of implementation technique in ADSIM on the
ADI ADI00 system.

Instead, many opportunities for speedup were found, which
can be exploited independently, and therefore work as multiplying
factors to produce a very high expected speedup. A negative
aspect of this is that the opportunities were so ample and
interwoven, that we were hard pressed within the time available
to adequately define all of the contributing changes, or to
construct more th_n a conservatively low estimate of the
achievable speedup. We predict a speedup in running time of
about 20. It could be higher.

With this kind of speedup available, the use of special
purpose hardware for the SSME Simulation is not recommended. We
believe the additional programming costs and limited access
associated with special hardware can be avoided in this case. In
fact, with the decrease in bulk of program and data that is
demonstrated by the report version, we can recommend that the
ICS project use desktop 386 PC Systems or similar workstations to
house the SSME simulation, perhaps with management of results
data on mainframe systems.



The identification of many available methods of speedup
leads us to recommend also a course of action that exploits the
most readily available speedup first, and defers the most
difficult until it is known to be necessary. Most of the
available speedup can be achieved with the following steps,
listed by decreasing expected effect:

i. Replacing formatted character output of every output variable
by selective output in unformatted binary form. Conversion can
be done offline, along with printing and/or plotting.
Conversion and output transfer of character strings
representing data, and output of headings identifying data,
compares with computations in running time. With no changes here,
significant improvements in computation time would be
severely limited in effect.

2. Replacing Euler integration with a modified version of the
multistep Adams-Bashforth Second Order integration formula
(MAB2). This integration method, developed by our colleague,
Dr. Tom Hartley, permits a step size five times greater than the
Euler method used in the study version. An integration module
supporting this change is provided in the report version.

3. Replacing interpolation routines implemented with varying
levels of efficiency with a single set of routines coded as
efficiently as possible. These routines are provided in the
report version.

4. Improving code which computes results unnecessarily, code
which uses unnecessarily many operations, code which uses
divisions where equivalent multiplications are available, and
code which makes unnecessary reference to costly special
functions. These improvements have been made in the report
version.

5. Monitoring the convergence of energy balancing loops more
closely and introducing under-relaxation and over-relaxation
factors to minimize convergence iterations. A convergence
control module is provided in the report version.

6. Confining the use of double precision to the integration

process where it is actually required. Using exact integer

arithmetic, rather than double precision, for the accurate
advancement of time.

7. Replacing high precision, software supported real

exponentiation by linear interpolation or by forms better

supported in hardware on the host computer system.

All of the above methods are implemented, with every module
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undergoing revision, in the report version of the code.

It is the conclusion of the study that, due to changing
modes of the model, and its size, a full matrix version of MSRP
would not be practical. The number of variables would make both
the analysis and implementation impractical.

Step sizes of up to I00 times those achievable with the
modified AB2 can be obtained with local versions of MSRP, but at
the cost of a more complex and less flexible integration process,
requiring additional analysis of the SSME model. The theoretical
gain in step size could not be fully realized, since important
dynamics of the system would not be followed at such large step
sizes. Also there is the fact that evaluation of the SSME model
at every time step requires sensitive energy balancing. Since the
effect of SSME dynamics on energy balancing at larger time steps
is unknown, it seems more prudent to implement the other methods
of speedup before undertaking a conversion to local MSRP. The
required analysis for local MSRP is continuing beyond the study,
in master's thesis work described later.

The report version integration module allows for the
progressive extension to higher order multistep integrators, and
can accomodate local forms of MSRP, should they prove later prove
desirable.

Accuracy results

The time step set in the study version was barely within
stability limits for the integration method used. This generally
implies that considerable distortion is being introduced by the
numerical integration process itself. Reasonable accuracy limits
on the time step are definitely exceeded in the valve dynamics
module, according to the analysis, even though a higher sampling
rate is used in this module.

The analysis_shows that the recommended modified AB2 is an
integration method better suited to the shuttle engine model, and
produces less integration distortion than Euler's method, even
when operated at the larger time step recommended for decreased
running time.

Two potential floating point roundoff problems are noted,
and corrected in the report version. All integration was
converted to use a double precision accumulator, to avoid losing

significant digits when small integration increments are added to

large integrand variables in floating point.

The same floating point roundoff effect causes a significant

drift in the time scale as the time step is repeatedly added to
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the current time, but double precision is not the best answer to
this problem. Instead, the report version keeps time as an
integer number of step increments, which stays exact.

A potentially serious source of inaccuracy in the study
version was the practice of limiting the input variable to keep
it within the input range of an interpolation table. This has the
effect of extrapolating the table by a constant value, without
warning to the user when it is being done. Since interpolation
tables can be readily extended, with little storage cost, there
is no justification for this policy. The report version interpo-
lators give a specific complaint and stop the simulation when a
range is exceeded. The user can then extend the table by word
processing an ASCII file. The simulation can then be rerun
without change.

Finally, accuracy of the simulation is potentially enhanced
by a new method of storage recommended for tabulated functions.
The new method allows more points to be assigned to one function,
without incurring a storage penalty on all other functions, and
with minimal impact on running time.

Useability Recommendations

A sufficiently fast and accurate simulation program could

still fail as a tool for the ICS desigh studies if it were too

difficult to operate. The study version had several other major

shortcomings of this nature, which are addressed in the report
version.

One failing in this area has already been mentioned, an

inflexible output system that dumps everything on every run.

Adding to this burden on the program's users is the automatically

echoed output of every input parameter. This flood of mostly

unread data is no virtue. Aside from the running time it costs,

uncontrolled amounts of output inhibits simulation activity and

makes archiving a_d retrieval of simulation results unmanage-

able. Results are consequently lost or never obtained.

The recommended system of selectable binary output, along

with a faster running simulation, offers a better approach to

data archiving. Simulations can be rerun to repeat and amplify

interesting results. The requirement to restart the simulation,

which is difficult to support with higher order integrators, can

be dropped.

Quality of simulation runs can be improved, when tuning of

conditions leading up to archived results can be done without

running at full output mode. The report version decouples the

selection of input parameters and output configuration,
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supporting this mode of operation.

Selected binary data is a much more practical form of
archived simulation data than fully annotated hard copy. Results
can be viewed and correlated in new ways, deferring hard copy
until significant results are observed.

As important as running time and manageable archiving of data
are, the opportunities for greater exploitation of NASA Lewis'
graphics hardware in the interpretation of simulation results,
made possible by a more flexible output system, may contribute as
much to the success of the ICS design studies.

Another hurdle to the effective use of the SSME simulation
by an ICS design team is the study version's file design for the
bulk of the input data. This design mixes run parameters and
interpolation data in the file 'dtminp.dat'. Run parameter values
appear in this file without identifiers or limiters of any kind.
Users are rightly advised to be cautious in altering the file.

We recommend replacing 'dtminp.dat' by two files, one for

interpolation tables and another for run parameters. Both files

contain identifers and field markings that are not read by the

program, but make it easy to find the field to be changed and to

be sure that the change is made within the desired field. Since

thesee files contain identifying headers, they can serve as

documentation for the run parameters and function generation data

used in a run. This relieves the program of echoing input data,

with identifiers. Examples are provided in Appendix B.

Finally, we consider it a potential useability hazard to

depend on Fortran IV, through use of obsolete language features

like NAMELIST. The superseding Fortran 77 standard was adopted in

1978, and only the most forgiving of maintained compilers still

accepts Fortran IV. Reliance on Fortran IV unnecessarily limits

the portability _f the program, and will shut off, more and more,

opportunities to house it in more productive ways.

Evidence of the above can be offered from our own experience

in the study. We were unable to get our copy of the original code

to run without eliminating NAMELIST data, although it compiled

without complaint. No manual was available, because the compiler

we had to use is not actively supported at our facility. We did

get around it, but the experience makes the point.

Having the use of the latest in compilers is an advantage

soon realized in working with the SSME code. Many artifacts of

past changes, which should have been removed when their function

became obsolete, were identified in the listings.
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The report version is written in Fortran 77. NAMELIST input
was absorbed into the run parameter file, where it is almost as
convenient to access as it was in the NAMELIST file 'start4.dat'.
An added advantage is that there is only one place to set input
parameters. The danger in having two entry points for a data
item, with one overriding the other, is obvious.

An interim plan to divide the input parameter file into two
similar files was abandoned. The idea was to have frequently
changed parameters in a smaller file, and infrequently changed
parameters in a longer one. It complicates parameter setting to
have two possible sites for the value to be changed. With "find"
commands in modern word processors, this division is unnecessary.

Maintenance for ICS Design Studies

A serious failing of the study version from the maintenance
standpoint was that all executing code was packaged as a single
file, a form which forces a complete compilation to accomplish
any change in any module. In the report version, source code for
each major subroutine is on a separate file. Only changed modules
need be compiled on a revision.

The study version included a line number on every line, a
format which requires most systems to support the blank space
with space characters. Files were cut by about 45% in size by
eliminating nine out of every ten line numbers, ending all lines
with a line return character following the last nonspace
character. Every tenth line number was. retained, to allow for
reference in the report version back into the study version.
These line numbers should also be eliminated when this function
is no longer served.

Better overall readability of the code was obtained in the
report version by insertion of punctuating white space. Many
originators seemed to think it a virtue to pack all of the
information into _s little space as possible.

Readability was improved considerably in some sections by
reduction of spaghetti code sequences to structured code, using
nested block IF constructions. This improvement would not be
available in Fortran IV. An especially counterproductive style
used in some of the study version's "spaghetti" sequences parked
GO TO statements far to the right of the line. These statements
often escape the attention of readers, misdirecting them as to
the effect of the code.

Another change made for the sake of readability was to
eliminate selection of a special mode of a subroutine by the
value of an integer argument. For the major system component



subroutines, the subroutine was divided into an initialization
entry and a time step entry, using different entry names for the
two functions. This also eliminates the subroutine having to test
to see which mode it is in.

Finally, it should be observed that the study version's
output system places an unnecessary burden on the maintenance of
the simulation. In the main program of the study version, output
variables were renamed and saved again, and new combinations of
output variables were computed for the sake of output alone. In
some cases, data was saved again on separate files for the
expressed purpose of plotting. These represent special needs for
simulation output, many probably no longer current, but not removed.
Undoubtedly, less obvious extra computations of this type remain
in the simulation.

In the recommended output system, no alterations of the

simulation program are made to create plot files or to output

computed combinations of output variables. Instead, small

programs are written for these purposes, all reading the same

binary data files, but presenting the data in differing ways

offline. These programs have in common the SSME output file

format. Some of them, designed to run on machines other than the

host of the SSME compiler, might require binary floating point

conversions of the data. Each such program builds upon the SSME

simulation system, and does not require additional maintenance on
it.



A Procedure for Tuning the SSME Simulation

The the report version of the SSME Simulation anticipates

the following recommended procedure for tuning the simulation to

its highest level of efficiency for the ICS design studies:

I. Run the report version, comparing with previous study

version results. Account for differences. Changes made for

faster execution should not significantly affect results.

Euler's method remains as the default integration method so

that these verification runs can be made before changing

integration methods.

2. Decrease the step size in the valve dynamics module to
recommended values. This is to establish a baseline of runs

known to be more accurate, but consistent with previous
results and real data.

3. Examine energy balance convergence and adjust relaxation

factors, under-relaxing slow converging sections and over-

relaxing fast converging sections. Look into relaxation of

convergence criteria, and for accuracy problems which might

account for residual slow convergence.

4. Attempt to eliminate cubic spline interpolation, and to

select the most efficient form of real exponentiation for

host system.

5. Switch to recommended integration methods and increase step

sizes gradually, monitoring effects on energy balancing

convergence and adjusting relaxation factors accordingly.

Continue to recommended step sizes and beyond, pulling

back to assured accuracy levels.
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3. LINEAR MULTISTEP INTEGRATORS: A REVIEW

This chapter gives a brief review of the derivation of and

definitions associated with linear multistep methods. Although

implicit methods provide more accurate results than explicit methods,

they require greater computational times. Therefore, implicit methods

are, in general, not used in real-time applications. As a result,

only explicit methods will be considered here. It should be pointed

out that the material presented in this chapter borrows heavily from

the results of references [i] and [2].

In the study version of the SSME simulation numerical integration

is done using Euler's method. One of the main reasons being that

Euler's method is well understood and simple to implement. However,

it will be seen that care must be exercised when choosing the Euler's

integration timestep to provide a more accurate simulation. Increased

accuracy requires that very small timesteps be used at the expense of
a considerably slower running simulation. In this analysis the

concept of stability region of an integrator is used to show that it
is possible to obtain a faster and more accurate simulation of the

SSME should other linear multistep methods be used. Custom designed
integrators will also be considered.

This chapter is organized as follows: first, the general linear

multistep method is developed. Included in this development are the

important notions of order, accuracy, consistency, and zero-stability.
Both Euler's method and AB-2 are derived. Then, the concept of

stability region of an integrator is discussed. Comparisons are made

between the stability region of Euler's integrators and the stability

region of AB-2 type integrators. It is shown that AB-2 integrators

may result in a more accurate and faster running simulation, To

guarantee a stable simulation of those modules whose eigenvalues have

large imaginary parts with respect to their real parts, a modified AB-

2 integration method is presented [3]. To conclude this analysis, the

applicability of the matrix stability region placement method of [4]

to the SSME simulation is discussed.

A. LINEAR MULTISTEP METHODS

The general linear multistep method can be written as follows:

r

ajx_.j = T _ bjxk+j • (I)

J =0 J =0

where x_ is the first derivative of xk, aj and bj are constants, a0

and bo are not allowed to be both zero, and, to avoid ambiguity, it
is assumed that ar=l.

The method of equation (I) is said to be explicit if br=0, and

implicit if b_0. For an implicit method the present value of the

output is a function of present and past values of the output and the

input. For an explicit method only past values of the output and the

input are required to determine the present value of the output. Here

II



we will be concerned only with explicit methods as implicit methods
are not suitable for real-time simulation.

Associated with the linear multistep method of equation (I) is
the operator:

L[x(t),T]= _ [ajx(t+jT)-Tbjx(t+jT) ] . (2)

jm0

where x(t) is an arbitrary continuously differentiable function on
some closed interval.

Expanding x(t+jT) and _(t+jT) as Taylor series about t, and

grouping similar terms yield:

L[x(t),T]=C0x(t)+C, Txl (t)+ ..... +C,Tqxq(t)+ ...... (3)

where C a : q=0,1,2, .... are constants, and xq(t) refers to the qth
derivative of x(t).

The integrator of equation (I) is said to be of order p if the C,

coefficients are such that C, : i=0,I,2, .... ,p are all zero and

Cp÷**0. Clearly, knowledge of the C, 's allows the derivation of linear

multistep methods of a given order and structure. It turns out that

the order of accuracy of the integrator is the same as the order of

the operator L[.] of equation (3). Notice that this order is

precisely the number of constants C, which are identically zero. From

equation (3) it is possible to determine expressions for the constants
C, as follows:

C0 =a0+a, +a2+ ..... +at

C, =a, +2a_+ ..... +rat- (b0+b, +b2+ ..... +b_ )

1 1

Cq=---(a, +2qa2+...t.+rqa_- (b, +2q-* b2+ ..... +re-* br)
q! (q-l) !

(4)

q=2,3, .....

B. EULERIS METHOD

Euler's method can be easily derived by letting r=l in equation

(I); that is, a one step method. Then equation (I) implies that:

ao xk+a, xk ÷, =b0 T{(k +bl TXk _ I .

Using the expressions (equation (4))
that:

C0=a0+l (recall that a_=a,=l) = C0=0 if a0=-I

(5)

for the C, 's it follows

C,=l-b0-b, , C,=0 if b0=l (recall that br=b,=0 for an explicit method)

C2=I/2-b, = C2=I/2 since b,=0 .

12



Then, substituting these values into equation (5)
already familiar Euler's integration method:

yields the

XK÷,=xK+TxK = H(Z)--
T

Z-I
(6)

Clearly, Euler's method is only first order accurate as C0 and C_

are both zero while C= is different from zero.

C. ADAMS-BASHFORTH TWO STEP METHOD (AB-2)

Following the procedure just used to derive Euler's method, an

AB-2 integrator can be obtained by letting r=2 in equation (1) and

solving equation (4) for the appropriate C, 's; that is,

a0xk+a, xk÷,+asxk+_=TboXK+Tb, xk÷,+Tb2xk÷2 • (7)

C0=ao+a,+a2 (recall that ar=a2=l)

C,=a1+2a2-bo-b_-b2 (recall that br=b2=0 for an explicit method)

C2=I/2 (a, +4a 2) -(b, +2b 2 )

C 3=1/6 (a_ +8a 2 ) -1/2 (b, +4b_)

Substituting a2=l and b2=0 in these equations gives:

Co=a0+a,+l = ao+a_+l=0

C1=a,+2-bo-bl = a1+2-b0-b,=0

C2=i/2(a1+4)-b, = (a, /2) +2-b1=0 = a1=-4+2bl

C 3 =1/6 (a, +8) -I/2b_

Solving the resulting set of equations yields the following

values: ao=0, a1=-l, bo=-0.5, bi=1.5 , and C3=5/12. Therefore, the

two-step Adams-Bash forth (AB-2) integration method can be written as:

T(l.5z-0.5)

XK+_=XK÷,+T(I.5xK÷,--0.5X_) = H(Z)- • (7)

z 2-z

Clearly, AB-2 is second order accurate as Co, Ca, and C2 are zero

while C 3 is nonzero. This implies that for a given timestep T AB-2
will result in a more accurate simulation than Euler's method.

D. CHARACTERISTICS OF LINEAR MULTISTEP METHODS

Two important concepts associated with linear multistep

integrators are the concepts of consistency and zero stability. A

13



linear multistep method is said to be consistent if it has order
greater or equal to one (i). Zero stability is defined via two
polynomials. These polynomials are usually referred to as the first
and second characteristic polynomials, and are given as:

p(_)= _ aj_ , referred to as the first characteristic polynomial

J--O

N

o([)= _ bj9 J , referred to as the second characteristic polynomial

js0

The method is said to be consistent if the first characteristic

polynomial always has a root at +i. The method is said to be zero-
stable if the roots of the first characteristic polynomial p(f) lie on

or inside the unit circle with any root on the unit circle being

simple. And the method is convergent if and only if it is consistent

and zero-stable.

E. STABILITY REGION OF AN INTEGRATOR

Another important concept in the analysis of linear multistep

methods is that of stability region. Essentially, the stability

region of an integrator is that region where the AT-product should lie

in order for the simulation to be stable. Within this region the

degree of accuracy of the simulation changes depending on where the

_T-product is located. Thus, when designing integrators for a

specific application it is important to use the integrator's stability

region as a criterion for determining the maximum allowable timestep

T. This will not only guarantee a stable simulation but also an

accurate one. To determine the stability region of a given integrator

it is expedient to work in the frequency domain. Hence, consider the

Z-transform of equation (i):

[ _. aJZJ]X(z)=[ T _obJZJ]X(z)
J=O J

- p
(8)

From this equation it follows that the open loop transfer

function of the integrator is:

To(z)

x(z)- (9)
p(z)

Now, the frequency response of the integrator is obtained by

replacing z by exponential(jwT); that is,

z=eJwT (i0)

14



The performance of the integration process on an actual dynamic
system is determined using closed loop stability analysis. This
closed loop stability analysis is accomplished by introducing the
linear test equation:

x=Ax+u
(11)

To close the loop substitute the above linear test equation into

equation (8) to yield the closed loop transfer function, viz.

p (z)X(z)=Ta(z) [AX(z)+U(z)]

Ta (z) (12)
= X(z)- U(z)

p (z)-ATa (z)

Clearly, the stability of the integrator is determined by the

poles of the closed loop transfer function of equation (12); that is,

the root of the equation:

p (z)-ATo (z)=0 (13)

Notice that in equation (13) the product AT can be thought of as

the gain of the closed loop system. Thus, a root locus can be

plotted. Therefore, it is always possible to determine the region of

the AT-plane where the integration is stable by considering the

expression:

p(z)
AT=--

a(z)
(14)

Hence, mapping the z-plane unit circle into the AT-plane the

stability region_f the integrator can be obtained, viz.

z"=e jn0=cos (nS) +jsin(n0 ) (15)

The stability regions corresponding to Euler's method (AB-I) and

AB-2 method are shown in Figures 1 and 2. For a given integrator the

simulation will be stable provided that the AT-product is inside the

integrator's stability region. For the simulation to be accurate, the

AT-product should be within the region where the "squares" are the

least distorted. Notice that although Euler's integrator has a larger

stability region, it requires very small timesteps in order to produce

an accurate simulation (The AT-product should lie within the squares

that are closest to the origin). This is especially the case when the

systems being integrated have eigenvalues of large magnitude. This

problem is further aggravated by situations where the eigenvalues of

the system under consideration are complex with large imaginary parts

relative to the real parts. As the stability region of Euler's method

touches only the origin of the AT-plane, it is almost impossible to

guarantee that the timestep T can be chosen small enough so that the
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AT-product lies inside the stability region. In sharp contrast, the

stability region of AB-2, although smaller than that of Euler's

method, allows the use of larger timesteps with improved accuracy.

Moreover, the problem associated with large complex eigenvalues is

alleviated due to the fact that AB-2's stability region is asymptotic

to a larger portion of the imaginary axis of the _T-plane. Thus, it

can be said that although Euler's method is simple to use and

implement, care must be exercised when choosing the integration

timestep to guarantee a stable and accurate simulation. It should be

pointed out that AB-2 integrators do not provide a significant

improvement over Euler's method in situations such as those just

mentioned. However, using AB-2 it is possible to improve running

times by a factor of about five with improved or comparable accuracy.

ABI Stability Region
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Figure I. Stability Region of Euler's Method (AB-I)
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Figure 2. Stability Region of AB-2
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F. MODIFIED ADAMS-BASHFORTH TWO STEP METHOD (MAB-2)

To obtain more stable and accurate simulations of systems whose

eigenvalues are complex with large imaginary parts relative to their

real parts a modified AB-2 method can be used. This modified method

can even be used in situations where purely imaginary roots are to be

stably integrated [3]. The modification of AB-2 is possible due to

the flexibility presented by the C,'s of equation (4). Notice that

this flexibility is greatly reduced if it is demanded that the

integration method be of maximal accuracy (that is, that as many C,'s

as possible be set to zero). However, if accuracy requirements can be

relaxed, then the extra freedom that is gained can be used to tailor

the integration method to the particular system's dynamics. In this

case it is desired to modify the AB-2 method so that the imaginary

axis is just enclosed by the stability region of the new integrator.

Recall that AB-2 is second order accurate. This implies that C0,

C,, and C_ are all equal to zero while Cs is different from zero

(Cs=5/12). Recall further that, for a two step explicit method, the

C,'s satisfy the following set of equations:

C0 =a0+a, +i

(16)

Cs =i/6ai +4/3-i/2b_

Next, suppose that the order of accuracy is relaxed so that only

C0 and C, are required to be zero. Since there are three equations in

four unknowns (the equation involving C s does not count in this case)

it follows that there are two free parameters. Without loss of

generality these free parameters can be chosen to be a0=a and b0=8.

Since Co and C, are both zero, equation (16) can be solved for a, and

bl to yield the _qdified AB-2 integrator (MAB-2), viz.

x_ .,.2=(_+l)xk.1 -_xk+T(1-_-8) [}_., +8/(1-_-_)}_ )] . (17)

The transfer function of the MAB-2 integrator (equation (17)) is:

T (l-a -_ ) [ z+_/( i-_ -8 ) ]

H(z)- . (18)
z _- (i+_ )z+a

Notice that equation (17) is indeed the transfer function of an

integrator. This is seen once it is realized that the poles of

equation (18) are located at z=l and z=a. It should be kept in mind

that the pole at z=_ must lie inside the unit circle to maintain open

loop stability. Therefore, a is allowed to vary between +I and -i.

Notice as well that the zero of equation (18) lies at z=_/(l-_-_).

The flexibility offered by the arbitrary location of this zero allows

an entire family of integrators to be generated for different pole

locations. It turns out that setting _ to zero and _ to -0.6 results
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in an integrator whose stability region closely approximates that of
AB-2. The only difference between the stability regions of MAB-2 and
AB-2 is that the stability region of MAB-2 just encloses the imaginary
axis of the AT-plane. Thus, allowing systems with complex poles and
purely imaginary poles to be stably simulated. The actual integrator
and corresponding transfer function are given as:

XK÷==Xk÷I+T(I.6xK÷,--0.6Xk) = H(Z)--
T(I. 6z-0.6)

z 2-z
(19)

The difference between the stability region of AB-2 and the

stability region of MAB-2 can be clearly seen from Figure 3. Although

these stability regions are almost identical, there are several

important points to be noticed. The stability region of MAB-2 is

slightly shifted to the right of the AT-plane and thus it encloses the

jw-axis of this plane. The portion of the stability region where the

AT-product gives an accurate and stable simulation is slightly

distorted relative to the corresponding region for an AB-2 integrator.

This implies that MAB-2 is not as accurate as AB-2. This should not

come as a surprise as MAB-2 was derived assuming that accuracy could

be traded off with the ability to stably integrate systems with either

purely imaginary eigenvalues or eigenvalues with large imaginary

parts. However, in actuality MAB-2 is expected to produce as good a

simulation as AB-2. The reason for this being that the level of

distortion of the stable and accurate region of MAB-2 is not too

severe. This can be easily seen by considering the C, coefficients.

Recall that these coefficients determine the order of accuracy of the

integration method. Some simple arithmetic gives that for MAB-2 these

coefficients are 0,0,-0.I, and 11/30 corresponding to Co, C,, C2, and

C3 respectively. A comparison of these values with those of AB-2 is

given in Table I below.

Table I. Order of Accuracy of AB-I, AB-2, and MAB-2

CI

Coefficient

ar =I br =0

Integration Method

AB-I AB-2 MAB-2

C0=a0+a, +a2 0 0 0

C, =a, +2a 2-b0-b, -b= 0 0 0

C_=i/2aI +2a_-bz -2b2 1/2 0 -i/i0

C_ =I/6a, +8/6a_-I/2b, -2b_ * 25/60 22/60

Order of Accuracy first second first

]_otice that although MAB-2 is first order accurate, the difference

between the C, 's for MAB-2 and the C, 's for AB-2 is rather small.

q?hus, MAB-2 should perform almost as well as AB-2.
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Figure 3. Stability Regions of AB-2 (top) and MAB-2 (bottom)
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G. TWO STEP MATRIX INTEGRATORS (MSRP-2)

In this section the two step matrix integrator (MSRP-2) presented

in [4] is reviewed. This method is the generalization of the method

of [5] to vector systems of differential equations. It is shown that

this type of integrators can be very useful in the real-time

simulation of stiff systems. The material presented in this section

is essentially that of [4] however.

When performing numerical integration it is important to maintain

the overall system transient response while the integration operator

maintains the character of an integrator. This is normally done by

deriving integrators that reproduce the transient response better as

the timestep goes to zero [5]. However, for a specific system, the

SRP method derives an integrator that improves the transient response

for a given nonzero timestep.

The SRP method has the minimum number of coefficients necessary

to maintain both the transient response and the integration property

for a scalar system, while also allowing arbitrary choice of timestep

[5]. MSRP-2 extends the SRP method to vector systems.

The linear MSRP-2 integrator can be written as:

xK ÷ 2=-A, xK ÷ I -A0 xk+T (BI xK ÷, +B0 xk ) . (20)

where T is the integration timestep, kT is the time, x is the n-

dimensional state vector at time t, and A, and B, : i=0,1 are the n×n

regression coefficient matrices.

As in the general linear multistep method, the performance of

MSRP-2 is evaluated using a linear test equation of the form:

XK=Jxk +GUK • (21)

where, u is an m_yector of input functions, and J and G are the system

and input matrices, respectively.

To close the loop substitute equation (21) into equation (20) to

yield a closed-loop discrete-time linear system, viz.

xk ÷ 2=-A, xk +, -A0x,+T (BI Jxk +, +BoJXK )+T (BI GUk ÷, +B0 GUk ) . (22)

Notice that this system is 2n-dimensional and thus has 2n

eigenvalues. The n principal roots are those corresponding to the

mappings of the eigenvalues of J. The remaining n roots are due to

the fact that the first order differential equation (21) is being

replaced by a second order difference equation (21). These roots are

spurious roots and act as noise sources in the simulation. It is clear

that the location of the 2n eigenvalues of the system of (22)

determines the stability of the integration process. Taking the z-

transform of equation (22) yields:

[z2I+(A,-TBIJ)z+(A0-TBoJ) ]X(z)=[B,z+B0]TGU(z) . (23)
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The transfer function matrix (TFM) H(z) of the system of (23) is:

H (z) =[ z 2 I+ (At -TB, J) z+ (A0-TBoJ) ]'* [BI z+B0 ]TG . (24)

Recall that the regression coefficients (A,, B, : i=0,1) are

square nxn matrices. Therefore, there are 4n 2 unknowns to be

determined which place the 2n eigenvalues of equation (24). It is

clear that the poles of the resulting closed-loop system can be

arbitrarily placed in an infinite number of locations. The problem is

how to determine the regression coefficients A_ and B_ : i=0,1 so

that the system transient response is maintained while still having

equation (20) perform as an integrator.

To solve the first problem, place the n principal roots at the

exact z-plane mapping of the eigenvalues of J, that is, the usual

discrete-time system matrix e JT. To guarantee the accuracy of the

method, place the n spurious roots as close to the origin in the z-

plane as possible [4]-[5]. This pole assignment requires that A, and

B, : i=0,1 satisfy the following matrix equations:

A, -TB, J=-e JT . (25a)

A0-TBoJ=0, where 0 is the nxn null matrix. (25b)

Note that there are 2n 2 equations and 4n 2 unknowns. Therefore,

more constraints are required. The remaining 2n 2 constraints are

obtained by forcing equation (20) to act as an integrator. Recall

that for a linear multistep method, and thus MSRP2, to be convergent

it is necessary and sufficient that the method be consistent and zero-

stable. Equivalently, the steady state gain of the discrete-time

system should be that of the continuous-time system, and an open-loop

integrator pole should be at Z=+l, respectively. Algebraically, these

constraints can be written, again respectively, as (see [4]):

AI-B0-B,=-2I, where I is the nxn identity matrix.

I+A0+A, =0 .

(26a)

(26b)

It is shown in [5] that these constraints imply that the

integrator is first order accurate.

Equations (25a)-(26b) provide 4n = equations to be solved for the

4n 2 unknowns of the A,'s and B,'s. Provided that J is invertible (for

the case when J has zero eigenvalues refer to [6]), this set of

equations can be solved using linear algebra techniques as follows:

I : I

:i3 i:;i:
(27a)

Postmultiplying the first row of this equation by (JT)-' and

adding the result to the second row yields:
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-I
(27b)

From this equation it is seen that A, and A2 are given as:

A,=e JT(JT)-*-(JT)-I-2I .

A0=-e JT(JT) - I + (JT) -* +I .

(28a)

(28b)

While the BI's follow directly from the A, 's as:

B,=[AI+e JT] (JT)-* . (29c)

Be=A0 (JT)-* . (29d)

The above expressions for the Ai's and B_ 's can be easily

computed using a software package such as PC-Matlab [7] by inputting T

and J.

Using equations (25a)-(26b) in conjunction with the regression

coefficients, a state space representation for H(z) can be written as:

°]Fx(k+1)-- x(k)+ 0. U(k)
LTBIGj

y(k)=[0 i I ]x(k)=x,(k)=xK =

x (k+l) =Ax (k) +BU (k)

y(k)=Cx(k)=x2 (k)=xK •

(30)

Notice that this is the well known observable canonical form.

Thus, using MSRP_2 it is always possible to recover the state of the

system being integrated as this representation is guaranteed to be

observable.

The integration method just presented can also be implemented

using recursive identification of J and G to adaptively determine the

regression coefficients. However, this variant of the method will not

be considered here as it is believed that due to the nature of the

SSME simulation this method will not provide any significant speedup.

The main reason being the computational burden associated with the

identification and updating required per time step. Moreover, at

present there are no numerically reliable techniques for updating the

matrix exponential on-line.

H. COMPUTATIONAL ASPECTS OF LINEAR MULTISTEP METHODS

In this section some computational aspects of linear multistep

methods are considered. It is important to realize, however, that
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while Euler's method, AB-2, and MAB-2 are localized integrators, in
MSRP-2 the integrators are no longer localized, that is, one per
system state. As a consequence, the computational burden associated
with matrix integration increases rapidly with the number of states
(approximately 4n-squared multiplies in addition to the derivative
function evaluation). Therefore, it is necessary that techniques for

reducing the number of computations be considered. Also, a detailed

analysis of the computational burden associated with MSRP integrators

is in order. These are the major topics of this section.

Before proceeding further it should be mentioned that

comparisons among integrators and numerical details of the different

algorithms being used will be done using the number of floating point

operations (flops) of each algorithm. A flop is approximately the

amount of work involved in a floating point add, a floating point

multiply, and the required subscripting [8]. In mathematical terms,

this is equivalent to the amount of work associated with the following
statement:

s:=s+al kbkj • (31)

which in terms of the well-known Fortran computer language can be

written as:

S=S+A(I,K)*B(K,J) . (32)

H.I. COMPUTATIONAL COST ASSOCIATED WITH AB-I, AB-2, AND MSRP-2

Regarding the real-time simulation methods considered here, the

bulk of the computations results from products of the type Ax, where A

can be either an nxn or an nxm matrix and x is either an n-dimensional

or an m-dimensional vector, accordingly. It is not hard to see that

when A is an nxn matrix, the product Ax requires n _ flops. On the

other hand, when A is nxm this product can be performed in nm flops.

The amount of work associated with multiplying a given vector by a

scalar quantity requires approximately n flops. At this time, it is

important to point out that these flop counts are simply rough

approximations that are used by computer theorists in an effort to

acknowledge the countless operations that take place during program

execution (paging, subscripting, etc.). The approximate number of

flops required by AB-I, AB-2 (MAB-2), and MSRP-2 for every timestep is

given in Table 2.

It is clear from this table that while Euler's method and AB-2

(MAB-2) cost about the same, MSRP-2 requires approximately 5 times

more computations than either one of them. Therefore, to break even,

the timestep for MSRP-2 must be at least 5 times that of either

Euler's method or AB-2 (MAB-2). Letting the timestep for either one

of the latter methods be the normal timestep, the speedup factor is:

TMSRP-2

speedupa • (33)

5TNORMAL
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Therefore, MSRP-2 can be made more numerically efficient than
either Euler's method or AB-2 (MAB-2) provided that the timestep for
MSRP-2 is chosen appropriately. This is clearly illustrated by the
results obtained in the simulation of the valve dynamics module using
these integration methods (more about this later).

Table 2. Computational cost associated with AB-I, AB-2, and MSRP-2

Required Operations
(real-time)

Linear test equation

x=Jx+Gu

Euler's (AB-I)

x, +, =xk+Txk

AB-2 (MAB-2)

Xk÷2=Xk÷,+T(I.5xk÷,--0-5Xk)

MSRP-2

xk ÷ ==-A, x_ +, -A0X_+T(B, xk ÷, +B0xk)

Number of

Flops

n2+nm

n

2n

Total Number

of Flop[s

n2+nm

n_+n+m

4n 2

n2+2n+nm

5n2+nm

It should be pointed out that the comparison established in Table

2 above is based on the assumption that a linear system is being

integrated. Fo_ nonlinear systems the computational burden is

usually much larger. Thus, MSRP-2 is expected to provide better

results with a timestep less than five times the timestep of either

Euler's method or AB-2 (MAB-2).

H.2. IMPLEMENTATION OF MSRP-2

In Table I above the approximate flop count for MSRP2 is given

assuming that the integration is performed using the original system.

However, in an effort to reduce the number of computations in real-

time, it is always possible to first transform the coordinates of the

original system. This transformation can be done off-line and the

results stored. Then the integration process can be carried out on

the resulting system. Of special interest here are transformations

which yield diagonal or Jordan, Schur, and Hessenberg forms of the

original system matrix J. The diagonal form gives essentially the

classical linear multistep method, that is, one integrator per system

state. It is important to keep in mind that, although this may seem
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appropriate, computing the diagonal form of a matrix is, in general,

not a numerically reliable process. This is especially the case when

the matrix being diagonalized has repeated eigenvalues [8]. In

contrast, The well-known Schur and Hessenberg decompositions of a

matrix are easily obtained via orthogonal transformations. Since

orthogonal matrices are perfectly conditioned, these decompositions

are considered to be very stable and numerically robust [8].

Furthermore, both Schur and Hessenberg decompositions of a matrix

result in quasi-triangular forms. Thus, it is possible to reduce the

number of on-line computations during the integration process by using

these matrix decompositions. These approaches are considered next in
what follows.

The first approach consists of transforming the initial system to

either diagonal or Jordan co-ordinates, then performing the

integration process. Recall that, in general a diagonal form results

when the system poles are all distinct, while a Jordan form results

when the system has multiple poles. A_the regression coefficients
of MSRP-2 are a function of (JT) -_ and e_, and as these functions of

J have a triangular structure whenever J is in Jordan form, and

finally, as the Schur and Hessenberg forms of J are also triangular

matrices, the case when J is in Jordan form is considered a part of

the approach in which the A, 's and B, 's are triangular matrices.

The foregoing indicates that localized integrators can only be

obtained provided J is diagonalizable. Recall that diagonalizing a

matrix involves determining its eigenstructure. Further, recall that

J is, in general, an unsymmetric matrix. In the usual situation, the

standard procedure to diagonalize an unsymmetric matrix involves three

steps. First, the matrix is reduced to upper Hessenberg form using
Householder transformations. Then the Q-R algorithm is used to

produce the upper real Schur form of the matrix resulting from step

one to yield H=Q'JQ (Q' is the transpose of Q). These two steps

require about 15n s flops [8] (this includes the computation of both Q

and H). Finally, to obtain the diagonal form of J, a block

diagonalization m_thod requiring approximately n s extra flops is used.

Therefore, the diagonalization of J can be accomplished in about 16n 3

flops.

Having determined the eigenstructure of J, a transformation

matrix whose columns are the eigenvectors of J can be formed and its

inverse computed off-line and stored. The latter computation is

usually done via the singular value decomposition method, thus

requiring about 7n s flops [8]-[9]. Then this transformation matrix is

used to transform the system of (21) into diagonal coordinates. This

process is given in what follows, assuming that the original system is

that of equation (21); that is,

xK =Jxk +GUK . (34)

First, let P be the matrix whose columns are the eigenvectors of

J. Then it follows that P-*JP=^, where A is a diagonal matrix with the

eigenvalues of J along its main diagonal. Next, use P as a coordinate
transformation matrix to obtain localized integrators, viz.
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Zk= P- IXKxK=PzK = (35)

[_K=P -*_k

At this point it only remains to carry out the integration

process, using one integrator per system state, as follows:

z,k÷2=-a, lz,_.,-a,0z,_+T[b_Iz,k+,+b,0z, k]

for i=i,2,3,...,n .

(36)

As a last step, use P to determine the state vector, x, in the

original set of coordinates by transforming the state vector z

obtained from the integration process, viz.

xK ÷ ==Pzk ÷ _ (37)

This completes the first approach of diagonalization and

integration. It is worth mentioning at this point that determining the

a, 's and b, 's requires approximately 4n flops. However, these

computations are done prior to the actual run and the results are

stored. Therefore, the total number of off-line computations is

23nS+4n flops. Also, notice that, when J is diagonal, the total

number of flops required per timestep is 4n2+(4+m)n. Of this total,

the function evaluations of equation (34) constitute the bulk of the

computations, that is, n2+nm flops. The coordinate transformations of

equation (35) require n 2 flops each for z and its derivative.

Finally, the computations of equation (36) represent a total of 4n

flops, while the transformation of equation (37) requires n 2 extra

flops.

The second approach, or triangular approach, consists on reducing

the original system matrix J to an upper quasi-triangular form. There

are several methods to do this. One of these methods involves using a

sequence of Householder transformations to reduce the system matrix J

to its upper Hessenberg form. Equivalently, determine U and H such

that H=U'JU, where U (orthogonal) is a product of Householder

matrices and H is upper Hessenberg, that is, h,j=0 whenever i>j+l.

This process requires (7/3)n 3 flops [8]. A second method is to

compute the Schur decomposition of J, that is, determine an orthogonal

matrix U such that H=U'JU, where each H,, is either a scalar or a 2x2

matrix having complex conjugate eigenvalues. This decomposition can

be done using the Q-R algorithm in approximately 15n s flops [8]. At

this point it is important to mention that these two processes are

very numerically stable.

The third and last approach considers the Jordan reduction of J.

As mentioned before, the Jordan form of a matrix can be obtained in

approximately 16n 3 flops. However, it should be emphasized that this

reduction is, in general, ill-conditioned. A common aspect among these

three methods is that they all yield upper quasi-triangular integrator

coefficients. Thus, the total number of on-line computations
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decreases as compared to the number of computations required for the
unreduced system. However, there might be an increase in the total
number of off-line computations. This is seen by considering the
amount of work involved in determining the A,'s and B,'s. A detailed
description of this process is given next as follows.

As just mentioned, the latter three methods being considered here
for reducing the number of computations of the integration process all
result in upper quasi-triangular matrices. Therefore, without loss of
generality, the number of flops required to compute each integrator
coefficient is given next assuming that these coefficients are
strictly upper triangular matrices.

For simplicity, the expressions for the A, 's and B, 's for MSRP-2
are repeated here as a function of H the corresponding form of J, viz.

A, =eHT(HT) -* - (HT) -' -2I

A0=-e HT(HT) -* + (HT) -* +I

B, =eHT (HT) -* +A, (HT) -I (38)

B0=A0 (HT) -* .

i. Computation of eHT: The matrix exponential is usually

computed using Pade approximations. Although the number of flops for

this algorithm is a function of IIHII®, a typical number is somewhere

between 8n s and 10n s flops. However, since H is upper triangular,
only about 6n s flops are required [8].

2. Computation of (HT)-*: This matrix inversion can be easily

done via the singular value decomposition of H. From [9], this

algorithm takes about 5n 3 flops for an upper triangular matrix.

3. Computation of matrix products: All the required matrix

products involve- only upper triangular matrices. Therefore, these

products require only (i/6)n s flops each [8].

From the foregoing it is seen that once that e HT and (HT)-* have

Leen determined and the results stored, the integrator coefficients

can be computed in a_j_roximately (i/2)n' flops. Notice that in this

process the product en_(HT)-* is computed only once and then stored.

The approximate flop counts just given are only for those

operations which can be done off-line. Therefore, it still remains to

consider the number of on-line computations required per timestep.

These computations include the function evaluations of equation (34),

the state vector coordinate transformations of equations (35)-(36),

and the integration process of equation (20) with the coefficients

replaced by the matrices of equation (38). As in the case when J is

diagonalizable, the function evaluations and coordinate

transformations require 4n2+nm flops. Each of the products in the

integration process requires (i/6)n 2 flops, for a total of (2/3)n 2

flops. Therefore, when the integrator coefficients are upper
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triangular, the total number of on-line computations can be
approximated to (14/3)n2+nm flops. Notice that this flop count
compares very favorably with that of the case when J is diagonalized.
At the same time, however, this flop count is very close to the one
obtained when the original system is used in the integration. That
is, 5n=+nm flops. For ease of comparison, the results just given in
the paragraphs above are compiled in Tables 3 and 4 below. The
quantities inside the round brackets in these tables indicate the
number of times a particular operation is done.

Table 3. Off-line computational cost associated with MSRP-2

System Matrix J
Required (Computational Cost in Flops)

Operations
Original Diagonal Jordan Hessen. Schur

Coordinate
X-formation 0 16n 3 16n 3 7nS/3 15n s

Matrix (2)
Inversion 7n s 7n s 12n s 5n s 5n s

Matrix

Exponential 10n 3 0 6n s 6n s 6n 3

Matrix

Product 3n 3 4n in3/2 INS/2 inS/2

Off-line

Computation 20n s 23nS+4n 69nS/2 83nS/6 53nS/2

Table 4. On-line computational cost associated with MSRP-2

L

System Matrix J

Required (Computational Cost in Flops)

Operations ....

Original Diagonal Jordan Hessen. Schur

Function

Evaluations

Coordinate

X-formation

Integration
Process

On-line

Computation

nm+n 2

4n =

nm+5n 2

nm+n 2

(3)
3n 2

4n

nm+4n+4n =

nm+n 2

(3)
3n 2

2n2/3

nm+14n2/3

nm+n =

(3)
3n 2

2n2/3

nm+14n2/3

nm+n 2

(3)
3n =

2n2/3

nm+14n2/3
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From these tables it is clear that transforming the original

system to upper Hessenberg form prior to performing the integration

process requires the least number of off-line computations, while the

number of on-line computations compares well with that of the case

when the original J matrix is used. This, coupled with the fact

that the Hessenberg decomposition of a matrix can be obtained via

orthogonal transformations, makes this approach highly desirable.

Moreover, the excellent numerical properties of this decomposition

guarantees the reliability of the computations.

Notice that although diagonalizing J requires the least on-line

computational effort, it should be kept in mind that, in general, not

all matrices are diagonalizable and that this process can be

numerically ill-conditioned. However, matrix diagonalization is a

common practice in actual applications.

Associated with specific hardware and software implementations
there are several aspects of MSRP that should be emphasized. As MSRP-

2 only involves adds and multiplies, and as most hardware and software

packages support these two basic arithmetic operations, MSRP-2 allows
real-time simulation on a wide variety of computer systems and

software packages. Therefore, the usual constraints associated with

the real-time simulation of physical systems are no longer encountered

when using MSRP-2 integrators. It should be realized, however, that

although MSRP-2 allows timesteps much larger than would be normally

possible, the hardware which is attached to the simulator may restrict

the stepsize. Hence, the only constraining factors in real-time
simulation using MSRP-2 are those due to hardware constraints.

MSRP-2 can be implemented in three steps. The first step

consists of obtaining the computation time for the given system. The

second step involves choosing the desired timestep T. And the third

step designing MSRP-2 by solving for the integrator coefficients using

the appropriate formulas.
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4. INTEGRATION METHODS IN THE SSME SIMULATION

In the SSME simulation numerical integration is done u_ing

Euler's method. This method is very attractive because of its

simplicity and ease of implementation. However, care must be

exercised in selecting the appropriate integration timestep. This is

important since the stability and accuracy of the simulation are a

direct function of the integration timestep. It is shown here that a

faster and more accurate simulation of the SSME can be obtained by

replacing Euler's integrators by a two step method. More

specifically, the Valve Dynamics and the Oxidizer Turbopump modules

are used as case studies to demonstrate that it is possible to speed

up the SSME simulation without requiring additional hardware.

This chapter is organized as follows. First a brief description

of the valve dynamics module is given. Then, the results obtained

from simulating this module using Euler's method, and AB-2 and MSRP-2

integrators are presented. This is followed by a brief review of the

oxidizer turbopump module along with some recommendations to provide a
faster simulation.

A. VALVE DYNAMICS MODULE: CASE STUDY I

To throttle the SSME there are a total of five control valves.

These valves are:

MFV - Main Fuel Valve

MOV - Main Oxidizer Valve

FPV - Fuel Preburner Valve

OPV - Oxidizer Preburner Valve, and

CCV - Coolant Control Valve

These five valves reside in the valve dynamics module of the SSME

simulation. Figure 4 shows the block diagram for valve position

control, and Figure 5 gives the fortran code for the main integration

loop of the valvedynamics module. From these figures it is seen that

position control of each valve is described by a 6th order system.

Moreover, the valve position control system is linear within the

integration timestep as the nonlinearities (stiction, backlash, and

wind-up) introduced by valve linkage remain constant within the

integration loop. Notice that multirate sampling is used as the outer

timestep DT=2xI0 -4 is added to 10 -5 and divided by Delta=2×10 -6 Some

simple arithmetic shows that the timestep being used within this

module is ten times smaller than the external timestep. The main

integration loop is run 5 times, one for each valve. Therefore, in

actuality this module represents a 30th order system (6 states times 5

valves). Since each main integration loop is run i0 times, the

simulation basically sees 300 integrations per outer timestep. It is

clear that the computational demands of this particular module can

considerably slow down the SSME simulation. In a situation such as

this there are two possible solutions to the problem. One solution is

to use additional hardware. The other solution is to provide

integrators which would allow the use of larger timesteps and thereby

reduce simulation time. The latter is the purpose of this study.
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LOOP=(DT+O.OOOO1)/DELTA _),L_ _ Z _to'_J M_

DO 300 f=i.5

IF(TPA.GT.O.O.AND.TIME.GE.TPA) GO TO 218
.I

MAIN INTEGRATION LOOP

[.°f_ 10-5

DO 210 J'1,LOOP

EVP = THETAC(1)ICRVDT-VR(I)-

DDESA" = CAIWA$$2$EVP-WA$$2SESAC(I)-2.08SASWASDESA(1)

DDESV = WSV$$2SESA(I)-WSV$¢2$ESV(1)-2.0$S_SWSVSDESV(I)

DTHETA(I) = CL(I)$CSV(I)/A(1)SESV(I)
= THETA(1)ICRVDTICRS/TRS-VR(I)/TRS

INTESRATORS

ESAC(1) .- ESAC(1) ÷ ALIM(DESA(1)) $ DELTA

ESA(1) - ESAC(I)

DESA(I) - DESA(I} + ALIM(DDESA) I DELTA
ESV(1) - ESQ(I) ÷ ALIM(DESV(1)) 8 DELTA.

DESV(I) - DESV(I) + ALIM(DDESV) I DELTA.
THETA(I) - THETA(I) + ALIM(DTHETA(I)) $ DELTA
VR(1) - VR(I) + ALIM(DVR) $ DELTA

LIMITS ON INPUT AMPLIFIER ARE +-23 VOLTS.

IF (ES_I(1).QT.23.) ESA(I)-23.
IF (ESA(I).LT.-23.') ESA(1)--23.
IF (ABS(ESA(I)).LT.O.25) ESA(I)-O.O

LIMITS ON SERVO _I.IFIER ARE +-20 VOLTS.

IF (ESV(1).GT.20.)
IF (ESV(I).LT.-20.)

ESV(I_-20.
ESV(1)--20.

THETA(I)-AMAXI(O.O, AMINI(TI-IETA(I),TI.IETI'_X(|)))

210 CONTINUE

2i8 C' TINUC

END OF INTEERAT|ON LOOP

BACKLASH IS DEFINED AS THE A_ OF ACTUATOR OUTPUT SHAFT TRAVEL
REOUIRED TO REVERSE DIRECTION OF VALVE BALL MOTION UNDER CONDITION

OF ZERO LINKAGE WINDUP AND TORQUE LOADING. THE VALUES USED HERE I

HALF OF THE AMOUNT OF THE TOTAL TRAVELING, WELL HALF ON _ SIDLE.

FAC-I.O
IF(I.EQ.3.AND.(THETA(I).GT.33.8.AND.THETA(1).LT.84.0)) FAC-O.O
IF(I.EQ.4.AND.(THETA(1).GT.38.3.AND.THETA(1).LT.75.8)) FACmO.O
IF(ABS(THETA(I)-THETAI(I)).GE.(THETBL(I)$FAC)) GO TO 212

Figure 5. Valve dynamics main integration loop fortran code
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An integration analysis of the valve dynamics module requires

that a mathematical model describing the valve position control system

be determined. It turns out that a state space model of this system

can be obtained directly from the main integration loop of Figure 5,
viz.

. o

Xl

X2

X3

X 4

Xs

X6

0 1 0 0 0 0

-W_ -2SAW a 0 0 0 -CaW _

0 0 0 1 0 0

W_v 0 -w 2sv -2SsvWsv 0 0

0 0 [ClC_v ] (1) 0 0 0

A(1)
0 0 0 0 C C -1

Trs-

rX I '

I

ix2

X3

X4

X5

i

ix6

0

2
ZaWaCrvdt

0

+

0

0

0

ec(r)

Using the notation of Figure 5, the states x, through x6

correspond to the actual states as: x,=ESAC, x2=DESA, x3=ESV, x4=DESV ,

xs=THETA, and x6=VR.

Although there are five different valves, it was found that three

of them are described by the same set of data while the other two are

described by another set of data. As a result, only two different

systems were considered. However, it turned out that both these

systems have the same set of eigenvalues. These eigenvalues are:

I, ,1 ==-3499.7±j3570.4

A 3 ,14=-48.9±j136.5

Is=-2184

16=1058.5

Clearly, this system is very stiff• Therefore, to obtain a

stable and accurate simulation a very small timestep must be used.

Notice as well that the complex poles have very large imaginary parts•

This can make the selection of a suitable integration technique a

difficult task.

Recall that for a simulation to be stable it is required that the

kT-product be inside the stability region of the integrator being

used. In addition, the simulation will be accurate if the AT-product

is inside the region where there is minimum distortion. Therefore,

for Euler's method the largest timestep that could be used to obtain

an accurate and stable simulation of the valve dynamics module is

T=2xI0 -s. A larger timestep would not guarantee accurate results. For

a timestep T=3xI0 -4 the integrator would be operating on the verge of

instability, with the slightest roundoff error making the simulation

unstable. This timestep would also give very inaccurate results• This
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is clearly seen in Figures 6 through 9, which show the results of
simulating the system under consideration using Euler's method with
different timesteps. The exact solution was obtained using Euler's
method with a timestep T=I0 -5 . Notice that when a timestep T=2xl0 -_
is used, the simulation is not very accurate, with the initial
transient being almost lost. Therefore, if the transient is important
in the simulation, Euler's method should not be used with a timestep
larger than T=2×I0 -s. However, should either an AB-2 or an MSRP-2
integrator be used to simulate this system, timesteps of T=I0 -4 and
T=I0 -2 could be used, respectively. Although these timesteps would
not approximate the transient too well, the results will be more
accurate. Figure i0 shows the corresponding allowable timesteps for
AB-2. From Figure ii it is seen that if AB-2 is used with a timestep
of 2x10 -4 the simulation will be unstable. However, for a timestep
T=I0 -4 AB-2 performs quite well, this can be seen in Figures 12
through 14. Thereby given an improvement of a factor of 5. Recall
that, for a linear system, MSRP-2 requires five times more
computations than either AB-2 or AB-I and thus its timestep must be
five times as large. It turns out that MSRP-2 gives very accurate
and stable results even for timesteps as large as T=I0 -2. Figures 15
through 17 give the response using MSRP-2 with T=2×I0 -s while Figures
18 through 20 give the results of using MSRP-2 with T=I0 -2. Clearly,
MSRP-2 offers the best simulation results with the largest possible
timestep for this particular module.

Notice that this module has some of the largest eigenvalues
present in the SSME simulation. In addition, their magnitudes differ
by several orders of magnitude. Thus, this system is very stiff. It
is well known that the real-time simulation of stiff systems poses

some of the most challenging problems to the control engineer. Hence,

this module could be thought of as typifying some of the problems
associated with the SSME simulation.

Although MSRP-2 integrators provide excellent results with a

substantial speed improvement, it is only recommended that they be

implemented loca_ly within each module. The nature of the SSME

simulation coupled with the wide range of operating points do not make

this problem amenable to an easy implementation using this type of

integrators. However, if AB-2 integrators were used in place of

Euler's method, a reasonable speedup could be expected. This would

involve only a fraction of the work and complexity should MSRP-2

integrators be used.

Recall that to design an MSRP-2 integrator for a nonlinear system

requires that the system be linearized about some operating point.

Thus, to replace the integrators of the SSME simulation by MSRP-2

integrators, it would be necessary to linearize the different modules

about the operating points of interest. This would involve a

tremendous effort as the SSME simulation is highly nonlinear.

Although this approach was considered, the time constraints associated

with this project did not allow its realization.

A further point worth mentioning is the fact that the eigenvalues

of this system are complex with very large imaginary parts. Recall

35



that this type of eigenvalues can cause instability problems when
Euler's method is used. This is due to Euler's stability region being
asymptotic to only the origin of the _T-plane. Thus, in order to
stably and accurately simulate systems with this type of eigenvalues
very small timesteps are required. Since the stability region of AB-2
is asymptotic to a larger portion of the imaginary axis of the NT-
plane, it is expected that AB-2 would perform better in this type of
situations. However, if the magnitude of the imaginary parts of the
eigenvalues is much larger than their real parts, MAB-2 may be used.
That is, the instability problems that may arise due to almost purely

complex eigenvalues can be alleviated by replacing the classical AB-2

method by the modified AB-2 method. Keep in mind, however, that the

simulation results may not be as accurate as MAB-2 is only first order

accurate.

Finally, the concept of stability region in the simulation of

nonlinear systems must be used with care. This is due to the fact that

for nonlinear systems the margin of the stable region cannot be

clearly distinguished from the unstable region. Essentially, there

will be an inner region in which the simulation will be stable, an

outer region where the simulation will be unstable, and a "fuzzy"

region in between these two regions.

B. OXIDIZER TURBOPUMP MODULE: CASE STUDY II

This module presents some of the most challenging integration

problems in the SSME simulation. An analytical study of this module

was carried out to determine the range of frequencies of the system.

Although it is recognized that this is not the best approach to

linearizing this type of systems, the intent was to obtain an

approximate frequency range of the system's eigenvalues. It is felt

that for integration purposes this approximate range suffices. This

analytical study was done because the maps describing the nonlinear

functions in this module make it very hard to determine an accurate

model of the system. Determining an accurate model of the oxidizer

turbopump module requires a considerable amount of time and effort;

both of which are beyond the scope of this project. Therefore, the

37th order nonlinear model was linearized analytically using the

Jacobian method. By considering the maximum and minimum values

specified in the maps, a reasonable estimate of the eigenvalues of the

actual system could be obtained. It was found that the stable

eigenvalues of the linearized system vary from -20 to about -8000.

This range agrees well with the actual range of frequencies specified

in [i0]. The few unstable eigenvalues are believed to be a result of

our crude approach to linearization. The numerical values of the

eigenvalues of the linearized system are listed in Table 5. Although,

it was expected that some lightly damped modes were going to be

present in this module, only two sets of complex eigenvalues with a

damping ratio of about 0.2 were found. At this time the authors

cannot provide any further insight into this last aspect as it was

very difficult to determine whether the ducts were actually being

modeled inside or outside the module. However, further analysis is

being done to determine a linearized model of the entire SSME
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simulation by recording the change in the states due to perturbations
introduced into each state. This analysis will provide linearized
models and thus more accurate accounts of the eigenvalues of the
system at different operating points. Another study being done is the
determination of reduced order linear models of the SSME. This study
will consider several techniques to obtain the reduced order models.
As the transient response is of essence in the SSME simulation,
singular perturbation cannot be used as a model reduction technique as
it reduces the order by deleting the fast dynamics of the system.

Table 5. Approximate location of the eigenvalues
of the oxidizer turbopump linearized model

i A,×I03

i_12 0

13_18 -0.020

19 -7.9452

20 -0.0116

21 -0.0050

22 -2.5104

23-24 0.0088 ± 0.0373i

25 -0.0393

26 -0.0237

27 -0.0113

" -0.034428

29 0.0022

30 0.0013

31 -0.0025

32 -0.0023

33434 -0.0002 ± 0.0010i

35 -0.0147

36 -0.0062

37 -0.0039
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From Table 5 it is clear that the oxidizer turbopump module is a
stiff system. Therefore, the discussion just given for the valve
dynamics module also applies to this system. Notice that this implies
that if Euler's method were to be replaced by AB-2, a speedup factor
of approximately 5 could be realized. However, if MSRP-2 were used
the time savings will be much larger. Since this module and the
Fuel. F module are very similar in nature, it is expected that the
eigenvalues of FueI.F be within the same range. These two modules
comprise most of the states in the SSME simulation.

The complexity of the linearized system can be observed from the
following pictorial representation of the system A matrix, viz.

01x
02xx
03x
O4
O5
06
07
O8
O9
i0
ii
12
13
14
15
16
17
18
19
20
21x
22
23
24
25
26
27
28
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3O
31
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33
34
35x
36x
37

0000000001111111111222222222233333333
1234567890123456789012345678901234567

x x 01
O2
O3

x x 04

x x 05

x x 06

x x 07

x x08

x x x 09

x x i0

X X Ii

X X X X 12

XX 13

X X 14

X X 15

X 16

X 17

x x 18

XX 19

x 2O

21

x x 22

x X x 23

x X X x 24

x X 25

xx x 26

x x x x 27

x x 28

x X 29

x 3O
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X 32
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5. IMPLEMENTING TNTEGRATION IN THE SSME SIMULATION

The previous two chapters explain our recommendations of the

modified AB2 integration method, over Euler's method. Local MSRP

methods, which could be used for much larger step sizes, were

also explained. This chapter deals with the practical

implementation of the SSME integration methods. It ends with a

description of the report version integration module 'integ.for'.

A log showing all references to the integration module is

included in Appendix C. This log is also available as the file

'integ.log' on the report version diskette.

Numerical Accuracy of an Integration Step

The SSME study version simulation addressed the numerical

accuracy of each Euler integration step

x = x + xdot * dt

by selecting DOUBLE PRECISION as the type for dt. The code

generated by Fortran does the following steps:

i. Convert xdot to double precision.

2. Multiply xdot * dt.

3. Convert x to a double precision temporary.

4. Add in double precision.

5. Truncate the sum back to single precision for storage.

Since x and xdot are carried in single precision, extra

digits beyond single precision that are generated by the product

are not actually significant to the result. The useful part of

the above sequence is the way it preserves the significant digits

of the product by doing the addition in double precision.

Floating point _ddition of the relatively small increment tends

to lose significant digits of the increment, as the increment's

mantissa is shifted for binary point alignment with the

variable's mantissa. Double precision addition uses a longer

register, limiting this loss to extreme cases.

In the report version integration module, all integrators

use a method which preserves the significance of the time step

increment, and also minimizes floating point conversions. The

technique is generally known as "double precision accumulation".

The method maintains a double precision variable as an

accumulator for x. The time step dt is of single precision REAL

type, so that computations of the increment, such as the product

x * xdot in Euler's method, are done in single precision. The

increment is then converted and the addition is done in double
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precision. The double precision accumulator prevents the

truncation of significant digits from the time step increment,

and x does not have to be re-converted to double precision on the

next step. The output value of x returned to the simulation is of

single precision type, so that its use in other computations in

the simulation does not generate conversions and double precision

operations.

Limiting Integration Outputs

When the outputs of integrators are limited, as they

frequently are in the SSME simulation, some difficulties arise

with both double precision accumulation and multistep integra-

tion technique. These complications should not be considered a

reason for not implementing the methods, however, because in the

SSME simulation, so much computation is required on every time

step that almost any method which allows a larger time step is

justified, regardless of complications.

If the output of an integrator is changed by a limit, there

is the issue of whether or not to adjust the integration process

to this change. The study version's Euler method simply replaces

the integrated value of x with the limited value, in effect,

restarting the integration process. Nothing is lost because

Euler's method carries no information from time step to the next

time step.

When the output of a multistep method is changed by a limit,
the past values are compromised, if not invalidated. Several

options are available:

- ignore the discrepancy, using the past values unmodified.

- adjust the past values, taking into account the difference

between the unlimited and limited outputs of the integrator.

- discard th_ past values and use a starting integrator

while the output value is on the limit, and for restarting

the multi-step method when the output leaves the limit.

The third option is recommended in general for SSME, using

Euler's open formula as the starting integrator, for the
following reasons:

- it is a fast method, compared to the second option.

- as a starting formula, the Euler's method would only

determine the output of the integrator when the integrated

value is coming away from its limit. With the low order

multi-step methods recommended, these periods are limited to
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one time step.

- using the linear approximation of Euler's to restart is at
least as good as doing a linear extrapolated adjustment of
past values, in the second option above.

The use of Euler's method as a restarting formula is not
necessarily recommended for local MSRP implementation, because of
the larger step size. A higher order restarting method may be
required, but the question was not investigated.

Limiting the output also introduces complications in the
double precision accumulation method. To apply the limit to the
double precision accumulator, it is not appropriate to reset the
accumulator unconditionally to either the output or the limit.
This would render the accumulator single precision, despite its
double precison type. Instead, it is necessary to know when the
output is limited, and to replace the accumulator only then.

In double precision accumulation, efficiency demands that
the limits be converted to double precision when the integrator
is initialized, and kept in that form, so that continual
reconversion of the limit is not required every time it replaces
the accumulator. The report version handles limits in that
manner.

It is possible that unlimited integrators are more
appropriate for some limiting situations in SSME. In this
method of limiting, the limits are applied after the integration
and are not made known to the integration routine. This would be
the case where an integrated process is unaffected by the limit

except through feedback into the driving rate. A characteristic

of this situation would be that the variable is not expected to

come off the limit as soon as the rate changes direction, but

only when the underlying unlimited integrator's value would cross

the limiting value. It is beyond the scope of the study to

distinguish these kinds of limiting situations from others, so

all limiting situations are modeled in the report version code by

limited integrators.

In situations where operation on the limit is not expected,

a limit should not be silently imposed on an integrator, just to

stay within bounds of tabulated data. In the report version, the

corresponding unlimited integrator is used, and the interpolation

routine stops the simulation with an identifying message, if the

interpolated table's range is exceeded.

The Report Version Integration Module

The report version integration module 'integ.for' implements
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the recommended modes of operation, and also provides a recoded
form of the study version's Euler method integration. This make_
it practical to operate the simulation with all other forms of
speedup in place, but with no change in integration policy or
step size, as called for in the earlier recommendations for
tuning the SSME simulation. The integration method may then be
changed to the modified AB2 with minor recommenting and recomp-
ilation of the 'integ.for' source code alone, followed by a
relinking step.

A number of integration routines are required to handle the
different situations encountered in the SSME simulation. The
following short glossary covers the terminology used in the
report and in the report version comments to distinguish
integration routines:

primary integrator - an integrator used outside of any energy
balancing loop. It produces a final value for the time
step.

trial integrator - an integrator used in an energy balancing
loop. It produces a trial value which is accepted as the
final step value when the balancing loop has converged.

unlimited integrator - an integrator whose accumulator is
controlled only by initialization and rate input.

limited integrator - an integrator whose accumulator is
subject to limits given to it at initialization. The
behavior of limited integrators was described above.

flow integrator - an unlimited integrator with the SSME gas
flow rate calculation built in. In 'integ. for', it comes
in primary and trial flavors.

method - the integration method, such as Euler's method,
Adams-Bashforth Second Order, or MSRP.

The integration module consists of the following routines:

- initiation subroutines for limited and unlimited integrators
of any method, and of either primary or trial, or flow types.

- primary integrators of limited and unlimited forms, and using
Euler and modified AB2 methods. Comments in the source code

of these routines are edited to switch integration methods
throughout the simulation.

- trial integrators of unlimited form, using Euler and modified

AB2 methods. These routines are selected by recommenting
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whenever the primary integrators are.

- flow integrators of primary or trial types. These call the
primary and trial integrators, and are not changed when
switching integration methods.

- step update functions each method of the trial integrators.

These are recommented to select the one corresponding to the
trial integrator.

The flow integrators replace study version flow integrators

based on solving an equation representing the implicit, or closed

form of Euler's formula. This method computed the flow rate in

double precision, even carrying out a square root to this

accuracy. The method is costly in computing time, especially

since the flow integration occurs frequently inside of energy
balancing loops.

The effort of this calculation is not justified. The Euler

formula is only first order, so the double precision results

obtained represent only a linear approximation to a curve being
followed to single precision accuracy. Implicit formulas are

normally used in corrector formulas, where they represent one or

more corrective iterations at the same time step.

Double precision in the flow rate calculation may have been

adopted in the face of balancing convergence problems. If so, it
is of no more than accidental value as a solution to those

problems. A more detailed monitoring system and relaxation

controls for balancing convergence is recommended instead.

The integration module hides past multi-step values, double
precision accumulators, and trial accumulators from the rest of

the program. Only the integration routines have access to them.

The calling routines refer to these values by a unique number

assigned by the programmer to the integrand value. A major reason

for the log fil_ is to have a compact record of the number

assignments.

Space can be saved in the report version by having different
sets of arrays supporting the hidden values for the different

types of integrators, rather than one set of arrays for all. The

hidden values are defined in the integrator module's labelled

common block 'integ' in the file 'integ.com'.
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6. INTERPOLATION IN THE SSME SIMULATION

Interpolation of values from tabulated data is a major
consumer of computer time in the SSME simulation. Linear
interpolation of unequally spaced data points is the prevalent
form of interpolation. It is used for function generation, with
(x,y) data read from the file 'dtminp.dat' in initialization
sections of each module. Two dimensional linear interpolation on
temperature and pressure surfaces was used for gas properties.
Cubic spline interpolation was used in one such table.

Linear interpolation routines in the study version were not

coded for optimum efficiency, and there was a large adverse effect
on running time.

With unequally spaced data points, it is necessary on each

interpolation to identify the interval

(Xi, Xi-l) of the independent variable enclosing

the input value x. The study version's 'fgen' does a linear

search from the low end of the table, comparing x to values x i in
increasing order. This is suitable for short tables, or for

tables in which most of the simulation time is spent within the

few lowest intervals. Otherwise the expected number of compar-

isons, half the size of the table, is excessive.

From one time step to the next, one would expect the input

variable to be in the same interval as it was previously, most of

the time. Accordingly, a generally better strategy is to test the
endpoints of the previous interval, and if exceeded, search in

that direction for the enclosing interval. The report version of

'fgen' does that, favoring the upward direction by testing the

upper side of the interval first. Two comparisons are required
when the input-variable stays within the same interval, two are

required when i£ moves up an interval, and three are necessary

when it moves down an interval, for an average close to two.

Another serious fault with the study version function

generation is the failure to precompute coefficients for the

interpolation polynomial. The study version interpolation, given
the interval index i, is of the form

f(x) = Yi-i +
( Yi - Yi-i ) * ( x - xi_ 1 )

( xi - xi_ 1 + 10-20 )

For an inner loop operation of a major simulation, this coding is

truly ugly. Three additions and the division can be done once,
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when the function values are loaded. Instead they are done on
every interpolation. The extra constant term guards against divi-
sion by zero when x values are repeated in the table. Such an

occurrence makes no sense in a function table. The program is

spending simulation time to quiet the operating system's com-

plaint about an error in the function data!

In the report version, the corresponding interpolation is of
the form

f(x) = a i + b i * x

and the loading routine complains if x i is too close to xi_ I.

The function generation module assigns each function table a

unique number, to be used on interpolation calls. The number is a

key to the previous interval, the starting point for the interval

search. In the report version, this number locates precomputed

coefficient values a i and b i as well.

In the study version, tables were stored in a two

dimensional array. The function number was a row index in the

array. There were 15 values per row, so functions were limited to

that many points. Functions shorter than 15 points did not fully

occupy their rows. In the report version, a one dimensional

arrays are used for x and y values. The function number locates

the starting point and size of the table in the large array. This

method places no constraint on the size of a function table,

allowing more accurate approximations to be formulated where

necessary, by using more than 15 data points. The method also

avoids wasting memory where functions have fewer than 15 points.

In the SSME simulation interpolations within the same table

can be used to obtain current values for several variables within

the same time step. Therefore the function number, which

identifies onlM the table, cannot be used to recall the previous

interval expected to enclose the input value. Instead, a unique

value is assigned to the variable within the routine which calls

the interpolation module. The interpolation module provides array

space for the index of the previous interval, and calling routine

passes the variable's index to the interpolation module.

New functions are added to the simulation by placing (x,y)

points in the file 'ssme.dat', adding a call to the function

loading routine 'fgset', and adding interpolation function

references to 'fgen'. All one dimensional linear interpolations

should be treated this way, to take advantage of the optimal

coding of fgen. The function TLIMIT in the control module

'cntrol.for' was redefined as an fgen reference.
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Interpolation of Functions of Two Variables

Several forms of interpolation are used on gas property

tables defining temperatures and pressures as functions of two

variables. Data points were unequally spaced in both dimensions.

The study version interpolation routines used the search

method recommended above to find the enclosing interval in each

dimension. Running time was excessive, however, because

interpolation coefficients were not precomputed.

The study version two-variable interpolations differed from

the function generation routines in that the data tables were

incorporated into the simulator as arrays initialized by Fortran

DATA statements. There are no compelling reasons to prefer this

method over loading from a data file. The DATA statement method

does the conversion to binary at compile time, rather than during
initialization, and input from a data file becomes input from the

load module. With virtual memory the load module data is not

actually loaded into memory until needed. But in the SSME

simulation all of it is needed during initialization, for the

precomputing of interpolation coefficients. It is doubtful that

the saving in initialization time would be noticed.

In the event there is a simulation requirement to manipulate

gas properties, such as investigation of the effect of

impurities, gas property tables should be moved to data files,

and an open, accessible format for editing the tables should be
adopted, such as in 'ssme.dat.

Cubic Spline Interpolation

Cubic spline interpolation is used in the two dimensional

interpolation routine 'O2PROP' (SSM52510). There was no

explanation available as to why cubic spline interpolation was

required for thls table, when linear interpolation was sufficient

for hydrogen and OXPROP oxygen properties. Perhaps it was adopted

in an attempt to get convergence within energy balancing
iteration of OPRIME, which calls O2PROP.

In O2PROP, two-way cubic interpolation is attempted, in the

same manner that two-way linear interpolation is done in other

modules. Spline interpolation is done on the two adjacent columns

of the table which bound the row input value, then the spline

interpolation routine is called to interpolate along the row.

This procedure does not actually achieve cubic spline

interpolation smoothing, however. To do that, additional row

values would be required. Two are not enough to define the smooth
curve which is desired.
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For the report version, the erroneous application of the

spline routine is replaced by linear interpolation. Apparently,

true two-way spline interpolation is not actually required for

energy balancing convergence, or whatever purpose it was intended
to serve.

For the sake of speedup, the elimination of cubic spline

interpolation from O2PROP should be attempted. The report version

coding shows the large initialization time and coefficient space

required. Better observations of the convergence problems, and

relaxation adjustments will make energy balancing more robust,

and will probably make spline interpolation unnecessary.

Without addressing further the need for cubic spline

interpolation, which was outside the scope of the study, it was

possible to assess the efficiency of cubic spline implementation

in the study version, and to recommend an improved version for

use where it may be required. In keeping with the modularization

policy of the report version, cubic spline routines were added to

the interpolation module 'fgen.for', so that cubic spline

interpolation could be tried in other table lookup situations

within the simulation, with a minimum of programming effort.

The deficiency of the study version's cubic spline

implementation is that it does not carry precomputation of

interpolation coefficients far enough. Ideally, once the index of

the interval enclosing the input value has been determined, an

interpolated value on the cubic arc for the interval can be

computed with three multiplications and three additions, as

f(x) = a i + x * ( b i + x * (c i + x * di) ).

The study version of the spline interpolation precomputes

second derivative constants, instead of cubic polynomial

coefficients, and the interpolation routine working with this

precomputed data requires 7 additions or subtractions, 12

multiplications_and a division. This is at least four times the

cost of the report version's cubic polynomial evaluation.

True two-way cubic spline interpolation is very costly,

compared to the interpolations used in the simulation, not only

because many points are needed for interpolation in the row

direction, but also because the precomputation of cubic segment

coefficients is not possible.

The linear interpolation module

The report version module 'fgen.for' contains all routines

of one and two dimensional linear interpolation, and cubic spline

interpolation. Interval finding, precomputing of interpolation
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coefficients and the interpolating routines are included. The
file 'fgen.com' defines the labelled COMMON block used by the

interpolation routines.

The study version's FGEN routine was replaced by a

subroutine 'fgset' for loading function values and precomputing

interpolation coefficients, and a separate linear interpolation

function 'fgen'. Two-way linear interpolation is also provided in

a split package, with precomputing handled in the subroutine

'xyset', and interpolation by the function 'xylint' One interval
searching routine, 'intval' serves for all interpolation with

unequally spaced independent variable data.

A maintenance aid file 'fgen.log' records the references to

the function generation routines 'fgset' and 'fgen'. A copy is

included on the report diskette.
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7. ENERGY BALANCE CONVERGENCE DIAGNOSIS AND CONTROL

Two energy balance iterations are performed at every time

step in the SSME simulation. The fuel flow module contains an

iteration loop carrying a sequence of calculations over 12

stages. The oprime module, called by by hotgas during the first

1.5 seconds, iterates over four stages.

Limits on these iterations were set within the study version

source code at 30 iterations. Any difficulty in convergence of

these energy balancing loops can be very costly in simulation

running time. These loops involve flow rate calculations, which

were implemented in a time-consuming manner in the

study version.

The study version monitors the convergence of these

iteration loops by writing out messages, and the last two

iteration changes, when the iteration limits are exceeded. The

number of iterations is also written as an output. While this

monitoring is sufficient to determine when there is a convergence

problem, it is not adequate to diagnose what could be wrong, and

it provides no corrective tuning action.

The report version contains an energy balance diagnosis and

control module, in the file 'change.for'. This module associates

a unique number with each energy balance variable, and uses it as

an index to store the number of iterations required for that

particular variable to converge. Thus slow converging variables

can be identified, and the computation of these variables

examined for disturbances to convergence.

The warning system for energy balance convergence problems

is similar to the study version's, but provides more information.

A diagnostic file is written on any run in which the iteration

limits are exceeded. The diagnostic file shows the number of

iterations andthe relative change level achieved, for each

energy balance variable. After this information is written, the

diagnostic data output is repressed for I00 iterations, so the

simulation may continue to run, and information over a longer

period of time may be collected.

A second means of monitoring is available, suitable for

close inspection of troublesome intervals. The number of

iterations for convergence of each variable can be chosen as an

output variable, and thus can be collected at the data collection

interval, throughout the simulation.

'Change.for' also provides for a commonly applied remedy to

multi-variable convergence problems, the relaxation technique. A

relaxation factor for each energy balance variable is included in
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the run parameters on file 'ssme.run'. This factor can be changed
to brake, or accelerate, the influence of newly calculated values

on the iterated value. Instead of simply replacing the old value,

the relaxation method computes the iterated value by

iterated = factor * new + ( i. - factor ) * old,

where 0. < factor < 2.0 .

The normal default value is 1.0, implementing a simple

replacement. For a variable that tends to converge slowly, the
factor is decreased, under-relaxing or damping the corrective

calculations. Fast converging variables can be over-relaxed by

increasing their factors above 1.0. Their convergence can often

be accelerated in this way, providing more stable conditions for

the slow convergers.

Contents of the 'Change' Module

The source file 'change.for' provides initialization

routines for setting the relative change tolerances, and for

initializing convergence iteration counts of energy balance

variables at each time step. The FUNCTION 'relax' applies the

relaxation factors, and counts iterations in which the variable

change is above tolerance. A convergence alert routine 'wrchg'

writes the diagnostic file 'ssme.cvg' and a message on the
monitor screen.
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8. REAL EXPONENTIATION

One possibility for speedup in a digital simulation system

is to take advantage of the fact that the six to seven significant

digits of accuracy normally delivered by software supported

special functions may be more than is required. This is probably

the case in the SSME simulation. It appears that a significant

reduction in running time can be derived by using special means

to compute the function

f(x) = x(°-l*n).

This function is used frequently in the simulation loop, in the

form shown, and as the square root function ( n = 5 ). In the

report version, a module is devoted to special methods to compute
it.

Without hardware support, the function xY, where y is a

real data type, is normally computed by normalizing both x and y to

unit intervals, and using economized series or rational

approximations for a logarithm of x, and the exponent of

( y log x ). The logarithm approximation is particularly slow to

converge, and many terms are necessary for the 7 place accuracy
normally required in Fortran libraries.

Many floating point hardware systems provide hardware

support for real exponentiation, and the use of this hardware by

the compiler makes special methods of computation unnecessary.

In the report version of the SSME simulation, all

exponentiation and square root function calls have been replaced

with calls to routines in the module 'xtoy.for'. The primary

routine in this module does a two-way linear interpolation of

f(x,n) = x(0-1*n),

in one of two tables of equally spaced points ( x, n ). One table

covers normalized x values from zero to 0.2, and the other covers

normalized x from 0.2 to 1.0. Other routines in the module

perform normalizations and call the primary module.

The module as implemented provides maximum speedup over a

software supported exponentiation. The maximum relative error is

close to 0.5 per cent. The accuracy could be improved, at the

cost of more operations per exponentiation, by using more tables,

or by going to a higher order interpolation. In cases where

exponentiation is hardware supported, the 'xtoy' module routines

can be replaced by simple routines using exponentiation

expressions which take maximum advantage of the hardware support.

No changes need be made in the calling simulation modules, to
implement such a customized version.
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9. AN OUTPUT SYSTEM FOR THE SSME SIMULATION

The advantages of selected binary output have been described

earlier in the results summary of this report. A recommended

implementation is provided in the report version of the code, and
is described here.

The output system consists of several components:

i. An ASCII output definition file 'output.def' lists all output
variable names, and can be edited to select those variables to be

collected on a particular run. The selection file is
identified by an 80 - character header.

2. An output initialization segment in the main program reads the

output definition file, and sets collection index arrays for

the run. The segment opens the output file and writes the

input parameter header to identify the run set up, and the

output selection header to identify the selection. The

collection index array and corresponding variable names are

written to the output file.

3. A code segment in the main program monitors the simulation

loop counter and triggers output collection. The report

version uses integer operations, and is simpler than the study

version, offering a single collection frequency.

4. All potential output variables are contained in the COMMON

block 'outvar', integer variables first.

5. The routine 'writer' views the 'outvar' COMMON block as

an integer array and a real array. It reads output variable

index numbers and collects the corresponding data from the

COMMON block. It writes the collected data to the output file

in one binary record, including the simulation time.

6. Offline prin£ and plot programs read headers, variable names,

and data from the output files, convert the data as necessary,
compute functions of output data as required, and present the
output.

An example of an offline output program of item 6 is the
program RTable in the report version file 'rtable.for' This
program tabulates selected real data from the simulation run in

up to i0 columns. Whenever there is a function of output

variables to be plotted, or a new display device to utilize, a

small program similar to RTable can be written, instead of
altering the simulation program.
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I0. A ROUGHESTIMATE OF SPEEDUP

Our time had to be spent on analysis of the SSME model, and
the definition of changes needed for a faster and more accurate
simulation program. An inspiration for this effort was the
following rough model, offers some insight into the problem of
how far to go optimizing the SSME simulation.

Assume the running time about equally divided between output
operations and computation. Selective output will encourage more
runs, but should reduce the output per run by at least a factor
of i0. The encouraged extra runs are worth the price, and should
not be assessed as penalty.

Doing data conversions offline relieves the simulation host
of a huge load. Binary to decimal conversion is iterative, and

floating point conversion to characters costs. Of course, this

means that conversions will be repeated, as data is viewed, but

on personal computers and workstations, this time is free.

If the output processing per datum is reduced by a factor of

i0, we have achieved I00 to 1 speedup on the output operations
side.

On the computation side, some of the savings are additive,

some multiplicative. It is reasonable to assume the integration

processing time is no more than one thousandth of the rate

computation time on each integration time step. So if integration

methods adopted are I0 times more costly than Euler's, if doesn't

matter. Five times the step size still essentially means one

fifth of the computation.

Given the size of tables, there is probably a factor of

three saving in search time, and precomputation of slope data

preserves that factor through interpolation computations on the

interval. Optimization outside interpolation may be close to

that. The saving on flow integration by going to single precision

can be counted here. So can replacement of series evaluations for

exponentiation. We believe there is an overall factor of three

available from all numerical optimization sources.

A large part of the simulation is subject to a third

factor, the reduction in the number of energy balancing

iterations. Relaxation of energy balancing loops would

dramatically reduce large iterations. Smaller ones would require

less improvement to register a good factor of improvement. We

estimate a factor of two for energy balancing optimization,

applying to 1/3 of the simulation. Roughly, we are assuming that

energy balancing portions occupy a third and valve dynamics
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requires a third. We ignore the initialization and loading time.

In this rough model of computing time, the half devoted to

output is subject to a i0 * I0 speedup. The time for energy

balancing loops, say one third of computing time, or a sixth of

total time, benefits from integration( speedup = 5 ) and

balancing relaxation ( speedup = 2 ). There is also a

predominance of flow integration in this part, so we project a

speedup of three from numerical optimization and elimination of

the double precision closed Euler's scheme. To the nonbalancing

part, we predict a numerical speedup closer to two.

According to this rough model, the running time is reduced

by a factor of

(1/2) (1/i00) + (1/5) ((1/6) (i/3) (i/2) + (1/3) (1/2)) = 1/22.8

1 1 Ibalance non-balanceoutput

integration numerics numerics

relaxation

Under these assumptions, suppose local MSRP were introduced,

with a time step of 20 times the Euler step size. At worst, the

computation costs might equal the numeric savings of the report

version. We might expect to lose the speedup due to relaxation,

due to larger "first guess" errors on energy balancing. The

resulting running time factor would be about

1/200 + (1/20)( 1/6 + 1/3 ) = 1/33.3

This would be a good result, but the resulting simulation would

be only half again faster. On the other hand, it is possible

that energy balancing iterations would increase significantly at

this step size. If balancing iterations were to double the

current values, in spite of the relaxation technique, then the

resulting time-factor could be

1/200 + (1/20)( 2/6 + 1/3 ) = 1/26.1,

largely negating the gain from MSRP.

Finally, consider what happens if integration and numeric

speedup worksas expected, but no action is taken on the output

system. The first running time factor above becomes

(1/2) + (1/5) ((1/6) (1/3) (1/2) + (1/3) (1/2)) = 1 / 1.86

and there is no prospect of doing much better, since infinite

computational speedup results in a factor of 1/2.
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APPENDIX A. REPORT VERSION CODE

We start with the simulation function modules. The

interpolation module 'fgen.for' was constructed out of parts of

the study version code, bringing all interpolation to the same

level of optimization, and adding some features. The integration

module 'integ.for' and balancing loop control module 'change.for'
are new.

Additional files '*.def' and '*.log' are included on the

report version diskette delivered with this report. The '*.def'

files are reference prototypes which can be inserted or viewed

when coding, as reminders of the form of the reference. The

'*.log' files are copies of referencing lines, which aid in the

maintenance of programmer assigned index numbers used in all of
the function modules

The remaining report version code sections have similarly

named counterparts in the study version code. All code is

presented here without additional commentary, outside of report

page numbering. For reference, we provide the following table of

contents for Appendix A:

fgen ....... 71

integ ...... 77

change ...... 86

xtothey ..... 87

output ...... 90

common blocks . . 93

main ....... 99

fuelflow ..... 103

hyprop ...... 123

h2gama ...... 128

oxidf ...... 130

oxprop ...... 152

o2prime ..... 156

hotgas ...... 162

igntr ...... 190

gflow ...... 193

control ..... 195

emco ...... 219

pogo ...... 227

valvedym ..... 235

cstar ...... 243

qflux ...... 244

trbtrq ...... 252
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* This module contains all interpolation routines

* General one dimensional interpolation:

For initializations, see blockdata.for

PARAMETER( NCURVE = *, NWORD= *, NCALL = * )
COMMON / fcns /

+ nstart(NCURVE), npts(NCURVE), Iast(NCALL),

+ xp(NWORD), a(NWORD), b(NWORD), now

FUNCTION fgset( number )
*****************************************************************

* Loads function points from run.dat file.

* Precomputes coefficients a and b for linear interpolation in the
* form a + b * x.

* The coefficients go into large arrays, with starting

* point and length defined.

* Lengths are initialized to 0, meaning 'undefined'.
*****************************************************************

INCLUDE 'units.com'

INCLUDE 'fgen.com'
*

SSM13800

IF ( number > NCURVE ) THEN

PRINT *, 'Function ', number, ' has too many points.'
STOP

ELSEIF ( npts( number ) .GT. 0 ) THEN

PRINT *, 'Function ', number, ' was previously defined.'
STOP

ENDIF

READ(run,'(//215, A )' ) hum, n, title

IF (num .NE. number ) THEN

PRINT *, 'Function ', num, ' read, expecting ', number.
STOP

ENDIF

nstart( num) _ now

npts( num ) = n_ •

nend = now + n - 1

' (6(/2X Sl0 0)) 'READ(run, , . ) (xp(i), al(i), i = now, nend )

DO I0 i = nend, now + i, -I

IF ABS(xp(i) - xp(i-l) ) .LT I.E-4 ) THEN

PRINT *, 'X difference too small in function ', num
STOP

ENDIF

slope = (al(i) - al(i-l) ) / (xp(i) - xp(i-l) )

a0(i) = al(i) - xp(i) * slope

al(i) = slope

i0 CONTINUE

Initializes fgen's previous interval to first interval

last( num) = 2
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now = nend + 1

END

FUNCTION fgen( nfcn, ncall, x )
*****************************************************************

* Linear interpolation of curve(nfcn) at x.

* Stops with error message if curve is undefined or x out of range.

* Supply a unique index for the interpolated variable in ncall.
* Previous interval index is saved under that index.

* Search for the new interval starts with previous interval.

* Coefficients for each interval are precomputed by fgset.
*****************************************************************

C
INCLUDE 'fgen.com'

IF (npts(number) = 0) THEN

PRINT *, 'Invoked function ', number, ' was not loaded.'
STOP

END

i0 = nstart( number )

CALL intval(last(number), x, npts(number), xp( i0, nerr)

IF (nerr .NE. 0 ) THEN

IF (nerr .LT. 0 ) THEN
PRINT *, 'Value too low for function ',

ELSE

PRINT *

ENDIF

STOP

ENDIF

itop = i0 + last(number)

fgen = a(itop) + x * b(itop)
END

'Value too high for function '

number

, number

Two-way linear interpolation:

FUNCTION xylint( x, y, nx, px, ny, py, sx, vdy, table, itop, jtop )
****************************************************************

* Two-way linear interpolation, with precomputed slopes sx and

* y differences dy.
****************************************************************

REAL px(nx), py(ny), sx(nx,ny), vdy(*), table(nx, ny)

ilow = itop - 1

jlow = jtop - 1

dx = x - xp(ilow)

p = table( ilow, jlow ) + sx(itop, jlow) * dx

q = table( ilow, jtop ) + sx(itop, jtop) * dx

xylint = p + ( q - p ) * (y - yp(jlow) ) * vdy(jlow)
END

SSM80300
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SUBROUTINE intval( itop, x, n, array, below, above )
***********************************************************

* Locates enclosing interval, searching from last one.

* Interval is specified by index at higher value.

* Stops if out of range, with below or above message
***********************************************************

CHARACTER*(*) below, above

REAL array(*)

i0

2O

IF( x .GT. array(itop) ) THEN

DO l0 k = itop + i, n

IF x .LE. array(k) THEN

itop = k

GO TO 30

ENDIF

CONTINUE

itop = npres

PRINT *, above

RETURN

ELSEIF ( x .LT. array(i - i)

DO 20 k = itop - 2, i, -I

IF x .GE. array(k) THEN

itop = k + 1
RETURN

ENDIF

CONTINUE

PRINT *, below

STOP

ENDIF

END

Search from there up

Here, x is above array

) THEN

Search down from there

Here, x is below array
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SUBROUTINE XYset( nx, xp, ny, yp, table, sx, vdy )
************************************************************************

* Precomputes slopes sx and reciprocal differences vdy for linear

* two - way interpolation
************************************************************************

REAL xp( nx ), yp( ny ), table( nx, ny )

DO 20 j = 2, ny

DO i0 i = 2, nx

sx(i,j) = (table(i,j) - table(i-l,j) ) /

+ (xp(i) - xp(i-l) )
i0 CONTINUE

vdy(j) = 1.0 / (yp(j) - yp(j-l) )
20 CONTINUE

DO 30 i = 2, nx

sx(i,ny) = (table(i,ny) -table(i-l,ny) ) /
+ (xp(i) - xp(i-l) )

30 CONTINUE

END

REAL a(*), b(*), c(*), d(*)

spline = a(i) + x * (b(i) + x * (c(i) + x * d(i) _) )
END

SUBROUTINE splin0( nx, x, y, a, b, c, d )
************************************************************************

* Precomputes cubic spline segment coefficients a, b, c, d for spline,

* given x, y coordinates.
* Coded with referenc_ to Hornbeck's Numerical Methods
************************************************************************

PARAMETER (maxspl = 21)

REAL rhs(maxspl), dx(maxspl), gpp(maxspl),

+ vdx(maxspl) , x2 (maxspl)

REAL a(*), b(*), c(*), d(*)

* Set up right hand side of equations (4.30)

nxml = nx - 1

DO I0 i = i, nxml

rhs(i) = y(i+l) - y(i)

dx(i) = x(i+l) - x(i)

vdx(i) = i. / dx(i)
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/
J

/

/

i0 CONTINUE

DO 20 i = nxml, 2, -I

rhs(i) = (rhs(i) -rhs(i-l) ) / dx(i)**2

2O CONTINUE

Solve the tri-diagonal system (4.30) for gpp(i), the

second derivative divided by 6,

by flowchart of Fig. 6.3, where a(i) = c(i) = i, b(i) = 4

DO 30 I = nxml, 3, -i

rhs(I-l) = (rhs(I-l) - rhs(I) ) * 0.3333333

30 CONTINUE

gpp(2) = rhs(3)

DO 40 I = 3, nxml

gpp(I) = rhs(I) - gpp(I-l)

40 CONTINUE

Use the natural cubic spline end conditions of (4.31) and (4.32)

gpp(1) = 0.0

gpp(nx) = 0.0

Precompute cubic polynomial coefficients from (4.26)

DO 50 i = i, nx

x2(i) = x(i) ** 2
50 CONTINUE

DO 60 i = I, nxml

dg = gpp(i+l) - gpp(i)

dxg = x(i+l) * gpp(i) - x(i) * gpp(i+l)

a(i) = (gpp(i) * x2(i+l) + y(i) ) * x(i+l)

+ - (gpp(i+l) * x2(i) + y(i+l) ) * x(i)

+ - dxg * dx(i)

b(i) = ( 3.0 * (gpp(i+l) * x2(i) - gpp(i) * x2(i+l) )

+ + y(i+l) - y(i) ) * vdx(i) - dg * dx(i)

c(i) = 3.0 *_dxg

d(i) = dg * vdx(i)

60 CONTINUE

END
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The file 'integ.com' contains:

DOUBLE PRECISION accum, acctry, xlow, xhigh

PARAMETER ( integs = * )

COMMON / integ / h(0:l),

+ nstart( integs ), limted( integs ),

+ accum( integs ), acctry( integs ),

+ xlow( integs ), xhigh( integs ),

+ fml( integs ), trfml( integs )

INCLUDE 'integ.com'

accum(npast) = x

nstart (npast) = 0
END

SUBROUTINE imint0( x, npast, botm, top )

* Initializes any limited integrator.

* Loads double precision accumulator and double precision limits.

INCLUDE 'integ, com'

accum(npast) = _x

xlow(npast) = b_tm

xhigh(npast) = top

nstart(npast) = 0
END
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* FUNCTION pruEul( rate, nh, npast ) selected unlimited integrator
FUNCTION pruint( rate, nh, npast )

************************************************************************
,

* Explicit Euler as the primary unlimited integrator.

* Does not use past values. Initialized by unintO.
*

DOUBLE PRECISION x

INCLUDE 'integ, corn'

x = accum(npast) + rate * h(nh)
accum(npast) = x

pruint = x

pruEul = x reactivate to deselect, but compile Euler.
END

FUNCTION pruAB2( rate, nh, npast )

* FUNCTION pruint( rate, nh, npast ) AB2 is not currently selected.
************************************************************************
,

* Modified Adams-Bashforth 2nd Order as unlimited primary.
* Uses one past rate (right hand side f) value.

* Euler is used once for starting value. Initialized by unint0.

************************************************************************

DOUBLE PRECISION x

INCLUDE 'integ.com'

IF ( nstart(npast) .EQ. 0) THEN

x = accum(npast) + rate * h(nh)
nstart(npast) = 1

ELSE

x = accum(npaSt)

x = accum(npast) + h(nh) *

+ ( 1.6 * rate- 0.6 * fml(npast) )
ENDIF

accum(npast) = x

pruint = x reactivate to select AB2

pruAB2 = x

fml(npast) = rate
END
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* FUNCTION truEul( rate, nh, npast ) selected unlimited trial integrat_
FUNCTION truint( rate, nh, npast )

************************************************************************
,
* Unlimited, trial Euler for use within balancing loops.

* Requires 'step' to accept trial value.
* Initialized with unint0.

DOUBLE PRECISION x

INCLUDE 'integ.com'

x = accum(npast) + rate * h(nh)

acctry(npast) = x
truint = x

truEul = x reactivate to deselect, but still compile truEul.

END

FUNCTION truAB2( rate, nh, npast )

* FUNCTION truint( rate, nh, npast ) AB2 is not currently selected
************************************************************************

* Unlimited trial Modified Adams-Bashforth 2nd Order.

* Requires 'step' to accept trial values and start itself.
* Initialized with unint0.

DOUBLE PRECISION x

INCLUDE 'integ.com'

************************************************************************

IF (nstart(np_st) .EQ. 0 ) THEN

x = accum(npa_t) + rate * h(nh)
ELSE

x = accum(npast) + h(nh) *
+ ( 1.6 * rate - 0.6 * past(npast) )

ENDIF

acctry(npast) = x

trfml( npast ) = rate
truAB2 = x

* truint = x reactivate to select AB2

END
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* FUNCTION prlEul( rate, nh, npast ) selected limited integrator
FUNCTION prlint( rate, nh, npast )

************************************************************************
,

* Explicit Euler as the primary limited integrator.

* Does not use past values. Initialized by imint0.

************************************************************************

DOUBLE PRECISION x

INCLUDE 'integ.com'

x = accum(npast) + rate * h(nh)

IF ( x .LT. xlow(npast) ) THEN

x = xlow(npast)

ELSE IF( x .GT. xhigh(npast) ) THEN

x = xhigh(npast)
ENDIF

accum(npast) = x
prlint = x

prlEul = x reactivate to deselect, but compile Euler.
END

FUNCTION prlAB2( rate, nh, npast )

* FUNCTION prlint( rate, nh, npast ) AB2 is not currently selected.
************************************************************************

* Modified Adams-Bashforth 2nd Order as the primary limited integrator.

* Uses a past rate. Initialized by imint0.
*

************************************************************************

DOUBLE PRECISION x

INCLUDE 'integ.com'

IF (nstart(npa_t) .EQ. 0 ) THEN

x = accum(npast) + rate * h(nh)
ELSE

x = accum(npast) + h(nh) *

+ ( 1.6 * rate - 0.6 * fml(npast) )
ENDIF

IF ( x .LT. xlow(npast) ) THEN

x = xlow(npast)

nstart(npast) = 0

ELSEIF( x .GT. xhigh(npast) ) THEN
x = xhigh(npast)

nstart(npast) = 0
ELSE

fml(npast) = rate
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nstart(npast) = 1

ENDIF

accum(npast) = x

prlint = x reactivate to select AB2

prlAB2 = x

END

FUNCTION trlEul( rate, nh, npast ) selected limited trial integrator

FUNCTION trlint( rate, nh, npast )

* Explicit Euler as the trial limited integrator.

* Does not use past values. Initialized by imintO.

DOUBLE PRECISION x

INCLUDE 'integ.com'

x = accum(npast) + rate * h(nh)

IF ( x .LT. xlow(npast) ) THEN

x = xlow(npast)

ELSEIF( x .GT. xhigh(npast) ) THEN

x = xhigh(npast)

ENDIF

acctry(npast) = x
trlint = x

trlEul = x reactivate to deselect, but compile Euler.

END

FUNCTION trlAB2( rate, nh, npast )

* FUNCTION trlint( rate, nh, npast ) AB2 is not currently selected.
************************************************************************

* Modified Adams-Bashforth 2nd Order as the trial limited integrator.

* Uses one past rats value. Initialized by imint0.
L

************************************************************************

DOUBLE PRECISION x

INCLUDE 'integ.com'

IF (nstart(npast) .EQ. 0 ) THEN

x = accum(npast) + rate * h(nh)

ELSE

x = accum(npast) + h(nh) *

+ ( 1.6 * rate - 0.6 * fml(npast) )

ENDIF

IF ( x .LT. xlow(npast) ) THEN

x = xlow(npast)
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limted(npast) = .TRUE.
ELSEIF( x .GT. xhigh(npast) ) THEN

x = xhigh(npast)

limted(npast) = .TRUE.

nstart (npast) = 0
ELSE

trfml(npast) = rate

limted(npast) = .FALSE.
ENDIF

accum(npast) = x

trlint = x reactivate when selecting AB2
trlAB2 = x

END

FUNCTION stpEul( npast ) selected as the trial value acceptor

FUNCTION step( npast )
************************************************************************

* Euler step. Accepts trial accumulator as step accumulator.
* Returns accepted value in single precision

************************************************************************

DOUBLE PRECISION x

INCLUDE 'integ.com'

x = acctry(npast)

accum(npast) = x

step = x

stpEul = x reactivate to deselect, but compile stpEul
END

FUNCTION stpAB2( npast )

* FUNCTION step( npast )
************************************************************************

* Modified Adams-Bas_forth 2nd Order step accepts trial accumulator and
* past rate, and starts itself.

************************************************************************

INCLUDE 'integ.com'

x = acctry(npast)

accum(npast) = x

stpAB2 = x

step = x reactivate to select as acceptor of trial values

fml(npast) = trfml(npast)

IF (limted(npast) ) THEN

nstart(npast) = 0
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ELSE

nstart(npast) = 1

ENDIF

END

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Trial unlimited flow integration, previously

FUNCTION FLOW( W, Z, R, T, P).

Trial integration of flow acceleration of form

dW/dt = ( pressure - resistance * W**2 )/z

THIS IS THE FUNCTION TO CALCULATE THE FLOW RATE OF A INCOMPRESSIBLE FLOW

ON A GIVEN DUCT WITH KNOWN INERTIA (Z), AND NORMALIZED RESISTANCE

(R = RESISTANCE/FLOW DENSITY).
INPUT PARAMETERS ARE PREVIOUS FLOW RATE (W), PRESSURE DIFFERENCE (P) AND

INTEGRAL TIME INTERVAL (T).

COMPILER (LINK=IBJ$)

DOUBLE PRECISION ZI,RI,TI,WI,PI,A,B,C

REAL W,Z,R,T,P

SSM14600

WILL COMPUTE NEGETIVE FLOW

W = LAST VALUE OF FLOWRATE

Z = INERTIA,L/AG

R = RESISTANCE

T = DELTA TIME

P = DELTA PRESSURE

UNDER THE GIVEN CONDITION THE FLOW ACCELERATION IS GIVEN BY:

DDW=(P - R * (W**2))/Z
IF W' IS THE NEX_ FLOW VALUE AFTER TIME INTERVAL T THEN

DDW = (W' - W)/T •
AND THE W' CAN BE APPROXIMATED BY THE FOLLOWING STEADY STATE CONDITION

(W' -W)/T = (P - R * (W'**2))/Z

W' IS THE ONLY UNKNOWN IN THE EQUATION.

DUMMY VARIABLES

Z1 =DBLE (Z)

R1 = ABS(DBLE(R) )

T1 =DBLE (T)

Wl =DBLE(W)

Pl =DBLE(P)

A = ZI/2.D0/RI/TI

B = A * 2.D0*WI

C = PI/RI

SSM14700

repeatedly converts an unchanging variable

requires two unnecessary divisions
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C COMPUTE

FLOW=SNGL(DSIGN (-A+DSQRT (A**2+DABS (B+C)), B+C) )

IF(R.LT.O.0 ) RETURN

FLOW = AMAXI (0.0 ,FLOW)
RETURN

SSM14800

The above use of implicit Euler, without any iterative correction, is

not justified, and is implemented in a costly manner.

The replacement uses the selected trial integrator, in limited and
unlimited forms. The simulation step h = dt is always used.

The flow rate is computed in single precision, using the previous W.

Because of the possible limit, the integrator is

initialized by imint0, with a practically infinite upper limit.

A call to step is required to accept trial values.

************************************************************************

IF ( R .GE. 0.0 ) THEN
trflow = trlint( (P - R * W**2)/Z, 0, npast )

ELSE

trflow = truint( (P - R * W**2)/Z, 0, npast )

ENDIF

END

FUNCTION prflow( W, Z, R, P, npast )
************************************************************************

* Primary flow integration, for use outside of balancing loops.

* Uses the selected primary integrator in limited and unlimited forms.

* Initialized by imint0, with a practically infinite upper limit.

************************************************************************

IF ( R .GE. 0._ ) THEN

prflow = prlint( (P - R * W**2)/Z, O, npast )

ELSE

prflow = pruint( (P - R * W**2)/Z, 0, npast )
ENDIF

END
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change.com contains:

PARAMETER ( maxchg = 16 )

COMMON / change / chgtol, rxfact( maxchg ), change( maxchg )

FUNCTION relax( okloop, xnew, xold, ix )
***********************************************************************

* Applies relaxation factor to monitored variable changes.

* Counts iterations in which relative change is over tolerance.

* Returns relaxed change value.

* For converging values ix, increase rxfact(ix) above 1.0 to speed up

* convergence. Keep it less than 2.0.

* For slow converging values ix, try decreasing rxfactCix) below 1.0.
***********************************************************************

LOGICAL ok, okloop

INCLUDE 'change.com'
INCLUDE 'out.com'

diff = xnew - xold

change(ix) = diff / xold

ok = ABS(change(ix) ) .LE. chgtol

okloop = okloop .AND. ok

IF ( .NOT. ok ) its(ix) = its(ix) + 1

relax = xold + diff * rxfact(ix)
END

INCLUDE 'out.com'

INCLUDE 'chang_.com'

DO i0, I = i, maxchg

its (I) = 0

I0 CONTINUE

END
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SUBROUTINEwrchg( iter, nfirst, nlast, heading )
************************************************************************

* Writes change monitor counts and last changes to event file

* Allows no more than one full report per i00 iterations, but

* reports the number of non-converging iterations of any kind
* not reported.

CHARACTER*(*) heading

INCLUDE 'change.com'

DATA / last, nskipd / -i00, 0 /

SAVE last, nskipd

IF ( iter - last .GE. i00 ) THEN

WRITE( event,

+ '( A, I6 / A )' )

+ heading, iter, ' item iterations over last change'

DO I0, I = nfirst, nlast

+

I0

+

WRITE( event, '( I3, 10X,

I,
CONTINUE

last = iter

IF ( nskipd .GT. 0 ) THEN

WRITE( event, '(I4,

nskipd,

nskipd = 0
ENDIF

ELSE

nskipd = nskipd + 1

ENDIF

END
L

I3, 8X, E12.4 ) ' )

its (I) , change (I )

A )' )

' nonconverged iterations skipped'
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, The x to the y module, supporting degrees of normilization-
, implements x to y through table lookup and linear
, interpolation

* FUNCTION Xnl0th( Xnorm, Nl0th ) ***********
****************************************************

, _ _ ) ** (0.1*Nl0th), for 0 < Nl0th < 10,******************

0 0 < norm_
, where _*_*****************************************

REAL XI0(0:I0, 0:18)
DATA ( XI0(0, J), J = O, 18) / 19 * 0.0 /

DATA ( XI0(I, J), J = 0, 18) / 7945, .8090, .8216, .8326,

+ 0.0, .6780, .7254, .7551, .7770, • 9650, .9780, .9896,

+ .8424, .8514, .8870, .9126, .9333, .9503, •

+ 1.0 / j), J = 0, 18) / 6311, .6545, .6750, .6932,
DATA ( XI0(2, 5702, .6037, . 9313, .9564, .9792,

+ 0.0, .4596, .5261, • .8708, .9031, •

+ .7097, .7248, .7867, .8329,

+ 1.0 / j), J = 0, 18) / 5295, .5545, .5772,
DATA ( XI0(3, 4690, .5013, • 9354, .9690,

+ 0.0, .3113, .3816, .4305, • .8582, .8987, "

+ .5979, .6171, .6976, .7602, .8126,

+ 1.0 / j), J = 0, 18) / 3983, .4284, .4555, .4805,
DATA ( XI0(4, 3250, .3643, • 8672, .9147, .9589,

+ 0.0, .2108, .2767, • 7582, .8154, •

+ .5037, .5254, .6186, .6937, •

+ 1.0 / j), J = 0, 18) / 3465, .3742, .4001,
DATA ( XI0(5, 2453, .2830, .3164, • 8946, .9488,

+ 0.0, .1427, .2006, • .7075, .7748, .8369, •

+ .4243, .4473, .5485, .6330,

+ 1.0 / .2083, .3075, .3331,
DATA ( XI0(6, J)' J = 0, 18) / 2513, .8748, .9390,

+ 0.0, .0965, .1454, .1851, .2199, • 8076,

+ .3575, .3808, .4862, .5775, .6601, .7363, •

+ 1.0 / a), J = 0, 18) / 1996, .2268, .2526, .2773,
DATA ( XI0(7, 1397, .1708, • 7792, .8555, .9290,

+ 0.0, .06519, _I053, • 6158, .6996, "

+ .3011, .3242, .4310, .5269, •

+ 1.0 / j), J = 0, 18) / 1834, .2075, .23O9,
DATA ( XI0(8, 1054, .1326, .1585, • 8366, .9193,

+ 0.0, .04401, .0762, • 5746, .6647, .7519, •

+ .2537, .2760, .3820, .4807, •

+ 1.0 / j), J = 0, 18) / .1259, .1484, .1704, .1922,
DATA ( XI0(9, 07953, .1030, 9096,

+ 0.0,.02969, .05525, • 6315, .7255, .8181, •

+ .2137, .2350, .3385, .4385, .5360, •

+ 1.0 / j), J = 0, 18) / 0 12, 0.14, 0.16,
DATA ( XI0(10, 0 06, 0.08, 0.i0, " 0.8, 0.9,

+ 0.0, 0.02, 0.04, " 0.5, 0.6, 0.7,

+ 0.18, 0.2, 0.3, 0.4,
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+ 1.o/
***********************************************************************

IF ( Xnorm .GE. 0.2 ) THEN
U = Xnorm * 0.i

V = AINT( U )

I = INT( V ) + 8
ELSE

U = Xnorm * 0.02

V = AINT( U )
I =V

ENDIF

Xnl0th = XI0( Nl0th, I ) + (U - V) * XI0( Nl0th, I + i)
END

FUNCTION Xl0th( X, Nl0th )
***********************************************************************

* ( Unnormalized X ) ** (0.i * Nl0th), where 0 < Nl0th < i0

* Can be optimized further by substituting Xnl0th code for both

* function references to Xnl0th, eliminating overhead of call sequence.
***********************************************************************

IF ( X .GT. 1.0 ) THEN

Xl0th = 1.0 / Xnl0th( 1.0 / X, Nl0th )
ELSE

Xl0th = Xnl0th( X, Nl0th )
ENDIF

END

FUNCTION XntoYn ( Xnorm, Ynorm )
***********************************************************************

* ( normalized X ) ** ( normalized Y ), where
* 0.0 < normalized X, Y < 1.0
***********************************************************************

UX = Xnorm * 0.i

VX = AINT( UX )
J = VX

UX = UX - VX

UY = Ynorm * 0.f

VY = AINT( UY )
I = VY

XnYlo = Xl0(I, J) + UX * XI0(I, J + i)

XnYhi = XI0(I + I, J) + UX * Xl0(I + i, J + I)
XntoYn = XnYlo + (UY - VY) * XnYhi
END
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N =UY

VY = Y - UY * i0.

IF ( X .ST. 1.0 ) THEN

XtoY = 1.0 / XntoYn( 1.0 / X, VY )

ELSE

XtoY = XntoYn( X, VY )

ENDIF

XtoY = XtoY * X ** N

ELSE

IF ( X .GT. 1.0 ) THEN

XtoY = 1.0 / XntoYn( 1.0 / X, Y )

ELSE

XtoY = XntoYn( X, Y )

ENDIF

ENDIF

END
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'output.com' contains:
PARAMETER (nints = 16, nreals = 551 )

INTEGER inidx, rlidx

COMMON /output/ ninsel, nrlsel,

+ inidx( nints ), rlidx( nreals )

SUBROUTINE writeset( time, runid )
*****************************************************************

* Reads the set of write variables from the 'select.out' file

* Saves set numbers and headings for collection of data during
* the simulation run

* Opens the output variable file, and writes on it:

* - an 80-character identifying header from 'ssme.run'

* - an 80-character identifying header from 'select.out'

* - the time interval between data records

* - the numbers of selected integer and real output variables

* - indexes of selected integer and real output variables

* - names of selected integer and real output variables
*****************************************************************

W

INCLUDE 'units.com'

INCLUDE 'output.com'

CHARACTER*8 name

CHARACTER*I ok

OPEN( UNIT = set, FILE = 'select.out' STATUS = 'OLD'I I

+ ERR = 1 )

GO TO 2

1 PRINT *, 'The ''select.out'' file was not found.'

STOP

2 OPEN(UNIT = out, FILE = 'ssme out' STATUS = 'NEW'• I I

+ ERR= 3 )

GO TO 5

3 PRINT *

+ 'Is it OK td overwrite the ''ssme.out'' file? (y/n) '

READ *, ok

IF( ok .EQ. 'y' .OR. ok .EQ. 'Y' ) THEN

OPEN(UNIT = out, FILE = 'ssme.out', STATUS = 'OLD' )

ELSE

STOP

ENDIF

5 WRITE( out,

READ( set,

WRITE( out,

'(A)' ) runid

'(A)' ) slctid

'(A)' ) slctid

WRITE(out) time
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Count integer variables and save integer indexes and headings

ninsel = 0

DO i0, i = i, nints

READ( set, '( If, IX, A8 )' ) iyes, name

IF ( iyes .EQ. 1 ) THEN

ninsel = ninsel + 1

inidx( ninsel ) = i

inhead( ninsel ) = name

ENDIF

I0 CONTINUE

* Write unformatted: # integer outputs, and indexes and headings

WRITE( out ) ninsel

IF ( ninsel .GT. 0 ) THEN

WRITE( out ) ( inidx( i ), i = i, ninsel )

WRITE( out ) ( inhead( i ), i = I, ninsel )

ENDIF

Count real variables and save real indexes and headings

nrlsel = 0

DO 20, i = I, nreals

READ( set, '( Ii, IX, A8 )' ) iyes, name

IF ( iyes .EQ. 1 ) THEN

nrlsel = nrlsel + 1

rlidx( nrlsel ) = i

rlhead( nrlsel ) = name

ENDIF

20 CONTINUE

* Write unformatted: # real outputs, and indexes and headings

WRITE( out ) nrlsel

IF ( nrlsel .GT_ 0 ) THEN

WRITE( out ) (rlidx( i ), i = i, nrlsel )

WRITE( out ) ( rlhead( i ), i = i, nrlsel )

ENDIF

END

SUBROUTINE writer( STIME )

* Collects and writes selected output data for one output interval

* The data is written unformatted.

DIMENSION idata( nints ), rdata( nreals )

INCLUDE 'output.com'
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INCLUDE 'units. com'
COMMON/outvar/ ivar( nints ), rvar( nreals )

DO i0 i = i, ninsel

idata(i) = ivar(inidx(i) )
I0 CONTINUE

WRITE( out ) STIME, (idata(i), i = i, ninsel)

DO 20 i = i, rlnsel

rdata(i) = rvar(rlidx(i) )
20 CONTINUE

WRITE( out ) (rdata(i), i = I, nrlsel)
END
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The next section presents data COMMONblocks. The BLOCK DATA
module initializes labeled COMMOM blocks.

BLOCK DATA
***********************************************************************

*

* Labeled COMMON blocks are defined in files '*.com'

* This module initializes labeled COMMON

* COMMON blocks have been reorganized to the following exent:

* i) output variables of all modules have been moved to a single

* labeled COMMON block 'outvars' in 'outcom'

* 2) other variables recognized as not shared between modules were

* removed from COMMON blocks

***********************************************************************

COMMON /FUEL/ fuels(59)

DATA fuels / 59 * 0. /

COMMON /hgas/ gasses(55)

DATA gasses / 55 * 0. /

COMMON /oxid/ oxids(71)

DATA oxids / 71 * 0. /

COMMON /oxidil/ oxdils(13)

DATA oxdils / 13 * 0. /

COMMON / contrl / rcons(55), icons(8)

DATA rcons, icons / 55 * 0., 8 * 0 /

COMMOM / balc / balcs(73)

DATA balcs / 73 * 0. /

COMMOM / valves / vals(ll5)

DATA vals / 115 * 0. /

COMMOM / pogo / pogos(5)

DATA pogos / 5 * 0. /

COMMON /outvar / ITS(16), outs(564)

DATA outs / 56¢_* 0. /

INCLUDE 'fgen.com'

DATA /now, (npts(i), i = i, NCURVE) /I, NCURVE * 0 /

INCLUDE 'integ.com'

DATA nstart, limted / integs * 0, integs * .FALSE. /

END

SUBROUTINE IniCom

* Initializes blank co_u_on not otherwise initialized.
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out.com

COMMON DT, STIME, Reals(28)

DO i0 I = I, 28

Reals(I) = O.

I0 CONTINUE

END

COMMON/Outvar/ AHPV,
AGC,

+ ITS(16), AFPOV, APV,
+ ABMOV, ACCV, AoPOV,

+ AIN, AMFV, AMOV, DPFPAS, DPOPI,

+ ATH, DDW1, DDX, DTPSTH,
+ DPOPAS, DQHEAT, DPHGMF, DPHGMO, DWIOP,

+ DTPSTL, DW(13) , DWI(3) , DW2(3) ,
DW4P, DW7P, DW8P, DWC,

+ DW3P, DWCOD2, DWF, DWFBPV,

+ DWCOD, DWCODI, DWFPF, DWFPO,
DWFT2,

+ DWFI, DWIF(6), DWFNP, DWFTI, DWH,
DWFPRI, DWFPR2, DWGOP,

+ DWFPOI, DWGO, DWMCP
+ DWG, DWGAS, DWMC, '

DWLO, DWFIG(3),
+ DWHO, DWHOP, DWOE3,

DWO, DWOE2, DWOIG(3),
+ DWMOV, DWNIG(3) DWFNBP, DWOI, DWOP2C,, DWOP2,
+ DWFN, DWOPI, DWOPR,
+ DWOIN, DwoPF, DWOPO, DWOPOI, DWOTII,

DWOP3C, DWOTID,
+ DWOP3, DWOTI,
+ DwoPV, DWOS, DWPFI, DWPOI,

+ DWOT2 DWOTJ, DWP, ELCOM, ELENT,
' ELFFPM,

+ DWQNCH, DWRE, DWSFS, ELFFP,

+ ELFC, ELFCM, ELFFI, EMRC, EMRCR,

+ ELFOP, ELFOPM, ELOIN, EMROPO,
EMRIG(3), EMRFPO, ETAOT2,

EMRF, ETAFT2,
+ EMRE, ETAFTI,
+ EPC, ERROR, FHEOI2
+ FAC FCOMP, FHEODI, FHEOD2, ', GFI, GF2,

+ FHEOPI, FHEOTI, FR, H8P,
HT_ HIOP, H7P,

+ H(13), HOD2 HOD3,
HCAVPI HCAVP2, HCAVP3, ' HP,' HOSI HOT1,

HOS,
4 HOI2, P2

PINPSH,
OD, P10P, PSP,

+ HT, PI, P7P,
+ p(13), P3NPSH, p4(3), PCNS,

PCIE, PCIG(3), PFP,
+ P2NPSH, PCFPO, PD, PFI,
+ PANS, PCTPERT, PFPOV, PFS,
+ PcoPO, PFPOI, PG,
+ PFPI, PFPDI, PFTI, PFTID, PIL(12)

PFIS, PIF(6),
+ PFS2, PHES, POD3,
+ PGCI PGCO, POD2,

, PODIM, PoINVP, POJ,
+ PMOV, POD1, POINJ, poPVDN,
+ POT1, POI2, PoPOV, POPRG,

pOPOI, PRFT2,
+ POP, pPURG, PRES,
+ POS,
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5

i0

15

2O

41

46

51

61

66

71

76

83

92

97

102

107

112

117

122

127

134

139

144

149

166

171

176

178

195

202

209

214

219

224

245

25O

255

260

264



+ PROTI, PROT2, PT, PTOL, QINI(13),

+ QB(13), QBKFLO, QF, QINT,

+ QOUTI(13), QOUT2(13),

+ RI(3) , R2(3), R3(3),

+ RBPV, RCCV, RCOM,

+ RFPOV, RHO(13), RHOIOP, RHO7P, RHO8P,

+ RHODI, RHOD2, RHOGOX, RHOHE, RHOHI,

+ RHOI 2, RHOLO, RHOMOV, RHOOS, RHOP,

+ RHOPI, RHOP3, RHOREC, RHOT, RHOTI,

+ RJTPVD, RMFV, RMOV, ROIN, ROPOV,

+ RR(13), RVALVE, SOl, SO2,
+ SCUT, SFI, SF2, SUIOP,
+ SRATE, STOPT, SU(13), SUOD2,

+ SU7P, SU8P, SUCODI, SUODI,

+ SUOI2, SUOIN, SUOTI, T(13),

+ TCAVPI, TCAVP2, TCAVP3, TEMP, TFI,
TFPM, TFTID,

+ TFIS, TFP, TFPI, THETA(5), THETAI(5),
+ TFT2D, TFT2DI, TGAS,

+ THETA2(5), TOP, TOPM, TOT2D,

+ TOT2DI, TP(5), TPERT, TRQFPI, TRQFP2,

+ TRQFTI, TRQFT2, TRQOPI, TRQOP2, TRQOP3,

+ TRQOTI, TRQOT2, TSAT, TSTART, TSTOP,

+ TW, TWI(13), TW2(13), UODI,

UCFT2, UCOT2, UG, UP,
+ U, UOI2, UOIN, UOTI,
+ UOD2, VHEOI2, VHEOTI,
+ VG, VHEODI, VHEOD2,

+ VL, VOLPV, WHECDI, WHECD2,
+ WFPOI, WGOX, WHE, WLOX,
+ WHEODI, WHEOD2, WHEOI2, WHEOTI,

+ WOCOM, WODI, WOD2, WOI2, WOIN,

+ WOPOI, WOTI, WTIBK, WT2BK, WTASI,XCCCV,
X2, X3,

+ WTIGN, XI, XHPV,
+ XCFPOV, XCOPOV, XFPOV, XGC,

+ XCMFV, XCMOV, XMFV, XMOV, XOPOV,

+ YCCCV, YCFPOV, YCMFV, YCMOV, YCOPOV,

+ ZCOM, Z_IN

268

297

323

332

335

352

357

362

367

372

386

391

407

412

428

433

438

451

459

468

473

478

5O5

510

515

52O

522

527

532

537

542

547

552

557

562

564

,blank.com':

+

+

par

COMMON DT, STIME,

par par

QIN2(13), AOPTO, RFTIV, PA, RHOO3, PFPD, DWCCV,
par par par

DWOPC, RHOOP2, RHOOP3, RFBV, ROBV, DPR, DPL, PINMC, TCUT
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,fuel.com':

COMMON/FUEL/
, par par par:4,5,6,12 par

+ VOL(13), R(13), AHTI(13), AHT2(13), PFPIR, PFP2R, TFT1

+ PRFTI, DWFT2C, TTI, UCFTI

,hgas.com'

COMMON /HGAS/ CFOI, RFPO, WFPF, WFPO,

* + TFPC, CPFP, GAMFP, EMWFP, RGCFP, WTFP, WFP,

* + WOPOI, COOI, ROPO, WOPF, WOPO, TOPC, CPOP,

,
+ GAMOP, EMWOP, RGCOP, WTOP, WOP,

* + WTOTI, WDUM, TOT1, POTIA, TOTID, WTFI, GAMFI,

* + WFIF, WFIO, RGCFI, WCO, WC, WTC, TC, WCF,

, par par par par
+ WOPOV, WFPOV, RFPIGB, ROPIGB, RHOOTF,

* + RHOFTF, RHOFI, DWFTF, PX, DWX, PXF, DWXF,

e

+ DWACV, DWPFS, DWBAF

RGCC, GAMC,

,oxid.com':

COMMON /OXID/ DPOP2, DPOP3, PRIMOI,

+ WOI, RHOOPI, POPIR, POP2R, POP2A,
par par par

+ POP3R, DDWOS, • QO, TOS, TOD2, WOV, HI, H2,

par par
+ ZFPO, ZOPO, UI, U2, U3, HLPTI, HIOP2, H3I,

+ ULPOT, HLPOTD, TODI, TOI2, TOD3,

+ UODI, WODI, RHODI, HOD1,

+ UOI2, SUOI2, RHOI2, UOD2, UOTI, WOTI, ZCOM, RCOM,

+ ROIN, ZOIN, RJTPVD, TCAVP3,

+ UCODI, WCODI, RHOCDI, HCODI, PCODI,
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+ UCOD2, WCOD2, SUCOD2, RHOCD2, HCOD2, PCOD2,

+ DWFPR2, DWFPTV, DWFPTI, PFPOT, POPRG, PFPRG, DWFPVI, DWFPI,

+ DWOPR2, DWOPTV, DWOPTI, DWOPTA, POPOT, DWOPVI, DWOPR

COMMON/OXIDIL/ DWIL(12), RHOP2

,contrl.com':

COMMON /CONTRL/ TIMEVC, TIMEPR, TIMECP, TIMETR, TIMFME,

+ TIMFMC, TIMMRF, TIMFMA, TIMELM, EMRGC,

+ DXFPOV, EPCGC, DXOPOV, XCRV, PCOPOI, TO, DXMFV, XCCV,

par par par par par par
+ TPA, PCMALF, ABCCV, ABMFV, ABOPO, ABFPO, RHOH,

+ DTMC, FRADS, ORADS, RHO0,

+ PIPF, PIPO, QF0, Q0,

par par

+ XCMOVC, DTFMRA, TSMFV, RESET, XOPLIM,

par par
+ PNOISE, PFRNZ, PMRNZ, TOPEN, FRFZ, EMRFZ,

+ PoPVNZ, PFPVNZ, PMOVNZ, PMFVNZ, PccVNZ,

+ FZOPV, FZFPV, FZMOV, FZMFV, FZCCV,

+ NCF, NCO, IFIND, IOIND, KOUNTF, KOUNTO,

+ MODETST, IPFLAG

DXCCV,

,valves.com '"

COMMON/VALVES/

+

+

+

+

+

out
DTHETA(5), ESAC(5), DESA(5), ESA(5), DESV(5),

ESV(5),

VS(5) , EMF(5) , DVM(5) , VM(5) ,

THETIL(5), THET2L(5),

ISTIC(5) , IHYS(5), VR(5), DTHETL(5),
par par par par par

AD(5), BD(5), CS(5), CPS(5), DSS(5), ESS(5), VPD(5)

,igni.com':
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COMMON/IGNI/ TCIG(3), ELFIG(3), DW3(3), TF(3), PFU(3)

'balc. com' :

COMMON/BALC/ AHTI4, AHTI5, AHTI6, AHTII2,

par par par par par par par

+ CDPFPI, CTQFPI, CDPFP2, CTQFP2, CTQFTI, CDPOPI, CTQOPI,

par par par par par par par

+ CDPOP2, CTQOP2, CDPOP3, CTQOP3, CTQOTI, FT2S, AFT2, CTQFT2,

par par par par par par par par par

+ EOT2S, AOT2, CTQOT2, AFI, EFFCM, ACN, THRSTC, AHTC4, AHTC5,

par par par par par:2,3 par par par par

+ AHTC6, DMOT2, DMFTI, DMFT2, CP(5), ANOTI, BNOTI, CNOTI, AOTI,
par

+ BOTI, R4, R5, R6, R7, R8, R9, RI0, RII, RI2, RI3,

par par par par par par par par par

+ RFCOD, RFMCF, RFMCO, RACV, RBAF, RPFS, RSFS, RFPFI, ROPFI,

par par par par par par par par par

+ RITN, RMCI, ROS, RFPOI, ROPOI, RFPOL, ROPOL, RFT2C, ROP2C,

par par par par par par par

+ ROI, ROCOD, RMOVL, ROP3C, ROTIF, QHT412, TFACT

'pogo.com'

COMMON /POGO/ P2, RHOREC, TGAS, XGC, XHPV
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PROGRAMSSME

C
C

*

*

C

This version of the Space Shuttle Main Engine Simulation has

been written to provide an efficient vehicle for the study of

life-extending modes of operation through knowledge-based control.

PROGRAM FLOW:

Read Run Parameters from rundata file designated in the command line

IF restart requested THEN
Initialize run data from restart file

ELSE

Initialize for normal zero start

ENDIF

REPEAT

T <- T + DT

IF perturbing THEN

* add perturbations(T)

* ENDIF

C CALL FUELF() FOR FUEL FLOW CALCULATION

C CALL OXIDF() FOR OXID FLOW CALCULATION

C CALL HOTGAS() FOR HOT GAS CALCULATION

C CALL CNTROL() FOR CONTROLLER SIMULATION

C CALL VALDYM() FOR VALVE DYNAMIC SIMULATION

C Calculate closed loop variables

* IF T = output time THEN

* Write archival and display output

* ENDIF

* UNTIL T = stop time

* IF resume desired THEN

* Generate resume file

* ENDIF

C END OF SIMULATION

C

INCLUDE 'change.com'
Call IniCom0

*** Removed "no effect" initializations.

*** Removed commented out calls to ERRSET

C

C

C

C

C

C

C

C

C

FOLLOWING FILES ARE USED FOR SIMULATION INPUTS AND OUTPUTS

DTMINP. DAT: MAIN INPUT FILE FOR BASIC PARAMETERS

NZRI00.DAT: RESTART AT 100% STEADY STATE

START4.DAT: PATCH FILE USING "NAMELIST" READING

OUT2.DAT: MAIN OUTPUT FILE

PERTINP.DAT: PERTURBATION SERIES INPUT FILE

RESULTS.DAT: QUICK GLANCE OUTPUT FILE FOR PCIE AND MIX-RATIO

STATE.DAT: OUTPUT FILE OF SELECTED IMPORTANT VARIABLES
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C

C

PLOT2.DAT: PLOT FILE FOR DEFINED PLOTTER

* Assignments of unit numbers are system dependent. Assignments are

* made global by Common /units/
run = 2

dat = 3

prt = 4

str = 6

res = 8

out = 9

dsp = 1

* Input/output files are specified on the command line, when possible.

* For Fortrans giving no access to the command line, use pre-assigned
* file names:

rundat = tssme.run'

functs = 'ssme.dat'

output = 'ssme.out'

pertrb = 'ssme.ptb'

restart = 'ssme.rst'

atstop = 'ssme.end'

* HP-UX command line: ssme rundat output [ pertrb ] [ restart ] [resume]

* CALL getarg( 2, rundat )

* CALL getarg( 3, output ), etc.

OPEN( UNIT = run, FILE= rundat, STATUS='OLD')

OPEN( UNIT = dat, FILE= functs, STATUS='OLD')
C

read( run,'(A // 2X, 6(2X,LI2) ) title, restrt, resume, pertb

loading blank common:

+ DT, DPR, DPL, DPUN, TPUN, TSTOP,

+ TPA, PCMALF, DTVC, DTPR, DTCVP, DTTR, SSM42200

+ DTFMRE, DTFMC, DTMRFC, DTFMRA, DTMCX, DTLM

' 2112, 4F12 4) ' )READ( run, (//-2 X,

+ NONZRO, MODETST, PCTPERT, TOPEN, TPERT, DTPERT SSM42240

READ( run, 30) TSTART,TPRINT2,TPLOT2

_e]axation factors for energy balance convergence

READ( run, 30) rxfact

30 FORMAT(//2X,6(GI0.4,2X))

loading BALC common:

READ(run, 30)

+ AHTI(4) , AHTI(5), AHTI(6), AHTI(12), CDPFPI, CTQFPI,

+ CDPFP2, CTQFP2, CTQFTI, CDPOPI, CTQOPI CDPOP2

+ CTQOP2, CDPOP3, CTQOP3, CTQOTI2, FT2S, AFT2,
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+ CTQFT2, EOT2S, AOT2, CTQOT2, AFI,
+ ACN, THRSTC, AHTC4, AHTC5, AHTC6,
+ ABOPO, ABFPO, ABCCV, ABMFV, DMOT2,
+ DMFT2, CP(2), CP(3), ANOTI, BNOTI,
+ AOTI, BOTI, R(1), R(3) , R(4),
+ (R(i), i = 6,11 ),
+ R(12) R(13), RFCOD, RFMCF, RFMCO,
+ RBAF, RPFS, RSFS, RFPFI, ROPFI,
+ RMCI, RFTIV, ROS, RFPOI, ROPOI,
+ ROPOL, RFT2C, ROP2C, ROI, ROCOD,
+ ROP3C, ROTIF, QHT412, TFACT

EFFCM,
ABMOV,
DMFTI,
CNOTI,
R(5) ,

RACV,
RITN,
RFPOL,
RMOVL,

READ(run, 30) TLOW,THIGH, (TPRINC(I) , I=l, 6)
READ(run,'(//2X,3II2)') NOUTD,IREDAT,ISAVE
IF pertb THEN

OPEN( UNIT = prt, FILE = pertrb ,STATUS='OLD')

ENDIF

IF restrt THEN

OPEN( UNIT = str, FILE = restart, STATUS='OLD')

ENDIF

IF resume THEN

OPEN( UNIT = res, FILE= atstop, STATUS='NEW')

ENDIF

* See perturb.for for perturbation code

* All NAMELIST input has been eliminated.

* Instead, edit the input parameter file ssme.run

* All initialization echo output is gone.

* Instead, save a copy of ssme.run as documentation

CALL fgset(24, nerr)

PA = FGEN(24, 0.0)

RBPV=I.0E+30

TTEMP=AMINI(2.3,TSTOP)

TIME=0.0

TIMEVC=DTVC

TIMEPR=DTPR

TIMECP=DTCVP

TIMETR=DTTR

TIMFME=DTFMRE

TIMFMC=DTFMC

TIMMRF=DTMRFC

TIMFMA=DTFMRA

TIMELM=DTLM

C

C

C

Initialize subsystems

CALL FUELF0

PRINT *, 'Fuel flow parameters loaded.'

CALL OXIDF0

SSM42300

SSM43100

SSM43200
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PRINT *, 'Oxygen flow parameters loaded.'
DWFPB=DWFPF+DWOPF
CALL HOTGAS0
PRINT *, 'Hotgas parameters loaded.'
CALL CNTROL0
PRINT *, 'Control parameters loaded.'
CALL VALDYMO
PRINT *, 'Valve dynamics parameters loaded.'
CALL TRBTRQ(0.,0.,0.,O.,0.,I,I,0.,0.,O.)
CALL fgset( 26 )
CALL fgset( 27 )
CALL fgset( 40 )

*** See 'nonzro.for'

t

x

for restart code

SSM43300

SSM43400

Identify output variables and ready file to save output

CALL writeset( runID )

Simulation loop

istop = tstop / dt

isec = 1.0 / dt + .i

DO 400 itime = l, istop

STIME = float( itime ) * DT

PA = FGEN(24, 2, STIME)

CALL FUELF

CALL OXIDF

DWFPB=DWFPF+DWOPF

CALL HOTGAS

CALL CNTROL

CALL VALDYM

SSM45900

Open loop output was removed. Use offline output programs instead.

At the print interval, a multiple of the solution interval,

_rite selected data, unformattted.

IF ( MOD( itime, iwrite )

CALL writer( STIME )

ENDIF

.EQ. 0 ) THEN

Write one line per second to display.

IF ( MOD( itime, isec ) .EQ. 0 ) THEN

'Time = ' STIME, ' seconds.'PRINT *,

ENDIF

4OO CONTINUE
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PRINT *
END

, 'Normal end of simulation'

SUBROUTINE fuelf0
***********************************************************************
* fuelf0 initializes variables.
* A second entry fuelrst does restart initialization and a time step.
* A third entry fuelf does a simulation time step only.
* IFCNTRL was eliminated.
***********************************************************************

C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE FUELF(IFCNTI)

PURPOSE: COMPUTE FUEL FEED SYSTEM FLOW AND PRESSURE DYNAMICS SSM15200

IN THIS SUBROUTINE, THERE ARE 13 NODES DEFINED FOR THE CALCULATION OF

FLOW AND OTHER PROPERTIES OF FUEL.

i) INLET FROM FUEL TANK TO LOW PRESSURE FUEL PUMP (LPFP)

2) DUCT BETWEEN OUTLET OF LPFP AND INLET OF HPFP

3) DUCT BETWEEN OUTLET OF HPFP AND MAIN FUEL VALVE (MFV)

*4) UPPER NOZZLE COOLING FLOW

C *5) MAIN COMBUSTION CHAMBER COOLING (BELOW THROAT)

C *6) MAIN COMBUSTION CHAMBER COOLING (ABOVE THORAT)

C 7) COOLING CONTROL VALVE (CCV) FLOW

C 8) MIXER OF NOZZLE COOLING (4) AND CCV FLOW (7)

C 9) PREBURNER SUPPLY DUCT (DISTRIBUTER NODE)

C I0) COOLING FLOW FROM MFV TO NODE (ii)

C ii) DOWN COOLING FLOW TO LOWER END OF NOZZLE

C "12) COOLING FLOW OF LOWER 15% OF NOZZLE

C 13) COOLING FLOW FROM MFV TO THROAT END

C THOSE NODES WITH * ARE THE ONES THAT CONTACT WITH COMBUSTION CHAMBER OR

C NOZZLE AND HAVING HEAT EXCHANGE BETWEEN THEM.

C

C******ARGUMENT*****_

C INPUT: IFCNTL = INITIALIZATION ARGUMENT

C

C******COMMON USAGE******

INPUT:

VARIABLES

TRQFP2,PFI,PINMC,PFP,POP,QINI,RMFV,RCCV,DWFIG

RMFV,RCCV

DWFIG

C

C

C

C

C

C

C

C

C

C

C

OUTPUT:

VARIABLES

DWFPF,DWOPF,DWFBPV, DWFT2C,SF2,TWI

DW(2)

P(3),P(10),P(7),P(8),RHO(3),RHO(7),DW(3),DW(7)

SOURCE

HOTGAS

VALDYM

IGN SSM15300

DESTINATION

HOTGAS

CNTROL

EMCO
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C
C SUBROUTINESCALLED: PROP0, hyprop
C
***********************************************************************

INTEGER Tstep

LOGICAL fuelOK

C

C

C

DIMENSION ZH(13),A6(13),ZZ(13),vVOL(13),DWA(13)

DIMENSION TUBEN(13),PIFP(6),DWIFP(5),QOUT(13)

DIMENSION ACS(13),ELEN(13),DHYD(13),WWI(IB),WW2(I3)

DIMENSION ELENF(6),ZFL(6),ZFC(6),RIF(6)

A runtime division was replaced by a multiplication.

PARAMETER ( v9336 = 1.0 / 9336.0, v386p4 = 1.0 / 386.4 )

PARAMETER ( Tstep = 0 )

Labelled COMMON blocks

INCLUDE 'units.com'

INCLUDE 'blank.com'

INCLUDE 'out.com'

INCLUDE 'fuel.com'

INCLUDE 'igni.com'

INCLUDE 'balc.com'

INCLUDE 'units.com'

NAMELIST/FUELFD/ELENF,ZFL, ZFC,RIF,DHYD,ELEN,AHT2,WWI,WW2,TWI,TW2

Namelists have been eliminated, in favor of an editable input
parameter file.

SSM15900

Modern compilers default to dynamic memory allocation of local

variables. The following statement requires memory for all local
variables to be retained between calls.

SAVE

UNEWF( ) IS TO CALCULATE NEW SPECIFIC INTERNAL ENERGY (SU) FOR A GIVEN

_'ODE WHERE INPUT FLOW (DWIN), INPUT ENTHALPY (HIN), OUTPUT FLOW (DWOUT),

NEW PRESSURE (PNEW) AND NEW DENSITY (RHONEW) ARE KNOWN.

UNEWF(I, DWIN, HIN, DWOUT, PNEWl, RHONEW) =

+ (RHO(I)*SU(I) + vVOL(I) *

+ (QOUT(I) + HIN - DWOUT*PNEWI/( RHONEW * 9336.0 ) ) * DT ) /

+ (RHO(I) + vVOL(I)*DWIN*DT )

* Though the Euler form x + rate * dt appears, the function above is not

* taken to involve time integration in the usual sense. Else it should
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be rewritten as the ratio of two trial integrations, as

* UNEWF(I, DWIN, HIN, DWOUT, PNEWI, RHONEW)=
* + tryint(RHO(I)*SU(I), vVOL(I) *
, + (QOUT(I) + HIN - DWOUT*PNEWI/( RHONEW* 9336.0 ) ), N ) /

, + tryint(RHO(I), vVOL(I)*DWIN, N+I )

C

C CHGX( ) was replaced by a more detailed monitoring system for

, balancing iterations

C
* Statement functions Zl and Z2 were eliminated, to simplify maintenance.

C SSMI6000

rlimit(floor, ceiling, x) = AMAXI( floor, AMINI( ceiling, x) )

* Replacing rlimit with IF ( x .LE. floor ) THEN
, x = floor

, ELSE IF ( x .GT. ceiling ) THEN

, x = ceiling

. END

* would be faster, but only by straightline coding, not as a FUNCTION.

recpos(x) = AMAXI(0.,x)

recneg(x) = AMINI(0.,x)

As a mechanism for bypassing initialization code,

IF(FLAG.EQ.15.) GO TO 999

is obscure, and can be unreliable if FLAG is not initialized at load

time. The function was accomplished more directly, and at no runtime

cost, by the ENTRY statement.

In the initialization, the following were eliminated:

- statement function formal parameters, which created new variables

unused by the simulation.

- initializations overwritten by reading input parameters

- local variables written before being read

CPH2=0.O

DDW2=0.O

DSFI=0.O

DSF2=0.O

DWFPFP=O.0

DWOPFP=O.0

HI=0.0
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991

993

S
C

HIOIN=0.0
HIOP=0.0
HIIP=0.0
HI2P=0.0
HI3P=O. 0

H4 P=O. 0

H5P=0.0

H6P=0.0

H7P=0.0

H8P=0.0

H9P=0.0

PVFPI=O. 0

PVFP2=0.0

PLOP=0.0

PIIP=0.0

PI2P=0.0

PI3P=0.0

P4P=0.0

P5P=O .0

P6P=0.0

P7P=0.0

P8P=O. 0

P9P=0.0

Q1=O.O

Q2=O. 0

RFS=0.0

RHOT=0.0

RITNV=0.0

RPI=0.0

RP2=0.0

DO 991 I=i,13

QOUT (I) =0.0

ZH(I)=O.O

CONTINUE

DO 993 I=i,5

DWIFP(I) =0.0
L

CONTINUE

Read INPUT Parameters

READ(run,30)
+

READ ( run, 3 0 )
+

+

+

+

READ(run,30)
READ(run,30)
READ(run,30)

(ELENF(J),J=I,6), (ZFL(J),J=I,6),

(ZFC(J),J=I,6), (RIF(J),J=I,6)

(DHYD(J),J=I,13), (ELEN(J),J=I,13),

(AHT2 (J), J=l, 13) , (WWI (J) ,J=l, 13) ,

(WW2(J),J=I,13), (TWI(J),J=I,13),

(TW2(J),J=I,13), (P(J),J=l,13),

(T(J),J=I,13), (TUBEN(J),J=I,13)

DWF, ELENT, ZFTI, ZCCV, ZFCOD, ZPFPD

ELEFPF, ACSFPF, ELEOPF, ACSOPF, ELENFN

HTCON, VOLFPI, VOLFP2, PCFPI, PCFP2
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* READ(5,30) intentionally skippec
READ(run,30) TRQFIB, TRQF2B, TDRAGF
READ(run,'(//2X,3GI2.4,II2)') GFI, GF2, PTOL, MAXL

30 FORMAT(//2X, 6G12.4) SSM17910

* Namelist input and formatted echo of input parameters were eliminated.

READ(7, FUELFD) SSMIS00t;
WRITE(6,29) (ELENF(J),ZFL(J),ZFC(J),RIF(J),J=I,6) , etc

C

This section loads fuel flow interpolated functions.
Calls to FGEN( n, i, x ), which reads the DTMINP file, were
replaced by calls to fgset( n ), which reads the editable function
file attached to unit 'dat'. Initializations recognized as
unnecessary were removed.

CALL fgset( 30 )
CALL fgset( 22 )
STIME=TIME
CALL fgset( 9 )

PT = fgen(9, i, STIME)

SSM18300

Functions of the same variable use different call numbers unless the

interpolation intervals are identical

CALL fgset( 7 )

HT = fgen(7, 7, STIME)

CALL fgset( i0 )

CALL fgset( 51 )

CALL fgset( 52 )

CALL fgset( 53 )

CALL fgset( 54 )

GAMF = H2GAM0( PT, 40.0, 1 )
CALL PROP0

SF2 = 0.01

QHT412 = 0.464

RHOT = 2.552E-3

SUT = HT - PT / ( RHOT * 9336.0 )

SSM18400

RHOT is reset from the t(u,rho) table, X = throwaway temperature

CALL hyrt(SUT, RHOT, i, PT, X )

WRITE(6,37)DWF,PT,HT,RHOT,ELENT was removed.

The replacement of mandatory full output by selective unformatted

output eliminated the destination for this initialization

documentation. DWF and ELENT echo input, and are documented by the

'run' unit file. PT, HT, and RHOT appear in the selectable output as

107



* PIF(1), H(1), RHO(1), etc.
C
C CALCULATION OF CONSTANTSAND INITIALIZATION
C

C

PIF(1)=PT
PIFP (i) =PT
DWIF(I) =DWF
DWIFP( 1) =DWF

DO 71 J = 2, 5

PIF (J) =PIF (J-l) +ELENF (J-l) *RHOT

PIFP (J) =PIF (J)

DWIF (J) =DWF
CALL unint0(PIF(J), J + 27 )

71 CONTINUE

DO 72 J = i, 5

CALL unint0(DWIF(J), J + 23 )

72 CONTINUE

PFS = PIF(5) + ELENF(5)*RHOT

CALL unint0( PFS, 33 )

PFS P=PFS

PIF (6 ) =PFS

PIFP (6) =PFS

SSMI850C

DO 60 J = i, 3

RHO (J) = RHOT

H (J) = HT

60 CONTINUE

DO 70 J = 4,13

RHO(J)= 1.0875E-4 * P(J) / T(J)

, CALL PROP(SU(J),RHO(J),J,P(J),T(J),4) was replaced by

CALL hyut(SU(J), RHO(J), 2 * J, P(J), T(J) )

e

• which adjusts SU(J) based on the p(u,rho) table, and reserves call

• points 2, ..., 27 -

H(J) = SU(J) + P(J) / (RHO(J) * 9336.0 )

C

_ ACS(J) = 3.14*DHYD(J)**2/4.0*TUBEN(J) replaced by

ACS(J) = 0.7854 * DHYD(J)**2 * TUBEN(J)

SSMI860C

VOL(J) = ACS(J) * ELEN(J)

, ZZ (j) =ELEN (j)/ACS (j)/386.4 replaced by

SSM18700

ZZ(J) = ELEN(J) / (ACS(J) * 386.4 )

RR(J) = R(J)
SSM18800
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, A6(J)=HTCON/DHYD(J)**I.8 replaced by

A6(J) = HTCON/ (DHYD(J) * Xl0th(DHYD(J), 8) )

• Interpolation of x**(-1.8) is not necessary as long as the function

• is used only in initialization.

C

9O

C

260

DW(J) = DWF

QOUTI(J) = 0.0

QOUT2(J) = 0.0

QINI(J) = 0.0

QIN2(J) = 0.0

CALL unint0(TWI(J), J - 1 )

CALL unint0(TW2(J), J + 9 )

70 CONTINUE

ZFS=ZZ (2) +I. 0/ZFCOD+ZZ (3)+I./ZPFPD
ZZ (6)=ZFTI
ZZ (!0)=. 5*ZZ (11)
ZZ(II)=.5*ZZ(II)

SSM18900

Configuration constants set during initialization are documented on

an output file on unit 'init'.

WRITE(init,90) (J,ACS(J),VOL(J),A6(J),ZZ(J), J=I,13)

FORMAT ( ' J ACS VOL A6 ZZ '

, / (II3, IP4EII.3) )

WRITE(init,260)ZFS

FORMAT('0START TRANSIENT ASSUMES PRECHILLED PUMPS AND LIQUID H2',

*' THROUGH TO PUMP DISCHARGE'/ ' ZFS' /IPEII.3) SSMI9000

DWMC = 0.0

CALL unint0( DWMC, 36 )

DWFNBP = 0.0

CALL unint0( D_FNBP, 37 )

DWFTI = 0.0

DWFPF = 0.0

DWOPF = 0.0

undw2c = 0.0

CALL unint0( 0.0, 23 )

ZFPF = ELEFPF/(ACSFPF*386.4)

ZOPF = ELEOPF/(ACSOPF*386.4)

SFI=O.01

CALL imint0( SFI, i, 0.i, I.E20 )

SF2=O.01

CALL imintO( SF2, 2, 0.001, I.E20 )

TRQFPI=0.0

TRQFP2=0.0

PFTI = 0.0

SSMI9100
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PRFTI = 1.0
TFTI=T (6)
fgen21 = 9340.0 * fgen(21, 2, 0.0)

• Load relative change tolerance for energy balance convergence tests

CALL chg0( PTOL )

C

C

C

IF ( STIME .EQ. 0.0 ) RETURN

RESTART INITIALIZATION

DWFASI = DWFIG(1) + DWFIG(2) + DWFIG(3)

RHOPIC = .5 * (RHO(1) + RHO(2) )

PHIPI = DW(2) / (RHOPIC * SFI)

DPI = fgen(51, 3, PHIPI) * RHOPIC * SFI**2 * CDPFPI
DPIP = DPI

PHIP2 = DW(2) / (RHO(3) * SF2 )

DP2 = fgen(53, 4, PHIP2) * RHO(3) * SF2,,2 * CDPFP2

DP2P = DP2

PFSP = PFS

DO 2010 J=l,6

PIFP (J) =PIF (J)

DWIFP (J) =DWIF (J)

2010 CONTINUE

DW2 P=DW (2 )

CALL unintO( DW2P, 34 )

CALL unintO(DW(10), 35 )

DW100=DW (I0) +DWMC+DWFNBP+DWFAS I

DWIOI=DW (3)

P4P=P(4)

P5P=P(5)

P6P=P (6)

P7P=P(7)

P8P=P(8)

P9P=P(9)

Pl0P=P(10)

PllP=P(ll)

Pl2P=P(12)

Pl3P=P(13)

DO 2015 J=4,13

SU(J) = H(J) - P(J) / (RHO(J) * 9336.0 )

_0i5 CONTINUE

CALL unint0(RHO(10), 38 )

CALL unintO(DW(II), 39 )

CALL unint0(RHO(II), 40 )

CALL unint0(DW(12), 41 )

CALL unint0(RHO(12), 42 )

CALL unint0(DW(4), 43 )

CALL unintO(RHO(4), 44 )

SSM19400
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CALL unint0(DW(13), 45 )
CALL unint0(RHO(13), 46 )
CALL unint0(DW(5), 47 )
CALL unint0(RHO(5), 48 )
CALL unint0(DW(6), 49 )
CALL unint0(RHO(6), 50 )
CALL unint0(DW(7), 51 )
CALL unint0(RHO(7), 52 )
CALL unint0(DW(8), 53 )

CALL unint0(RHO(8), 54 )

CALL unint0( DWFPF, 55 )

CALL unint0( DWOPF, 56 )

CALL unlnt0(RHO(9), 57 )

C

C

C

C

C

C

C

C

C

DWFASI = DWFIG(1) + DWFIG(2) + DWFIG(3)

STIME = TIME

LOW RATE CALCULATIONS

SSM19600

FUEL PUMP SPEEDS (RAD/SEC)

IF(SFI .LT. ii.0 .AND. TRQFTI .LT. TRQFPI+TRQFIB) THEN

DSFI = 0.0

ELSE

DSFI = (TRQFTI-TRQFPI)/GFI
END IF

Integral limited below by 0.i

SFI = prlint( DSFI, delt, 1 )

IF(SF2 .LT. ii.0 .AND. TRQFT2 .LT. TRQFP2+TRQF2B) THEN

DSF2 = 0.0

ELSE

DSF2 = (TRQFT2-TRQFP2-TDRAGF)/GF2
END IF

SSM19700

Integral limited below by 0.001

SF2 = prlint( DSF2, delt, 2 )

QINI(12)=QINI(4)*QHT412

QINI(4)=QINI(4)-QINI(12) SSM19800

DO 2050 J=4,13
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C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C

C

C

C

C

C

C

C

vVOL(J) = 1.0 / VOL(J)

ZH(J) = A6(J) * HTF(T(J),P(J))
2050 CONTINUE

THE AVERAGE FLOW USED TO CALCULATE THE HEAT EXCHANGE IS THE AVERAGE OF

i) THE FLOW OF CURRENT NODE

2) THE FLOW OF UPSTREAM NODE(S)

THIS IS A VERY ROUGH ESTIMATION SINCE IT REALY DEPENDS ON THE TIME

INTERVAL OF THE SIMULATION AND THE LENGTH OF EACH SEGMENT.

DWA (4)=ABS (0.5* (DW (12) +DW (4)) )

DWA (5) =ABS (0.5* (DW(13) +DW (5)) )

DWA (6) =ABS (0.5* (DW(5) +DW(6) ) )

DWA (7) =ABS (0.5* (DWFNBP+DW (7)) )

DWA (8) =ABS (0.5* (DW (7) +DW (4) +DW (8)) )

DWA (9 )=ABS (0.5 * (DW (8 ) + DWFPF+ DWO PF) )

DWA(10) =ABS (0.5" (DWIOI+DWI00))

DWA (ii)=ABS (0.5* (DW(10)+DW (II)) )

DWA (12) =ABS (0.5* (DW (ii) +DW (12)) )

DWA (13) =ABS (0.5* (DWMC+DW (13)) )

SSM19900

THE FOLLOWING SECTIONS OF PROGRAM CALCULATE THE HEAT EXCHANGE OF THE

COOLING FLOW AND THE COMBUSTION CHAMBER.

THE EQUATIONS USED IN THE PROGRAM IS DIFFERENT FROM THOSE GIVEN IN THE

SSME SPECIFICATION PP.31-32.

I BELIEVE THEY ARE THE SIMPLIFIED VERSION OF THE EQUATION.

IF THE COOLING EFFECT BECOME IMPORTANT IN THE SIMULATION THEN THE FOLLOI

SECTION OF CODE WILL HAVE TO BE VERIFIED.

THERE ARE TWO TYPES OF HEAT FLOW OCCURED IN THE HEAT EXCHANGE

i) BY CONDUCTION DESCRIBED AS QOUTI(J) AND QOUT2(J)

2) BY CONVECTION DESCRIBED AS FUNCTION OUTPUT QFLUX().

IN THE FOLLOWING SECTION, THE REPRESENTATIONS ARE

i) QOUTI: HEAT TRANSFERED FROM MAIN COMB. CHAMBER AND NOZZLE WALLS

2) QFLUX(**I,.J.): BOILING HEAT FROM MCC AND NOZZLE WALLS

3) QOUT2: HEAT LTRANSFERED FROM AMBIENT WALLS

4) QFLUZ(**I,..): BOILING HEAT FROM AMBIENT WALLS

5) QBM: HYDROGEN SATURATION ENTHALPY AT THE PRESSURE

_ One unnecessary real**real has been eliminated, and the remaining

real**.55 and real**.8 replaced by equally spaced linear interpolations.

DO 2060 J=4,13

IF(J.GT.6.AND.J.NE.12) THEN

QI=0.

QOUT2(J) = ZH(J) * XtoY(T(J)/TW2(J), .55 ) *

+ XI0th(DWA(J), 8) * (TW2 (J) -T (J) )
ELSE

dwtemp = XI0th(DWA(J), 8)

SSM20000

112



+

+
+

+

C
C
C

+
+

QOUT(J) = Q1 + Q2

2060 CONTINUE

QOUTI(J)= ZH(J) * XtoY(T(J)/TWI(J), .55 ) *

dwtemp * (TWI(J)-T(J))

QI= (QOUTI (J) +QFLUX (TWI (J) ,T (J) ,P(J) ,H (J)) ) *AHTI (J)

TWI(J) = pruint (

(QINI(J) - Q1 ) / ( fgen( 22, l+J, TWI(J) ) * WWI(J) ),
0 , J - 1 )

QOUT2(J) = ZH(J) * XtoY(T(J)/TW2(J), .55 ) *

dwtemp * (TW2 (J)-T(J))

END IF

QBM = DWA(J)*( H2SATH(P(J) ) - H(J) )

QB(J) = rlimit( 0., QBM, QFLUX(TW2(J), T(J), P(J), H(J) ) )

Q2 = (QOUT2(J) + QB(J) )*AHT2(J)

TW2(J) = print(TW2(J) ,

(QIN2(J) - Q2 ) / ( fgen( 22, ll+J, TW2(J) ) * WW2(J) ),
0, J + 9 )

SSM20100

FUEL TANK CHARACTERISTIC AS A FUNCTION OF TIME

PT = fgen(9, i, STIME)

HT = fgen(7, 7, STIME)

H(1) = HT

PIFP(1) = PT

SUT= HT - PT / (RHOT * 9336.0)

CALL hyrt( SUT, RHOT, i, PT, X )

C

C

C

C

C

C

C

RHOFS = RHOT

LOW PRES FUEL TURBINE

SSM20200

THIS IS TO CALCULATE THE PERFORMANCE OF LPFT (FTI). HOWEVER, THE

EQUATION USED HERE TO CALCULATE THE TURBINE PARAMETER (ETAFTI) AND

THE SPECIFIC HEAT CONSTANT (CPH2) ARE NOT DESCRIBED IN THE DOCUMENT.

TFTI=T (6)
ETAFTI = DMFTI _ SFI * 33.0965 /

+ Xl0th( AMAXI(0.0001, 9270. * TFTI * (I.0/PRFTI- 1.0) ), 5 )

RITNV = RITN / fgen(30, 25, ETAFTI)**2

R6 = RITNV + RFTIV + RMCI

CPH2 = fgen(15, 26, TFTI) - 0.0887 +

+ (0.1241 * PFTI - 3.732E-5 * PFTI**2) /

+ (AMAXI(51.,TFTI) - 50. ) SSM20300

TRQFTI = TRBTRQ(SFI,UCFTI,TFTI,PFTI,PRFTI,I,CPH2,DWFTI,

* H2GAMA(PFTI,TFTI,7)) * CTQFTI

PFTI = P(6) - RFTIV / RHO(6) * DWI6) * ABS(DW(6) )
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C
C
C
C
C
C

C

C

C

C

C

C

C

C

C

C

PRFTI = ( PFTI - RITNV/RHO(6)*DWFTI*ABS( DWFTI ) ) / PFTI
PFTID = PFTI * PRFTI

TFTID = TFTI - (TRQFTI * SFI) / ( fgen21 * DWFTI + 1.0E-06 )

TURBINE COOLANT FLOW STARTS AT DP=I85

THE EXTRA COOLANT FLOW TO COOL THE HIGH PRESSURE FUEL TURBINE:

THE VALVE START TO OPEN AT DP=I85 AND BECOME FULLY OPEN AT DP=I95.

DWFT2C = FLOW( DWFT2C, 0.I, RFT2C/RHO(3), P(3)-PFI, 23) SSM2040C

DWFT2C = DWFT2C * rlimit(0.O, 1.0, (P(3) - PFI - 185.) * 0.i )

If the rlimit < i, the effect is to drive DWFT2C down with a time const_

dependent on the integration step size, which surely isn't intended.

The model is replaced by a variable limit imposed on an unlimited

integrator.

undw2c = prflow( undw2c, 0.i, RFT2C/RHO(3), P(3)-PFI, 23) SSM2040C

DWFT2C = undw2c * rlimit(0.0, 1.0, (P(3) - PFI - 185.) * 0.i )

BEGIN PRESSURE FLOWRATE ITERATION

THE FUEL SYSTEM USES THE ITERATION METHOD TO CALCULATE THE NEXT STATE

OF THE PRESSURE, FLOWRATE AND ENERGY BALANCE. THE ITERATION IS STOPPE_

WHEN THE MAXIMUM CHANGE OF THE PRESSURE OF THE FUEL SYSTEM IS LESS THEN

THE TOLERANCE ALLOWANCE PTOL.

Initialize change monitor iteration counts

CALL its0

DO 4000 LOOPS = 1 , MAXL

Reset change monitor for balance iteration test

SSM20500

fuelOK = .TRUE.-

£HIS SECTION IS TO CALCUALTE THE CAVITATION FOR FPI AND FP2.

c

c

iN THE FOLLOWING CALCULATIONS, THE FUNCTION PROP( ) IS USED TO FIND

OUT THE STATUS OF THE CURRENT HYDROGEN GIVEN KNOWN PARAMETERS.

PROP( ) IS A CHARACTERISTIC DATA MAP FOR HYDROGEN - RELATIONS AMONG

INTERNAL ENERGY, DENSITY, PRESSURE, AND TEMPERATURE.

PVFPI = H2VP(T(2))

PVFP2 = H2VP(T(3))
PFPIR = PVFPI + PCFPI*SFI**2

PFP2R = PVFP2 + PCFP2*SF2**2

RHOPI = 0.5 * (RHO(1) + RHO(2) )

RHOP2 = RHO(3)
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C
C
C

C
C
C

C
C
C
C
C

C

C
C
C

IF (PFS .GT. PFPIR) THEN
RHOPIC = RHOPI

ELSE

CAVITATION FOR FPI

RHOPIC = RHOPI * rlimit( 0.25, 1.0,
+ 0.25 + (PFS-PVFPI)*.75/(PFPIR - PVFPI + 1.0E-10)

END IF
TRQFPI = fgen(52, 27, DW2P/(RHOPIC * SFI) ) *

+ RHOPIC * SFI**2 * CTQFPI
TRQFPI = ABS(TRQFPI)
IF(PFS2.ST.PFP2R) THEN

RHOP2C = RHOP2
ELSE

SSM20600

SSM20700

CAVITATION FOR FP2

RHOP2C = RHOP2 * rlimit(0.05, 1.0,

+ 0.05 + (PFS2-PVFP2) * 0.95 /(PFP2R - PVFP2 + 1.0E-10)

END IF

TRQFP2 = fgen(54, 28, DW2P/(RHOP2C * SF2) ) *
+ RHOP2C * SF2,,2 * CTQFP2

TRQFP2 = ABS (TRQFP2)

FEEDLINE

THIS IS THE FEEDLINE BETWEEN FUEL TANK AND LPFP

DO 1060 J = i, 5

DWIFP(J) = trflow(DWIF(J), ZFL(J), -RIF(J),

+ PIFP(J) - PIFP(J+I) + ELENF(J) * RHOFS * DDX * v386p4, J+23 )

1060 CONTINUE

DO 1070 J = 2, 5

PIFP(J) = truint( (DWIFP(J-I) - DWIFP(J) ) / ZFC(J),

+ _ Tstep, J + 27 )

1070 CONTINUE

PNEW = truint( (DWIFP(5) - DW2P ) / ZFC(6), Tstep, 33 )

SSM20800

CHANGE=CHGX(CHANGE,PNEW, PFSP) was replaced by

PFSP = relax( fuelOK, PNEW, PFSP, 1 )

part of a convergence

management system recommended to give more maintenance control

over iterative energy balancing.

PIFP(6) = PFSP

PUMPS

LPFP AND HPFP AND FLOW BETWEEN FEEDLINE AND MFV
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C

C

C

C

C

f/;

C

+

+

IF( RMFV .GT. I.OEIO ) THEN

DW2P = O.

ELSE
RPI = CP(2) * CDPFPI / RHOPIC

RP2 = CP(3) * CDPFP2 / RHOP2C
RFS = RFCOD/RHO(2) + RPI + RP2 + (RR(3) + RMFV ) / R/_O(3)

DW2P = trflow(DW(2), ZFS, -RFS,
(PFSP - P10P + DPIP + DP2P) + (RPI + RP2) * DW2P * ABS(DW2P),

34 )

END IF
DDW2 = (DW2P-DW(2) ) / DT

DW(1) = DW(2)
IF(DW2P.EQ-0.) THEN

H(2)=H(1)

H(3)=H(2)

ELSE
H(2) = H(1) + TRQFPI * SFI / (DW2P * 9336.)

H(3) = H(2) + TRQFP2 * SF2 / (DW2P * 9336,.)

ENDIF

DW3P = DW2P - DWFT2C

pDW3P = recpos(DW3P)

PHIPI = DW2P / ( RHOPIC * SFI )

DW2A = ( DW2P + DW(2) ) * 0.5

DPIP = fgen(51, 3, PHIP1) * RHOPIC * SFI**2 * CDPFPI

P(2) -- PFS + DPI - DDW2 * ZZ(2)

PFS2 = P(2) - RFCOD/RHO(2) * DW2A * ABS(DW2A) - DDW2/ZFCOD

PHiP2=DW2P / (RHOP2C * SF2)
DP2P = fgen(53, 4, PHIP2) • RHOP2C * SF2**2 * CDPFP2

P(3) = PFS2 + DP2 - DDW2 * ZZ(3)

SUI = HT - PFS / (RHO(1) * 9336. )

SU2 = H(2) -P(2) / (RHO(2) * 9336. )

SU3 = H(3) - P(-3) / (RHO(3) * 9336. )

CALL hyrt( SUI, "RHO(1), i, PFS, TTI )

CALL hyrt( SU2, RHO(2), 3, P(2), T(2) )

CALL hyrt( SU3, RHO(3), 5, P(3), T(3) )

T(2) = T(1) + T(2) - TTI

T(3) = T(1) + T(3) - TTI

SSM2090C

SSM2100C

SSM21200

SSM21300

MFV DIFFUSER

HI=H(3)

IF (DW(3) .LT. O- 0) HI=H (I0)

DWIOP = trflow(DW(10), ZZ(IO), -RR(10)/RHO(IO), PIOP-PIIP, 35 )

DWMCP = trflow( DWMC, ZZ(13), -RR(13)/RHO(IO), PIOP-PI3P, 36 )

DWFNP = trflow( DWFNBP, ZZ(7), -RR(7)/RHO(10), PIOP-P7P, 37 )
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C

C
C
C

C
C
C

C

C

Doing rectifications once instead of three times each.

pDWIOP = recpos(DWl0P)

DWIOPn = recneg(DWl0P)

pDWMCP = recpos(DWMCP)

DWMCPn = recneg(DWMCP)

pDWFNP = recpos(DWFNP)

DWFNPn = recneg(DWFNP)

DWIOOP = pDWIOP + pDWMCP + pDWFNP + DWFASI - DW3Pn SSM21400

DWIOIP = pDW3P - DWIOPn - DWMCPn - DWFNPn

RHOIOP = truint(vVOL(10) * (DWIOIP - DWIOOP), Tstep, 38 )

HIOIN = pDW3P * HI - DWIOPn * HIIP - DWMCPn * HI3P - DWFNPn * H7P

SUIOP = UNEWF( i0, DWIOIP, HIOIN, DWIOOP, P10P, RHOIOP )

HIOP = SUIOP + P10P / ( RHOIOP * 9336. )

CALL hypt(SUl0P, RHOIOP, I0, PNEW, T(10) ) SSM21500

P10P = relax( fuelOK, PNEW, P10P, 2 )

DOWNCOMERS

DWIIP = trflow(DW(II), ZZ(ll), -RR(II)/RHO(II), PIIP-PI2P, 39 )

DWIIPp = recpos(DWllP)

DWIIPn = recneg(DWllP)

RHOIIP = truint( vVOL(II)*(DWIOP - DWlIP), 40 )

DWIII = pDWIOP - DWIIPn

HI = pDWIOP * HIOP - DWlIPn * HI2P

DWIIO = DWIIPp - DWIOPn

SUIIP = UNEWF( ii, DWIII, HI, DWIIO, PIIP, RHOIIP )

HIIP = SUIIP + PIIP/(RHOIIP * 9336.)

CALL hypt( SUIIP, RHOIIP, ii, PNEW, T(II) )

SSM21600

PIIP = relax( fuelOK, PNEW, PIIP, 3 )

LOWER 15% OF NOZZE

DWI2P = trflow(_DW(12), ZZ(12), -RR(12)/RHO(12), PI2P-P4P, 41 ) 1700

DWI2Pp = recpos(DWl2P)

DWI2Pn = recneg(DWl2P)

RHOI2P = truint( vVOL(12)*(DWIIP - DWI2P), 42 )

DWI2I = DWIIPp - DWI2Pn

HI = DWIIPp * HIIP - DWI2Pn * H4P

DWI20 = DWI2Pp - DWIIPn

SUI2P = UNEWF( 12, DWI2I, HI, DWI20, PI2P, RHOI2P )

HI2P = SUI2P + PI2P/(RHOI2P * 9336.)

CALL hypt( SUI2P, RHOI2P, 12, PNEW, T(12) )

PI2P = relax( fuelOK, PNEW, PI2P, 4 )

NOZZLE REGEN COOLING FLOW

SSM21800
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C

C
C
C

C
C
C
C
C

C
C

C

DW4P = trflow(DW(4), ZZ(4), -RR(4)/RHO(4), P4P-P8P, 43 )

RHO4P = truint( vVOL(4)*(DWI2P - DW4P), 44 )

DW4Pp = recpos(DW4P)

DW4Pn = recneg(DW4P)

DW4I = DWI2Pp - DW4Pn

HI = DWI2Pp * HI2P - DW4Pn * HSP

DW40 = DW4Pp - DWI2Pn

SU4P = UNEWF( 4, DW4I, HI, DW40, P4P, RHO4P )

H4P = SU4P + P4P/(RHO4P * 9336.)

CALL hypt( SU4P, RHO4P, 4, PNEW, T(4) )

P4P = relax( fuelOK, PNEW, P4P, 5 )

SSM2190C

MCC SUPPLY DUCT

DWI3P = trflow(DW(13), ZZ(13), -RR(5)/RHO(13), PI3P-P5P, 45 )

RHOI3P = truint( vVOL(13)*(DWMCP - DWI3P), 46 )

DWI3Pp = recpos(DWl3P)

DW13Pn = recneg(DWl3P)

DW13I = DWMCPp- DWI3Pn

HI = DWMCPp*HI0P - DWI3Pn*H5P

DW130 = DWI3Pp - DWMCPn

SUI3P = UNEWF( 13, DWI3I, HI, DWI30, P13P, RHO13P )

HI3P = SUI3P + PI3P/(RHOI3P * 9336.)

CALL hypt( SUI3P, RHOI3P, 13, PNEW, T(13) )

PI3P = relax( fuelOK, PNEW, P13P, 6 )

SSM22000

MAIN COMBUSTOR REGEN COOLING FLOW

NODE 5 BELOW THROAT

DW5P = trflow(DW(5), ZZ(5), -RR(6)/RHO(5), P5P-P6P, 47 )

RHO5P = truint( vVOL(5)*(DWI3P - DW5P), 48 )

DW5Pp = recpos (_WSP)

DW5Pn = recneg(DWSP)

DW5I = DWI3Pp - DW5Pn

HI= DWI3Pp * HI3P - DW5Pn * H6P

DW50 = DW5Pp- DWI3Pn

SU5P = UNEWF( 5, DWSI, HI, DW50, PSP, RHO5P )

H5P = SU5P + P5P/(RHO5P * 9336.)

CALL hypt( SU5P, RHO5P, 5, PNEW, T(5) )

P5P = relax( fuelOK, PNEW, P5P, 7 )

SSM22100

SSM22200

NODE 6 ABOVE THROAT

DW6P = trflow(DW(6) , ZZ(6), -R6/RHO(6), P6P - PINMC, 49 )

RHO6P = truint( vVOL(6)*(DW5P - DW6P), 50 )
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C

C

C

C

C

C

C

C

C

C

DW6Pp = recpos(DW6P)

DW6Pn = recneg(DW6P)

DW6I = DW5Pp- DW6Pn

HI = DW5Pp*H5P - DW6Pn*H6P

DW60 = DW6Pp- DW5Pn

SU6P = UNEWF( 6, DW6I, HI, DW60, P6P, RHO6P )

H6P = SU6P + P6P/(RHO6P * 9336.)

CALL hypt( SU6P, RHO6P, 6, PNEW, T(6) )

P6P = relax( fuelOK, PNEW, P6P, | )

CCV INLET DUCT

DW7P = trflow(DW(7), .04, -(RCCV + RR(9) )/RHO(7),
+ P7P - P8P, 51 )

RHO7P = truint(RHO(7), vVOL(7)*(DWFNP - DW7P), 52 )

DW7Pp = recpos(DW7P)

DW7Pn = recneg(DW7P)

DW7I = pDWFNP- DW7Pn

HI = pDWFNP*HIOP - DW7Pn*H8P

DW70 = DW7Pp - DWFNPn

SU7P = UNEWF( 7, DW7I, HI, DW70, P7P, RHO7P )

H7P = SU7P + P7P/(RHO7P*9336.)

CALL hypt( SU7P, RHO7P, 7, PNEW, T(7) )

P7P = relax( fuelOK, PNEW, P7P, 9 )

MIXER

DW8P = trflow(DW(8), ZZ(8), -RR(8)/ RHO(8), P8P-P9P, 53 )

RHO8P = truint( vVOL(8)*(DW7P + DW4P - DW8P), 54 )

DWSPp = recpos (DWSP)

DWSPn = recneg(DWSP)

DW8I = DW4Pp + DW7Pp - DWSPn

HI = DW4Pp*H4P + DW7Pp*H7P - DWSPn*H9P

DW80 = DW8Pp - _W7Pn- DW4Pn

SU8P = UNEWF( 8, DW8I, HI, DW$O, PSP, RHOSP )

H8P = SU8P + P8P/(RHO8P*9336.)

CALL hypt( SUSP, RHO8P, 8, PNEW, T(8) )

P8P = relax( fuelOK, PNEW, PSP, I0 )

PREBURNER SUPPLY DUCT

DWFPFP = trflow( DWFPF, ZFPF, -RFPFI/RHO(9), P9P - PFP, 55 )

DWOPFP = trflow( DWOPF, ZOPF, -ROPFI/RHO(9), P9P - POP, 56 )

DW9P = DWFPFP + DWOPFP

RHO9P = truint( vVOL(9)*(DWSP - DW9P), 57 )

DW9Pn = recneg(DW9P)

SSM22300

SSM22400

SSM22500

_SM22600

SSM22700
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C

w

C

C

DW9I = DWSPp- DW9Pn

HI = DW8Pp*H8P - DW9Pn*H9P

DW90 = recpos(DW9P) - DW8Pn

SU9P = UNEWF( 9, DW9I, HI, DW90, P9P, RHO9P )

H9P = SU9P + P9P/(RHO9P * 9336.)

CALL hypt( SU9P, RHO9P, 9, PNEW, T(9) )

P9P = relax( fuelOK, PNEW, P9P, ii )

IF(fuelOK.AND.LOOPS.GT.2) GO TO 3500 was replaced by SSM2280(

IF( fuelOK ) GO TO 3500

for a speedup of 3 when

balancing keeps up with changing conditions. Output of variable

names was eliminated as unnecessary for a simulation monitoring

function.

4000 CONTINUE

C

C

C

C

3500 DO 4100 J = 2, 6

PIF(J) = step( J + 27 )

4100 CONTINUE

DO 4110 J = i, 5

DWIF(J) = step( J + 23 )

4110 CONTINUE

C

PFS=PFSP

DPI=DPIP

DP2=DP2P

DW(2) = step( 34 )

DW (3 ) =DW3 P -
DWFNBP = step( 37 )

DWFN=DWIOP

DWMC = step( 36 )

DWI00=DWIOOP

DWIOI=DWIOIP

There is a convergence failure when the END OF ITERATION LOOP is reache

CALL wrchg( IT, i, ii, 'Fuelflow convergence failure:' )

Set stepped values to final trial values:

P(4)=P4P
RHO(4) = step( 44 )
SU (4 )=SU4 P
H(4) =H4P
DW(4) = step( 43 )

P(5)=P5P

RHO(5) = step( 48 )

SSM23000

SSM23100

SSM23200
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C

C

C

C

C

C

C

C

SU(5) =SU5P
H(5)=H5P
DW(5) --step( 47 )

P(6) =P6P
RHO(6) = step( 50 )
SU(6) =SU6P
H(6)=H6P
DW(6) = step( 49 )
DWFTI=DW6P

P(7) =P7P
RHO(7) = step( 52 )
SU(7) =SU7P
H(7)=H7P
DW(7) = step( 51 )

P(8) =P8P
RHO(8) = step( 52 )
SU(8) =SU8P
H(8) =H8P
DW(8) = step( 53 )

P(9) =P9P
i_O(9) = step( 57 )
SU(9) =SU9P
H(9 ) =H9P
DW( 9) =DW9P
DWFPF= step( 55 )
DWOPF= step( 56 )

P(10) =P10P
RHO(10) = step( 38 )
SU(i0) =SUIOP
H(10) =HIOP
DW(10) = step( -35 )

P(II) =PIIP
RHO(II) = step( 40 )
SU(ii) =SUIIP
H(ii) =HIIP
DW(II) = step( 39 )

P(12)=PI2P
RHO(12) =RHOI2P
SU(12) =SUI2P
H(12) =HI2P
DW(12) = step( 41 )

P(13) =PI3P '

121

SSM233( ¢

SSM23400

SSM23500

SSM23600

SSM23700



C
C
C

C

C
C
C
C
C

RHO(13) = step( 46 )
SU(13)=SU13P
H(13)=HI3P
DW(13) = step( 45 )

QF IS FUEL FLOW IN GALLON/MIN

QF=0.25974*DW2P/RHO(2)

TFPI=T(2)

PFPI=P(2)

PFPDI=P(2)

PFPD=P(3)

RETURN

END

HTF FUNCTION IS TO CALCULATE THE HEAT TRANSFER COEFFICIENT

SUCH AS THE ONES IN PAGE 31 OF THE DOCUMENT.

I BELIEVE THIS IS THE SIMPLIFIED VERSION OF CALCULATION.

FUNCTION HTF (T, P)

HTF = 0.1425 + (2.85E-4 + 1.8E-8 * P) * T
RETURN

END

SSM2380(

L
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'hyprop.for':

subroutine propO

C
C
c
C
C
C
c
C
C
C

SUBROUTINEPROP(SU,SRHO,N,P,T,NN)

PURPOSE: HYDROGENPROPERTYDATA
SSM76500

THIS TABLE IS THE ENERGYMAP OF HYDROGENPROPERTY. IT IS ABOUT THE
RELATIONSHIP AMONGSPECIFIE ENERGY (SU), DENSITY (SRHO), PRESSURE (P)
AND TEMPERATURE. PRESUMELY, FOR ANY GIVEN TWO PARAMETERS, THE OTHER
PARAMETERSCAN BE FOUND.

C******ARGUMENTS******
C
C
C
C
C
C
C

SU = SPECIFIC INTERNAL ENERCY, BTU/LB
SRHO = DENSITY, LB/IN3
P = PRESSURE, PSI
T = TEMPERATURE, DEG R
N = CALLER NODE INDEX

PROP was divided into four separate entries:
prop0 - precomputes slopes for all interpolations
hypt - interpolates P and T, given SU and SRHO
hyrt - interpolates SRHO and T, given SU and P
hyut - interpolates SU and T, given SRHO and P

***********************************************************************

C

PARAMETER (NCALL=50, NU=I4, NRHO=I8, NSAT = 7 ) SSM76700

PARAMETER ( v1728 = 1728. )

Hydrogen data, saturation curves:

DIMENSION U(NU)', RHO(NRHO), PRES(NU,NRHO), TEMP(NU,NRHO) ,

+ RSAT (NSAT) , PSAT (NSAT)

Precomputed slopes: ( DRHO was inverted )

DIMENSION XP(NU,NRHO), TXP(NU,NRHO), vDRHO(NRHO),

+ UvsP(NU, NRHO), RHOvsP(NU, NRHO),

+ RSvsU (NSAT), PSvsU(NSAT), vPS (NSAT), DRSAT (NSAT)

Call point identifiers, initially at lowest interval

DIMENSION ICALL(NCALL), JCALL(NCALL), R(2)

DATA ICALL / NCALL*2 /, JCALL / NCALL*2 /

DATA RSAT / 4.6, 4.44, 4., 3.33, 2.5, 1.9, 1.25 /
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C
C
C

DATA PSAT / 5.4, 12.5, 49.9, 121.9, 181., 188., 200. /

DATA U / 225 ,

* 79. , 88. , 113. , 147. , 181. , 200. , •

* 275. , 300. , 350. , 400. , 600. , 2600./

250. ,

DATA RHO / 1250, 2500, .5000,
* .0050, .0125, .0250, .0500, .I000, •

* 1.0000, 1.2500, 1.9000, 2.5000, 3.3300, 4.0000, 4.4400, 4.6000,

* 4.9000, 5.5000/

Pressure( su, rho )

DATA (PRES(I,OI), I=l, 14) /
* .000, .000, .000, .000, .000, .000, .000,

* .000, .000, .000, .000, 5.953, 25.800/

SSM76900

.000,

DATA (PRES(I,02), I=l, 14) / 1.575,
* .000, .000, .000, .000, 1.103, 1.303,

* 3.358, 4.486, 6.733, 8.808, 14.890, 64.580/

2.229,

part of table omitted

DATA (PRES (I, 18) , I=l, 14) /
* 4014.0, 4715.0, 6267.0, 8170.0, 9887.0,10808.0,11949.0,13029"0,

, 14030.0,14979.0,16704-0, 18270.0'20000.0,20000.0/

TEMPERATURE AS A FUNCTION OF SU AND RHO

DATA (TEMP(I,01), I=i,14) /
• .00, .00, .00, .00, .00, .00, .00,

, .00, .00, .00, .00, 223.60, 968.20/

.00,

part of table omitted

I?ATA (TEMP(I,{8), I=l, 14) /
37.26, 44.66, 60.93, 81.27, 100.50, 110.76, 123.77, 136.08,

147.70, 158.74, 179.14, 197.82, 264.75, 987.65/

C

C

c

INITIALIZE SLOPES

DO 26 J = I,NRHO

RHO(J)=RHO(J) * v1728

26 CONTINUE
CALL XYset( NU, U, NRHO, RHO, PRES, XP, VDRHO )

CALL XYset( NU, U, NRHO, RHO, TEMP, TXP, VDRHO )
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DO 30 J = 2, NRHO
drho = RHO(J) - RHO(J-I)

DO 25 I = 2, NU

UvsP(I,J) = 1.0 / XP(I,J)

RHOvsP(I,J) = drho / (PRES(I,J) - PRES(K,J-I))

25 CONTINUE

30 CONTINUE

DO 40 I = 2, NU

du = U(I) - U(I-l)

RSvsU(I) = (RSAT(I) - RSAT(I-I) ) / ( du * 1728.0 )

PSvsU(I) = (PSAT(I) -PSAT(I-I) ) / du

vPS(I) = i. / (PSAT(I) - PSAT(I-I) )

DRSAT(I) = RSAT(I) - RSAT(I-I)

40 CONTINUE

RETURN

C

C

Pressure and temperature from energy, density•

Added precomputing of pressure saturation slopes.

CALL intval(icall(N), SU, NU, U,

+ 'Hydrogen internal energy is below the table '

+ 'Hydrogen internal energy exceeds the table. ', 0 )

CALL intval(jcall(N), RHO, NRHO, RHO,

+ 'Hydrogen density is below the table '• f

+ 'Hydrogen density exceeds the table• ', 0 )

PRESSURE COMPUTATIONS

200 UP1 = SU - U(I-I)

RHOPI = ( SRHO - RHO(J) ) * vdrho(J)

P1 = PRES(I-I,J) + XP(I,J) * UP1

P2 = PRES(I-I,J'+I) + XP(I,J+I) * UP1

IF(SU. LT. 225. ) THEN
RHOSAT = RSAT(I-I) + RSvsU(I) * UP1

RI=RHO (J)

R2 =RHO (J+l)

IF((SRHO.GT.RHOSAT) .AND. (RHOSAT.GT.RI)) THEN
RI=RHOSAT

Pl = PSAT(I-I) + PSvsU(I) * UP1

ELSE IF((SRHO.LT.RHOSAT) .AND. (RHOSAT.LT.R2))THEN

R2 =RHOSAT

P2 = PSAT(I-I) + PSvsU(I) * UP1

END IF

P=Pl+ (P2-PI) * (SRHO-RI) / (R2-RI)

ELSE

SSM78700

SSM78800
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P = P1 + (P2 - PI) * RHOPI

END IF

T = xylint( SU, SRHO, NU, U, NRHO, RHO, TXP, VDRHO, TEMP,

+ icall(N), icall(N) )

RETURN SSM78900

C

C

RHO AND T FROM U AND P (Uses call number N + 1 )

CALL intval(icall(N), SU, NU, U,

+ 'The hydrogen energy is below the table.',

+ 'The hydrogen energy exceeds the table. ' , 0 )

intval could not be used below, because consecutive row elements

of PRES are not consecutive in memory. The table escape error stop

was added, however.

K = icall (N)

K=I-I

J=JCALL (N)

310 IF(PRES(K,J).LT.P) GO TO 330

320 IF(PRES(K,J-I).LE.P) GO TO 340
J=J-i

GO TO 320

33O J=J+l

GO TO 310

Replaced 340 J=MAX0(2,MIN0(J,NRHO)) by

340 IF ( J .LT. 2 ) THEN

PRINT *, 'The hydrogen pressure is below the table.'

STOP

ELSE IF ( J .GT. NRHO ) THEN

PRINT *, 'The hydrogen pressure exceeds the table.'
STOP

END IF

SSM79000

C

C

C

C

IF(K.EQ.I-I) jcall(N) = J

R(K-I+2) = RHO(J-I) + (P-PRES(K,J-I) ) * RHOvsP(K,J-I)

IF(K.EQ.I) GO TO 350
K=I

GO TO 310

ASSUME RHO LINIER WITH U

PROVIDE FOR LIQUID SIDE OF SATURATION LINE ONLY

35o Ul=U(I-1)
u2=u(I)
IF(I.LT.8 .AND. J.LE.17-I) THEN

SSM79100
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X = (P-PSAT(I-I) ) * vPS(I)
U2 = Ul + X * ( U2 -Ul )

R(2) = (RSAT(I-I) + X * DRSAT(I) ) * v1728

END IF

SRHO = R(1) + (R(2)-R(1) ) / (U2-UI) * (SU-UI)

$5M79200

Now T is found from input SU and interpolated RHO. We use the next call

number to remember the previous interval of the above interpolated RHO.

CALL intval(icall(N+l), SRHO, NRHO, RHO,

+ 'The interpolated density is below the table.',

+ 'The interpolated density exceeds the table.', 0 )

T = xylint( SU, SRHO, NU, U, NRHO, RHO, TXP, VDRHO, TEMP,
+ icall(N), icall(N+l) )

RETURN

C

C

C

GET U AND T FROM RHO AND P ( Uses call number N + 1 )

Was optimized by using precomputing slopes and replacing search from

table edge with search from point at last call. An error stop is now

in effect when density or pressure leaves the tabulated range.

The segment was recoded so that K does not change.

CALL intval(icall(N), SRHO, NRHO, RHO,

+ 'The hydrogen density rho is below the table.',

+ 'The hydrogen density rho exceeds the table.', 0 )

K = icall(N)

CALL intval(jcall(N), P, NU, PRES(I,K-I),

+ 'The hydrogen pressure is below the table.',

+ 'The hydrogen pressure exceeds the table.', 0 )

Ul = U(M-I) + (_P - PRES(M-I,K-I) ) * UvsP(M,K-I)

CALL intval(jcall(N), P, NU, PRES(I,K),

+ 'The hydrogen pressure is below the table.',

+ 'The hydrogen pressure exceeds the table.', 0 )

M = jcall(N)

U2 = U(M-I) + (P- PRES(M-I,K) ) * UvsP(M,K)

SU = U1 + (SRHO-RHO(K-I) )* vdrho(K-l) * (U2 - UI)

Now T is found from interpolated SU and input RHO. We use the next call

number to remember the previous interval of the above interpolated SU.
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CALL intval(icall(N+l), SU, NU, U,
+ 'The interpolated energy is below the table.'
+ 'The interpolated energy exceeds the table. ', 0 )

T = xylint( SU, SRHO, NU, U, NRHO, RHO, TXP, VDRHO, TEMP,
+ icall(N+l), icall(N) )

END

'h2gama.for':

FUNCTIONH2GAM0( XPRES, XTEMP, N)
***********************************************************************

* Initializes temp, pressure points, returns value at XPRES, XTEMP

C

C PURPOSE:

C

C

C

C******ARGUMENTS******

C INPUT:

C XPRES = PRESSURE, PSI

C XTEMP = TEMPERATURE, DEG R

C N = CALLER NODE INDEX

C

C

C

C

OUTPUT:

H2GAMA = GAMMA

COMPUTATION OF HYDROGEN SPECIFIC HEAT RATIO

AS A FUNCTION OF PRESSURE AND TEMPERATURE

CALCULATES GAMMA FOR PARA HYDROGEN

SSM79600

H2GAMA0 does initialization and lookup ( NN .LE. 0 )

The main entry H2GAMA does lookup alone.
***********************************************************************

DIMENSION TEMP(20),PRES(25),GAMA(20,25),II(10),JI(10),XP(20,25), 9700
IDPRES(25) "L

INCLUDE 'units.com'

***********************************************************************

* Reads temperature and pressure points, tablulated values.

READ(dat,II)NTEMP,NPRES,(TEMP(I),I=I,NTEMP), (PRES(I),I=I,NPRES)

Ii FORMAT( //2X, 2(2X,II0)/(//2X,6(2X, GI0.0)) ) SSM79750

READ(dat, 12) ((GAMA(I,J) ,I=I,NTEMP) ,J=l, NPRES)

12 FORMAT(/(//3X,12(IX,F6.0) ) ) SSM79770

* Precomputation of slopes for two-way interpolation was moved to the

* interpolation module.
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CALL XYset( ntemp, temp, npres, pres, gama, xp, dpres )

DO 23 I=l,10

Ii(I)=2

Jl(I)=2
23 CONTINUE

SZM80000

ENTRY H2GAMA( XPRES, XTEMP, N )
***********************************************************************

* This is the simulation loop entry, with no initialization.

* Keeps track of last entry location for each caller, identified by N.

* If it is really desired to return H2GAMA = 1.4 temperature is off the

* table, then intval can be used instead of the special code below, by

* adding one point to TEMP, and a column to GAMA defining the range where
* this return is OK.

*

i0

2O

I = Ii (N)

IF( xtemp .GT. temp(i) ) THEN

Search from there up

DO i0 k = i + i, ntemp

IF( xtemp .LE. temp(k)
i = k

GO TO 30

ENDIF

CONTINUE

)THEN

Here, xtemp is above the table

i = npres

H2gama = 1.4
RETURN

ELSEIF ( xtemp .LT. temp(i - i) ) THEN
Search down from there

DO 20 k = i =.2, i, -i

IF( xtemp .GE. temp(k) )THEN
i = k + 1

GO TO 30

ENDIF

CONTINUE

PRINT *, 'Temperature is below H2GAMA table.'

STOP

ENDIF

SSM80100

Error traps were added in case input variables escape the table.

The table can be readily extended, after all.

30 CALL intval(jI(N), xpres, npres, pres,
+ 'Pressure is below H2GAMA table.',

SSM80200
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+ 'Pressure is above H2GAMA table. ', 0 )

H2GAMA = xylint( xtemp, xpres, ntemp, temp, npres, pres,

+ xp, dpres, gama, i, jl(n) )

* And to support H2GAM0 as a function:

H2G_M0 = H2G_NA

END
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C
C THIS IS ANOTHER MAJOR PART OF THE SIMULATION PROGRAM. THIS SIMULATES

C THE OXIDIZER FLOW AND ENERGY BALANCE OF THE SYSTEM.

C THE SUBROUTINE FLOW IS:

C I) INITIALIZATION ( OXIDF0 )

C 2) READ DATA ( OXIDF0 )

C 3) CALCULATE THE PUMP INLET AND OUTLET DUCTS CONDITIONS ( OXIDE0 )

C 4) CALCULATE THE FLOW RATE OF EACH NODE

C 5) CALCULATE THE PUMP/TURBINE PERFORMANCE

C 6) CALCULATE THE PUMP CAVITATION EFFECT

C 7) CALCULATE THE CHANGES OF THE OXID LINE FROM TANK TO LPOP

C 8) PRIMING FUNCTION OF MOV AND INJECTOR

C 9) CALCULATE THE PUMP SPEEDS

C I0) RETURN

C

C

DIMENSION RIL(12),ELENO(12),ZIL(12),ZIC(12), TPR(6)

DIMENSION NI(3), N4(3), N5(3), N6(3)

LOGICAL adjOK, XMOVPF, PRIMIF

C

C

C

COMMON/PVCHEK/ POTVP, DWOPIL, DUMMEI, D[rMME2, INONZ,

2 POSX,TAU,ABKFLO,FHECDI,FHECD2

3 ,FLI2,FL2,PCODIL,PCOD2L, PODIL, POD2L,POI2L,VHECDI,VHECD2

INCLUDE 'blank.com'

INCLUDE out.com'

INCLUDE contrl.com'

INCLUDE igni.com'
INCLUDE oxid.com'

INCLUDE hgas.com'
INCLUDE balc.com'

INCLUDE pogo.com'

COMMON/PURGE/DWGN2,TCUTPR,DWFN2F,DWGN20

SSM57000

SSM57100

Often used constant reciprocals:

PARAMETER ( v386p4 = i. / 386.4, v9336 = i. / 9336.,

+ v41p34 = i. / 41.34, v8p866 = i. / 8.866,

+ v77 = i. / 77. )

PARAMETER ( TooBig = I.E50 )

Obsoleted printout control

DATA TPR / I0,i00.0 /, IPR 1 2 I, FLAG / 0.0 /

SSM57600

DATA PRIMIF / .TRUE. /, QBKFL2 /0.0/, XMOVPF / .TRUE. /

DATA TL /0.0/, TH /0.0/

SSM57800
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C
C
C

C
C
C

DATA ROP3IN /0.0/

DATA WTOPI / 14.4 /

recpos(x) = AMAXI( 0.0, x )

recneg(x) = AMINI( 0.0, x )

rlimit(x, floor, ceiling) = AMAXI( floor, AMINI( ceiling, x ) )

WTHE() IS THE FUNCTION TO CALCULATE THE HELIUM CONTENT OF A FLOW MIXER.

WTHE(DWHEI, FHEI, FHE2, DWHE2, FHE3, DWHE3, FHE4) =

+ FHE2*( recneg( DWHEI ) - recpos( DWHE2 ) + recneg( DWHE3 ) ) +

+ FHEl*recpos( DWHEI ) - FHE3*recneg( DWHE2 ) + FHE4*recpos( DWE3 )

ENINOX() IS THE FUNCTION TO CALCULATE THE ENTHALPY OF AN ACCUMULATOR.

ENINOX(WI, WO, HI, HO, HU) = HI * recpos( WI ) +

+ HO * ( recneg( WI ) - recpos( WO ) ) - HU * recneg( WO )SSM57900

Name this function appropriately

quadr( x ) = 620.15 + x * ( 19.1202 + .149371 * x )

C

C

C

READ (run, 30 )POT, ZOS, DUM, RHOOT, ZMOV, ZOPI, ZOP2, TQOTIB, TQOT2 B, ZOI

1 ,TOS, WOV, TDRAGO

READ (run, 30) GO1, GO2

READ (run, 30 )ELOTI, AAOT 1, RMOVUG, RMOVD, VOLOPI, VOLOP2, VOLOP3, VOLOT 1

*, WCOD, WOTD

READ (run, 30) PVOPI, PVOP2, PVOP3, PCOPI, PCOP2, PCOP3

READ(run, 30) (ELENO(J),J=I,12), (ZIL(J),J=I,12), (ZIC(J),J=I,12),

1 (RIL(J),J=l, 12)

READ (run, 30 ) AOS, AHE, XLO, XLI, XL2, VTOT, PHES, GAMHE

30 FORMAT(//2X, 6G12.4)

READ(run, ' (//2X,3112) ') INONZ,IRHOP2,ICAVMD

READ (run, 30 )TCL_T 2, TCUT3, BASEAR, BOS, TDCOM, RLI, RPV, ZJTPV, ROP3 IN,

1EIJPV, BOJ, BOPVD_, WOCOM, WOIN, DTPV, TCLPV, ABK2, THEADD, VOLODI,

2VOLOI 2 ,VOLOD2 ,VOLCDI, VOLCD2 ,TCAVl, TCAV2 ,TIMCAV, GLOPC, TLI, THI,

3TL2 ,TH2

DUCTS= 1.

ELENT=0.0

FAC = 8.0

THE = 180.

HOI2AD = -41.

SSM58100

DUMMEI= WOCOM

DUMME2= WOIN

STIME=TIME

CALL fgset( 5 )
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HOS = FGEN(5, 8, STIME)
CALL fgset( 37 )
POT = FGEN(37, 9, STIME)
PIL(1) = POT
DO 90 J= 2,8

PIL (J) =PIL (J-l) +ELENO(J-l) *RHOOT
DWIL(J) =0.0

90 CONTINUE
DWIL(1) =0.0

POS = PI L (8 )+ELENO (8) *RHOOT
POSX=POS

PODI=POS

POD2=POS

POD3 =POS

POI2=POS

POINJ=PA

SOl= 1.0E-10

SO2 = 1.0E-10

solsq = SO1 ** 2

so2sq = SO2 ** 2
WOI=0.0

DWOI=0.0

DWOPI=0.0

DWOP2=0.0

DWOP3 = 0.0

DWCOD=0.

DWMOV=0.0

DWOTI=0.0

DWOP2 C=0.0

DWOP3 C=0.

DDX=386.4

DPOPI=0.0

DPOP2=0.0

DPOP3=0.0

TRQOPI = 0.0

TRQOP2 = 1.0E-IO

" prior function loads created unused variables

CALL fgset( 44 )

CALL fgset( 45 )

CALL fgset( 46 )

CALL fgset( 47 )

CALL fgset( 48 )

CALL fgset( 49 )

CALL fgset( 50 )

CALL fgset( 58 )

ELCOM = fgen(58, 29, 0.)

CALL fgset( 59 )

RCOM = FGEN(59, 30, 0.)

CALL fgset( 60 )

ZCOM = FGEN(60, 31, 0.)

SSM58600

SSM58700

SSM58800

SSM58900

SSM59000
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C

CALL fgset( 61 )
ELOIN = FGEN(61, 32, 0.)

CALL fgset( 62 )

ROIN = FGEN(62, 33, 0.)

CALL fgset( 63 )
ZOIN = FGEN(63, 34, 0.)

CALL fgset( 64 )
APV = FGEN(64, 35, 0.)

CALL fgset( 65 )
DWOE2 = FGEN(65, 36, 0.0)

CALL fgset( 66 )

CALL fgset( 67 )

CALL fgset( 68 )

CALL fgset( 69 )

CALL fgset( 70 )

CALL fgset( 71 )

CALL fgset( 72 )

CALL fgset( 73 )

CALL fgset( 74 )

CALL fgset( 75 )

CALL fgset( 76 )

CALL fgset( 77 )

CALL fgset( 78 )

CALL fgset( 79 )

CALL fgset( 81 )

CALL fgset( 82 )
CALL O2DFPE (HOS ,POS, RHOOS, TOS, 4, -i, i)

CALL O2PROP (HOS, RHOOS, 1, POS, TOS, -i)

CALL O2PROP (HOS, RHOOS, 1, POS, TOS, 3 )

TOD2=IS0.

RHOPI=RHOOS

RHOOPI=RHOOS

RHOP2=RHOOS

RHOOP2=RHOOS

RHOP3 =RHOOS

RHOOP3 =RHOOS

RHODI=RHOOS

RHOD2=RHOOS

RHOT I=RHOOS

RHOI2 = RHOOS

RHOCD2 = RHOOS

fgset ( 3 )
PRIMOI = FGEN(3, 37, 0.0)

ZOTI = ELOTI / ( AAOTI * 386.4)

hZOTI = ELOTI / ( AAOTI * 772.8)

ROTIN=ANOTI

COV=I •0

HCAVPI=I.

HCAVP2=I.

HCAVP3=I.
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C

TCAVPI=I.
TCAVP2=I.
TCAVP3=I.
WHEODI=0.0
FHEODI=0.0
HOSI=HOS
WHECDI=0.0
FHECDI=0.0
WHECD2=0.0
FHECD2=0.0
WHEOI2=0.0
FHEOI2=0.0
WHEOD2=0.0
FHEOD2=0.0
WHEOTI=0.0
FHEOTI=0.0
DWOTJ=0.
DWOE3=0.
DWOPV=0.
RJTPVD=3.05E-6
DWOIN=0.
POINVP=I5.
VOLPV=0.
QBKFLO=0.
HLPTI=HOS
HIOP2=HOS
H3I=HOS
H3=HOS
HOD2=HOS
HODI=HOS

HOD3 =HOS

HOTI=HOS

HOI2=HOS

HLPOTD=HOS

CALL POGO0

WRITE (init, I00)° (PIL(J) ,J=l, 8)

i00 FORMAT( ' PIL(I_ Pin(2)
1 PIL(6) PIL(7)

PIL(3)

PIL(8) ' /IP8EII.3)

PIL(4) PIL(5)

SSM59500

SSM59600

SSM59700

Initialization was extended to include the following:

IF (FLAG .GT. 0.0) GO TO 1160
FLAG = I00.0

obsoleted method of

triggering restart adjustment

IF ( DWOPI .GE. 0. ) HOP = HOS

VOLOI2 = VOLOI2 + VOLCDI + VOLCD2

IF (TIME .GT. 0.001) GO TO 1160 Apparently an error. It calls for

adjustment to occur only if start time < .001
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C
C
C

C

C

C

C

IF ( STIME .LE. 0.001 ) RETURN

POT = FGEN (37, 9, STIME)

HOS = FGEN (5, 8, STIME)

ELCOM = FGEN (58, 29, WOCOM)

ELOIN = FGEN (61, 32, VOLPV)

IF (TCUT2 .LT. STIME) DWOE2 = 0.0

IF (TCUT3 .LT. STIME) DWOE3 = 0.0
RHOLO = -i.0

RHOHI = -i.0

ICOUNT = 0

SSM59900

SSM59800

THE FOLLOWING "ERROR CHECKING" (FROM HERE TO STATEMENT ii00)
IS TO FIND THE CONSISTANCY AMONG THE GIVEN INITIAL CONDITIONS

OF THE OXID LINE INPUTS, POS (OXID INPUT PRESSURE), SU (INTERNAL

SPECIFIC ENERGY), AND RHOOS (OXID LINE INPUT DENSITY). IF THE CALCULATE
VALUE OF PRESSURE FROM SU AND RHOOS IS NOT TOO FAR OFF FROM "POS" THEN

RHOOS IS ADJUSTED TO MATCH THE CONDITION.

The adjustment loop described above is executed when restarting

at nonzero time. Its omission from the restart procedure may account

for the restart transients mentioned elsewhere. Reporting on the

restart convergence is handled by the change monitor.

+

CALL chgO( .0001, 1 )

adjOK = .TRUE.

DO i0, I = i, 30

POS = POT + RHOOS * DDX * (ELCOM + ELOIN) *v386p4

SUt -- HOS - POS / (9336.0 * RHOOS)

CALL OXPROP(PANS, HOX, RHOOS, RHOLI2, RHOGI2,

HGI2, HLI2, FLI2, SUt, N4)

CALL chgmnt( adjOK, PANS, POS, 1 )

IF ( adjOK ) GO TO ii00

IF (PANS .LE. POS) THEN

RHOLO = RHOOS

IF (RHOHI _LE. 0.0 ) THEN

RHOOS = 1.002, RHOLO

ELSE

RHOOS = (RHOLO + RHOHI)* 0.5
ENDIF

ELSE

RHOHI = RHOOS

IF (RHOLO .LE. 0.0) THEN

RHOOS = 0.998* RHOHI

ELSE

RHOOS = (RHOLO + RHOHI)* 0.5
ENDIF

ENDIF

i0 CONTINUE

CALL wrchg ( init, i, 'OXIDF initial adjustment error' )

SSM60000

SSM60100

SSM60200
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* adjustment.

ii00 CONTINUE
POJ
POPVDN
SUOIN
UOIN
HOD1
SUODI
RHODI
WODI
UODI
POD1
PODIL
HOI2
SUOI2
RHOI2
WOI2
UOI2
POI2
POI2L
HOD2
SUOD2
RHOD2
WOD2
UOD2
POD2
POD2L
HOT1
SUOTI
RHOTI
WOTI
UOTI
POT1
POTIL
HOD3
POD3
RHOCD2

The following re-initializations are necessary because of the restart

= POT + RHOOS* DDX * ELCOM* v386p4
= POJ + RHOOS* DDX * ELJPV * v386p4
= HOS - POS / (9336.0 * RHOOS)

= SUOIN * WOIN

= HOS

= SUOIN

= RHOOS

= VOLODI * RHOOS

= SUOIN * WODI

= POS

= POS

= HOS

= SUOIN

= RHOOS

= VOLOI2 * RHOOS

= SUOIN * WOI2

= POS

= POS

= HOS

= SUOIN

= RHOOS

= VOLOD2 * RHOOS

= SUOIN * WOD2

= POS

= POS

= HOS

= SUOIN

= RHOOS

= VOLOTI * RHOOS

= SUOIN * WOTI

= PO_

= POS_

= HOS

= POS

= RHOOS

CALL unint0( UODI, 58 )

CALL unint0( WODI, 59 )

CALL unint0( WHEODI, 60 )

CALL unint0( UOI2, 61 )

CALL unint0( WOI2, 62 )

CALL unint0( WHEOI2, 63 )

CALL unint0( UOD2, 64 )

CALL unint0( WOD2, 65 )

CALL unint0( WHEOD2, 66 )

SSM60300

SSM60400

SSM60500

SSM60600
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CALL unint0( UOTI, 67 )
CALL unint0( WOTI, 68 )
CALL unint0( WHEOTI, 69 )
CALL imint0( DWOP2, 74, 0.0, TooBig )

CALL ImintO( DWOTI, 75, 0.0, TooBig )

CALL Imint0( DWOP2, 76, 0.0, TooBig )

CALL imint0( HCAVPI, 77, 0.0, 1.0 )

CALL imint0( TCAVPI, 78, 0.0, 1.0 )

CALL ImintO( HCAVP2, 79, 0.0, TooBig )

CALL imintO( TCAVP2, 80, 0.0, TooBig )

CALL imintO( HCAVP3, 81, 0.0, TooBig )

CALL imintO( TCAVP3, 82, 0.0, TooBig )

CALL imint0( WOCOM, 83, 0.0, TooBig )

CALL imint0( DWOPV, 84, 0.0, TooBig )

CALL unint0( POPVDN, 85 )

CALL Imint0( VOLPV, 86, 0.0, TooBig )

CALL unint0( UOIN, 87 )

CALL unint0( WOIN, 88 )

CALL unint0( POSX, 89 )

CALL unintO( HOSI, 90 )

CALL imint0( WOI, 91, 0.0, TooBig )

CALL imint0( WOV, 91, - TooBig, 0.001 )

CALL imint0( SO1, 93, 1.0E-10, TooBig )

CALL imint0( SO2, 94, 1.0E-10, TooBig )

* 1160 CONTINUE for reference to original
RETURN

ENTRY OXIDF

C

c

C

C

c

C

c

C

c

C

C

C

C

C

C

c

c

C

C

C

THE CALCULATION OF OXID FLOW IS IN GENERAL THE BALANCE OF ENERGY FLOW

AND THE BALANCE OF MATERIAL. IN THIS SECTION AND ALSO FOLLOWING

SECTIONS, THE NOTATIONS ARE AS FOLLOWS:

Pxyz: PRESSURE OF DUCT xyz

RHOxyz: DENSITY OF DUCT xyz

Hxyz: ENTHALPY OF DUCT xyz

SUxyz: SPECIFIC HEAT OF DUCT xyz

Uxyz: TOTAL INTERNAL ENERGY OF DUCT xyz

DWxyz: FLOW OF DUCT xyz

Wxyz: MASS OF DUCT xyz

WHExyz: HELIUM WEIGHT OF DUCT xyz (BECAUSE OF POGO SYSTEM, HELIUM DOES

APPEAR IN THE OXIDIZER SUPPLY DUCTS)

VHExyz: HELIUM VOLUMN OF DUCT xyz

FHExyz: FRACTION OF HELIUM INDISE DUCT xyz

WHERE xyz CAN BE ONE OF THE FOLLOWING:
OS: OXIDIZER SUPPLY

ODI: LPOP OUTLET DUCT (COD IS ALSO USED FOR FLOW)
OI2: HPOP INLET DUCT
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C
C
C
C
C
C

OD2:
OTI :

HPOPOUTLET DUCT
LPOT INLET DUCT

BECAUSEOF THE HIGH OPRATIONTEMPERATUREAND ENERGY, THE OXIDIZER CAN BE
WORKINGUNDERTWOPHASECONDITIONS. FUNCTIONOXPROP() IS CALLED TO
CALCULATETHE CONDITIONS OF GAS AND LIQUID PHASESOF OXIDIZER.

C
C
C
C
C
C
C

C
C
C

C

C

C

C

C

C

C

C

C

C

LPOP DISCHARGE DUCT

LPOP DISCHARGE DUCT "ODI" IS A MERGE POINT OF BOTH LPOP AND LPOT.

THE INPUT FLOWS ARE DWOPI AND DWOTI. AND THE OUTPUT FLOW IS DWCOD.

ABKFLO IS THE ENERGY BACK FLOW RATIO TO THE UPSTREAM OF THE PUMP.

IF(DWOPI.LE.O.)HOP=HODI
HXDI=HODI

IF (DWCOD .LT. 0.0) HXDI = HOI2

UODI = pruint( DWOPI*HOP + (i. - ABKFLO)*TRQOPI*SOI*v9336
1 + DWOTI*HOTI - DWCOD*HXDI - TRQOTI*SOI*v9336, 0, 58) SSM60700

WODI = pruinti DWOPI + DWOTI - DWCOD, 0, 59 )

SUODI = UODI / WODI

WHEODI = pruint(

+ WTHE(DWOPI, 0.0, FHEODI, DWCOD, FHEOI2, DWOTI, FHEOTI), 0, 60 )

FHEODI = WHEODI / WODI

VHEODI = .99*VHEODI + .01*WHEODI * 4632.*THE/AMAXI(PODIL-3.,

VHEODI = .99*VHEODI + 46.32 * WHEODI * THE /

+ rlimit( PODIL-3., PODIL+3., POD1)

RHODI = WODI / AMAXI(I., VOLODI - VHEODI)

RHOPI = WODI / VOLODI
PODIL = POD1 SSM60800

CALL OXPROP(PODI,HODI,RHODI,RHOLDI,RHOGDI,HGDI,HLDI,FLDI,SUODI,NI)

HOD1 = SUODI + POD1 / (RHODI * 9336.)

HPOP INLET DUCT

THIS IS THE DUCT _IGHT BEFORE THE HIGH PRESSURE OXID PUMP.

THE INPUTS TO THIS DUCT ARE:

DWCOD: FROM LPOP OUTLET DUCT

DWOP2C: BYPASS FLOW FROM DOWNSTREAM OF HPOP BOOSTER STAGE

DWOP3C: BYPASS FLOW FROM DOWNSTREAM OF HPOP

DWGOP: OXID FLOW FROM POGO SYSTEM IN GAS PHASE (CAN BE + OR -)

THE OUTPUTS OF THIS DUCT ARE:

DWO: OXID FLOW TO POGO SYSTEM IN LIQUID PHASE (CAN BE + OR -)

DWOP2: HPOP FLOW

UOI2 = pruint( DWCOD*HODI + DWOP2C*HOD3 + DWOP3C*HOD2
i - DWO*HOI2 - DWOP2*HOI2 + 75.0*DWGOP + 1.25*(530.-TGAS)*DWHOP

2 + QBKFL2*WOI2 / AMAXI(10.0, WT2BK), 0, 61 )

WOI2 = pruint(

+ DWCOD + DWOP2C + DWOP3C - DWO - DWOP2 + DWGOP, O, 62 ) SSM60900
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C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C

SUOI2 = UOI2 / WOI2

WHEOI2 = pruint(

+ WTHE (DWCOD, FHEODI, FHEOI2, DWOP2, FHEOD2, DWHOP, 1.0), 0, 63 )

FHEOI2 = WHEOI2 / WOI2

VHEOI2 = .99*VHEOI2 + 46.32 * WHEOI2 * THEADD /

+ rlimit( POI2L - 3., POI2L + 3., POI2))

RHOI2 = WOI2 / AMAXI(I., VOLOI2 - VHEOI2)

FHEOI2 = WHEOI2 / WOI2
POI2L=POI2

CALL OXPROP(POI2,HOI2,RHOI2,RHOLI2,RHOGI2,HGI2,HLI2,FLI2,

1 SUOI2, N4)

HOI2 = SUOI2 + POI2 / (RHOI2 * 9336.)

SSM61000

HPOP DISCHARGE DUCT TO MOV

THIS DUCT IS THE CONNECTION BETWEEN HPOP AND MOV.

THE INPUTS TO THIS DUCT ARE:

DWOP2: HPOP FLOW

THE OUTPUTS FROM THIS DUCT ARE:

DWOP3: OXID FLOW TO HPOP BOOSTER STAGE

DWOP3C: BYPASS FLOW BACK TO HPOP INLET DUCT

DWMOV: OXID FLOW TO MAIN OXID VALVE

DWOTII: FLOW TO HPOT INLET DUCT

UOD2 pruint( DWOP2*HOI2 + TRQOP2*SO2*v9336 -

+ (DWOP3 + DWOP3C + DWMOV + DWOTII)*HOD2 -

+ QBKFL2*WOI2/AMAXI(10., WT2BK), 0, 64 )

WOD2 = pruint( DWOP2 - DWOP3 - DWOP3C - DWMOV - DWOTII, 0, 65 )

SUOD2 = UOD2 / WOD2

WHEOD2 = pruint(

+ WTHE(DWOP2,FHEOI2,FHEOD2,DWOTII,FHEOTI,-DWMOV,FHEOD2), 0, 66 ) i00

FHEOD2 = WHEOD2 / WOD2

VHEOD2 = .995*VHEOD2 + 23.16 * WHEOD2 *THE /

+ rlimit( POD2L - 3., POD2L + 3., POD2)

RHOD2 = WOD2 / AMAXI(I., VOLOD2 - VHEOD2)

vRHOD2 = i. / RHOD2

RHOP2=WOD2/VOLOD2

IF (IRHOP2 .EQ. i) RHOP2= WOI2/VOLOI2
POD2L=POD2

CALL OXPROP(POD2,HOD2,RHOD2,RHOLD2,RHOGD2,HGD2,HLD2,FLD2,

1 SUOD2,N5) SSM61200

HOD2 = SUOD2 + POD2 /(RHOD2 * 9336.)

LPOP TURBINE SUPPLY DUCT

THIS IS A SIMPLE ONE INPUT ONE OUTPUT DUCT FROM HPOP OUTLET TO LPOT INLE

INPUT TO THE DUCT:

DWOTII: FROM HPOP OUTLET

OUTPUT FROM THE DUCT:
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C
C

C
C
C
C
C
C
C
C
C
C
C
C
C

C

C

C

C

C

C

C

C

C

DWOTI: TO HPOT INLET

UOTI = pruint( DWOTII*HOD2 - DWOTI*HOTI, 0, 67 )

WOTI = pruint( DWOTII - DWOTI, 0, 68 )

SUOTI=UOTI/WOTI

WHEOTI = pruint(

+ WTHE(DWOTII,FHEOD2,FHEOTI,DWOTI,FHEODI,0.0,0-0), 0, 69 )

FHEOTI=WHEOTI/WOTI
VHEOTI = .99*VHEOTI + 46.32*WHEOTI*THE /

+ rlimit( POTIL - 3., POTIL + 3., POT1 )

RHOTI = WOTI / AMAXI(I., VOLOTI - VHEOTI)

RHOTIA=WOTI/VOLOTI
POTIL=POTI

CALL OXPROP(POTI,HOTI,RHOTI,RHOLTI,RHOGTI,HGTI,HLTI,FLTI,

i SUOTI,N6)

HOT1 = SUOTI + POT1 / (RHOTI * 9336.)

SSM61300

HPBP DISCHARGE

THE HPBP DISCHARGE DUCT HAS:

INPUTS TO THE DUCT:

DWOP3: HPOP BOOSTER PUMP FLOW

OUTPUTS FROM THE DUCT:

DWOP2C: BYPASS FLOW BACK TO HPOP INLET DUCT

DWOPOV: OXID SUPPLY TO OXID PREBURNER OXID CONTROL VALVE

DWFPOV: OXID SUPPLY TO FUEL PREBURNER OXID CONTROL VALVE

SSM61400

HOWEVER, FOLLOWING EQUATION USES AN EMPERICAL EQUATION TO ESTIMATE
THE NEXT STATE OF SPECIFIC ENTHALPY. THE EXECT MEANING OF THE EQUATION

IS UNKNOWN. BUT IT SEEMS TO CONSIDER THE TIME DELAY OF THE DUCT AND

USE DT/0.2 AS A SMOOTH FACTOR.

HOD3=HOD3+DT/.2*(TRQOP3*SO2/(AMAXI(.3*SQRT(AMAXI(100.,DPOP3)),

1 DWOP3)*9336.)-HOD3+HOD2)

HOD3 = pruint( 5.*( TRQOP3*S02/

+ ( AMAXI( .3*Xl0th( AMAXI(100., DPOP3), 5 ), DWOP3 )*9336.) -

+ HOD3 + HOD2 ),[0, 70 )
POD3 = POD2 + DPOP3 - DWOP3 * ABS(DWOP3) * ROP3IN / RHOP2

CALL O2DFPE(HOD3,POD3,RHOP3,TOD3,3,1,1)

CALL O2PROP(HOD3,RHOP3,I,POD3,TOD3,3)

FLOW RATES

ALL THE OXID FLOW CALCULATED EXCEPT OPOV, FPOV AND POGO SYSTEM.

DWOPIL=DWOPI

CALL unint0( HOD3, 70 )

CALL imint0( DWOPI, 71, 0.0, TooBig )

DWOPI = prflow( DWOPI, ZOPI + ZOIN, -.4*ROCOD/RHOPI - ROIN,

+ POPVDN + ELOIN*RHOOS*DDX*v386p4 + DPOPI - POD1, 71 ) SSM61500
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C
C
C
C
C
C
C
C
c
C
C
C
C
c
c
c

rorhoi = - ROCOD / RHOI2

CALL Imint0( DWCOD, 72, 0.0, TooBig )

DWCOD = prflow( DWCOD, ZOCOD, rorhoi, POD1 - POI2, 72 )

IF (DWOP2.GE.0.) THEN

CALL imint0( DWOP2, 73, 0.0, TooBig )

DWOP2 = prflow( DWOP2, ZOP2, rorhoi, POI2 + DPOP2 - POD2, 73 )
ELSE

DWOP2 = prflow( DWOP2, ZOP2, -.3*ROCOD*vRHOD2, POI2,

+ DPOP2 - POD2, 73 )

ENDIF

DWOTII = prflow( DWOTII, hZOTI, -ROTIF*vRHOD2, POD2 - POT1, 74 )

DWOTI = prflow( DWOTI, hZOTI, -ROTIN/RHOTIA, POT1 - POD1, 75 )

ROIX = ROI * PRIMOI

DWMOV = prflow( DWMOV, ZMOV,

+ - (COV*RMOV + RMOVL + ROIX)*vRHOD2, POD2-PCIE, 76 )

DWOP3 = DWOPO + DWFPO + DWOP2C

DWOP2C = Xl0th( recpos( (POD3 - POI2)*RHOP3/ROP2C ), 5 )

DWOP3C = Xl0th( recpos( (POD2 - POI2)*RHOD2/ROP3C ), 5 )

PHIOTI = SO1 / (DWOTI+I.E-10)
ROTIN=ANOTI+BNOTI*PHIOTI-CNOTI*PHIOTI**2

ROTIN = ANOTI + PHIOTI*( BNOTI - CNOTI*PHIOTI )

PROTI=PODI/AMAXI (POT1,. 01)

DWOIA = recpos( DWOPI )

SSM61600

PUMP/TURBINE PERFORMANCE
SSM61700

IN THIS PUMP/TURBINE SECTION, THE NOTATIONS ARE:
FLOCOE: FLOW COEFFICIENT

DPxyz: PRESSURE CHANGE ACROSS THE PUMP/TURBINE

TRQxyz: TORQUE REQUIRED

CDPxyz: PRESSURE RAISE COEFFICIENT (CONSTANT, PUMP CHARACTERISTICS)

CTQxyz: TORQUE COEFFICIENT (CONSTANT, PUMP CHARACTERISTICS)

HCAVxyz: CAVITATION FACTOR FOR PRESSURE RAISE

TCAVxyz: CAVITATION FACTOR FOR TORQUE

WHERE xyz IS ONE OF THE FOLLOWING

OPI (OR PI): LOW.PRESSURE OXID PUMP

OP2 (OR P2) : HIGHLPRESSURE OXID PUMP

OP3 (OR P3): HIGH PRESSURE OXID PUMP BOOSTER STAGE

was 1/3 optimized

rhosol = RHOPI * SO1

FLOCOE = AMAXI(-39.5, DWOPI / rhosol)

rhoso = rhosol * SO1

DPOPI = FGEN(45, 38, FLOCOE) * rhoso * CDPOPI * HCAVPI

TRQOPI = FGEN(46, 39, FLOCOE) * rhoso * CTQOPI * TCAVPI

rhoso2 = RHOP2 * S02

FLOCOE = DWOP2 / rhoso2
rhoso = rhoso2 * SO1

DPOP2 = FGEN(47, 40, FLOCOE) * rhoso * CDPOP2 * HCAVP2

TRQOP2 = FGEN(48, 41, FLOCOE) * rhoso * CTQOP2 * TCAVP2
rhoso3 = RHOP3 * SO2
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

FLOCOE= DWOP3/ rhoso3
rhoso = rhoso3 * SO2

DPOP2 = FGEN(49, 42, FLOCOE) * rhoso * CDPOP3 * HCAVP3

TRQOP2 = FGEN(50, 43, FLOCOE) * rhoso * CTQOP3 * TCAVP3

replaces typical

DPOP3=FGEN(49,2,DWOP3/(RHOP3,SO2) )*RHOP3*SO2**2*CDPOP3*HCAVP3

TRQOP3=FGEN(50,2,DWOP3/(RHOP3*SO2) )*RHOP3*SO2**2*CTQOP3*TCAVP3

Eliminated formatted output here

IF (GLOPC .GT. 0. ) THEN
DDX = 386.4 * GLOPC * PCIE

ELSE

DDX = 386.4

ENDIF

PUMP CAVITATION DESCRIPTIONS

SSM62000

PUMP CAVITATION IS RATHER COMPLICATED IN NATURE. SINCE I DON'T HAVE THE

DOCUMENT OR NBS TABLE ON HAND, I CAN ONLY FOLLOW THE CODE AND TRY TO

EXPLAIN WHAT IS MEANT BY THE PROGRAM.

THE FIRST SECTION OF THE PROGRAM SEEMS TO FIND THE CAVITATION STATUS

OF LPOP AT LOW OR NO FLOW CONDITIONS. THIS IS THE SITUATION WHEN THE

ENGIN IS SHUTTING DOWN AND THE OXID PREVALVE IS CLOSING.

(PREVALVE IS THE VALVE BEFORE THE LPOP INPUT LINE TO CONTROL THE FLOW
OF OXIDIZER FROM THE OXID TANK FOR AN INDIVIDUAL ENGIN.)

TIMCAV: AN INPUT VARIABLE, CAVITATION HAPPENS ONLY AFTER TIMCAV

POINVP: OXID INPUT LINE VAPOR PRESSURE

PINPSH: NET POSITIVE SUCTION HEAD (NPSH) VARIABLE OF P1

ICAVMD: FLAG TO SELECT THE METHOD OF CALCUALTING CAVITATION AT ZERO

OXID FLOW OF P1 WHEN PREVALVE IS CLOSING

IF ( STIME .GT. _TIMCAV) THEN

PINPSH = (POS - POINVP)/(12.0*RHOOS)

FLOCI = AMINI(.8, DWOIA/rhosol*v41p34)

Xl = PINPSH/(I. + solsq)

IF ( FLOCI .LT. 0.3) THEN

IF (ICAVMD .EQ. I) THEN

DUMY= AMAXI(0. ,APV)

dubasl = AMINI(1. , DUMY/BASEAR)
dubas2 = I. - dubasl

ZERHFL= dubasl*FGEN(66, 44, XI) + dubas2 * FGEN(81, 56, Xl) 2100

ZERTFL= dubasl*FGEN(67, 45, Xl) + dubas2 * FGEN(82, 57, XI)

ELSE

ZERHFL= FGEN(66,44,Xl)

ZERTFL= FGEN (67,45, Xl)
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C
C
C
C

C
C
C
C

C
C
C

C

C

C
C
C

C

C

ENDIF

THE FOLLOWING CONDITION IS WHEN THE DWOPI IS LESS THAN 0.0 (FLOW BACK)
AND THE CAVITATION IS COLLAPSING IN DIRECT PROPORTIONAL TO FLOW.

IF (DWOPI .LT. 0.0) THEN

accel = - DWOPI / (RHOPI * WTOPI)

HCAVPI = prlint( accel, O, 77 )

TCAVPI = prlint( accel, 0, 78 )

SSM62200

INTERPOLATION OF CAVITATION FACTOR FOR FLOW COEF BETWEEN 0.0 AND 0.3 OF

TCAVI IS THE TIME CONSTANT TO GENERATE (OR COLLAPSE) CAVITATION.

+

+

ELSE

fact2 = FLOCI * 3.33333

factl = i. - fact2

HCAVPI = prlint( ( factI*ZERHFL +

fact2*FGEN(72, 46, XI) -HCAVPI) / TCAVI , 0, 77 )

TCAVPI = prlint( ( factI*ZERTFL

fact2*FGEN(74, 47, XI) -TCAVPI ) / TCAVl , 0, 78 )
ENDIF

INTERPOLATION OF CAVITATION FACTOR FOR FLOW COEF BETWEEN 0.3 AND 0.8 OF

+

+

ELSE

factl = 1.6 - 2. * FLOCI

fact2 = i. - factl

HCAVPI = prlint( ( factl*FGEN(72, 46, Xl) +

fact2*FGEN(73, 48, Xl) - HCAVPI ) / TCAVl, 0, 77 )

TCAVPI = prlint( ( factl*FGEN(74, 47, Xl) +

fact2*FGEN(75, 49, XI) - TCAVPI ) / TCAVI, 0, 78 )
ENDIF

FLOC2 = rlimit( .2, .8, DWOP2 / rhoso2 * v8p866)

POI2VP = quadr( HOI2 )

P2NPSH = (PO_2 - POI2VP) / (12.0*RHOI2)

X2 = P2NPSH / ( so2sq + i.)

IF( FLOC2 .LT. 0.5) THEN

SSM62300

INTERPOLATION OF CAVITATION FACTOR FOR FLOW COEF BETWEEN 0.0 AND 0.5 OF

+

+

factl = 1.66667 - 3.33333 * FLOC2

fact2 = i. - factl

HCAVP2 = prlint( ( factl * FGEN(68, 50, X2) +

fact2 * FGEN(76, 51, X2) - HCAVP2 ) / TCAV2, O, 79 )

TCAVP2 = prlint( ( factl * FGEN(69, 52, X2) +

fact2 * FGEN(78, 53, X2) - TCAVP2 ) / TCAV2, 0, 80 )

INTERPOLATION OF CAVITATION FACTOR FOR FLOW COEF BETWEEN 0.5 AND 0.8 OF
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C

C
C
C
C
C
C
C
C
C

C

C

C

C

C

C

C

C

+

+

ELSE SSM62400

factl = 2.66667 - 3.33333 * FLOC2

fact2 = i. - factl

HCAVP2 = prlint( ( factl * FGEN(76, 51, X2) +

fact2 * FGEN(77, 54, X2) - HCAVP2 ) / TCAV2, 0, 79 )

TCAVP2 = prlint( ( factl * FGEN(78, 53, X2) +

fact2 * FGEN(79, 55, X2) - TCAVP2 ) / TCAV2, 0, 80 )

ENDIF

POD2VP=620.15+I9.1202*HOD2+.I49371*HOD2**2

P3NPSH=(POD2-POD2VP)/(12.*RHOD2)

X3=P3NPSH/(I+SO2**2) it matters

SSM62500

POD2VP = quadr( HOD2 )

P3NPSH = (POD2 - POD2VP)*.833333*vRHOD2

X3 = P3NPSH / (i. + so2sq)

SSM62500

HCAVP3 = prlint( (FGEN(70, 58, X3) - HCAVP3)/TCAV2, 0, 81 )

TCAVP3 = prlint( ( FGEN(71, 59, X3) - TCAVP3 )/TCAV2, O, 82 )

Cavitation formatted output was eliminated. Output variables are

included in the regular output list

ENDIF

OX INLET LINE DESCRIPTION

SSM62600

OXID TANK SUPPLIES THREE ENGINS. DWOE2 AND DWOE3 ARE THE FLOWS FROM

TANK TO ENGIN #2 AND ENGIN #3 RESPECTIVELY.

THE NOTATIONS USED IN THIS SECTION ARE:

TDCOM: TIME TO DETACH OXID TANK

WOCOM: OXID WEIGHT IN THE COMMON DUCT (FOR ALL THREE ENGINS)

POT: TANK PRESSURE AS FUNCTION OF TIME

ELCOM: ELEVATION OF OXIDIZER IN COMMON DUCT (VERTICAL FEEDING)

RCOM: RESISTANCE OF OXID COMMON DUCT

ZCOM: INERTIA OF OXID COMMON DUCT

ELOIN: ELEVATION OF OXID IN INLET DUCT (BETWEEN PREVALVE AND LPOP)

ROIN: RESISTANCE OF OXID INLET DUCT (BETWEEN PREVALVE AND LPOP)

ZOIN: INERTIA OF OXID INLET DUCT (BETWEEN PREVALVE AND LPOP)

RJTPVD: THE RESISTANCE BETWEEN JUNCTION AND DOWN SIDE OF PREVALVE

IF (STIME .GE. TDCOM ) THEN

WOCOM = prlint( -DWOTJ, 0, 83 )

ENDIF

POT = FGEN(37, 9, STIME)

ELCOM = FGEN(58, 29 ,WOCOM)

RCOM = FGEN(59, 30, WOCOM)

ZCOM = FGEN(60, 31, WOCOM)

ELOIN = FGEN(61, 32, VOLPV) SSM62700
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C
C
C
C
C
C
C
C

C

C

C

C

c

c

c

C

C

C

c

C

c

C

C

C

C

C

ROIN = FGEN(62, 33, VOLPV)

ZOIN = FGEN(63, 34, VOLPV)

APV = recpos( FGEN (64, 35 ,(STIME - TCUT - TCLPV) / DTPV) )

RJTPVD = RLI + RPV / AMAXI(I.E-10, APV)**2

THIS SECTION CALCULATE THE BACK FLOW OF PUMPS. THE EQUATIONS USED TO

DESCRIBE THE BACKFLOW AND MINIMUM WEIGHT OF PUMP INPUT LINES ARE NOT

IN THE DOCUMENT.

QBKFLO: ENERGY BACK FLOW RATE TO THE UPSTREAM OF THE PUMP, BTU/SEC

WTIBK, WT2BK: DEFINITION NOT CLEAR, DIMENSION = LB

FLCOEI = DWOIA / rhosol

EFF = recpos( FLCOEI * (.03066 - .0003709*FLCOEI) )

flcoe = ( I. - FLCOEI*v41p34 )

QBKFLO = recpos( TRQOPI*SOI*v9336*(I.-EFF)*flcoe )

WTIBK = AMINI(800., 33. + 2.74E+06 * PINPSH / solsq,

1 1310. - 1.14E+06 * PINPSH / solsq) * flcoe

IF ( VOLPV .GE. i0. )

+ WTIBK = AMINI(WOIN,WTIBK)

ABKFLO = QBKFLO*9336./( AMAXI(I., TRQOPI)*SOI)

FLCOE2 = recpos(DWOP2/(RHOP2*SO2) )

EFF2 = recpos( FLCOE2 * ( .1537 - .008667 * FLCOE2 ) )

QBKFL2 = ABK2 *

+ recpos(TRQOP2*SO2*v9336*(I.-EFF2)*(I.-FLCOE2*v8p866) )

WT2BK = AMINI(270., so2sq*(2.583E-4 - 2.91E-5*FLCOE2) )

SSM62800

THIS PART CALCULATES THE ENERGY BALANCE AND FLOW BETWEEN OXID TANK AND

LPOP. THE LAYOUT OF THE HARDWARE OF THE SYSTEM IS:

TANK ............ > JUNCTION

TO OTHER

ENGIN

(TOP) COMMON DUCT

............. > PREVALVE ............ > LPOP

ELI OIN (DOW

FLOW: DWOTJ DWOPV DWOPI

PRESSURE:

POT POJ POPVDN POS

HOTNK = FGEN(5, 8, STIME)

POTVP = quadr( HOTNK )

factl = AMINI(I.0, 3.33333 * APV )

POTVP = factl * POTVP + (i. - factl) * POINVP

DWOTJ = DWOPV + DWOE2 + DWOE3

IF (WOCOM .LE. 0.0) DWOTJ = 0.0

SSM62900

OXID FLOWS TO ENGIN #2 AND ENGIN #3 ARE TIME SCHEDULED

146



C

C

C

C

C

C

C

C

C

C

C

*

DWOE2L=DWOE2

DWOE2=FGEN(65, 36, STIME-TCUT2)

DDWOE2=(DWOE2-DWOE2L)/DT
DWOE3L=DWOE3

DWOE3=FGEN(65, 60, STIME-TCUT3)

DDWOE3=(DWOE3-DWOE3L)/DT

DWOPVL=DWOPV

Originally DWOPV step was computed at some expense, then discarded
if WOCOM .LE. 0.

rhdd4 = RHOOS * DDX * v386p4

IF ( WOCOM .LE. 0.0) THEN
DWOPV = 0.0

ELSE

CALL prflow( DWOPV, ZCOM+ZJTPV, -RJTPVD,

+ POT + (ELCOM + ELJPV)*rhdd4 - POPVDN -

+ RCOM*DWOTJ*ABS(DWOTJ) - (DDWOE2+DDWOE3) * ZCOM, 84 ) 3000
ENDIF

DDWOTJ = DDWOE2 + DDWOE3 + (DWOPV - DWOPVL) / DT
POJ = POT + ELCOM*rhdd4 - RCOM*DWOTJ**2 - ZCOM*DDWOTJ

IN THE FOLLOWING CALCULATION, THE CONSTANT "BOPVDN" USED FOR CALCULATING
POPVDN IN THE CASE OF FLOW CHANGE IN THE INPUT LINE IS SUSPECIOUSLY

THE VALUE OF "BOPVDN" GIVEN IN THE FILE "START4.DAT" IS 5.0 (PSI/LB).

WHILE AN EQUIVALENT CASE IN OPOV LINE, "CFACT"=400000. (PSI/LB).
I BELIEVE THE VALUE SHOULD BE CHANGED ESPECIALLY IN THE TRANSIENT STUDY

CONDITION FOR OUTPUT FLOW > INPUT FLOW WHERE EMPTY SPACE CAN BE GENERAGE

WITH THE PRESSURE EQUAL TO VAPOR PRESSURE OF THE OXID LINE.

VOLPV: EMPTY SPACE VOLUMN FILLED BY OXID VAPOR IN PREVALVE SIDE

In the original, if DWOPI .EQ. DWOPV, UOIN and WOIN get integrated twice

pDWOPV = recpos( DWOPV )

IF ( DWOPI .ST. 0.0 ) THEN

IF ( DWOPI .GE. DWOPV ) THEN

CALL unint0( POPVDN, 85 )

POPVDN = pruint(BOPVDN*(DWOPV-DWOPI), 0, 85 )

POPVDN = AMAXI(POTVP, POPVDN ) variable lower limit is implemente_

by re-initializing the integrator.

IF ( POPVDN .LT. POTVP ) THEN
POPVDN = POTVP

CALL unint0( POTVP, 85 )
ENDIF

IF ( POPVDN .LE. POTVP + .001) THEN

VOLPV = pruint( ( DWOPI - pDWOPV )/RHOOS, 0, 86 )
ENDIF
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C
C
C

C
C

C

C

C

C

No change in VOLPV if POPVDN .GT. POTVP + .001 ?

+

UOIN = pruint( pDWOPV*FGEN(5, 8, STIME) -

DWOPI*HOS + QBKFLO*WOIN/AMAXI(77.,WTIBK), 0, 87 )M63100
WOIN = pruint( pDWOPV - DWOPI, 0, 88 )

CONDITION FOR INPUT_FLOW > OUTPUT_FLOW WHERE EMPTY SPACE (IF EXISTS)

ARE BEING FILLED. OR THE PRESSURE MAY RAISE IF THERE IS NO EMPTY SPACE.

+

ELSE

VOLPV = prlint( (DWOPI- DWOPV)/RHOOS, 0, 86 )

IF( VOLPV .GE..001) THEN
POPVDN = POTVP

ELSE

POPVDN = pruint( BOPVDN*(DWOPV- DWOPI), 0, 85 )

IF (POPVDN .LT. POTVP ) THEN
POPVDN = POTVP

CALL unint0( POTVP, 85 )
ENDIF

ENDIF

IF( DWOPV .GT.0.) THEN

HOPV = FGEN(5, 8, STIME)
ELSE

HOPV = HOS

ENDIF

UOIN = pruint( DWOPV*HOPV - DWOPI*HOP +

QBKFLO*WOIN/AMAXI(77., WTIBK), O, 87 )

WOIN = pruint( DWOPV - DWOPI, , 0, 88 )
ENDIF

SSM63200

BACK FLOW FROM THE PUMP, FILLING UP THE EMPTY SPACE

+

ELSE

IF ( VOLPV .GT. 0.001 ) THEN

VOLPV = prlint( (DWOPI - pDWOPV)/RHOOS, 0, 86)
POPVDN = POTVP

CALL unint0( POTVP, 86 )

UOIN = pruint( pDWOPV*FGEN(5, 8, STIME)

- DWOPI*HODI+QBKFLO*WOIN/AMAXI(77., WTIBK), 0, 87 )

WOIN = pruint( pDWOPV-DWOPI, 0, 88 )

BACK FLOW FROM THE PUMP, WITHOUT EMPTY SPACE IN THE LINE

ELSE

POPVDN = pruint( BOPVDN*(DWOPV - DWOPI), O, 85 )

IF ( POPVDN .LT. POTVP ) THEN
POPVDN = POTVP

CALL unint0( POTVP, 85 )
ENDIF

SSM63300
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C
C
C
C
C
C

C
C
C

C
C
C
C
C
C

C

C

IF( DWOPV .GT. 0.0) THEN

UOIN = pruint(DWOPV*FGEN(5,8,STIME) - DWOPI*HODI +

+ QBKFLO*WOIN/AMAXI(77., WTIBK), O, 87 )

ELSE

UOIN = pruint( DWOPV*HOS - DWOPI*HODI +

+ QBKFLO*WOIN/AMAXI(77., WTIBK), O, 87 )

END

WOIN = pruint( DWOPV-DWOPI, 0, 88 )
ENDIF

ENDIF

POS = POPVDN + ELOIN*rhdd4 - ROIN*DWOPI*ABS(DWOPI) -

+ ZOIN*(DWOPI - DWOPIL)/DT

IF (POS .LT. POINVP) POS = POINVP

POSX = pruint( TAU*(POS - POSX), 0, 89 )

SUOIN = UOIN/WOIN

HOS = SUOIN + POS/(RHOOS*9336.)

SSM63400

FOLLOWING IS AN ESTIMATION OF THE SPECIFIC ENTHALPY OF THE "OIN" LINE.

IT SEEMS THIS IS ONLY TRUE FOR A STEADY STATE FLOW.

BASED ON THE EQUATION BELOW, IT SUGGESTS THAT THE FILLED UP WEIGHT OF TH

"OIN" LINE IS 77LB.

IF ( DWOPI .GT. O. ) THEN

HOSI = pruint(DWOPI*v77*(HOS-HOSI), O, 90 )

ELSE

HOSI = pruint( -DWOPI*v77*(HODI - HOSl), O, 90 )

ENDIF

POINVP = quadr( HOSI )

TRQOTI =(AOTI - BOTI*PHIOTI)*DWOTI*ABS(DWOTI)*CTQOTI

POGO SYSTEM BALANCE IS CALLED AS PART OF THE OXID FLOW.

CALL POGOS

PRIME MAIN CHAMBER

SSM63500

PRIMING OF MOV AND OXID INJECTOR IS DEFINED AS SIMPLE FUNCTIONS OF

FILLED UP RATION OF THE PARTICULAR SPACE.

WOV: WEIGHT TO BE FILLED, INITIAL VALUE = -2.0, FILLED = 0.0

WOI: INJECTOR OXID WEIGHT, INIT VALUE = 0.0, FILLED = 46.2

IF( XMOVPF .AND. WOV.GT.-.I) THEN
COV = i. + i0. * WOV

IF(WOV.GT.-.001) THEN

WRITE(event, ' (A,EI2.4) ' ) ' MOV BUBBLE PRIMED AT '

XMOVPF = .FALSE.

END IF

ELSE IF ( WOV .LT. -.001 ) THEN

COV=0. 025

ELSE

, STIME
SSM63600
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C

C

C

C

C

C

C

C

C

C

C

C

c

COV= 1.0

END IF

WOI = prlint( DWMOV*COV - DWOI, 0, 91 )

WOV = prlint( DWMOV*(I.0 - COV), 0, 92 )

rhomov = VOLOD2 / WOD2

PRIMOI=FGEN(3, 37, WOI)

IF( PRIMIF .AND.WOI .GT. 40. ) THEN

'(A,EI2 4)' ) ' MC PRIMED AT 'WRITE( event,
PRIMIF = .FALSE.

END IF

DWOI=DWMOV*PRIMOI*COV

POINJ=PCIE+ROI*DWOI**2 * rhomov
PMOV=POD2

, STIME SSM63700

IF(TIME.GE.TLI.AND.TIME.LE.THI)WRITE(6,1410)TIME,WOCOM,ELCOM, etc

IN FUEL FLOW SUBROUTINE, QF IS TOTAL FUEL FLOW IN GALLON/MIN.

QO IN THE FLOWWING EQUATION DOESN'T SEEM TO REPRESENT SIMILAR QUANTITY.

QO= (i. 0-0. 002789* (TOS-160.) ) * (17. 5339+6. 19891* (DWOTPR+DWMOV+DWOP3

1 -DWOP2C) +0. 208812"S02) *AMINI (i. 0, (DWOTPR+DWMOV+DWOP3-DWOP2C) *
2 .1)

dwsum = DWOTPR + DWMOV + DWOP3 - DWOP2C

QO = ( 1.0 - 0.002789,(TOS - 160.) ) *

+ ( 17.5339 + 6.19891*dwsum + 0.208812,SO2 ) *

+ AMINI(I.0, dwsum*.l)

OXIDIZER PUMP SPEEDS

IN THE FOLLOWING CALCULATIONS:

TQxyzB: BREAKAWAY TORQUE OF PUMP xyz

IF (SO1 .LT. iI_0) THEN

IF (TRQOTI-TRQOPI .LT. TQOTIB ) THEN
DSOI=0.0

ELSE

DSOI=(TRQOTI-TRQOPI)/GOI
ENDIF

ELSE

DSOI=(TRQOTI-TRQOPI)/GOI
ENDIF

SO1 = prlint( DSOI, 0, 93 )

solsq = SO1 ** 2

trqsum = TRQOT2 - TRQOP2 - TRQOP3

IF ( SO2 .LT. ii.0) THEN

IF( trqsum .LT. TQOT2B) THEN 2021,2025,2025

SSM63900
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DSO2=O.0
ELSE

DSO2 = (trqsum - TDRAGO)/GO2

ENDIF

ELSE

DSO2 = (trqsum - TDRAGO)/GO2
ENDIF

SO2 = prlint( DSO2, 0, 94 )

so2sq = SO2 ** 2
RETURN

END
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* SUBROUTINEoxprp0 (P, H, RHO, RHOL, RHOG, HG, HL, FL, SUIN, icall)

C
C PURPOSE: CALCULATELIQUID AND SATURATEDOXYGENPROPERTIES
C
C******ARGUMENTS******

C INPUT:
C RHO = DENSITY, LB/IN3

C SUIN = SPECIFIC INTERNAL ENERGY, BTU/LB

C NX = CALLER NODE INDEX ARRAY

C

C OUTPUT:

C P = PRESSURE, PSI
C H = SPECIFIC ENTHALGY, BTU/LB

C
C IF SATURATED, ADDITIONAL OUTPUT IS:

C FL = LIQUID MASS FRACTION

C RHOL = SATURATED LIQUID DENSITY, LB/IN3

c RHOG = SATURATED GAS DENSITY, LB/IN3
C SLIQ = SATURATED LIQUID SPECIFIC INTERNAL ENERGY, BTU/LBM

C SGAS = SATURATED GAS SPECIFIC INTERNAL ENERGY, BTU/LBM

C HL = SATURATED LIQUID SPECIFIC ENTHALPY, BTU/LBM

C HG = SATURATED GAS SPECIFIC ENTHALPY, BTU/LBM

C
* The entry OXPROP bypasses initialization-

******

PARAMETER (NSAT = 74, NSU = 60, NRHO = 60, NCALL = i0 )

* DIMENSION A(60,60) , PSC(74) , SLC(74) , SGC(74) , RLC(74) ,
, RGC(74) , SU(60) , RH(60) , RS(60) SSM64300

, Precomputed slopes:

* REAL SUvsRS(NS_), AvsSU( NSU, NRHO ), vdRHO(NRHO),

+ RLvsP( NSAT [, RGvsP( NSAT ), SLvsP( NSAT ), SGvsP( NSAT )

, Previous call intervals:

INTEGER isu(NCALL), irho(NCALL), ipres(NCALL)

DATA PSC / 1 92, 2.29, 2.71, 3.19,
* i. I0, 1.33, 1.61, • 7 71, 8.80,
, 3.74, 4.36, 5.06, 5.85, 6.73, •

* i0.01, 11.34, 12.81, 14.42, 16.18, 18.11, 20.20,

, 22.47, 24.94, 27.60, 30.47, 33.56, 36.88, 40.43,

, 44.24, 48.31, 52.65, 57.28, 62.19, 67.41, 72.95,

* 78.81, 85.01, 91.56, 98.47, 105.75, 113.42, 121.48,

, 129.95, 138.84, 148.16, 157.93, 168.15, 178.83, 190.00,

SSM64100

SSM64200

SSM64500
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* 201.66, 213.83, 226.52, 239.74, 253.50, 267.82, 282.71,

* 298.19, 314.26, 330.95, 348.27, 366.23, 384.86, 404.16,

* 424.16, 444.87, 466.32, 488.53, 511.52, 535.32, 559.97,

* 585.49, 611.92, 639.30, 731.38/

DATA SLC /
* -71.21, -70.41, -69.62, -68.82, -68.02, -67.22, -66.42,

* -65.62, -64.82, -64.02, -63.22, -62.42, -61.61, -60.81,

* -60.00, -59.20, -58.39, -57.58, -56.77, -55.96, -55.15,

* -54.34, -53.52, -52.70, -51.89, -51.07, -50.24, -49.42,

* -48.59, -47.77, -46.94, -46.10, -45.27, -44.43, -43.59,

* -42.74, -41.90, -41.04, -40.19, -39.33, -38.47, -37.60,

* -36.72, -35.85, -34.96, -34.07, -33.18, -32.27, -31.37,

* -30.45, -29.52, -28.59, -27.64, -26.68, -25.71, -24.73,

* -23.73, -22.72, -21.69, -20.65, -19.59, -18.51, -17.41,

* -16.29, -15.13, -13.95, -12.73, -11.46, -10.14, -8.76,

* -7.29, -5.72, -3.98, 4.95/

DATA SGC / 20.57, 20.86, 21.15, 21.43,
* 19.68, 19.97, 20.27, 23 37,

* 21.72, 22.00, 22.28, 22.56, 22.83, 23.10,

* 23.63, 23.89, 24.14, 24.39, 24.64, 24.88, 25.12,

* 25.35, 25.58, 25.80, 26.02, 26.23, 26.43, 26.63,

* 26.82, 27.01, 27.19, 27.36, 27.53, 27.69, 27.84,

* 27.98, 28.12, 23.25, 28.37, 28.48, 28.59, 28.68,

* 28.76, 28.84, 28.90, 28.96, 29.00, 29.03, 29.05,

* 29.06, 29.05, 29.03, 29.00, 28.95, 28.88, 28.80,

* 28.69, 28.57, 28.42, 28.26, 28.06, 27.84, 27.59,

* 27.30, 26.97, 26.60, 26.17, 25.68, 25.11, 24.45,

* 23.66, 22.69, 21.51, 4.95/

DATA RLC / 04357, 04338,
* .04450, .04431, .04413, .04394, .04376, •

* .04319, .04300, .04281, .04262, .04243, .04224, .04204,

* .04185, .04165, .04145, .04125, .04105, .04085, .04065,

0402_, 04003, .03983, .03962, .03940, .03919,
* .04045, . • 03809 03787 .03764,
* .03897, .03876_ .03854, .03832, . , - '

* .03741, .03717, .03694, .03670, .03645, .03621, .03596,

* .03571, .03545, .03519, .03492, .03465, .03438, .03410,

* .03381, .03352, .03322, .03292, .03261, .03230, .03197,

* .03163, .03129, .03093, .03056, .03018, .02979, .02938,

* .02895, .02850, .02803, .02753, .02700, .02644, .02582,

* .02515, .02440, .02353, .01576/

DATA RGC / 00003, 00003, .00004,
* .00001, .00002, .00002, .00002, •

* .00005, .00005, .00006, .00007, .00008, .00009, .00010,

* .00011, .00013, .00014, .00016, .00018, .00020, .00022,

* .00024, .00026, .00029, .00032, .00035, .00038, .00041,

* .00045, .00049, .00053, .00057, .00062, .00067, .00072,
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* .00077, .00083, .00089, .00096, .00102, .00110, .00117,
* .00125, .00134, .00142, .00152, .00162, .00172, .00183,
* .00195, .00207, .00220, .00233, .00248, .00263, .00279,
* .00296, .00313, .00332, .00353, .00374, .00397, .00422,
* .00448, .00476, .00507, .00540, .00577, .00617, .00663,
* .00715, .00776, .00847, .01576/

SSM65000

DATA SU / 62 50

• -64.00, -63.75, -63.50, -63.25, -63.00, -62.75, - • ,

• -62.25, -62.00, -61.75, -61.50, -61.25, -61.00, -60.75,

• -60.50, -60.25, -60.00, -59.50, -59.00, -58.50, -58.00,

• -57.50, -57.00, -56.50, -56.00, -55.50, -55.00, -54.50,

• -54.00, -53.50, -53.00, -52.50, -52.00, -51.50, -51.00,

• -50.50, -50.00, -49.00, -48.00, -47.00, -46.00, -45.00,

• -44.00, -43.00, -42.00, -41.00, -40.00, -38.00, -36.00,

• -34.00, -32.00, -30.00, -28.00, -26.00, -24.00, -22.00,

• -20.00, -18.00, -16.00, -14.00/

SSM65100

DATA RS / 04257, .04251, .04245,
* .04281, .04275, .04269, .04263, • 04203,

* .04239, .04233, .04227, .04221, .04215, .04209, .

* .04197, .04191, .04185, .04172, .04160, .04148, .04136,

* .04123, .04111, .04099, .04086, .04074, .04061, .04049,

, .04036, .04024, .04011, .03998, .03985, .03973, .03960,

* .03947, .03934, .03908, .03882, .03855, .03829, .03802,

* .03775, .03748, .03720, .03692, .03664, .03607, .03549,

* .03490, .03429, .03367, .03304, .03239, .03172, .03104,

* .03033, .02960, .02884, .02805/

SSM65200

DATA RH /
85000, .90000, 95000,1.00000,

* .70000, .75000, 80000, [
*i 00002,1.00004,1[00006,1[00008,1"00010'I 00012,1.00016,

,1.00020,1.00025,1.00030,1.00035,1"00040'1"00050'1"00060'

,1.00080,1.00100,1.00120,1-00160,1"00200'1"00240'1"00300'

,1.00360,1.00420,1.00480,1.00600,1"00840'1"00960'1"01080'

,i.01200,i.0144_,1.01680,i-01920'i'02280'i'02640'i'03000'

,I.03360,i.03720_i.04080,I-04440'i'04800'i'05160'i'05520'

,1.05880,1.06240,1.06600,1-06960'1"07320'1"07680'1"08040'

,1.08400,1.08760,1-09180, 1"09540/

SSM65300

DATA (A(I, I), I=l, 60) / .45,
, .37, .39, .41, .43,

* .49, .51, .54, .56, .58,

* .64, .66, .69, .72, .75,

* .88, .95, 1.03, i.ii, 1.19,

* 1.37, 1.47, 1.57, 1.68, 1.80,

* 2.04, 2.18, 2.32, 2.46, 2.62,

* 2.94, 3.30, 3.68, 4.10, 4.55,

* 5.56, 6.13, 6.73, 7.37, 8.05,

* 11.24, 13.11, 15.18, 17.45, 19.93,

.47,

.61,

.82,

1.28,

1.92,

2.77, SSM65400

5.04,

9.55,

22.61,
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* 25.48, 28.56, 7.66,
13.38, 14.53, 18.15/

DATA (A(I, 2), I=I,60) /
* .40, .42, .44, .46, .48, .50,

* .52, .55, .57, .60, .63, .65,

* .68, .71, .74, .77, .81, .87,

* .95, 1.02, i.i0, 1.19, 1.27, 1.37,

most of table omitted

* I0000.00, i0000.00, i0000.00, i0000.00, i0000.00, i0000.00,

* i0000.00, i0000.00, i0000.00, i0000.00, i0000.00, I0000.00,

* i0000.00, i0000.00, i0000.00, I0000.00, I0000.00,

I0000.00,SSM71900
* i0000.00, I0000.00, i0000.00, i0000.00, I0000.00, I0000.00,

, 9815.73, 8760.81, 7130.06, 6397.53, 5773.35, 5155.16,

* 4661.49, 4221.40, 3813.73, 3432.45, 3054.53, 2743.86/

Unnecessary initializations were removed.

Precomputing slopes:

DO I0 I = 2, NSU
SUvsRS(I) = (SU(I) - SU(I-I) ) / (RS(I) - RS(I-I) )

I0 CONTINUE

DO 20 I = 2, NSAT
VDPRES = 1.0 / (PRES(I) - PRES(I-1) )

RLvsP(I) = (RLC(1) - RLC(I-I) ) * VDPRES

RSvsP(I) = (RGC(I) - RGC(I-I) ) * VDPRES

SLvsP(I) = (SLC(I) -SLC(I-I) ) * VDPRES

SGvsP(I) = (SGC(I) - SGC(I-I) ) * VDPRES

2O CONTINUE

CALL xyset( NSU, SU, NRHO, RH, A, AvsSU, vdRHO )

m

ENTRY OXPROP (P_ H, RHO, RHOL, RHOG, HG, HL, FL, SUIN, icall)

***********************************************************************

* This entry bypasses initialization

, Interpolation with TABLX and TABLXY was replaced by interpolation

* with the reorganized interpolation module routines. Extrapolation

* to the table boundary value was therefore changed to an error stop

* if an input value escapes its table. Also interpolation is based on

, precomputed slopes.
***********************************************************************

CALL intval(isu(icall), SUIN, NSU, SU,

+ 'Oxygen energy is below the table.',

+ ,Oxygen energy exceeds the table.', 0 )
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iu = isu(icall)
R = R/_O/ xlint( SUIN, NSU, SU, RS, SUvsRS, iu)

CALL intval(irho(icall), R, NRHO, RH,

+ 'Oxygen density is below the table.',

+ 'Oxygen density exceeds the table.', 0 )

ir = irho(icall)

P = xylint( SUIN, R, NSU, SU, NRHO, RH, AvsSU, vdRHO, A, iu, ir )

H = SUIN + P / (9336.0 * RHO)

IF (R .GE. 1.0) THEN
FL = 1.0

ELSE

CALL intval(ipres(icall), P, NSAT, PSC,

+ 'Oxygen pressure is below the table. ',

+ 'Oxygen pressure exceeds the table. ', 0 )

ip = ipres(icall)

RHOL = xlint( P, NSAT, PSC, RLC, RLvsP, ip )

RHOG = xlint( P, NSAT, PSC, RGC, RGvsP, ip )

SLIQ = xlint( P, NSAT, PSC, SLC, SLvsP, ip )

SGAS = xlint( P, NSAT, PSC, SGC, SGvsP, ip )

FL = (SUIN - SGAS) / (SLIQ - SGAS)

HL = SLIQ + P / (9336.0 * RHOL)

HG = SGAS + P / (9336.0 * RHOG)

END IF

RETURN

END

SSM72200

SSM72300

'o2prime.for':

SUBROUTINE O2PRM0

C

C

C

C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE O2PROP(SU,SRHO,N,P,T,NN)

PURPOSE: OXIGEN PROPERTY DATA

SSM52500

THIS SUBROUTINE IS THE OXIDIZER PROPERTY TABLE LOOK-UP. (NOT HYDROGEN)

THERE ARE ACTUALLY TWO TABLES.

FIRST ONE IS THE TWO DIMENTIONAL CURVES: PRESSURE(U, RHO)

SECOND ONE IS THE TWO DIMENTIONAL CURVES: TEMPERATURE(U, RHO)

SPECIFIC ENTHALPY U RANGE FROM -57.5 TO ii0.0

DENSITY RHO RANGES FROM 0.08 TO 80.0

THE PROGRAM ONLY DO INTERPOLATION AND WILL BE KICKED OUT IF THE RANGE IS

OUT OF REACH.

C******ARGUMENTS******

C NN = 0 INITIALIZATION

C

C CONDITION INPUT OUTPUT

C NN = 1 OR 2 SU,SRHO P,T
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C NN = 3 SU,P SRHO,T
C NN = 4 SRHO,P SU,T
C
C SU = SPECIFIC ENTHALPY, BTU/LB
C SRHO= DENSITY, LB/IN3
C P = PRESSURE, PSI

C T = TEMPERATURE, DEG R

C N = CALLER NODE INDEX

C

C

C

C

SSM52600

PARAMETER (N CALL=20, NU=I5, NR HO=21, NSAT=NU) SSM52700

PARAMETER (N P=NSAT*NRHO, NT=NRHO-4 )

DIMENSION U(NU),RHO(NRHO), PRES(NU,NRHO), TEMP(NU,NRHO)

REAL UvsP(NU,NRHO) , TXP(NU,NRHO), vDRHO(NRHO), H(NU,NRHO) ,

+ apo2(NRHO, NU), bpo2(NRHO, NU), cpo2(NRHO, NU), dpo2(NRHO, NU),

+ ato2(NRHO, NU), bto2(NRHO, NU), cto2(NRHO, NU), dto2(NRHO, NU),

+ JSAT(NSAT)
DIMENSION II(NCALL), JI(NCALL), J2(NCALL), R(2)

SAVE

DATA II /NCALL*2/, J1 /NCALL*2/, J2 /NCALL*2/

DATA G / NP*O.O /

DATA H / NP*0.0 /

DATA C / NT*I.0 /

DATA JSAT / 19, 18, 17, 16, 15, 14, 12,
II, ll, I0, 9, 8, 8, 7, 7 /

c u /
DATA

* -57.5, -55.1, -51.0, -46.8, -39.9, -29.8,

* .0, I0.0, 30.0, 50.0, 70.0, 90.0,

DATA RHO /

* .0800, .2000, .4000, .8000, 1.200, 2.00,

8.0,52900 55.00, 58.430,
* 16.000, 32.000_ 80.00 /

-20.0, -i0.0,

11o.o/

SSM52800

4.00,

63.400, 66.590,
40.00, 50.00,

* 68.450, 70.20, 71.29, 75.00,

DATA (PRES(I,01), I=l, 15) /

most of tables omitted

* 161.90, 165.40, 171.40, 177.50, 187.80, 203.40, 218.80, 234.60,

* 200.00, 200.00, 200.00, 200.00, 200.00, 200.00, 200.00/

DATA (TEMP(I,20), I=l, 15) /
* 152.00, 154.00, 162.00, 164.00, 174.00, 192.00, 210.00, 220.00,

* 200.00, 200.00, 200.00, 200.00, 200.00, 200.00, 200.00/

DATA (TEMP(I,21), I=i,15) /

, 131.00, 137.00, 143.00, 150.00, 165.00, 180.00, 200.00, 200.00,

, 200.00, 200.00, 200.00, 200.00, 200.00, 200.00, 200.00/
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C

C
c
C

C

C

C

C

INITIALIZE SLOPES

DO 26 J = i, NRHO

RHO (J) =RHO (J)/1728.

DO 25 I = 2, NU

UvsP(I,J) = (U(I) - U(I-I) ) / (PRES(I,J) - PRES(I-I,J) )

TXP(I,J) = (TEMP(I,J) -TEMP(I-I,J)) / (U(I) -U(I-I))

25 CONTINUE

I F (J. NE. NRHO) THEN

DRHO = RHO(J+I)/1728.- RHO(J)

vDRHO(I) = i. / DRHO
ENDIF

26 CONTINUE

This overcomplicated precomputation replaced by a more efficient,

more straightforward, and generally reusable cubic spline system.

GET U CURVATURE, H AND

RHO CURVATURE, G, FOR SPLINE INTERPOLATION

DO 30 J = i, 21

CALL splin0( 15, RHO, PRES(I,J),

+ apo2(l,J), bpo2(l,J), cpo2(l,J), dpo2(l,J) )

CALL splin0( 15, RHO, TEMP(I,J),

+ ato2(l,J), bto2(l,J), cto2(l,J), dto2(l,J) )

30 CONTINUE

Removed echo of 02 tables

RETURN

ENTRY o2pt( SU, SRHO, N, P, T )
*****************************************************************

C

C NN=I, PRESSURE COMPUTATIONS

C
*****************************************************************

I = Ii (N)

CALL intval( I, SU, 21, U,

+ " Specific enthalpy SU is below the 02 enthalpy table",

+ " Specific enthalpy SU is above the 02 enthalpy table", 0 )

140 J = JI(N)

CALL intval( J, SRHO, 21, RHO,

+ " Density RHO is below the 02 density table",

+ " Density RHO is above the 02 density table", 0 )

P1 = spline( I-l, SRHO

SSM54300

SSM55500
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C

C

C

+ apo2(l,I-l), bpo2(l,I-l), cpo2(l,I-l), dpo2(l,I-l) )
P2 = spline( I, SRHO

+ apo2(l,I), bpo2(l,I), cpo2(l,I), dpo2(l,I) )

RHOPI=(SRHO- RHO(J)) * vDRHO(J)

$

Ul = u(i-l)
U2 = U(I)

JS =JSAT(I)

JSI=JSAT (I-l)

IF((J.EQ.JS.AND.JS.NE.JSI) .OR. (I.EQ.7.AND.J.EQ.JS+I)) THEN

USAT=U2+ (UI-U2) * (SRHO-RHO (JS)) / (RHO (JSI) -RHO (JS))

PSAT=PRES (I-l, JSI) + (PRES (I, JS) -PRES (I-l, JSI) )/(U2-UI)

• (su-u1)
IF( SU.GT.USAT ) THEN

PI=PSAT

UI=USAT

HI=0.0

ELSE

P2 =PSAT

U2=USAT

H2=0.0

END IF

END IF

P=SPLINE(PI,P2,HI,H2,SU-UI,U2-SU)

SSM55700

SSM55800

The above spline fit of pressure parallel to the enthalpy axis is

misapplied. Only two points have been found on the surface at the

interpolated cross section. To fit a spline, it would be necessary

to find more than four cross section points. It might be desirable to

find four points and interpolate with a cubic through them. Here, we

substitute a linear interpolation in SU.

UP1 = SU - U(I-I)

P = P1 + UPl*v_u(I)*( P2 - Pl )

T1 = TEMP(I-I,J) + TXP(I,J) * UP1

T2 = TEMP(I-I,J+I) + TXP(I,J+I) *UP1

T = T1 + (T2 - TI) * RHOPI

900 RETURN
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C

310
320

330

J:J2 (N)

IF(PRES(K,J) .LT.P) GO TO 330

IF(PRES(K,J-I) .LE.P) GO TO 340
J=J-i

GO TO 320

J=J+l

GO TO 3 i0

Should be recoded to halt with message, rather than limit J

If rows and columns of PRES were reversed, intval could be
used.

340 J=MAX0 (2,MIN0 (J,NRHO))

IF(K.EQ.I-1) J2(N)=J

SSM56000

R(K-I+2) =RHO (J-l) + (P-PRES (K, J-l) )/(PRES (K, J) -PRES (K,J-1))

$ *DRHO(J-I) should use precomputed slope

R(K-I+2)=RHO(J-I)+(P-PRES(K,J-I)) * RvsP(K,J)
IF(K.EQ.I) GO TO 350
K=I

GO TO 310

ASSUME RHO LINIER WITH I/U

350 SRHO=R(1)+(U(I)-U(I)*U(I-I)/SU)*(R(2)-R(1))/(U(I)-U(I-I))
GO TO 140

I000 DO i010 K=I,NRHO

IF(RHO(K) .GT.SRHO) GO TO 1030
I010 CONTINUE

K = NRHO

1030 IT=I

K=MAX0(2,K)

1035 DO 1040 M=I,NU

IF(PRES(M,K-I) .GT.P) GO TO 1050
1040 CONTINUE

M = NU

1050 IF(IT.NE.I) GO TO 1060

* Should be recoded to halt

M=MAX0(2,M)

SSM56200

with message, not limit M

UI=U(M-1) + (P-PRES (M-l, K-l) )/(PRES (M,K-1)-PRES (M-l, K-l) ) * (U(M) -

1 U(M-I) )

UI=U(M-I)+(P-PRES(M-I,K-I)) * UvsP(M,K)
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1060

C

IT=2

K=K+I

GO TO 1035

M=MAX0(2,M)
SSM56300

U2=U(M-1) + (P-PRES (M-l, K-l) )/(PRES (M, K-1)-PRES (M-l, K-l) ) * (U (M) -

1 U (M-I))

U2 = U(M-I) + (P-PRES(M-I,K-I)) * UvsP(M,K)

SU=UI+ (RHO (K-I) -RHO (K-I) *RHO (K-2)/SRHO) / (RHO (K-l) -RHO (K-2 ) ) *

$ (U2-Ul)

SU=UI+ (SRHO-RHO (K-2) )/ (RHO (K-I) -RHO (K-2) ) * (U2 -UI )

SU = Ul + (SRHO-RHO(K-2)) * vdrho(K-l)*(U2-Ul)

UP1 = SU - U(I-I)

T1 = TEMP(I-I,J) +

T2 = TEMP(I-I,J+I)

T = T1 + (T2 - TI)

RETURN

END

TXP(I,J) * UP1

+ TXP(I,J+I) *UP1

• RHOPI
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SUBROUTINE HOTGASO

C

C PURPOSE: COMPUTE ENGINE HOT GAS PRESSURE AND FLOW DYNAMICS

C

C

C

C

C

C

C

C

c

C

C

C

C

C

C******ARGUMENT******

C IHCNTL = INITIALIZATION ARGUMENT

C

C******COMMON USAGE******

C INPUT:

C VARIABLE

POD3,DWOI,PMOV, POINJ,RHOMOV,RHOOP3,SO2

DWFPF,DWOPF,DWFTI,DWFBPV,DWFT2C,SF2,TWI

RFPOV,ROPOV

was eliminated by use of two entries

SSM25000

SOURCE

OXIDF

FUELF

VALDYM

OUTPUT:

VARIABLE

DWOPO,DWFPO,TRQOT2,PCIE

DWOPO,DWFPO,PFPOV,POPOV,PFPOI,POPOI
PCIE

PFP,POP,PFI,PINMC,TRQFT2,QINI

DESTINATION

OXIDF

EMCO SSM25100

CNTROL

FUELF

SUBROUTINES CALLED: IGN

C

C

C

LOGICAL FFPTV, FFPVI, FFPTI, FFPOI, FFPOT, FFPTA

LOGICAL OPOIPF, OPOVPF, wtason, wtigon

LOGICAL FOPTV, FOPVI, FOPTI, FOPOI, FOPTA, FOPOT, FPIG

INTEGER Tstep

PARAMETER ( NPREO = ii, NFSO = 6 , NFSOI = NFSO - 1 )

PARAMETER ( NPREF=II, NFSF=7,

+ NPREFI = NPREF - i, NFSFI = NFSF - 1 )

PARAMETER ( TooBig = I.E20, Tstep = 0 )

REAL sawop(4), _awfp(4),

+ sdwfp( NPREFI, NFSFI ), vdfs( NPREFI ),

+ sdwofp( NPREFI, NFSOI ), vdfso2( NFSOI )

DIMENSION DWOIG(3),DWFIG(3)

DIMENSION DW2(3),DWI(3),DW3(3)

DIMENSION WFPTAB(4), AFPTAB(4), WOPTAB(4), AOPTAB(4)

DIMENSION FPRO(NPREO), FSOTAB(NFSO), DWOTAB(NPREO,NFSO)

DIMENSION FPRF (NPREF) , FSFTAB (NFSF) , DWFTAB (NPREF, NFSF)

DIMENSION JSF(2), JSO(2), ZFIG(3), RFIG(3)

SSM25200

SSM25300

INCLUDE 'blank.com'

INCLUDE 'hgas.com'
INCLUDE 'oxid.com'

INCLUDE 'igni.com'
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C

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

'balc.com'
'fuel.com'
'contrl.com'
'out.com'
'units.com'

1
2
3
4
5
6

DATA TINIT / 460.0 /

DATA AFPRI / 0.0142 /

DATA AFPR2 / 0.04323 /

DATA AFPTAB/ 0.i00, 0.0013, 0.0013, 0.0 /

DATA AOPTAB/ 0.1513, 0.00166, 0.00166, 0.0 /

DATA AOPRG / 0.0039 /

DATA ASFPC / 0.53899 /

DATA ASOPC / 0.53899 /

DATA PHES / 750.0 /

DATA PRINLO/ I00.0 /

DATA RHES / 50000. /

DATA TAUH / 0.01 /

DATA TFPDH / 250.0 /

DATA TOPDH / 250.0 /

DATA TPRG / 520.0 /

DATA TPRC / 250.0 /

DATA WFPTAB/ 0.0, 2.2, 3.2, 3.3 /

DATA WOPTAB/ 0.0, 0.8, 2.0, 2.1 /

SSM26100

DATA WTASI / 0.06643 /

DATA WTIGN / 0.0154 /

DATA RHGFM / .0340E-4 /

DATA RHGOM / .I060E-4 /

DATA IGOFU / 1 /

DATA IGOOX / 1 /
DATA

DATA

DATA

DATA

DATA

0.0,

0.0,

0.0,

0.0,2.068,2.409,2.636

0.0,

0.0,

0.0,

SSM26200

SSM26300

FSFTAB / 0.0, 946.9, 2470., 4117., 5352., 6999., 8192. /

FPRF /1.0,1.204,1.307,1.411,1.515,1.619,1.7,1.8,2.0,2.4,3./

FSOTAB / 0.0, 3000., 4000., 5000., 6000., 7000. /

FPRO /i.0, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 2.0, 2.4, 3./

DWFTAB/

2.740,3.015,3.140,3.204,3.225,3.235,3.240,3.240,3.240,3.240,

2.528,2.844,3.016,3.104,3.143,3.158,3.175,3.195,3.200,3.200,

2.258,2.607,2.822,2.939,3.009,3.040,3.075,3.120,3.160,3.160,

,2.776,2.867,2.920,2.970,3.034,3.095,3.100,

1.988,2.311,2.529,2.670,2.771,2.823,2.876,2.960,3.041,3.060,

1.937,2.221,2.421,2.564,2.658,2.715,2.780,2.870,2.965,3.000,

1.930,2.193,2.382,2.507,2.599,2.655,2.710,2.795,2.900,2.960/

SSM2

DATA DWOTAB/

* 0.0,.8780,.9560,1.020,1.046,1.055,1.060,1.060,1.060,1.060,1.060,

1 0.0,.7433,.8229,.8924,.9418,.9737,.9905,.9989,1.018,1.025,1.025,

2 0.0,.7156,.7888,.8538,.9086,.9459,.9681,.9818,1.002,1.013,1.013,

3 0.0,.6989,.7656,.8263,.8785,.9191,.9471,.9662,.9865,1.000,1.000,

4 0.0,.6906,.7522,.8090,.8574,.8973,.9280,.9498,.9740,.9900,.9900,

5 0.0,.6843,.7466,.7968,.8414,.8805,.9124,.9344,.9600,.9780,.9800/
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DATA CDWFT2 / 1.0 /

DATA CDWOT2 / 1.0 /

SSM26500

recpos(x) = AMAXI( 0.0, x )

recneg(x) = AMINI( 0.0, x )

rlimit( floor, ceiling, x ) = AMAXI( floor, AMINI( ceiling, x ) )
,

SAVE

***********************************************************************

Precompute slopes for DATA tables

CALL sxset( sawop, 4, WOPTAB, AOPTAB )

CALL sxset( sawfp, 4, WFPTAB, AFPTAB )

CALL xyset( NPREF, FPREF, NFSF, FSF2, DWFTAB, sdwfp, vdfs )

CALL xyset( NPREO, FPRO, NFSO, FSO2, DWOTAB, sdwofp, vdfso2 )

c INITIALIZE LOCAL VARIABLES AND ARRAYS WHICH AREN'T ASSIGNED VALUES

C THIS IS A NECESSARY REQUIREMENT FOR SUCCESSFUL EXECUTION ON THE IBM
C

SSM27400

SSM27500

A=0.0

AFPOI=O.O

AFPTA=0.O

AFPTI=O.0

AFPTV=0.0

AFPVI=0.0

AOPT2=0.0

AREAF=0.0

AR4=0.0

CFACT=0.0

DIAT=0.0

DPOPAS=0.0

DWACV=0.0

DWBAF=0.O

DWFPBI=O.0

DWFPRI=0.0

DWPFI=0.0

DWPFS=0.0

EW=0.0

FDWFT2=0.O

FDWOT2=0.0

FOPTV= .TRUE.

FSF2=0.0

FSO2=0.0

GAM6=0.0

IFI=0.O

IF2=0.0

ISV=0.0
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OPOVPF = .TRUE.

PFPBFB=O.0

RC=0.0

initializations omitted

9999

C

C

WOPTA=0.0

WOPTI=O.0

WOPTV=0.O

WOPVI=0.0

wtason =

wtigon =
ZFPOI=0.0

CONTINUE

SSM28400

DATA INPUT

READ(run,30)ZFPO,VOLFP, ZOPO,VOLOP,AOPTO,VOLOTI,VOLFI,VOLC,AR4,AR5

I,AR6,EMCL,EMC6,EW,DIAT,RC,WOPOV,WFPOV,RFPIGB,ROPIGB

30 FORMAT(//2X,6gI2.4)

READ(run,30)AHTMCF,TKMCF,AHTMCO,TKMCO,VOLMCF,VOLMCO,VOLFTD,VOLOTD

*,RFPVUG,ROPVUG SSM28600

READ(run,30)CDWFT2,CDWOT2,DPRNT,PRINLO,PRINHI,PHES

Added here to eliminate a simulation loop division:

vVOLC = 1.0 / VOLC

ROPO=0.0

CALL IGN0(I,PFPOV, PFPOI,RHOO3,P(9),RHO(9),PFP)

CALL IGN0(2,POPOV,POPOI,RHOO3,P(9),RHO(9),POP)

CALL IGN0(3,PMOV,POINJ,RHOMOV,P(9),RHO(9),PCIE)

WOPOI = 0.0

EMC7=I.0

AR7=I.O

WFPOI=0.0

ELFFP=0.0

CALL fgset(15)

CPH2 = fgen(15, 61, TINIT)

CALL fgset(1)

COOI = FGEN(I, 62, WOPOI)

CALL fgset(2)

CFOI = FGEN(2, 63, WFPOI)

CALL fgset(4)

SC4 = FGEN(4, 64, AR4)

CALL fgset(8)

BC4 = FGEN(8, 65, AR4)

CALL fgset(20)

TFPC = FGEN(20, 66, ELFFP)

CALL fgset(21)

CPFP = FGEN(21, 67, ELFFP)

CALL fgset(13)

GAMFP = FGEN(13, 68, ELFFP)

CALL fgset(12)

SSM28900

SSM29000
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C
C
C

E_[WFP= FGEN(12, 69, ELFFP/(I.-ELFFP))
CALL fgset (25)

EMUC = FGEN(25, 70, ELFFP)

CALL fgset(23)

EKC = FGEN(23, 71, ELFFP)

CALL fgset(28)

ETAOT2 = FGEN(28, 72, 0.0)

CALL fgset (29)

ETAFT2 = FGEN(29, 73, 0.0)

CALL fgset (41)

CFG = FGEN(41, 74, 0.)

CS=CSTAR(O, O. ,O. )

INITIALIZATION

DWFPO=0.0

DWFPOI=0.0

RHOO3=RHOOP3

PFP=PA

WTFP=PFP*VOLFP/9270.0
ELFFPM=0.O

DWFT2=O.O

WFPO=0.0

WFP=WTFP/TINIT

WFPF=WFP

WOPOI=0.0

DWOPO=O.O

DWOPOI=0.O

POP=PA

WTOP=POP*VOLOP/9270.0

WOP = WTOP/TINIT

WOPF=WOP

WOPO=0.0

ELFOP=0.O

ELFOPM=O.O

DWOT2=O.O

TRQOT2=0.0

DWOTI=O.O

POTI=PA

PROTI = 1.0

PRFT2 = .999

PROT2 = 0.999

WTOTI=POTI*VOLOTI/9270.0

WOTI=WTOTI/TINIT
TOTI=TINIT

TOP=TINIT

TFP=TINIT

TRQOTI=0.0

TOTID=TINIT

PFI=PA
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PFT2D=PFI
POT2D=PFI
WTFI = PFI*VOLFI/9270.0
TFI=TINIT

WFI=WTFI/TFI

WFIF=WFI

WFIO=0.0

GAMFI=I. 4

RGCFI=9270.0

DWC=0.0

SC4 = FGEN(4, 64, AR4)

BC4 = FGEN(8, 65, AR4)
AA2 = EW * .2

A3=0.8-2%A2

A5 = Xl0th( DIAT/RC, 1 )
PCIE=PA

PCNS=PA

TC=TINIT

WTC= PC I E*VOLC/9270.0

WCO=0.0

WC=WTC/TC
WCF=WC

ELFCM=O. 0

ELFC=0.0

GAMC=FGEN(13, 75, ELFCM)

GAM6=FGEN(13, 76, 0.0)

GAM4=GAM6

RGCC=I8540.0/FGEN(12, 77, ELFC/(I.-ELFC))

RGC6=I8540.0/FGEN(12, 78, 0.0)

WOPGN2=0.

WFPGN2=0.

RGN2=0.

RGC4=RGC6

WCN=0.

ENFC=0.

DWOI=0.0

DWFI=0.0

PFPOV=POD3

PFPOI=PA

POPOV=POD3

POPOI=PA

CFOV=I. 0

RHOFTF=RHO (6)

RHOOTF=RHO (6 )
PINMC=PA

PFIS=PA

RHOFI=RHO (6)
PPURG= 50.0

DWSFS=0.

DWFTF=O.

SSN29500

SSM29600

SSM29700

SSM29800

SSM29900
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D%4X:0.
FFPTV = .TRUE.
FFPVI = .TRUE.
FFPTI = .TRUE.
FFPOI = .TRUE.
FFPTA = .TRUE.
FFPOT = .TRUE.
DWFPTV= 0.0
DWFPVI = 0.0
DWFPSG= 0.0
WFPTV= 0.0576
WFPVI = 0.5356
WFPTI = 0.00376
WFPOT= 0.0128
WFPTA= 0.0136
ZFPOI = 2.000 E-03

RFPOTV = 68.77

RFPOVT = 29.02

RFPOVI = -0.885

RFPOTI =-141.97

RFPOTA =-470.16

POPRG = PA

PFPRG = PA

AFPTV = 4.34 E-03

AFPVT = 6.677E-03

AFPVI = 3.82 E-02

AFPTI = 3.019E-03

AFPOI = 2.62 E-01

AFPTA = 1.659E-03

AFPRS = 1.761 E-02

RHOFTV = RHOOP3

RHOFVI = RHOOP3

RHOFTI = RHOOP3

RHOFOI = RHOOP3

RHOFTA = RHOOP3

CFACT = 400000.

FOPTV = .TRUE.

FOPVI = .TRUE.

FOPTI = .TRUE.

FOPOI = .TRUE.

FOPTA = .TRUE.

FOPOT = .TRUE.

DWOPTV = 0.0

DWOPVI = 0.0

DWOPTI = 0.0

DWOPTA = 0.0

WOPTV = 0.0587

WOPVI = 0.5150

WOPTI = 0.00376

WOPOT = 0.01372
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WOPTA = 0.01393
ZOPOI = 2.00 E-03
ROPOTV= 110.895
ROPOVT= 46.853
ROPOVI = -1.393

ROPOTI = -100.20

ROPOTA =-781.830

POPOT = 700.0

POPOV = 700.0

AOPTV = 3.420 E-03

AOPVT = 5.260E-03

AOPVI = 3.048 E-02

AOPTI = 3.590 E-03

AOPTA = 1.290 E-03

AOPRI = 2.553 E-03

AOPR2 = 2.502 E-03

RHOOTV = RHOOP3

RHOOVI = RHOOP3

RHOOTI = RHOOP3

RHOOOI = RHOOP3

RHOOTA = RHOOP3

DWXF=0.

SSM30500

SSM30600

Initiialization moved from simulation loop.

RFLEAK = 1.0 / (772.8 * (FGEN(18, 79, 20.) * ABFPO / i00.) ** 2)

WFPOIZ = FGEN (2, 80, 0.999) + 0.01

RHOFGN = RHOOP3

vTP46 = i. / ( 4632. * TPRC )

CALL unint0( DWFPO, 95 )

CALL unint0( DWFPOI, 96 )

CALL unint0( WFPOI, 97 )

CALL unint0( WFPTV, 98 )

CALL unint0( DWFPTV, 99 )

CALL unint0( WFPVI, i00 )

CALL unint0( D_FPVI, i01 )

CALL unint0( WFPTI, 102 )

CALL unint0( DWFPTI, 103 )

CALL unint0( WFPOT, 104 )

CALL uninto( WFPOI, 105 )

CALL unint0( DWFPOI, 106 )

CALL unint0( WFPTA, 107 )

CALL unint0(DWOIG(1), 108 )

CALL unint0( PFPOV, 109 )

CALL unint0( PFPOT, ii0 )

CALL unint0( PFPOI, iii )

CALL imint0( WFPF, 112, 0.0, TooBig )

CALL imint0( WFPO, 113, 0.0, TooBig )

CALL imint0( WTFP, 114, 0.0, TooBig )

CALL imint0(DWFIG(1), 115, 0.0, TooBig )
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CALL imint0( WOPOV, 116, 0.05, TooBig )

CALL unint0( WOPOI, 117 )

CALL imint0( DWOPO, 118, 0.0, TooBig )

CALL unint0( WTIGN, 119 )

CALL unint0( WTASI, 120 )

CALL unint0( WOPTV, 121 )

CALL imint0( DWOPTV, 122, 0.0, TooBig )

CALL unint0( WOPVI, 123 )

CALL imint0( DWOPVI, 124, 0.0, TooBig )

CALL unint0( WOPOI, 128 )

CALL unint0( WOPTI, 125 )

CALL imint0( DWOPTI, 126, 0.0, TooBig )

CALL unint0( WOPOT, 127 )

dwmax = .002 / DT

CALL unint0( DWOPOI, 129 )

CALL unint0( POPOI, 134 )

CALL unint0( WOPTA, 130 )

CALL imint0( DWOPTA, 130, 0.0, TooBig )

CALL unint0( POPRG, 131 )

CALL unint0( POPOV, 132 )

CALL unint0( POPOT, 133 )

CALL imint0( WOPF, 135, 0.0, TooBig )

CALL imint0( WOPO, 136, 0.0, TooBig )

CALL imint0( WTOP, 137 )

CALL unint0( TFT2DI, 138 )

CALL Imint0( WTFI, 139, 0.0, TooBig )

CALL imint0( WFIF, 140, 0.0, TooBig )

CALL imint0( WFIO, 141, 0.0, TooBig )

CALL imint0( WTCI, 142, 0.0, TooBig )

CALL imint0( WCO, 143, 0.0, TooBig )

CALL imint0( WCF, 144, 0.0, TooBig )

CALL imint0( WCN, 145, 0.0, TooBig )

c

C

C

C

C

c

C

C

C

C

C

IN THE FOLLOWING, IGOFU IS USED TO INDICATE THE STATE OF THE PREBURNER

INJECTION FLOWS, THEY ARE:

IGOFU=I: INITIALIZATION

IGOFU=2: BEFORE THE INJECTOR AND MFV ARE PRIMED

IGOFU=3: MAIN STAGE, INJECTOR AND MFV ARE PRIMED
IGOFU=4: MAIN STAGE TO PURGE TRANSITION

IGOFU=5: FLOW LINES PURGE, POWER CUT

VALVE AND INJECTOR PRIMING IS THE DYNAMIC THAT THE INJECTOR STARTS

EMPTY AND REQUIRES TO BE FILLED BEFORE FULL INJECTION CAN HAPPEN.

CFOV IS THE FACTOR OF TRANSFER FOR FPOV
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C CFOI IS THE FACTOROF TRANSFERFOR OXID INJECTOR
C THEY ARE FUNCTIONSOF THE PERCENTAGEOF FILL OF THE EMPTYSPACE.

C
C
C

The convoluted logic of the restart conditions was commented, for
the sake of maintenance. Single precision time is good enough for
state transition tests.

TRANSIENT CALCULATIONSECTION

GO TO (1200, 1240, 1260, 1280, 1320), IGOFU

Test restart time once ( IGOFU is changed ).

1200 IF ( STIME .GT. 2.5) THEN
CFOV= 1.0
WFPOI = WFPOIZ
CFOI = 1.0
WFPOV= 0.05
FPIG = .TRUE.

Bypass OPRIME
IGOFU = 3
GO TO 1260

ELSE IF ( STIME .LT. 1.5) THEN
CFOV = 0.025

* OPRIMEuntil time = 1.5
IGOFU = 2

END IF
C * * *
C

1240 CALL OPRIME(POD3, PFP-DPFPAS, RFPOV, DWFPOI, DWFPO)

* RHOFGN = PFPOV / (1159.0 * 200.0) was replaced by
RHOFGN = PFPOV * 4.314064E-7

* When time reaches 1.5,

* stop OPRIME, start mainstage

IF( TIME .LT. i_5 ) GO TO 1280

* if 1.5 < restart time < 2.5,

* do OPRIME once, then start mainstage

IGOFU = 3

GO TO 1340

* * * MAINSTAGE CALCULATIONS

PRIME FPB OXIDIZER INJECTOR

1260 RFPO = (RFPOL + RFPOV + RFPOI) / RHOOP3

DWFPO = prflow( DWFPO, ZFPO, RFPO, POD3 - PFP + DPFPAS, 95 )

DWFPOI = prflow( DWFPOI, ZFPOI,

+ RFPOI/RHOOP3, PFPOI-PFP+DPFPAS, 96 )

C

C

SSM30500

SSM30900

SSM31000

SSM31300

IF (XFPOV .GT. 20..OR. PFPOV .GT. PHES) GO TO 1280 , that is

IF ( XPOV .LE. 20..AND. PFPOV .LE. PHES ) THEN
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C
C
C
C

TDWFPO= 0.
IGOFU = 4

END IF

stop integrating DWFPOand DWFPOI

DPFPAS IS THE SUCTION PRESSUREDUETO BERNOULLI EFFECT OF
THE FUEL FLOWINSIDE THE FUEL PREBURNER

• 1280 DPFPAS= ASFPC * (DWFPF/ 258.0) ** 2 / (PFP / (9272.0 * T(9)))

• is replaced by

1280 DPFPAS = ASFPC * DWFPF**2 * T(9) / PFP * 0.1392945
,

PFPOI = PFP + RFPOI * DWFPO**2 / RHOOP3 - DPFPAS

PFPOV = (POD3 / RFPOV + PFPOI / RFLEAK) * (RFPOV * RFLEAK
SSM31400

1 / (RFPOV + RFLEAK))

IF (TIME.GT.TCUTPR .AND. PFPRG.LT.100.) PFPRG = AMINI(PHES,PFPOV)

IF (IGOFU .LT. 4) GO TO 1340

IF (TIME .GT. TCUTPR .AND. PFPOI .LT. PHES) THEN
C

C CUT OXID LINES AND START HELIUM PURGE

IGOFU = 5

ELSE

DWFPOI = recpos(-DWOIG(1) )
C

C!!!!! I CHANGE THE SECOND EQUATION TO THE ONE FOLLOWS.

C!!!!! WHEN THE FUEL LINE IS PURGED BY THE HELIUM.

C

C

C

C

WFPOI = WFPOI - recneg(DWFPOI) * DT

WFPOI = pruint( - DWFPOI, Tstep, 97 )
GO TO 1340

END IF

THIS IS THE SITUATI

THIS IS TO PURGE THE OXID CONTENT IN LINE FPTV (BETWEEN PFPOT AND PFPOV)

PFPTV was changed from a real variable, tested for 0.0, to a

logical value. S_milar logical variables were introduced throughout.

Limiting the integrated value to positive values was an unnecessary

operation, and was dropped.

1320 IF ( FFPTV ) THEN

WFPTV = pruint( - ABS(DWFPTV), Tstep, 98 )

FFPTV = WFPTV .GT. 0.0

SSM31500

DWFPTV = FLOW(DWFPTV, ZFPOI, RFPOTV/RHOOP3, DT, PFPOT - PFPOV)

IF (PFPOT .LT. PFPOV) DWFPTV = 0. - FLOW(DWFPTV,

1 ZFPOI, RFPOVT/RHOOP3, DT, PFPOV - PFPOT)

RHOFTV = PFPOT / 4632. / TPRC

DWFPTV = GFLOW (PFPOT, PFPOV, TPRC, 4632., 1.66) * AFPTV

IF (PFPOT .LT. PFPOV) DWFPTV = 0. - GFLOW (PFPOV, PFPOT, TPRC,
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C
C
C

C
C
C

1 4632., 1.66) * AFPVT SSM31600

The above sequence was replaced. It does an integration step, then
if the wrong sign was used, does it again. The replacement code
looks first, then does the integration step once.
Also, since the second integration does not depend on RHOFTV,
there is no need to test twice. Similar replacements are made
below without comment.

+

+

+

IF (PFPOT .LT. PFPOV) THEN
DWFPTV= 0. -

prflow(DWFPTV, ZFPOI, RFPOVT/RHOOP3,PFPOV - PFPOT, 99 )
DWFPTV= 0. -

GFLOW(PFPOV, PFPOT, TPRC, 4632., 1.66) * AFPVT SSM31600
ELSE

DWFPTV=
prflow( DWFPTV, ZFPOI, RFPOVT/RHOOP3,PFPOT - PFPOV, 99 )

DWFPTV= GFLOW(PFPOT, PFPOV, TPRC, 4632., 1.66) * AFPTV
END IF
RHOFTV= PFPOT * vTP46

END IF

THIS IS TO PURGETHE OXID CONTENTIN LINE FPVI (BETWEENPFPOI AND PFPOV)

IF ( FFPVI ) THEN
WFPVI = pruint( - DWFPVI, Tstep, i00 )
FFPVI = WFPVI .GT. 0.0

DWFPVI = prflow( DWFPVI, ZFPOI,

+ RFPOVI/RHOOP3, PFPOV - PFPOI, I01 )
ELSE

RHOFVI = PFPOV * vTP46

WFPVI = GFLOW (PFPOV, PFPOI, TPRC, 4632., 1.66) * AFPVI
END IF

THIS IS TO PURGE THE OXID CONTENT IN LINE FPTI (BETWEEN PFPOT AND PFPOI)

IF ( FFPTI .OR. "FFPOT ) THEN

IF ( .NOT. FFPOT ) WFPTI = pruint( -DWFPTI, Tstep, 102 )
FFPTI = WFPTI .GT. 0.0

DWFPTI = prflow(DWFPTI, ZFPOI,

+ RFPOTI/RHOOP3, PFPOT - PFPOI, 103 )
ELSE

RHOFTI = PFPOT * vTP46

DWFPTI = GFLOW (PFPOT, PFPOI, TPRC, 4632., 1.66) * AFPTI
END IF

IF ( FFPOT ) THEN

WFPOT = pruint( - (DWFPTV + DWFPTI+ DWOIG(1) ), Tstep,

FFPOT = WFPOT .GT. 0.0

END IF

IF ( FFPOI ) THEN

SSM31700

io4 )
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C
C
C

C
C
C
C

+

+

WFPOI = pruint( - DWFPOI, Tstep, 105 )
FFPOI = WFPOI .GT. 0.0

WDFPOI = DWFPOI

DWFPOI = prflow( DWFPOI, ZFPOI, -RFPOI/RHOOP3,

PFPOI-PFP+DPFPAS, 106 )

DWFPOI = WDFPOI - AMINI(WDFPOI - DWFPOI, 0.002)

IF (DWFPOI.GT.WDFPOI)

DWFPOI=WDFPOI + AMINI(DWFPOI - WDFPOI ,.002)

SSM31800

AREAF = TABLX (4, ISV, WFPOI, WFPTAB, AFPTAB) replaced with

interpolator using precomputed slopes

AREAF = xlint( WFPOI, 4, WFPTAB, AFPTAB, sawfp, ISV )

DWPFI = GFLOW (PFPOI, PFP - DPFPAS, TFPDH, 4632., 1.66) * AREAF
ELSE

DWFPOI = 0.0

DWPFI = GFLOW (PFPOI, PFP - DPFPAS, TPRC, 4632., 1.66) * AFPOI
END IF

PURGE IGNITOR INJECTOR LINE

IF (FFPTA .OR. FFPOT ) THEN SSM31900

IF ( .NOT. FFPOT ) WFPTA = pruint( - DWOIG(1), Tstep, 107 )
FFPTA = WFPTA .GT. 0.0

DWOIG(1) = prflow(DWOIG(1), ZFPOI, RFPOTA / RHOOP3,

+ PFPOT - PFP, 108 )
ELSE

RHOFTA = PFPOT * vTP46

DWOIG(1) = GFLOW(PFPOT, PFP, TPRC, 4632., 1.66) * AFPTA
END IF

DPFPAS = ASFPC * DWFPF**2 * T(9) / PFP * 0.1392945

DPFPAS = ASFPC * (DWFPF / 258.) **2 / (PFP / 9272 / T(9))

DWFPRI = recpos( GFLOW(PHES, PFPOV, TPRG, 4632.0, 1.66) * AFPRI )

PFPOV = pruint(

+ DWFPRI + CFACT *( DWFPTV/ RHOFTV - DWFPVI / RHOFVI ) *

+ PFPOV * vTP46, Tstep, 109 ) SSM32000

PFPRG = PFPOV + .9422 * 4632 * TPRG / PFPOV * DWFPRI ** 2

PFPRG = PFPOV + 4364.3 * TPRG / PFPOV * DWFPRI ** 2

DWFPR2 = recpos( GFLOW(POPRG, PFPOT, TPRG, 4632.0, 1.66) * AFPR2 )

PFPOT = pruint( CFACT * ( DWFPR2 -

+ ( DWOIG(1)/RHOFTA + DWFPTI/RHOFTI + DWFPTV/RHOFTV ) *

+ PFPOT * vTP46 ) ), Tstep, ii0 )

PFPOI = pruint( CFACT * (

+ ( DWFPTI / RHOFTI + DWFPVI / RHOFVI - DWFPOI / RHOFOI ) *

+ ( PFPOI * vTP46 ) - DWPFI), Tstep, iii )

END OF PURGE PROCESS

FUEL PREBURNER COMBUSTION
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C
C
C

C
C
C

C
C
C

1340 CONTINUE

IN THE FOLLOWING:
DWFPF: FUEL PREBURNERFUEL FLOW
DWFPBI: FUEL PREBURNERTOTAL INLET FLOW
WFPF: FUEL PREBURNERTOTAL FUEL
WFPO: FUEL PREBURNERTOTAL OXIDIZER
ELFFPM: FUEL PREBURNEROXIDIZER FRACTION
ELFFP:
FPIG:
TFPC:
CPFP:
GAMFP:
EMWFP:
RGCFP:
TFP:
PFP:
WFP:
WTFP:

FUEL PREBURNEROXIDIZER FLOWFRACTION
IGNITOR INDICATOR, = .TRUE. FOR FUEL PREBURNERIGNITED
FUEL PREBURNERCOMBUSTIONTEMPERATURE
SPECIFIC HEAT INSIDE FUEL PREBURNER
RATIO OF SPECIFIC HEAT (GAMMA)OF FUEL PREBURNER
MOLECULARWEIGHT IN FUEL PREBURNER
GAS CONSTANT IN FUEL PREBURNER (PSI-IN**3/LB)
FUEL PREBURNER TEMPERATURE

FUEL PREBURNER PRESSURE

FUEL PREBURNER TOTAL MASS

WEIGHT TIMES TEMPERATURE WITHIN FUEL PREBURNER

DWFPFA = recpos( DWFPF )

posdwo = recpos(DWOIG(1) )

DWFPBI = DWFPFA + DWFPOI + DWFIG(1) + posdwo

SSM32100

DURING THE PURGE FFPOI = .FALSE.

IF ( .NOT. FFPOI ) DWFPBI = DWFPFA + DWPFI + DWFIG(1) + posdwo

WFPF=AMAXI (0.0, WFPF+ (DWFPFA+DWFIG (I) - (I. 0-ELFFPM) *DWFT2 ) *DT)

WFPF = prlint( DWFPFA + DWFIG(1) - (i.0 - ELFFPM)*DWFT2, 0, 112 )

WFPO = prlint( DWFPOI + posdwo - ELFFPM * DWFT2, 0, 113 )

ELFFPM = WFPO / (WFPO + WFPF + 1.0E-6)

ELFFP = ( DWFPOI + posdwo ) /

+ ( DWFPOI _ DWFPFA + DWFIG(1) + posdwo + 1.0E-06 )

IF( .NOT. FPIG )" THEN

TFPC = T(9) + 20.

IF( ELFFP .GE. 0.20 .AND. STIME .GT. 0.3 ) THEN
FPIG = .TRUE.

WRITE(6,*) ' FPB IGN AT',TIME

END IF

ELSE

TFPC = (I.0927E-05 * PFP + 0.91985) * FGEN(20, 66,ELFFP) + T(9)
END IF

CPFP = FGEN(21, 81, ELFFPM)

SSM32200

SPECIAL CONSIDERATION FOR SMALL O/F RATIO

IF (ELFFPM .GT. 0.i) A = recpos(l.0 - IO.0*ELFFPM) SSM32300
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C
C
C

C
C
C

C
C
c
C
C
C
C
C

GAMFP= A * H2GAMA(PFP,TFP,I,2) + (i.0- A)*FGEN(13, 68,ELFFPM)
CPH2 = FGEN(15, 61,TFP) - 0.0887 + FPF * (0.1241 - 3.732E-5*PFP) /

+ (AMAXI(51.,TFP) - 50.)

CPFP = A*CPH2 + (i.0 - A)*CPFP
GO TO 1380

1360 GAMFP = FGEN (13, 68, ELFFPM)
1380 CONTINUE

EMWFP = FGEN(12, 69, ELFFPM/(I.-ELFFPM))

RGCFP = 18540.0 / EMWFP

TFP = AMAXI(IO.0, WTFP / (WFP+I.0E-12))

PFP = RGCFP * WTFP / VOLFP

PFP = AMAXI(0.01,PFP)

WTFP = prlint( GAMFP*(DWFPBI*TFPC - DWFT2*TFP), O, 114 )

SSM32400

WFPGN2 IS NEVER DEFINED EXCEPT INITIALIZED TO 0.0 AT THE BEGINING

WFP=WFPF+WFPO+WFPGN2

FUEL PREBURNER IGNITOR

PFPBFB = P(9) - RFPIGB / RHO(9) * DWFPF**2

IF (ISOFU .EQ. 5) THEN

DWFIG(1) =

+ prflow(DWFIG(1), ZFIG(1), RFIG(1) / RHO(9), PFPBFB - PEP, 115 )
ELSE SSM32500

CALL IGN (I, PFPOV, PFPOI, RHOFGN, PFPBFB, RHO(9), PFP, 2)

PFPOT = P4(1)

POPOT = P4(2)

DWFPTV = -DWI(1)

DWFPTI = DW2(1)
END IF

HIGH PRESSURE FUEL TURBINE PERFORMANCE

TURBINE FLOW EFFICIENCY FDWFT2 IS THE FUNCTION OF EFFECTIVE PRESSURE

RATIO (PREFT2) A/_D NORMALIZED TURBINE SPEED (FSF2). A LOOK-UP TABLE
IS GIVEN AS DWFTAB WITH FPRF ARRAY AS X-AXIS AND FSFTAB ARRAY AS Y-AXIS.

THE ACTUAL EQUATIONS USED FOR SIMULATION IS NOT IN THE DOCUMENT RL00001.

GAMPI = GAMFP + I.

GAMMI = GAMFP - I.

PRFT2 = AMAXI (i.0, PFP/PFT2D )

SSM32600

X ** Y may require evaluation of a slowly converging series for the

logarithm of X, and another series for the exponentiation, after the

multiplication by Y. Replacement routines involving two - way linear

interpolation in a table of equal intervals were defined.

PREFT2 = (I.-.166667*GAMPI/GAMMI*

+ (I. - PRFT2**(-GAMMI/GAMFP)))**(-3.5)
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preft2 = i. - .166667 * GAMPI /
+ (i. - i. / XtoY( PRFT2, GAMMI/GAMFP )

PREFT2 = 1.0 / ( preft2 ** 3 * Xl0th(preft2, 5) )

C

C

C

C

C

TCRFT2 = ( GAMFP/GAMPI * RGCFP * TFP * 5.15917E-6 )

(2.,32.174/12./1019.5,'2)

The square root is taken immediately, since it is used more than

once. Since the X ** Y interpolation routines use a table of

X ** (.i * n ) values, the square root can be obtained faster

as X ** .5, than by the square root function.

tcsqrt = Xl0th( TCRFT2 )

FSF2 = SF2 / tcsqrt * 9.5493

(60./2,PI)

FDWFT2=TABLXY(NPREF,IFI,PREFT2,FPRF,NFSF,IF2,FSF2,FSFTAB,DWFTAB)

was replaced by an interpolation using precomputed slopes.

FDWFT2 = xylint( PREFT2, FSF2, NPREF, FPRF, NFSF, FSF2,

+ sdwfp, vdfs FSFTAB, DWFTAB, IF1, IF2 )

A table of EPSF vs GAMFP is needed here. It would be used for

EPSO vs GAMOP as well.

EPSF = .739594/GAMFP* (2 ./GAMPI) ** (-GAMFP/GA/KMI)

EPSF = .739594 / ( GAMFP * XtoY( 2./GAMPI, GAMFP/GA/KMI ) )

DWFT2 = FDWFT2*CDWFT2*PFP/(14.7*tcsqrt*EPSF)

IF (STIME.LT.O.I) THEN

TRQFT2=0.0

ELSE

TRQFT2=TRBTRQ (SF2, UCFT2, TFP, PFP, 1./PRFT2,2, CPFP, DWFT2, GAMFP)

1 *CTQFT2

END

IF( DWFT2.LE.. _) THEN
TFT2D = TFP

ELSE

TFT2D=TFP-rlimit( 0.0, 300.0, (TRQFT2 * SF2)/

+ (9340.O*CPFP*DWFT2 + 1.0E-6) )
ENDIF

hpfi = 0.5 * PFI

PFT2D -- hpfi + SQRT( hpfi**2 + RHGFM*RGCFP*TFT2D*DWFT2**2)

OXID PREBURNER INJECTION FLOWS

SSM32800

****************************************************************************

C IN THE FOLLOWING, IGOFU IS USED TO INDICATE THE STATE OF THE PREBURNER

C INJECTION FLOWS, THEY ARE:
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c

C

C

C

C

C

C

C

C

C

C

IGOOX=I:

IGOOX=2:

IGOOX=3:

IGOOX=4:

IGOOX=5:

INITIALIZATION

BEFORE THE INJECTOR AND MOV ARE PRIMED

MAIN STAGE, INJECTOR AND MOV ARE PRIMED

MAIN STAGE TO PURGE TRANSITION

FLOW LINES PURGE, POWER CUT

VALVE AND INJECTOR PRIMING IS THE DYNAMIC THAT THE INJECTOR STARTS

EMPTY AND REQUIRES TO BE FILLED BEFORE FULL INJECTION CAN HAPPEN.

COOV IS THE FACTOR OF TRANSFER FOR OPOV

COOI IS THE FACTOR OF TRANSFER FOR OXIDIZER INJECTOR

THEY ARE FUNCTIONS OF THE PERCENTAGE OF FILL OF THE EMPTY SPACE.

****************************************************************************

C

IF (WTIGN .GT. 0.0) RHOIGN = RHOOP3

GO TO (1500, 1540, 1560, 1580, 1680), IGOOX

1500 ROLEAK = 1.0 / (772.8 * (FGEN(17, 82, 20.) * ABOPO / i00.) ** 2)

WOPOIZ = FGEN(I, 83, 0.999) + 0.01

IF (STIME .GT. 2.5) GO TO 1520

COOV = O.025

IGOOX = 2

GO TO 1540 SSM32900

]520 COOV : 1.0

WOPOI = WOPOIZ

COOI : 1.0

WOPOV = 0.05

IGOOX = 3

GO TO 1560

C * * * PRIME OPB OXIDIZER INJECTOR

C

• 1540 WOPOV = AMINI (0.05, WOPOV + (i.0 - COOV) * DWOPO * DT)

1540 WOPOV = prlint( (i.0 - COOV) * DWOPO, Tstep, 116 )

CALL pruint( WOPOI, DWOPO * COOV - DWOPOI, Tstep, 117 )

COOI= FGEN(I, 62, WOPOI)

C IF (WOPOV .GT. 0.0) COOV = 1.0
C

IF( OPOVPF .AND" WOPOV.GT.-.05) THEN
COOV = i. + WOPOV * 20.

IF(WOPOV.GT.-.O01) THEN

PRINT *,' OPOV BUBBLE PRIMED AT' TIME
OPOVPF = .FALSE.

COOV=I.

END IF

END IF

IF( OPOIPF .AND. WOPOI.GT.I.75) THEN

PRINT *,' OPB INJECTOR PRIMED AT',TIME

OPOIPF = .FALSE.

END IF

C

C

SSM33000

SSM33100
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ROPO = (ROPOL+ ROPOV* COOV+ ROPOI *COOI * COOV) / RHOOP3

DWOPO = prFLOW( DWOPO, ZOPO, ROPO, POD3 - POP + DPOPAS, 118 )

DWOPOI =COOI * COOV * DWOPO SSM33200

RHOIGN = POPOV / (1159.0 * 200.0)
RHOIGN = PFPOV * 4.314064E-7

IF (WOPOI .LT. WOPOIZ) GO TO 1580
WOPOI = WOPOIZ

IGOOX = 3

C * * * MAINSTAGE CALCULATIONS

C

1560 ROPO = (ROPOL + ROPOV + ROPOI) / RHOOP3

IF (ROPOV .LT. 1.0E+I0) THEN SSM33300

DWOPO = prflow( DWOPO, ZOPO, ROPO, POD3 - POP + DPOPAS, 118 )
DWOPOI = DWOPO

ELSE

DWOPO

DWOPOI

IGOOX

END IF

• 1580 DPOPAS

= 0.0

= 0.0

= 4

= ASOPC * (DWOPF / 120.)*,2 / (POP / (9272. * T(9)))

1580 DPOPAS = ASOPC * (DWOPF**2 * T(9) / POP * 0.1392945

POPOI = POP + ROPOI * DWOPOI**2 / RHOOP3 - DPOPAS

POPOV = (POD3 / ROPOV + POPOI / ROLEAK) * (ROPOV * ROLEAK)

1 / (ROPOV + ROLEAK)

IF (IGOOX .LT. 4) GO TO 1800
C * * * COMPUTE OPB ASPIRATION BACKFLOW

C SSM33400

DWOPOI = recpos(-DWOIG(2) * RHOOP3 / RHOIGN )

WOPOI = pruint(DWOIG(2), Tstep, 117 )

• Changed next two tests to be independent of DT and consistent with

• previous approach.

IF ( wtigon ) T.HEN

WTIGN = prui_t(DWOIG(2), Tstep, 119 )

IF ( WTIGN .GT. 0.0) THEN

WRITE (init, 1590) STIME

1590 FORMAT (IH0, 10X,

+ ' * * * * BACKFLOW REACHED ORIFICE BLOCK AT TIME = ',

+ F8.3, ' SECONDS * * * * ' )

wtigon = .FALSE.

GO TO 1640

END IF

END IF

1600 RHOIGN = PCIG(2) / (9272.016 * T(9))

IF( wtason ) THEN

WTASI = pruint(DWI(2) * RHOOP3 / RHOIGN, Tstep, 120 )

IF (WTASI .LT. 0.0) THEN

179



WRITE (6,1610) TIME
1610 FORMAT (IH0, IOX,

+ ' * * * * BACKFLOW REACHED OPOV AT TIME = ',

+ F8.3, ' SECONDS * * * * ' )
wtason = .FALSE.

ENDIF

ENDIF

1640 IF (TIME .LT. TCUTPR) GO TO 1800

POPRG = AMINI (PHES, POP)

IF (POPOI .GT. PHES) GO TO 1800

IGOOX = 5

****** COMPUTE PURGE FLOW AND PRESSURE

C

C

C

C

C

C

OXIDIZER PREBURNER OXIDIZER LINES HAVE THE SAME SET UP AS THOSE OF

FUEL PREBURNER. SAME PURGE SEQUENCE APPLIED.

The code was restored to read like 1320 above, where a logical

variable shuts off the integration when its state change function

is completed.

1680 IF ( FOPTV ) THEN

WOPTV = pruint( - ABS(DWOPTV), Tstep, 121)
FOPTV = WOPTV .GT. 0.

IF (POPOT .LT. POPOV) THEN

DWOPTV = 0. - prflow (DWOPTV, ZOPOI, ROPOVT / RHOOP3,

+ POPOV - POPOT, 122 )
ELSE

DWOPTV = prflow(DWOPTV, ZOPOI, ROPOTV/RHOOP3,

+ POPOT - POPOV, 122 )
ENDIF

ELSE

RHOOTV = POPOT * vTP46

IF (POPOT .LT. POPOV) THEN
DWOPTV = 0. -

+ GFLOW (-POPOV, POPOT, TPRC, 4632., 1.66) * AOPVT
ELSE

DWOPTV = GFLOW (POPOT, POPOV, TPRC, 4632., 1.66) * AOPTV
ENDIF

ENDIF

IF ( FOPVI ) THEN

WOPVI = pruint( - DWOPVI, Tstep, 123)

FOPVI = WOPVI .GT. 0.0

IF ( FOPVI ) THEN
DWOPVI =

+

SSM33600

prflow( DWOPVI, ZOPOI, ROPOVI/RHOOP3, POPOV- POPOI, 124 )
ELSE

RHOOVI = POPOV * vTP46

DWOPVI = GFLOW(POPOV, POPOI, TPRC, 4632., 1.66) * AOPVI
ENDIF
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ENDIF
IF ( FOPTI ) THEN

WOPTI = pruint( DWOPTI, Tstep, 125 )
FOPTI = WOPTI .GT. 0.0
IF ( FOPTI .OR. FOPOT) THEN

DWOPTI= prflow(DWOPTI, ZOPOI, ROPOTI/RHOOP3,
+ POPOT- POPOI, 126 )

ELSE
RHOOTI = POPOT* vTP46
DWOPTI= GFLOW(POPOT,POPOI, TPRC, 4632., 1.66)

END IF
END IF

1730 IF ( FOPOT) THEN

* AOPTI

WOPOT= pruint( -(DWOPTV+ DWOPTI+DWOPTA), Tstep, 127 )
FOPOT= WOPOT.GT. 0.0

END IF
IF ( FOPOI ) THEN

WOPOI= pruint( - DWOPOI, Tstep, 128 )
FOPOI = WOPOI .GT. 0.0

SSN33800

SSM33900

Limit integration increase or decrease to .002, obscurely.

WDOPOI= DWOPOI
DWOPOI= FLOW(DWOPOI,ZOPOI, ROPOI/RHOOP3,DT, POPOI-POP+DPOPAS)
DWOPOI= WDOPOI- AMINI (WDOPOI- DWOPOI, 0.002)
IF (DWOPOI.GT.WDOPOI) DWOPOI=WDOPOI+AMINI(DWOPOI-WDOPOI ,.002)

Now modelled as an unlimited integration of a limited flow rate.

dwrate = rlimit( -dwmax, dwmax,
+ POPOI - POP + DPOPAS- ROPOI/RHOOP3*DWOPOI**2/ZOPOI )

DWOPOI= pruint( dwrate, Tstep, 129 )

+

AREAO= xlint( WOPOI, ISO, WOPTAB,AOPTAB, sawop, 4)
DWPOI= GFLOW(POPOI, POP - DPOPAS, TOPDH, 4632., 1.66) * AREAO

ELSE
RHOOOI= POPOI * vTP46
DWOPOI= GFLOW(POPOI, POP - DPOPAS,TPRC, 4632., 1.66) * AREAO4000

END IF
IF ( FOPTA ) THEN

WOPTA= pruint( - DWOPTA,Tstep, 130)
FOPTA = WOPTA.GT. 0.0
IF ( FOPTA ) THEN

DWOPTA= prflow( DWOPTA,ZOPOI, ROPOTA/ RHOOP3,

POPOT - POP, 130 )

ELSE

RHOOTA = POPOT * vTP46

DWOPTA = GFLOW (POPOT, POP, TPRC, 4632., 1.66) * AOPTA

ENDIF

ENDIF
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DPOPAS= ASOPC* DWOPF**2/ POP * T(9) * 0.1392945

DWFPSG = GFLOW(PHES, POPRG, TPRG, 4632., 1.66) * AFPRS

POPRG = pruint(

+ 48849. * ( DWFPSG - DWFPR2 - DWOPR - DWOPR2),

+ Tstep, 131 )

POPRG = AMINI( PHES - .01, POPRG ) SSM34100

DWOPR = GFLOW (POPRG, POPOV, TPRG, 4632.0, 1.66) * AOPRI

POPOV = pruint( CFACT * ( DWOPR +

+ (DWOPTV/RHOOTV - DWOPVI/RHOOVI ) * POPOV * vTP46, Tstep, 132 )

DWOPR2 = GFLOW (POPRG, POPOT, TPRG, 4632.0, 1.66) * AOPR2

POPOT = pruint( CFACT * (DWOPR2 -

+ (DWOPTA/RHOOTA + DWOPTI/RHOOTI + DWOPTV/RHOOTV) *

+ (POPOT * vTP46), Tstep, 133 )

POPOI = pruint( CFACT * ((DWOPTI / RHOOTI + DWOPVI / RHOOVI

+ - DWOPOI / RHOOOI) * (POPOI * vTP46 - DWPOI), Tstep, 134 )

C

C

C

1800 CONTINUE

C

C

END OF OXIDIZER PREBURNER PURGE

OXID PREBURNER IGNITOR

POPBFB = P(9) - ROPIGB / RHO(9) * DWOPF**2

CALL IGN (2, POPOV, POPOI, RHOIGN, POPBFB, RHO(9), POP)

OXID PREBURNER COMBUSTOR

IN THE FOLLOWING:

DWOPF: OXID PREBURNER FUEL FLOW

WOPF: OXID PREBURNER TOTAL FUEL

WOPO: OXID PREBURNER TOTAL OXIDIZER

ELFOPM: OXID PREBURNER OXIDIZER FRACTION

OXID PREBURNER OXIDIZER FLOW FRACTION

OXID PREBURNER COMBUSTION TEMPERATURE

SPECIFIC HEAT INSIDE OXID PREBURNER

RATIO OF SPECIFIC HEAT (GAMMA) OF OXID PREBURNER

MOLECULA/% WEIGHT IN OXID PREBURNER

GAS CONSTI_NT IN OXID PREBURNER (PSI-IN**3/LB)

OXID PREBURNER TEMPERATURE

OXID PREBURNER PRESSURE

OXID PREBURNER TOTAL MASS

WEIGHT TIMES TEMPERATURE WITHIN OXID PREBURNER

ELFOP:

TOPC:

CPOP:

GAMOP:

EMWOP:

RGCOP:

TOP:

POP:

WOP:

WTOP:

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

c

c

DWOPFA = recpos(DWOPF)

WOPF = prlint( DWOPFA + DWFIG(2) - (i.0 - ELFOPM) * DWOT2,
+

posig = recpos(DWOIG(2) )

WOPO = prlint( DWOPOI + posig - ELFOPM*DWOT2, O, 136 )

ELFOPM = WOPO / (WOPO + WOPF + 1.0E-6)

ELFOP = ( DWOPOI + posig ) /

+ (DWOPOI + DWOPFA + DWFIG(2) + posig + 1.0E-06)

SSM34200

O, 135 )

SSM34300
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C
C
C

TOPC= FGEN(20, 66, ELFOP)+T(9)

CPOP = FGEN(21, 67, ELFOPM)

SPECIAL CONSIDERATION WHEN O/F RATIO IS REALLY SMALL

IF(ELFOPM.LE.0.1) THEN

A = recpos(l.0 - 10.*ELFOPM)

GAMOP = A * H2GAMA(POP, TOP, 2, 2) +

+ (i.0 - A)*FGEN(13, 68,ELFOPM)

CPH2 = FGEN(15, 61,TOP) - 0.0887 +

+ POP * (0.1241 - 3.732E-5*POP) / (AMAXI(51.,TOP)-50.)

CPOP= A * CPH2 + (i.0 - A)*CPOP
ELSE

GAMOP = FGEN(13, 68, ELFOPM)
ENDIF

EMWOP = FGEN(12, 69, ELFOPM/(i. - ELFOPM) )

RGCOP = 18540.0 / EMWOP

TOP = AMAXI(10.0, WTOP/(WOP + 1.0E-12) )

POP = RGCOP*WTOP/VOLOP

POP=AMAXI (0.01, POP)

WTOP = prlint( GAMOP *

+ (recpos(DWOPFA) + DWOPOI + DWFIG(2) + posig)*TOPC

+ - DWOT2*TOP, 0, 137

)SSM34500
WOP = WOPF + WOPO + WOPGN2

C

C

C

C

C

C

C

C

IF(POP.LT.PA) DWOPOI=0.

HIGH PRESSURE OXIDIZER TURBINE

SSM34400

TURBINE FLOW EFFICIENCY FDWOT2 IS THE FUNCTION OF EFFECTIVE PRESSURE

RATIO (PREOT2) AND NORMALIZED TURBINE SPEED (FSO2). A LOOK-UP TABLE

IS GIVEN AS DWOTAB WITH FPRO ARRAY AS X-AXIS AND FSOTAB ARRAY AS Y-AXIS.

THE ACTUAL EQUATIONS USED FOR SIMULATION IS NOT IN THE DOCUMENT RL00001.

GAMPI = GAMOP + i.

GAMMI = GAMOP _ i.

PROT2 = AMAXI (f.0, POP/POT2D )

tmp = i. - .166667 * GAMPI / GAMMI *

+ (I. - XtoNY( PROT2, -GAMMI/GAMOP) )

PREOT2 = i. / ( Xl0th(tmp, 5) * tmp**3 )

TCROT2 = GAMOP/GAMPI * RGCOP * TOP * 5.15917E-6

tcsqrt = XI0th(TCROT2, 5)

FSO2 = SO2 / tcsqrt * 9.54927

FDWOT2 = xylint( PREOT2, NPREO, FPRO, NFSO, FSO2,

+ sdwofp, vfso2, FSOTAB, DWOTAB, IOl, IO2)

EPSO = .739594 / GAMOP * XtoY( .5 * GAMPI, GAMOP/GAMMI )

DWOT2 = FDWOT2 * CDWOT2 * POP/(14.7 * tcsqrt(TCROT2) * EPSO)

TRQOT2=TRBTRQ(SO2,UCOT2,TOP,POP, I./PROT2,4,CPOP,DWOT2,GAMOP)

1 *CTQOT2

IF (DWOT2.LE..0) THEN

SSM34600
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TOT2D = TOP
ELSE

TOT2D = TOP - rlimit( 0.0, 300.0,
+ TRQOT2 * SO2 / ( 9340.0 * CPOP * DWOT2 + 1.0E-6 ) )

SSM34700

POT2D = hpfi + Xl0th( hpfi**2 + RHGOM*RGCOP*TOT2D*DWOT2**2, 5 )

C

HOTGAS MANIFOLD COOLINGC

C

c

C

c

C

C

C

C

C

C

C

C

C

C

C

C

SINCE THE FUEL FLOW OUT OF THE LPFT PASSES THE OUTSIDE OF THE HOTGAS

MANIFOLD BEFORE ENTERING THE FUEL INJECTOR, THE HEAT EXCHANGE OF THESE
TWO FLOWS HAS TO BE ACCOUNTED FOR.

QOTMC: HEAT FLOW FROM THE OUTLET OF OXID PREBURNER

TOTMC: TEMPERATURE OF FUEL LINE AT OP SIDE

QFTMC: HEAT FLOW FROM THE OUTLET OF FUEL PREBURNER

TFTMC: TEMPERATURE OF FUEL LINE AT FP SIDE

TFT2DI: TEMPERATURE OF HOT GAS AT INJECTOR END, FP SIDE

TOT2DI: TEMPERATURE OF HOT GAS AT INJECTOR END, OP SIDE
RHOFTF: FUEL DENSITY OF FUEL LINE AT FP SIDE

RHOOTF: FUEL DENSITY OF FUEL LINE AT OP SIDE

PFIS: FIS (FUEL INJECTOR SUPPLY) IS THE POINT BEFORE FI
WHICH ALSO SUPPLY FUEL DIRECT TO COMBUSTION CHAMBER

DWACV, DWBAF, AND DWPFS BESIDE DWSFS (TO FI).

IF ( DWFTI.LE.0..OR.DWOT2.LE.0. ) THEN

QOTMC=O.
ELSE

QOTMC = TKMCO*AHTMCO*(TOT2D - TFTID)
ENDIF

Not an integration step:

TOTMC = TFTID + QOTMC/(2.435*RHOOTF*VOLMCO)*DT

IF(DWFTI.LE.0..OR.DWFT2.LE.0.) THEN

QFTMC= 0.

ELSE

QFTMC = TKMCF*AHTMCF*(TFT2D - TFTID)

ENDIF

SSM34800

Not an integration step:

TFTMC = TFTID + QFTMC/(2.435*RHOFTF*VOLMCF)*DT

TFT2DI = pruint( - QFTMC*RGCFP*TFT2D/(CPFP*PFT2D*VOLFTD),

+ Tstep, 138 )

Not an integration step:

TOT2DI = TOT2D - QOTMC*RGCOP*TOT2D/(CPOP*POT2D*VOLOTD)*DT
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C
C
C
C
c

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

RHOOTF = rlimit(4.0E-03, 1.0E-06, PFIS/(TOTMC*9201.6) )

RHOFTF = rlimit(4.0E-03, 1.0E-06, PFIS/(TFTMC*9201.6) )

PINMC=PFI+RSFS*ABS(DWSFS)*DWSFS/RHOFI+RFMCF*ABS(DWFTF)*DWFTF/

* RHOFTF

DWFTI SEPERATED INTO DWFTF AND DWOTF AND THEY MERGE AFAIN AT NODE FI

FOR A GIVEN PRESSURE DROP DP, THE STEADY FLOW EQUATION IS:

DP = (RI/RHOI)*(DWI)**2

DWFTF = DWFTI / (i.0 + XI0th(RFMCF*RHOOTF/(RFMCO*RHOFTF), 5 ) )

DWOTF = DWFTI - DWFTF

IF(DWFTI.LE.0.) THEN

TFIS = (TOTMC+TFTMC) *. 5

RHOFI = RHO(6)

ELSE

TFIS = (DWOTF*TOTMC + DWFTF*TFTMC)/DWFTI

RHOFI = (DWFTF + DWOTF)/(DWFTF/RHOFTF + DWOTF/RHOOTF)

ENDIF

PFIS = PINMC - RFMCF*DWFTF*ABS(DWFTF)/RHOFTF

SSM34900

DEMON = TOTAL_FLOW / SQRT(RHO) IN STEADY STATE

DEMON = Xl0th( ABS(PFIS - PFI) / RSFS, 5 ) +

+ Xl0th( ABS(PFIS - PCIE), 5 ) *

+ ( I./XI0th(RACV, 5) + I./XI0th(RBAF, 5) + I./XI0th(RPFS, 5)

IF(DEMON.EQ.O.O) THEN
DWSFS=O. 0

DWACV=0.0

DWBAF=O. 0

DWPFS=0.0

ELSE

DWSFS = DWFTI * XI0th(ABS(PFIS-PFI)/RSFS, 5) / DEMON

DWACV = DWFTI * XI0th(ABS(PFIS-PCIE)/RACV, 5) / DEMON

DWBAF = DWFTI * XI0th(ABS(PFIS-PCIE)/RBAF, 5) / DEMON

DWPFS = DWFTI * XI0th(ABS(PFIS-PCIE)/RPFS, 5) / DEMON

ENDIF

DPHGMF=PFIS-PFT_D

DPHGMO=PFIS-POT2D

)

SSM35000

SSM35100

MAIN CHAMBER FUEL (HOT GAS) INJECTOR

FUEL INJECTOR INPUTS ARE:

DWFT2: OUTPUT FROM FP THROUGH FP TURBINE

DWOT2: OUTPUT FROM OP THROUGH OP TURBINE

DWSFS: FROM NODE FIS

DWFT2C: FT2 COOLING WHEN DP >=185 PSI

DWFBPV: BLEEDING VALVE FROM NOZZLE COOLING FLOW (NOT USED)

FUEL INJECTOR OUTPUTS ARE:

DWFI: EXIT TO MAIN COMBUSTION CHAMBER
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C
C
C
C

C
C
C
c

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

WTFI = prlint( GAMFI *

+ ( DWFT2*TFT2DI + DWOT2*TOT2DI + DWSFS*TFIS + DWFBPV*T(4) +

+ DWFT2C*T(3) - DWFI*TFI ), 0, 139 )

WFIF = prlint( DWFBPV + DWSFS + DWOT2*(I.0 - ELFOPM) +

+ DWFT2*(I.0 - ELFFPM) + DWFT2C - DWFI*(I.0 - ELFFI) ), 0, 140 )

WFIO = prlint( DWOT2*ELFOPM + DWFT2*ELFFPM - DWFI*ELFFI, 0, 141 )

WFI = WFIO + WFIF

TFI = AMAXI(10.O, WTFI/(WFI + 1.0E-12) )

PFI = RGCFI*WTFI/VOLFI

PFI=AMAXI (PA, PFI)

IF(DWFT2.LE.O..AND.DWOT2.LE.0.) THEN
GAMFI = GAM6

RGCFI=RGC6

ELSE

GAMFI= (GAMOP*DWOT2 + GAM6*DWSFS+ (DWFBPV+DWFT2C) *GAM4+

DWFT2 *GAMFP) / (DWOT2 +DWSFS+DWFT2+DWFBPV+DWFT2 C+ 1.0E-06 )

GAMFI = rlimit(l.01, i0.0, GAMFI)

RGCFI= (RGCOP*DWOT2+RGC6*DWSFS+RGCFP*DWFT2+RGC4* (DWFBPV+

DWFT2C) )/ (DWOT2+DWSFS+DWFT2+DWFBPV+DWFT2C+I. 0E-6 )

RGCFI = rlimit(100.0, 20000.0, RGCFI)
ENDIF

DWFIX = GFLOW (PFI, PCIE, TFI, RGCFI, GAMFI )*AFI

DWFI= DWFI + O.05*(DWFIX - DWFI)

DWFI = recpos( DWFI )

ELFFI = WFIO/(WFI + 1.0E-6)

SSM35200
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MAIN CHAMBER IGNITOR

CALL IGN(3,PMOV,POINJ,RHOMOV, P(10),RHO(10),PCIE)

MAIN CHAMBER COMBUSTOR

IN THE MAIN COMBUSTION CHAMBER, FOLLOWING NOTATION ARE USED:

ELFC:

ELFCM:

TCC:

GAMC:

WTC:

WCO:

WCF:

WCN:

DWC:

DWGN2:

TC:

WC:

EMRC:

PCIE:

PCNS:

OXID FLOW / TOTAL FLOW IN COMBUSTION CHAMBER

OXID / TOTAL MASS IN COMBUSTION CHAMBER
COMBUSTION TEMPERATURE IN THE CHAMBER

GAMMA IN COMBUSTION CHAMBER

WEIGHT TIME TEMPERATURE IN COMBUSTION CHAMBER

OXID WEIGHT IN COMBUSTION CHAMBER

FUEL WEIGHT IN COMBUSTION CHAMBER

NITROGEN WEIGHT IN COMBUSTION CHAMBER

EXIT FLOW OF COMBUSTION CHAMBER

NITROGEN PURGE DURING SHUT DOWN (NOT USED)
TEMPERATURE IN COMBUSTION CHAMBER

TOTAL MASS IN COMBUSTION CHAMBER

O/F RATIO

CHAMBER PRESSURE AT INJECTOR END

CHAMBER PRESSURE AT NOZZLE END

SSM35400
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C
C
C
C
C
C
C

EMWC:
CPC:
EMUC:
EKC:
PRDC:
REYC:

EQUIVALENTMOLECULARWIGHT IN COMBUSTIONCHAMBER
SPECIFIC HEAT RATIO IN COMBUSTIONCHAMBER
VISCOSITY WITHIN COMBUSTIONCHAMBER
THERMALCONDUCTIVITY WITHIN COMBUSTIONCHAMBER
PRANDTLNUMBERIN COMBUSTIONCHAMBER
REYNOLDS NUMBER IN COMBUSTION CHAMBER

dsum = DWOI + DWFI + DWACV + DWFIG(3) + DWBAF + DWPFS

ELFC = (DWOI + DWFI*ELFFI) / ( dsum + 1.0E-6 )

ELFCM = WCO/(WC+I. 0E-6)

TCC = FGEN(20, 84, ELFC) + T(9)

GAMC = FGEN(13, 85, ELFCM)

WTCI = prlint( GAMC*( dsum * TCC - DWC * TC), O, 142 )

WCO = prlint( DWOI + DWFI*ELFFI - DWC*ELFCM, 0, 143 )

WCF = prlint( DWACV + DWBAF + DWPFS + (i.0 - ELFFI) * DWFI

+ - (i.0- ELFCM)*DWC + DWFIG(3), 0, 144 )

IF ( PA/PCNS .LE.

+ XtoNY( 2./(GAMC + 1.0), GAMC/(GAMC- 1.0) ) ) THEN

DWC = PCNS * ACN * 32.2 / CSTAR(I, EMRC, PCNS)

ELSE

DWC = GFLOW(PCNS,PA,TC,RGCC,GAMC) * ACN

ENDIF

WCN = prlint( DWGN2*RGN2 -DWC*ENFC, 0, 145 )

IF( WCN.GT. 0.0)

ENFC = WCN/(WC + 1.0E-06)

DWC = recpos( DWC )

SSM35500

Unit 6 formatted output was removed

WC = WCO + WCF + WCN

TC = AMAXI(10.0, WTC/( WC + I.OE-12) )
Added for 'SIGMAi ='s

vTC = 1.0 / ( 2.0 * TC )

EMRC = WCO / ( WCF + 1.0E-12 )

PCIE = RGCC * _TC * vVOLC

PCIE = AMAXI( PCIE, PA ) SSM35800

PCNS = PCIE * EFFCM

Order was changed to calculate EMWC and CPC once,

and to test ENFC once.

IF ( ENFC.GT. 0. )

EMWC = ( (WCO + WCF) * FGEN(12, 86, EMRC) + WCN * 28.0) / WC

CPC = ( (WCO + WCF) * FGEN(21, 87, ELFCM) + WCN * 0.274 ) / WC
ELSE

EMWC = FGEN(12, 86, EMRC)

CPC = FGEN(21, 87, ELFCM)
END IF

RGCC = 18540.0 / EMWC

EMUC = FGEN(25, 88, ELFCM)

EKC = FGEN(23, 89, ELFCM)
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C
C
C
C
C
C
C
C
c
C
C
C
C
C

C

C

C

C

GAMAC = (GAMC - 1.0) * 0.5

PRDC = (CPC * EMUC) / EKC

A4C = ABS(DWC) / ACN

REYC = CPC * XI0th(EMUC, 2) / XI0th(PRDC, 6)

SSM35900

FIXED NOZZLE HOT GAS SIDE HEAT TRANSFER

THE HEAT TRANSFER EQUATIONS USED FOR THE FOLLOWING CODES ARE DESCRIBED

IN THE DOCUMENT 29-30 WITH A SLIGHT MODIFICATION.

SIMILAR EXPLANATIONS CAN BE FOUND IN HILL'S BOOK OF

"MECHANIC AND THERMODYNAMICS OF PROPULSION".

!!!!! HOWEVER, THERE IS A MAJOR PROBLEM !!!!!

THE NODE 12 (DOWN-COMER) HEAT TRANSFER IS NOT CALCULATED HERE.

AND, THE FOLLOWING CODE INCLUDES NODE 7 HEAT TRANSFER WHICH DOES NOT
CONTACT WITH THE NOZZLE.

IN THE FOLLOWING:

EMC#: MACH NUMBER AT SPECIFIC POINT

DIAT: THROAT DIAMETER

QINI() : HEAT FLOW FROM HOT GAS TO WALL

EMC4 = SC4 * GAMC + BC4

EMFTR4 = 1.0 + GAMAC * EMC4**2

SIGMA4 = 1.0 / ( XtoY(TWI(4) * vTC * EMFTR4 + 0.5, A3 ) *

+ XtoY( EMFTR4, AA2 ) )

HTCC=O.O26/DIAT**0.2*REYC*A4C**0.8*A5 x ** 2 is much cheaper

than x ** 0.2

HTCC = 0.026 / DIAT**2 * REYC * Xl0th(A4C, 8) * A5

HTCC4 = HTCC * XIOth(AR4, 9) * SIGMA4

QINI(4) = HTCC4 * AHTC4 * ( TC - TWI(4) ) SSM36000

IF( PA .ST. 1.0 ) THEN

+

+

IF(PCIE.LE.700.)QINI(4)=QINI(4)*AMINI(5.6,9.68-.0236*PCIE+

1 1.6E-O5*PCIE**2)

IF(PCIE.LE.350.)QINI(4)=QINI(4)*AMINI(2.,

1 AMAXI(I.,I.-+(350.-PCIE)/100.)) Tests PCIE in the wrong
order and wastes results.

IF( PCIE.LE.350. ) THEN

QINI(4) = QINI(4) * rlimit( I., 2., I. + (350.-PCIE)*.01)

ELSE IF( PCIE.LE.700.) THEN

QINI(4) = QINI(4) *

AMINI( 5.6, 9.68 - PCIE * ( .0236 - 1.6E-05 * PCIE ) )
END IF

END IF

MAIN CHAMBER HOT GAS SIDE HEAT TRANSFER

130 EMFTR5 = 1.0 + GAMAC * EMC5**2

EMFTR6 = 1.0 + GAMAC * EMC6**2

EMFTR7 = 1.0 + GAMAC * EMC7**2 SSM36100
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C

SIGMA5 = 1.0 / ( XtoY(TWI(5) * vTC * EMFTR5 + 0.5, A3 ) *

+ XtoY( EMFTR5, AA2 )

SIGMA6 = 1.0 / ( XtoY(TWI(6) * vTC * EMFTR6 + 0.5, A3 ) *

+ XtoY ( EMFTR6, AA2 )

SIGMA7 = 1.0 / ( XtoY(TWI(7) * vTC * EMFTR7 + 0.5, A3 ) *

+ XtoY( EMFTR7, AA2 )

HTCC5 = HTCC * XI0th(AR5, 9) * SIGMA5

HTCC6 = HTCC * XI0th(AR6, 9) * SIGMA6

HTCC7 = HTCC * XI0th(AR7, 9) * SIGMA7

QINI(5) = HTCC5 * AHTC5 * ( TC - TWI(5) )

QINI(6) = HTCC6 * AHTC6 * ( TC - TWI(6) )

QINI(7) = HTCC7 * AHTC7 * ( TC - TWI(7) )

RETURN

END

SSM36200
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'ignt.for':

SUBROUTINEIGN0(I, POU, POD, RHOO, PFU, RHOF, PC)
*****************************************************************

c

C PURPOSE: SIMULATE THE IGNITION SYSTEM TRANSIENTS

C

**********************

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

I = CHAMBER INDEX

1 = FPB

2 = OPB

A1 = OXIDIZER VALVE PRESSURE,PSI

A2 = OXIDIZER INJECTOR MANIFOLD PRESSURE,PSI

A3 = OXIDIZER VALVE DENSITY,LB/IN3

A4 = FUEL SUPPLY PRESSURE,PSI

A5 = FUEL SUPPLY DENSITY, LB/IN3

A6 = IGNITOR CHAMBER DISCHARGE PRESSURE, PSI
A7 = NOT USED

N = INITIALIZATION FLAG inactivated

C 3 = MCC

SSM37700

SSM37800

IGNITOR ITSELF IS A SMALL COMBUSTION CHAMBER INSIDE (?) THE
COMBUSTION CHAMBER.

FUEL FEED LINES FOR IGNITORS ARE JUST LIKE REGULAR PIPE LINES

WITH SMALLER SIZE. THE CALCULATION OF FUEL FEED LINE IS SIMPLE

FOR A GIVEN CONDITION.

OXID FEED LINES FOR IGNITORS ARE THE BYPASS LINES AFTER THE CONTROL

OXID VALVES. THE FOLLOWING CALCULATION IS MAINLY DEALING WITH

THE FLOW AND PRESSURE BALANCE OF THE IGNITOR LINES AND MAIN OXID LINES.

THE SCHEMATIC OF THE OXID LINES FOR A COMBUSTOR IS:

diagram omitted

C

C******COMMON USAGE*%****

C INPUT:

C VARIABLE

C T(3) ,T(9)
C

C OUTPUT:

C

C

C

C

C

C

C

VARIABLE

DWFIG,DWOIG,DWI,DW2,P4,PCIG

DWFIG

SOURCE SSM37900

FUELF

DESTINATION

HOTGAS

FUELF

SUBSCRIPT (1)=FUEL PB, (2)=OXID PB, (3)=MAIN CHAMBER SSM38000
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C

C

ii

C

DIMENSION POU(3), POD(3), RHOO(3), PC(3), RHOF(3)

REAL AN(3), TAUC(3) , ZFIG(3) ,
+ RFIG(3), P4(3), ELI(3),
+ RII(3), R2I(3), R3I(3)

EL2(3), EL3(3) ,

INCLUDE
INCLUDE
INCLUDE
INCLUDE

'blank.com'
'out.com'
'igni.com'
'units.com'

INTEGER Tstep
PARAMETER(Tstep = 0 )

+

IF ( I .EQ.I) THEN

DO ii J=l,3

READ(run,12) RII(J), R2I(J),

ZFIG(J), RFIG(J),

RI(J) = RII (J) *0. 0412

R2(J) = R2I (J) *0. 0412

R3(J) = R3I (J) *0. 0412
CONTINUE

ENDIF

R3I(J), AN(J),

ELl(J), EL2(J),

TAUC(J),

EL3(J)

P4 (I)=PA

PCIG (I) =PA

DWOIG(I) =i. 0E-30

DW3 (I) =DWOIG (I)

DW2 (I) =I. 0E-30

DWI (I) =2.0E-30

DWFIG (I) =I. 0E-25

DWNIG (I) =i. 0E-25

ELFIG (I) =0.0

CALL unint0(DWOIG(I), 213 + I )

CALL unint0(D_I(I), 216 + I )

CALL unint0(DWI(I), 219 + I )

CALL unint0(DWFIG(I), 222 + I )

CALL unint0(PCIG(I), 225 + I )

GAM= 1.4

R=9270.0

TC=460.0

XINT=I.0

RETURN

ENTRY IGN(I, POU, POD, RHOO, PFU, RHOF, PC)
**********************************************************

POU (I )=A 1

POD(I)=A2
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C

C

C

C

C

C

C

C

C

C

RHOO (I )=A3

PFU (I )=A4

RHOF (I )=A5

PC (I )=A6

TF(1) =T(9)

TF(2)=T(9)

TF(3)=T(3)

SSM38300

THIS IS TO CALCULATE THE PRESSURE CHANGE OF THE SEPARATION NODE (P4)

AS THE RESULT OF THE CHANGES OF NEIGHBOR NODES POD, POU AND PCIG WITHIN

THE TIME FRAME DT. THIS IS A TRANSIENT CALCULATION, FOR A STEADY STATE

CONDITION (DT = LARGE) AND THE LAST TERM DROPS OUT.

IN THE FOLLOWING:

E = DELTA POU / DELTA DWI

F = DELTA PCIG / DELTA DW2

G = DELTA_--POD/ DELTA_SW3

E=2.0*RI (I)/RHOO (I) *ABS (DWI (I)) +ELl(I)/DT

F=2.0*R2 (I)/RHOO (I) *ABS (DW2 (I))+EL2 (I)/O T

G=2.0*R3(I)/RHOO(I)*ABS(DWOIG(I))+EL3(I)/DT

A = (-P4 (I)+POD (I)+R2 (I)/RHOO (I) *ABS (DW2 (I)) *DW2 (I))/F

B = (-P4 (I) +PCIG (I) +R3 (I)/RHOO(I) *ABS (DWOIG(I)) *DWOIG(I) )/G

C= (POU (1) -P4 (I) -RI (I)/RHOO (I) *ABS (OWl (I)) *OWl (I))/E

D=I. 0/E+I. 0/F+I. 0/G

DP4=(A+B+C)/D this is d(P4)/dt * DT

SSM38800

vRHOO = 1.0 / RHO0

rvt = 2.0 * vRHOO * DT

abdw = ABS(DWI(I) )

vedt = 1.0 / ( rvt * RI(I) * abdw + ELI(I) )

cvdt = ( POU - P4(I) - RI(I)*vRHOO * abdw * DWI(I) ) * vedt

abdw = ABS(DW2(I) )

vfdt = 1.0 / ( rvt * R2(I) * abdw + EL2(I) )

avdt =(-P4(I) + POD + R2(I)*vRHOO * abdw * DW2(I) ) * vfdt

abdw = ABS(DWOIG(I) )

vgdt = 1.0 / ( .rvt * R3(I) * abdw + EL3(I) ) SSM38800

bvdt = (-P4(I) "+ PCIG(I) + R3(I)*vRHOO * abdw * DWOIG(I) ) * gdt

dvdt = vedt + vfdt + vgdt

p4rate = ( avdt + bvdt + cvdt ) / ( dvdt * DT )

DWOIG(I) = prflow(DWOIG(I), EL3(I), -R3(I)*vRHOO,

+ P4(I) - PCIG(I), 213 + I )

DWI(I) = prflow(DWI(I), ELl(I), -RI(I)*vRHOO,
+ POU - P4(I), 216 + I )

DW2(I) = DWI(I) - DWOIG(I) SSM38900

P4(I) = pruint( p4rate, Tstep, 219 + I )

RF = RFIG(I) / RHOF

DWFIG(I) = prflow(DWFIG(I), ZFIG(I), RF, PFU -PCIG(I), 222+I )
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ELFIG (I) =AMAXl(0.0,AMINI (i. 0, DWOIG(I)/(DWOIG (I) +DWFIG(I) +I.E-25) ) )

dwigs = DWOIG(I) + DWFIG(I)
IF ( ABS( dwigs ) .LT. I.E-25 ) THEN

ELFIG(I) = 1.0
ELSE

ELFIG(I) = AMAXI( 0.0, AMINI(I.0, DWOIG(I)/dwigs) )
ENDIF
GAM= fgen(13, 120 + I, ELFIG(I) )

Example of limiting table input to avoid extending table,
instead of looking up ABS(DWOIG(I))/(ABS(DWFIG(I))+I-E-6))

IF ( ABS(DWFIG(I) .LT. 1.0E-10 ) THEN
EMRIG(I) = 1.0
R = I000.

ELSE

EMRIG(I) -- DWOIG(I) / DWFIG(I)

dwigs = ABS(EMRIG(I) )

IF (dwigs .GT. 9999. ) THEN

R = 600.

ELSE

R = 18540.0 / fgen(12, 123 + I, dwigs )

ENDIF

ENDIF

TCIG(I) = AMAXI( 40.0, fgen(20, 126 + I, ELFIG(I))+TF(I) )

DWNIG(I) = DWNIG(I) + 0.3 *

+ (GFLOW(PCIG(I), PC, TCIG(I), R, SAM) * AN(I) - DWNIG(I) )
SSM39000

PCIG(I) = pruint((DWFIG(I) + DWOIG(I) - DWNIG(I))/TAUC(I),
+ Tstep, 225 + I )

EMRIG(I) = DWOIG(I) / (DWFIG(I)+I.0E-10)

END

replaced by above
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'gflow.for':

FUNCTION GFLOW(PU,PD,TU,R,G)
************************************************************

C

C PURPOSE: COMPUTE ISENTROPIC IDEAL GAS FLOW FOR CHOKED

C AND UNCHOKED ORIFICES

C

C******ARGUMENTS******

C

C

C

C

C

C

C

C

C

C

INPUT:

PU

PD

TU

R

G

= UPSTREAM PRESSURE, PSI

= DOWNSTREAM PRESSURE, PSI

= UPSTREAM TEMPERATURE, DEG R

= GAS CONSTANT, IN-LBF/(LBM-DEG RF)

= GAMMA, RATIO OF SPECIFIC HEAT

OUTPUT:

GFLOW = MASS FLOW RATE/AREA LB/IN2-SEC

slowl(gee) = 2.0 * xtoy( gee + 1.0, - gee / (gee - 1.0) )

slow2(pr,gee) = xtoy( pr, 2.0/gee ) - xtoy( pr, (gee + 1.0)/g )

test = 772.8 * G / (R * TU * (G-I.0))

IF ( test .LT. 0.0 ) THEN
GFLOW = 0.0

ELSE

IF ( PU .LT. PD ) THEN

P1 = - PD

ratio = PU / PD

ELSEIF ( PU .eq. PD ) THEN
P1 = 0.0

ratio = I.Q

ELSE

P1 = PU

ratio = PD / PU
ENDIF

PR = AMAXI(slowl(G), ratio )

if ( PR .LT. 0.0 ) THEN
GFLOW = 0.0

ELSE

test2 = slow2(PR)

IF ( test2 .LT. 0.0 ) THEN
GFLOW = 0.0

ELSE

GFLOW = P1 * Xl0th( test * test2, 5 )
ENDIF
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ENDIF
ENDIF
END

C
C
C
C
C
C
C

SUBROUTINECNTRL0

C THIS IS THE PROGRAM SIMULATE THE DIGITAL CONTROL FUNCTIONS OF SSME.

C IT IS APPARENT THAT THE DATA WERE READ AND WRITTEN EVERY 0.02 SECOND.

D/A DELAY AND INSTRUMENT DELAYS ARE ACCOUNTED FOR BY TIME CONSTANTS

TIMEVC, TIMECP, TIMEPR, AND OTHERS.
THE PURPOSE OF THIS SIMULATION IS TO READ MEASUREMENT OUTPUT AND

CALCULATE THE NECESSARY OUTPUT AS DEFINED BY THE CONTROL SCHEME.

ONLY INPUTS THAT CAN BE USED TO CALCULATE CONTROL SIGNALS ARE

THOSE ACTUALLY MEASURED AND USED.

****************************************************************************

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C******ARGUMENT******

C ICCNTL = INITIALIZATION FLAG

C

C******COMMON USAGE******

INPUT :

VARIABLE

DW(1) ,DW(2) ,P(3) ,T(2) ,RHO(2)

PCIE,DWOPO,DWFPO

DWMOV

XOPOV

OUTPUT:

VARIABLE

XCFPOV,XCOPOV,XCMOV,XCMPV,XCCCV

SUBROUTINES CALLED: EMCO

eliminated in favor of initialization

routine CNTRL0 and simulation loop entry

SOURCE

FUELF

HOTGAS

OXIDF

VALDYM

DESTINATION

VALDYM

LOGICAL RESET, first

DIMENSION D(5),PIN(5),DEN(5),PD(5),XP(5) ,Ii(5)

DIMENSION AT(5),BT(5)

DIMENSION STHETA (5)

C

C

SSM01500

INCLUDE 'blank.com'

INCLUDE 'out.com'

INCLUDE 'contrl.com'

INCLUDE 'hgas.com'
INCLUDE 'oxid.com'

INCLUDE 'balc.com'

INCLUDE 'valves.com'

COMMON/PURGE/DWGN2,TCUTPR, DWGN2F,DWGN20 SSM02000
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C
Computation constants

PARAMETER ( PI = 3.141596, tpcnst = 8./( 386.4 * PI ** 2 ),

+ piov2 = PI * .5 , twopi = PI * 2. )

PARAMETER ( v1728 = 1./1728., v41p12 = 1./41.42,

+ v14p06 = 1./14.06, v29p95 = i00. / 2995. )

PARAMETER ( v29p95 = i00. / 2995. )

DATA XOPOMS/ I00.0 /

DATA Ii/ii,14,16,32,36/
C

C INITIALIZE LOCAL VARIABLES AND ARRAYS NOT ASSIGNED VALUES

C THIS IS NECESSARY FOR SUCCESSFUL EXECUTION ON THE IBM

* Unnecessary initialization was eliminated. It created unused

* variables, due to confusion between 'O' and '0' characters.

* IF(FLAG.EQ.15.) GO TO 9999

C2=0.0

EEMR=0.0

SSM02500

SSM03000

initializations omitted

YCOPVL=0.0

DO 9998 I=I,5

D(I)=O.O

DEN(I) =0.0

PD(I)=O.O SSM04300

PIN(I)=0.O

STHETA(I)=0.O

XP(I)=0.O
9998 CONTINUE

IPBCO=0

C

****************************************************************************

C THIS IS THE INPUT READING FOR MOST CONTROL PARAMETERS.

C THESE PARAMETERS_ETERMINE THE SCHEDULE, LEVEL VS. TIME, OF:

C i) THRUST'REQUESTS,

C 2) MIX-RATION REQUESTS,

C 3) OPEN-LOOP OPOV SETTINGS,

C 4) CLOSED-LOOP GAINS, K, KP AND KI, OF THRUST CONTROL (OPOV),

C 5) OPEN-I/9OP FPOV SETTINGS,

C 6) CLOSED-LOOP GAINS, K, KP AND KI, OF MIX-RATION CONTROL (FPOV)

C 7) MAIN OXID VALVE (MOV),

C 8) MAIN FUEL VALVE (MFV),

C 9) COOLANT CONTROL BYPASS VALVE (CCV),
****************************************************************************

C

30 FORMAT(IX,6FI2.0) SSM04400

READ(run, 30)TIDMO,TOPOV,TMOVST,TMOVRA,TBPV,XMOVST,DTF,FRZ

i, DBEF,DBMR,TPI,DTPS,DTOPFS,DTVFS,DTMCR,TCUT,TCLF,FI,DFI,F2,FC,TVC
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C

2F

3,

4,

5,

6,

7,

8,

9,

TCUTPR=TCUT+DTPURG

FCO,TUT,DUM,OPOVCP,OPCRI,OPCR2,OPOVOP,ROI,RO2,RO3,OSTEP,CFGI

CFG2,FPOVOP,RFI,RF2,RF3,DUMI,FSTEP, FPOVCP,FPCRI,FPCR2,OMVCR

TSMOV,DMOVO,XMOVM,DMOVUT,TMS,DFMOV, FMOVC,CCVI,DCCVI,TCCVI,DCCVC

DCCV2,CCV2,CCVM,DFCCV,FCCVC,TFRMFV, DMFVI,XMFVM,FMVM,CMFV,DFMFV

PIMFV,DPIMFV,DTMFVR, DP2MFV,DTPURG,PCFACT,TMRC,OPCR0,OPOVCM

OMVCRO,DTCOMF,DTCOCV,FAI,FBI,FCI,FDI,DCFG,CFGC,CCVC, DTPNC,DFRC

CCV3,DCCV3,DCCV0,XCCCV0,DXCFPO,FPCR0,FPOVCM,OPOVPB,CFGMS,TIFPV

T2FPV, FPVDX,TIOPV,T2OPV,OPVDX SSM04500
SSM05000

load function interpolation tables

CALL fgset( 6 )

CALL fgset( 17 )

CALL fgset( 18 )

CALL fgset( 19 )

CALL fgset( 31 )

CALL fgset( 33 )

CALL fgset( 55 )

YCMFV = FGEN(55, 90,

CALL fgset( 56 )

CALL fgset( 57 )
Added for TLIMIT

CALL fgset(84)

XOPOV=0.0

XFPOV=0.0

XMOV=0.0

ROPOV=I.0E+12

RFPOV=I.0E+I2

RMOV= 1.0E+I2

EMRGC=0.0

EMRFPO=0.0

EMROPO=0.0

DXFPOV=0.0

DXOPOV=0.0

PCOPO=5.0

PCFPO=0.0

FR=60000.0

XCOPOV=0.0

XCFPOV=0.O

XCMFV=0.O

XCMOV = 0.0

XCMOVC=XCMOV

XCCCV=IO0.

YCFPOV=0.O

YCOPOV=0.0

YCMOV=0.O

YCCCV=I00.0

TFT2D=TFP

TOT2D=TOP

t

SSM05100

SSM05200

SSM05300
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EPCGC=0.0
EPC=0.0

TCUTFP=I000.0

TCUTOP=I000.0

TCUTCV=I 000.0

TCUTFV=I000.0

TCUTOV=I000.0

TCUTFV=I000.0

TMPL=I000.0

DPRI=DPR

DPLI=DPL

DTI=DT

IFIND=0

IOIND=0

PIPF=-I.

PIPO=-I.

NCF=0

NCO=0

ICUT=I

RESET = .FALSE.

NMALF = 0

STEPO = 0.0

Resetting of TIMExx values in EMCO(1), now EMCO0, was eliminated.

Initializing timing values to STIME works for a restart as well.

TIMECP = STIME

TIMEPR = STIME

TIMETR = STIME

TIMEVC = STIME

TSMFV=AMINI(TSMFV+TPA,TSMFV+TCUT)
CALL EMCO0

inkdt = 300000. * DT

dfldt = DFI * DTMC

dfrcdt = DFRC * DTMC

frbias = i. + ..01 * PFRNZ

osdt = DTMC * OSLAM

op0dt = DTMC * OPCR0

opldt = DTMC * OPCRI

op2dt = DTMC * OPCR2

fp0dt = DTMC * FPCR0

fpldt = DTMC * FPCRI

fp2dt = DTMC * FPCR2

omvdt = OMVCR * DTMC

omvodt = OMVCRO * DTMC

omvfdt = OMVCRF * DTMC

ydtl = .32 - DTMC

ydt2 = DTMC / (.32 + DTMC )
dmovdt = DMOVO * DTMC

dcc3dt = DCCV3 * DTMC
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dcc2dt = DCCV2 * DTMC

dccvdt = DCCVC * DTMC

dccldt = DCCVI * DTMC

dcc0dt = DCCVO * DTMC

dpldt = DPIMFV * DTMC

dp2dt = DP2MFV * DTMC

IF ( ipflag .EQ. 1 ) THEN

fzopvb = FZOPV

fzycf = FZFPV

fzycm = FZMOV

fzycc = FZCCV

fzycmf = FZMFV

ELSE

fzopvb = FZOPV * ( I. + .01 * POPVNZ )

IF ( fzopvb .GE. i00.0 ) fzopvb = FZOPV

fzycf = FZFPV * ( I. + .01 * PFPVNZ )

IF ( fzycf .GE. i00.0 ) fzycf = FZFPV

fzycm = FZMOV * ( i. + .01 * PMOVNZ )

IF ( fzcm .GE. i00.0 ) fzycm = FZMOV

fzycc = FZCCV * ( i. + .01 * PCCVNZ )

IF ( fzycc .GE. I00.0 ) fzycc = FZCCV

fzycmf = FZMFV * ( i. + .01 * PMFVNZ )

IF ( fzycmf .GE. I00.0 ) fzycmf = FZMFV

ENDIF

dtml00 = i00. * DTMC

dtm200 = 200. * DTMC

CALL unint0( FRADS, 146 )

CALL unint0( ORADS, 147 )

ENTRY CNTROL

****************************************************************************

C CONTROLLER SIMULATION BEGINS HERE

C PIN( ) : INPUT PRESSURE TO THE VALVE

C D( ) : FLOW RATE TO THE VALVE

C DEN( ) : DENSITY OF FLOW MEDIA

C PD( ) :_ DOWN STREAM PRESSURE

C VPD( ) :'VALVE PORT DIAMETER

C XP( ) : % OPENNING OF VALVE ANGLE
C READER SHOULD REFER TO THE SSME DOCUMENT FOR FURTHER DETAILS ON

C VALVE CHARACTERISTICS.

****************************************************************************

C

C***** NMALF IS THE FLAG OF PURGE REQUEST WHEN MALFUNCTIONS DETECTED *

C

IF ( NMALF .GT. 0 ) THEN
NMALF = 1 SSM08600

TCUTPR = AMINI( TCUTPR, TPA + DTPURG )

• DT=DTI change in DT disallowed

IF ( STIME .LE. TPA + DTPNC ) RETURN

CALL EMCO (2)
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C

EMRE= ( DWMOV+ DWOPO+ DWFPO) / (DW(1) + 1.0E-10 )
RETURN

ENDIF

PIN (i) =PFPOV

PIN (2 )=POPOV

PIN (3) =PMOV

PIN (4) =P(3)

PIN(B) =P(7)

D (1 )=DWFPO

0 (2 )= OWO PO

D (3 )=DWMOV

D(4) =DW (3)

0(5) =DW (7)

DEN (1 )=RHOOP3

DEN (2 )=RHOOP3

DEN (3 )=RHOOP2

DEN (4 )=RHO (3 )

DEN (5 )=RHO (7 )

PD (i) =PFPOI

PD (2) =POPOI

PD(3) =POINJ

PD(4) =P(10)

PD(5) =P(8)

XP (1 )=XFPOV

XP (2 )=XOPOV

XP (3 )=XMOV

XP (4 ) =XMFV

xP (5)=xccv
* STIME = TIME

C

C*******

C

C

C

C

C

*

SSM05700

SSM05800

SSM05900

CALCULATE HYDRAULIC AND SLIDING FRICTIONAL TORQUE TP( ) *********
ALTHOUGH THE VALUE TP( ) SHOULD BE USED IN CALCULATING THE WIND-UPS

AND STICTIONS, THIS VALUE IS REALLY NEVER USED IN THIS SIMULATION.

THE WIND-UPS AND STICTIONS ARE SET TO BE CONSTANTS IN THE VALVE

DYNAMIC SIMULATION SUBROUTINE VALDYN( ).

The calculation of TP is left in, on the theory that the values can
be monitored or later used in the simulation.

DO 250 I=I,5

IF(DTHETA(I) .EQ. 0.D0 ) THEN

STHETA(I) = DTHETA(I) replaced to avoid unnecessary conversion
STHETA(I) = 0.
THK = 0.0

TP(I)=0.
ELSE

THE = FGEN(II(I), 90 + I, XP(I)*.01 )

TP(I) =

SIGN (AT (I) + (BT(I) +0.8*ESS (I)) * (PIN(I)-8./386.4/DEN(I) * (D(I)/

SSM06000
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C

+
+
+

ENDIF
250 CONTINUE

PI/VPD(I)**2)**2)+0.8*DSS(I)+CPS(I)+CS(I)*(PIN(I)-PD(I)) ,
STHETA(I)) +THK*D(I) **2/DEN (I)/VPD (I)/1728 •

TP(I) = SIGN(AT(I) + (BT(I) + 0.8*ESS(I) ) *
(PIN(I) -tpcnst/DEN(I)*(D(I) / VPD(I)**2 )**2 ) +

0.8*DSS(I) + CPS(I) + CS(I)*(PIN(I) - PD(I) ),

STHETA(I) ) + THK*D(I)**2/(DEN(I)*VPD(I)*1728.)

C I HAVE ABSOLUTELY NO IDEA OF WHAT THIS SECTION OF CODES IS DOING.

C PFFM AND POFM ARE PRESSURES OF MFV AND MOV (?)

C DENF AND DENO ARE CALCULATED DENSITIES

C FRADS AND ORADS ARE ACCUMULATED VOLUMNS

C SIN() OF FRADS AND ORADS MEANS ????????????
C SINCE PIPF IS THE PREVIOUS VALUE OF SFRADS (DT=0.O002), THE FOLLOWING

C CONDITION SEEMS TO INDICATE THE CHANGE OF SIGN FROM - TO +.

C IF(IFIND.NE.2.OR. SFRADS.LT.0.) GO TO xx

C IF(IFIND.NE.2.OR. PIPF.GT.0.) GO TO xx

C HOWEVER, NONE OF THE VARIABLES GENERATED IN THIS SECTION ARE USED

C ANYWHERE IN THE SIMULATION OF THE SSME.

****************************************************************************

C

Unfortunately for simulation speedup, the code of this section does

affect the simulation. The KOUNTF and KOUNTO set NCF and NCO,

affecting EMRF.

PFFM=P (3)-DW (2) *ABS (DW (2))/RHO (2) *2. 87137E-06

DENF=((-I.4013E-03+3.09257E-06*PFFM)*T(2)**2+(6.5220E-02

* -2.14666E-04*PFFM)*T(2)+3.8956+4.27390E-03*PFFM)/1728. replaced b

DENF = v1728-( 3.8956 + 4.27390E-03*PFFM + T(2) *

+ ( 6.5220E-02 - 2.14666E-04*PFFM +

+ - (-1.4013E-03 + 3.09257E-06*PFFM)*T(2) ) )

FRADS = pruint( DW(2)*v41pI2/DENF, 0, 146 )

POFM = POD2 -

+ (DWOP2 - DWOTI)*ABS(DWOP2 - DWOTI)/RHOOP2*I.543474E-05 SSM06100

DENO = ( (-0.16603+5.6683E-06*POFM)*TOD2 + 98.5 -I.8237E-04*POFM )
+ * v1728

ORADS = pruint( (DWMOV+DWOPO+DWFPO)/DENO*vI4p06, 0, 147 )

IF(FRADS.GT.I.0E+20) THEN

FRADS = 0.

unint0( 0., 146 )

ENDIF

IF(ORADS.GT.I.0E+20) THEN
ORADS = 0.

unint0( 0., 147 )
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ENDIF

SFRADS=SIN(FRADS) sin and arcsin series had been used, where
SORADS=SIN(ORADS) only a mod function is required.
sfrads = MOD( FRADS, twopi )
sorads = MOD( ORADS, twopi )

The selection sequence based on IFIND and IOIND was rewritten
for clarity and to eliminate repeated tests.

GO TO ( 40, 50 ) IFIND
GO TO 60

case IFIND is 1

40 IF ( SFRADS .LT. PI .AND. PIFP .LE. O. ) THEN

Statements of the form kountx = kountx + realexpression
force the unnecessary conversion of kountx to REAL and
reconversion of the sum to integer. They are replaced by
a sequence requiring the minimum single conversion.

KOUNTF=KOUNTF+300000.*ASIN(SFRADS)*DENF*41.12/DW(2) replaced by
ink = 12.336E+6 * MOD( FRADS, piov2 ) * DENF / DW(2)
KOUNTF = KOUNTF + ink

IFIND=2

ENDIF

GO TO 60

case IFIND is 2

50 IF ( SFRADS .GE. O..AND. PIFP .LE. 0. ) THEN

ink = 12.336E+6 * ABS( MOD( PIPF, piov2) ) * DENF / DW(2)
KOUNTF = KOUNTF + ink

IFIND=3

ENDIF

SSM06200

The simulation loop invariant inkdt = 300000. * DT is computed in CNTRL0

KOUNTF = KOUNTF + inkdt

60 dwsum = DWMOV + DWOPO + DWFPO

GO TO( 70, 80 ) IOIND
GO TO 95

case IOIND is 1

70 IF ( SORADS .LT. PI .AND. PIFO .LE. 0. ) THEN

ink = 12.336E+6 * MOD( ORADS, piov2 ) * DENO /
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+ ( dwsum + 1.0E-06 )
KOUNTO= KOUNTO+ ink
IOIND=2

ENDIF
GO TO 95

case IOIND is 2

80 IF ( SORADS.LT. PI .AND. PIFO .LE. 0. ) THEN
ink = 12.336E+6 * ABS( MOD( PIPO, piov2 ) )* DENO/

+ ( dwsum + 1.0E-06 )

KOUNTO = KOUNTO + ink

IOIND = 3

ENDIF

KOUNTF = KOUNTF + inkdt

95 PIPF = SFRADS

PIPO = SORADS

DPL = DPLI

DPR = DPRI

F = FCOMP

EMRE = dwsum / (DW(1) + 1.0E-10)
C

C****

C

RESET INTEGRAL OF ERROR FOR PI CONTROLLER AT MAINSTAGE

SSM06400

W*****

IF ( STIME .GE. TMS .AND. .NOT. RESET) THEN

RESET = .TRUE.

EMROPO = YCOPOV - STEPO

EPCGC=0.

PCOPOI=0. Ineffective assignment replaced by

PCOPOP = 0.

PCOPOI= -VPG*EPC SSM06500

EMRFPO = YCFPOV - STEPF

EMRGC=0.

ENDIF

C

C THIS SECTION DESCRIBES THE SCHEDULE OF THE SHUTDOWN PROCESSS

C IT INCLUDES THE VALVE CLOSING, AND LINE PURGE SEQUENCES.
****************************************************************************

C

IF ( TPI .GT. 0.0 .AND. STIME .GE. TPI ) THEN
C

C*****

C

SIMULATION OF THE PNEUMATICAL CUT-OFF OF THE POWER

IF ( STIME .LT. TPI + DTPS) RETURN

IF( STIME .LT. tpm ) THEN

Eliminated unnecessary save and restore of TIMExx.

SSMO9200
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tpm = TPI + DTMCR
TPA = TPI + DTPS

CALL EMCO (2)

EMRE = (DWMOV+DWOPO+DWFPO) / (DW(1) +I. 0E-10)
RETURN

ENDIF

* This section makes obscure timing interval adjustments that

* should be explained. Perhaps it compensates for roundoff errors

* accumulated in time advance. The first one is partially interpreted
* below. Relief from roundoff time advance roundoff error should be

* obtained by going to a frequency based, integer time advance. With all

* important time intervals as multiples of the sampling interval.

5015

5O2O

+

IF ( TIMFMA .LE. tpm) THEN
TLMC = TIMFMA - DTFMRA

normally TLMC = TIME - DT

IF ( TIMECP .LT. TLMC ) THEN
TIMECP = DTMC + TIMECP

advances controller interval

TIMECP=TIME+TIMECP-TLMC

essentially TIMECP = TIMECP + DT, with

perhaps some accuracy dependent effect

IF(TIMEPR.LT.TLMC) TIMEPR=DTMC+TIMEPR
TIMEPR=TIME+TIMEPR-TLMC

IF(TIMEVC.LT.TLMC) TIMEVC=DTMC+TIMEVC

IF(TIMFME.LT.TLMC) TIMFME=DTMC+TIMFME

TIMFME=TIME+TIMFME-TLMC

IF(TIMFMC.LT.TLMC) TIMFMC=DTMC+TIMFMC
TIMFMC=TIME+TIMFMC-TLMC

IF(TIMETR.LT.TLMC) TIMETR=TIMETR+DTMC
TIMETR=TIME+TIMETR-TLMC

IF(TIMMRF.LT.TLMC) TIMMRF=TIMMRF+DTMC
TIMMRF=TIME-_TIMMRF-TLMC

IFIND=0

KOUNTF=0

IOIND=0

KOUNTO=0

TIMEVC=TIME+TIMEVC-TLMC

TIMFMA=TIME+DTFMRA

ENDIF

IF(TIMEVC.GT.TPI+DTOPFS) GO TO 5020
TIMEVC=TIMEVC+DTMC

GO TO 5015

IF( STIME .GE. TPI + DTVFS ) THEN
TPI=0.

tpm = DTMCR
TPA=O.

SSM09400

SSM09500

SSM09600
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5030

5040

TPA = DTPS
GO TO 1008

ENDIF
IF ( STIME .LT. TPI + DTOPFS) THEN

CALL EMCO (2)

EMRE= (DWMOV+ DWOPO+ DWFPO )/ (DW (1 )+ i. 0E- 10 )

IF (TIMEVC. LT. STIME) TIMEVC=TIMEVC+DTMC

GO TO 1008

ENDIF

XX=XCOPOV

CALL EMCO (2)

XCOPOV=XX

IF(TIMEVC.GT.TIME) GO TO 1008

TIMEVC=TIMEVC+DTMC

XCOPOV=YCOPOV

GO TO 1008

ENDIF

SSM09800

C

C

IF ( TPA .GT. 0.0 .AND. STIME .GE. TPA ) THEN

Initiates purge request from malfunction detected

NMALF = 1 SSM08600

TCUTPR = AMINI( TCUTPR, TPA + DTPURG )

DT=DTI Change in DT was disallowed, no restoration necessary.

IF ( STIME .LE. TPA + DTPNC ) RETURN

CALL EMCO (2)

EMRE = ( DWMOV + DWOPO + DWFPO ) / (DW(1) + 1.0E-IO )

RETURN

ENDIF

GO TO (I002,1004,1006,1008),ICUT

* Case ICUT is 1

,

,1002 IF(TIME.GT.TCU_.AND.FR.LT.1500.) ICUT=2

* IF(TIME.GT.TCUT_AND.IPBCO.EQ.I) ICUT=2

* IF (TCUT.LT.TMS.AND.TIME.GT.TCUT)ICUT =2

Time vs TCUT once.

1002 IF ( STIME .GT. TCUT .AND.

+ ( FR .LT. 1500. .OR. IPBCO .EQ. 1 .OR. TCUT .LT. TMS ) )

+ ICUT = 2

Delay transition state one DT
GO TO 1008 SSM06600

Case ICUT is 2: transition state goes immediately into state 3 or 4

1004 TCUTFP = STIME

TCUTOP = STIME

TCUTOV = STIME

ICUT = 3
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* Case ICUT is 3: wait until XCOPOV .LE. OPOVPB, then

1006 IF(XCOPOV.GT.OPOVPB) GO TO 1008
ICUT=4

TCUTFV = STIME + DTCOMF

TCUTCV = STIME + DTCOCV
TMPL = STIME

Case ICUT is 4: all transitions completed

1008 CONTINUE

C

C****** FOLLOWING LINE CHECK WHETHER IT IS TIME TO ACTIVATE THE CONTROLLER

C****** THE CONTROLLER SAMPLING AND CYCLE TIME IS DTMC (=0.02)

* DTMC is an input parameter, not a constant 0.02
C

* IF(TIME.LT.TIMECP.AND.ICCNTL.EQ.2) GO TO 4000 The ICCNTL test is

unnecessary, provided TIMECP is initialized to the starting time.

IF ( STIME .LT. TIMECP ) GO TO 4000

CALCULATION OF CONTROL REFERENCE VALUES

C

C

c

c****** SAVE THE PREVIOUS CALCULATED VALUE WHICH WILL BE SENT OUT
C****** AT NEXT VALVE-COMMAND-OUTPUT TIME
C

YCOPVL=YCOPOV

YCFPVL=YCFPOV

YCOMVL=YCMOV

YCFMVL=YCMFV

YCCVL=YCCCV

C

C

C
THRUST REFERENCE

IF ( STIME .LE_ TCUT ) THEN

IF ( STIME .LE. TMOVRA ) THEN

IF ( STIME .LE. TCLF ) THEN
FR = F1

ELSE

FR = AMAXI(FRZ, FR - dfldt)
ENDIF

ELSE

IF( STIME .GT. TVC ) THEN

FR = FGEN(33, 96, STIME)
ELSE

FR = AMINI( F2 + DTF*(STIME - TMOVRA) , FC )
ENDIF

ENDIF

ELSE

SSM06700

SSM06800
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C
C
C
C
C

1015 DT=DTI restored DT after reset to 0.0001. But unless time runs
backward, each restoration is immediately undone by the
next statement.

IF(TIME.GT.TCUT+0.5) DT=0.0001 was deleted. It reset the time step
of the entire simulation to a constant, overriding the input parameter
DT. This disrupts all multistep integrators, and cannot be permitted.
The philosophy is questionable, allowing the simulated controlle_ to
interfere with the simulation itself. There is no need to supply a
local version of DT for the controller to manipulate, since it doesn't
use DT. Increasing the time step DT with better integrators, speeding
up the simulation, and going to selective output should eliminate the
need for changing DT after TCUT.

FR = AMAXI(FCO, FR - dfrcdt )
ENDIF

THRUSTCONTROLOF OXID PREBURNEROXID VALVE
SSM06900

THRUSTAND PREBURNEROVERTEMPERRORS

C*****

C*****

C*****

THE FOLLOWING LINE IS USED TO SIMULATE A PERTURBATION ON THE

REFERENCE INPUT FR (CHAMBER PRESSURE) REQUEST DURING THE CLOSED-
CONTROL. PFRNZ IS THE % NOISE APPLIED TO THE REFERENCE INPUT FR

* PFRNZ is a constant bias set by the main program perturbation section
* but initialized to zero in CNTROL.

,

FR = FR*(I. + PFRNZ/100.) was moved to CNTRL0

C

C*****

C*****

C*****

C

*

C

C*****

C*****

C

C

FR = FR * frbias

TOPEN IS A PARAMETER ADDED TO OPEN THE CONTROL LOOP TO SIMULATE

OPEN LOOP CONDITION OF THE SSME MAIN STAGE OPERATION.

IT TURNS OUT THAT THE SSME IS A STABLE SYSTEM AS SIMULATED

Does the last comment mean open loop simulation is no longer needed?

if so TOPEN and its activated sections should be removed. Assuming

that open loop_tests will continue, open loop operations were

were consolidated, with one test per iteration for open loop

conditions. Control through IPFLAG, described below, was implemented.

IF ( STIME .LT. TOPEN .OR. IPFLAG .EQ. 0 ) THEN
EPC = FR - PCIE

EPCGCL = EPCGC

PCGC IS THE GAIN FACTOR DETERMINE HOW MUCH THE POSITION ERROR IS

USED FOR PI CONTROLLER.

PCGC = rlimit( GMIN, i., GPCI + GPC2*FR )
EPCGC = EPC * PCGC
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C***** THE NEXT LINE SHOULDN'T BE HERE. IT IS ABOUTTHE MIX-RATIO CONTROL
C***** AND AN EXECT SAME LINE IS IN SSM07570. THIS IS THE DEAD-BAND OF

C***** CONTROLLER. I ADDED THE LINE AFTER THAT FOR CHECKING EPCGC.

C

C IF(ABS(EMRGC) .LT.DBMR) EMRGC=0.0 SSM07000

IF(ABS(EPCGC) .LT.DBEF) EPCGC=0.0
C

C*****

C*****

C*****

C

C

C

C

C

FOR T < TCLF

FOR TCLF < T < TUT

FOR T > TUT

OPEN-LOOP, NO CONTROL

POSITION CONTROL ONLY, KI=0

PI CONTROLLER APPLIES

IF ( STIME .LE. TUT) THEN
VIG=0.0

VPG=O.OI444

ELSE

VIG=VIGMS

VPG=VPGMS

ENDIF

+

OPOVIP = FGEN(56, 97, STIME + DTMC)

IF ( STIME .LT. TMS )

EMROPO=OPOVIP SSM07100

IF ( STIME .LT. TCLF) THEN
PCOPO = 0.0

ELSE

PCOPOP = VPG*EPCGC

PCOPOI = AMINI ( XOMAX, 0.5* (EPCGC + EPCGCL) *VIG*DTMC )

PCOPO = rlimit( -i00., i00., PCOPOP + PCOPOI )

ENDIF

OXID PREBURNER OXID VALVE POSITION

C

C*****

C

C

IF ( STIME .GE. TCUTOP ) THEN

CUT-OFF SCHEDULE OF OPOV ********

OSLAM was added as a input parameter, and invariant multiplies

removed from simulation loop

IF ( STIME .GT. TCUTOP + DTSLAM) THEN

YCOPOV = AMAXI(.00001, YCOPOV - osdt)

ELSE IF ( XCOPOV .GT. OPOVCM) THEN

YCOPOV = AMAXI(.00001, YCOPOV - op0dt)

ELSE IF ( XCOPOV .GT. OPOVCP) THEN

YCOPOV = AMAXI(.00001, YCOPOV - opldt)
ELSE

YCOPOV = AMAXI(.00001, YCOPOV - op2dt)
ENDIF

SSM07200

SSM07300
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C

C

CALCULATE OPOV COMMANDS AT DIFFERENT STAGE

ELSE

IF ( STIME .LT. TUT ) THEN

IF( STIME .GT. TCLF) THEN

RO = RO3

ELSE IF ( YCOPOV .LT. OPOVOP ) THEN
RO = ROI

ELSE

RO = RO2

ENDIF

IF ( STIME .LE. TOPOV ) THEN
YCOPOV = 0.0

ELSE

YCOPOV = AMINI( EMROPO + PCOPO, YCOPOV + RO*DTMC )
ENDIF

ELSE

STEPO = OSTEP

* * OPOV COMMAND LIMIT

Function TLIMIT was replaced by a call to fgen, which

does linear interpolation in an optimal manner.
TLIMIT data was reconstructed and added to SSME.DAT file.

TLIMIT was optimized, but extrapolated beyond the table.

fgen halts the simulation and identifies the table

if the input escapes the interpolation table.

EFFPL = i00.0 * FR / 2995.0 + 1.5 * XOPOMS - 97.5

YCOPOV = TLIMIT (FR, XOPLIM, XOPOMS, YCOPOV, NMR)

EFFPL = v29.95 * FR + 1.5 * XOPOMS - 97.5

YCOPOV = rlimit(.00001, i00.0, EMROPO + PCOPO + STEPO )

YCOPOV = fgen( 84, 114, EFFPL )

IF (YCOPOV .LT. XOPLIM) THEN
NMR = l

ELSE

NMR = 0

YCOPOV = XOPLIM

ENDIF

ENDIF

ENDIF

SSM07400

SSMI0400

C

C

MRC REFERENCE

IF ( TMRS .GE. 1.0 .AND. STIME .GE. TMRS ) THEN
EMRCR = 5.5

ELSE

EMRCR= 6.026
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C
C
C

ENDIF
C
C MR CONTROL USING FUEL PREBURNER OXID VALVE SSM07500

C

C***** THE FOLLOWING LINE IS USED TO SIMULATE A PERTURBATION ON THE

C***** REFERENCE INPUT EMRCR (MIX-RATIO) REQUEST DURING THE CLOSED-LOOP

C***** CONTROL. THE MIX-RATIO (EMRF) TO BE CONTROLLED IS NOT THE ACTUA

MIXRATIO IN THE COMBUSTION CHAMBER (NOT MEASUREABLE), IT IS THE

ESTIMATED MIX-RATIO BASED ON CHAMBER PRESSURE AND FUEL FLOW RATE.

C

C

C

C

C

C

C*****

C*****

C

EMRCR = EMRCR * pmrnzb

THE DEFINITION OF THE ERROR IS DIFFERENT FROM THE COMMON DEFINITION.

HERE: ERROR= - (REFERENCE - OUTPUT/MEASUREMENT)

WHICH IS BECAUSE OF THE NEGATIVE GAIN OF FPOV VS. MIX-RATIO.

+

c

C*****

C*****

C

C

C*****

C

+

C

C*****

C

IF ( TIME .LT. TMRC ) THEN
EEMR=0.0

EMRGCL=EMRGC

ELSE

EEMR=EMRF-EMRCR

EMRGCL=EMRGC

ENDIF

GCEMR = rlimit( GMRMIN, GMRMAX, GMRI + GMR2 * FR )
EMRGC=EEMR* GCEMR

IF (ABS(EMRGC) .LT. DBMR ) EMRGC=O.O

THE ADJUSTMENT OF FPOV IS IN PROPORTIONAL TO THE OPOV ADJUSTMENT

THIS RATIO IS A FUNCTION OF TIME

IF( STIME .GE. TMS ) THEN

PCFPO = CFGMS * PCOPO

ELSE

PCFPO = PCOPO * rlimit( CFGI, CFG2,

DCFG*(STIME - TCLF) + CFGC )
ENDIF

IF TIME < TMRC OPEN LOOP WITH SCHEDULED VALVE POSITION

> TMRC PI CONTROL

IF ( STIME .GE. TMRC ) THEN SSM07600

THE INTEGRAL GAIN IN THIS CASE IS 40.0 AND KP = VPM (=7.0) *****

20. = 40. / 2.
EMRFPO = rlimit(.00001, I00., EMRFPO +

DTMC*20.*(EMRGC + EMRGCL) + VPM*(EMRGC - EMRGCL) )

START-UP SCHEDULING OF FPOV **********

ELSE
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C
C*****
C

+

C
C
C
C*****
C*****
C

1300

IF ( STIME .LE. -0.i ) THEN
EMRFPO= 0.0

ELSE
FPOVIP = FGEN(57, 98, STIME + DTMC)
IF ( STIME .GT. TCLF) THEN

RO = RF3
ELSE IF ( YCFPOV.LT. FPOVOP)THEN

RO = RFI
ELSE

RO=RF2
ENDIF
EMRFPO= AMINI( FPOVIP, EMRFPO+ RO*DTMC)

ENDIF
ENDIF

SSM07700

IF (TIME .LE. TCFG) PCFPO= 0.0
STEPF = FSTEP
IF (TIME .LT. TUT) THEN

STEPF = 0.0
IF ( STIME .LT. TCUTFP ) THEN

YCFPOV= AMINI(EMRFPO + PCFPO, YCFPOV+ RO*DTMC)

FPOV CUT-OFF PROCESS **********

ELSE IF ( XCFPOV- XCOPOV.GE. DXCFPO
• OR. XCOPOV.LE. i0. ) THEN SSM07800

IF ( XCFPOV .GT. FPOVCM) THEN
YCFPOV= AMAXI( .00001, YCFPOV- fpOdt )

ELSE IF ( XCFPOV.GT. FPOVCP) THEN
YCFPOV= AMAXI(.00001, YCFPOV- fpldt)

ELSE
YCFPOV= AMAXI(.00001, YCFPOV- fp2dt)

ENDIF
ENDIF

ELSE IF ( STIME .LT. TCUTFP ) THEN
IF ( STIME _.LE. TMPL .OR. TMPL .GE. TMRC) THEN

YCFPOV='rlimit(.00001, I00.0, EMRFPO+ PCFPO+ STEPF) SSM07900
ENDIF

ENDIF
IF (TIME .LT. TIFPV) YCFPOV= AMINI (FPOVMX, YCFPOV)

MOVPOSITION

MOVOPENING IS TIME SCHEDULEDBEFORETHE MAIN STAGE
AFTER THAT, IT IS PROPORTIONALTO THRUSTREQUEST (FR)

XCMOVL= XCMOVC
IF ( STIME .LT. TCUTOV) THEN

IF ( STIME .GE. TMOVRA) THEN
IF ( STIME .GT. TMS ) THEN
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C
C
C
C*****
C*****

C

C

C

C

C

C

C

C

C

XCMOVC = AMINI(100., DFMOV*FR + FMOVC)
ELSE

XCMOVC = AMINI(XMOVM, XMOVST + (STIME - TMOVRA)*DMOVUT) M08100
ENDIF

ELSE IF ( STIME .LT. TMPL) THEN

IF ( XCFPOV - XCOPOV .LT. DXCFPO ) THEN
XCMOVC = XCMOVC + omv0dt

ELSE

XCMOVC = AMAXI(.00001, XCMOVC - omv0dt)
ENDIF

ELSE IF ( STIME .GT. TIMOV .AND. STIME .LT. T2MOV ) THEN
XCMOVC = XMOVPT

ELSE

IF ( T2MOV .GE. i. .AND. STIME .GE. T2MOV) omvdt = omvfdt M08000

XCMOVC = AMAXI(.00001, XCMOVC - omvdt )
ENDIF

YCMOV=(YCMOV*(2.0*.I6-DTMC)+DTMC*(XCMOVL+XCMOVC))/(2.0*.I6+DTMC)

Is this correct? Was average xcmov intended? Invariants were
removed.

YCMOV = YCMOV * ydtl + (XCMOVL + XCMOVC) * ydt2

ELSE IF ( STIME .GT. TSMOV) THEN

XCMOVC = AMINI(XMOVST, XCMOVC + dmovdt)

IF ( SF2 .GE. SF2R ) XMOVST = XMOV2

YCMOV = YCMOV * ydtl + (XCMOVL + XCMOVC) * ydt2
ENDIF

COOLANT CONTROL VALVE

THE CCV OPENING IS MAINLY TIME SCHEDULED

HOWEVER, WHEN T > 2.8 AND FR > 1500, CCV IS PROPORTION TO FR

THE VALVE POSITION IS FULLY OPEN DURING THE MAIN STAGE OPERATION

IF(TIME.LT.TCUT+.5) GO TO 1800

YCCCV=AMAXI(75.-_YCCCV-DCCVI*DTMC)
GO TO 1800

IF ( STIME .LE. TCUT ) THEN

IF ( FR .GE. 1500. ) THEN

CCV NOT RATE LIMITED HERE - THRUST SCHEDULED SSM08400

IF ( STIME .GT. 2.8 ) THEN

YCCCV = AMINI( DFCCV*FR + FCCVC, I00. )
ENDIF

ELSE IF ( STIME .LT. TCUTCV) THEN

IF ( STIME .GT .TCCVI ) THEN

IF ( STIME .GE. TMOVRA) THEN
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C
C
C

YCCCV= AMAXI(CCV3, YCCCV- dcc3dt)
ELSE

YCCCV= AMAXI(YCCCV- dcc2dt, CCV2)
ENDIF

ELSE
YCCCV= AMINI(YCCCV + dccvdt, CCVC)

ENDIF

ELSE IF ( STIME .LT. TMPL + DTMFVR ) THEN

YCCCV = AMINI (CCVl, YCCCV + dccldt)

ELSE
YCCCV = AMAXl (.00001, YCCCV - dcc0dt)

ENDIF

ELSE IF ( ICUT .EQ. 1 ) THEN

CCV NOT RATE LIMITED HERE - THRUST SCHEDULED
SSM08400

IF ( STIME .GT. 2.8 ) THEN
YCCCV = AMINI( DFCCV*FR + FCCVC, I00. )

ENDIF

ELSE IF ( STIME .LT. TCUTCV ) THEN

IF (XCFPOV - XCOPOV .GE. DXCFPO .AND. XOPOV .GT. OPOVPB) THEN

YCCCV = AMAXI (XCCCV0, YCCCV - dcc0dt)

ENDIF

ELSE IF ( STIME .LT. TMPL + DTMFVR ) THEN

YCCCV = AMINI (CCVI, YCCCV + dccldt)

ELSE
YCCCV = AMAXI (.00001, YCCCV - dcc0dt)

ENDIF

C

C MAIN FUEL VALVE

C
C***** MFV OPENING IS MAINLY TIME SCHEDULED AT THE BEGINING

C***** WHEN T > TFRMFV, THE OPENING IS PROPORTIONAL TO FR

C HOWEVER, THE VALVE IS FULLY OPEN AT THE MAIN STAGE.

C
IF ( TCUT .GEl 5.0 .OR. STIME .LE. TCUT ) THEN

IF( STIME .GT. TCUTFV ) THEN

SHUT-OFF PROCESS ************

IF( STIME .LE. TMPL + DTMFVR) THEN
YCMFV = AMAXI(PIMFV, YCMFV - dpldt )

ELSE

YCMFV = recpos( YCMFV - dp2dt)

ENDIF

ELSE IF (STIME.GT.TFRMFV) THEN
YCMFV = rlimit( FMVM, XMFVM, CMFV + DFMFV * FR )

ELSE
YCMFV = FGEN(55, 90, STIME + DTMC)

C

C*****

C
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C
C*****

C*****

C*****

C*****

C*****

C

ENDIF

ENDIF

ELSE

Open loop operation

EPC = 0.

EPCGCL=O.

FOLLOWING FOUR LINES ARE ADDED TO SIMULATE PERTURBATION ON THE V

OPENINGS AT THE MAIN STAGE.

IPFLAG = 0 FOR CLOSED-LOOP CONTROL

1 FOR OPEN-LOOP NO PERTURBATIONS

2 FOR OPEN-LOOP AND PERTURBATIONS ON VALVE OPEN

ipflag = 2 had not been implemented. Since it involves changing the

constant setting of the frozen control valve, it was

implemented in CNTROL0.

YCOPOV = FZOPV * (i + POPVNZ/100)

IF(YCOPOV.GE.IO0.0)YCOPOV=FZOPV was replaced by

YCOPOP = fzopvb

EEMR=O.O

EMRGCL=O.

and invariant operations moved to CNTROLO.

C*****

C*****

C

* IF (TIME.LT.TOPEN)GO TO 1208

* YCFPOV = FZFPV*(1 + PFPVNZ/IO0)
* IF(YCFPOV.GE.100.0)YCFPOV=FZFPV

"1208 CONTINUE

C

C

C*****

C*****

C

FOLLOWING FOUR LINES ARE ADDED TO SIMULATE PERTURBATION ON THE V

OPENINGS AT THE MAIN STAGE.

was replaced,

moving invariant operations to

CNTRL0.

YCFPOV = fzycf

FOLLOWING FOUR LINES ARE ADDED TO SIMULATE PERTURBATION ON THE V

OPENINGS AT THE MAIN STAGE.

* IF(TIME.LT.TOPEN) GO TO 1488

* YCMOV = FZMOV * (i + PMOVNZ/IO0)

* IF(YCMOV.GE.100.0)YCMOV=FZMOV
-1488 CONTINUE

C

C*****

C*****

C

YCMOV = fzycm

FOLLOWING FOUR LINES ARE ADDED TO SIMULATE PERTURBATION ON THE V

OPENINGS AT THE MAIN STAGE.

IF(TIME.LT.TOPEN) GO TO 1888
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C
C*****
C*****

C

* YCCCV = FZCCV * (i + PCCVNZ/IO0)

* IF(YCCCV.GE.100.O)YCCCV=FZCCV

"1888 CONTINUE

YCCCV = fzycc

FOLLOWING FOUR LINES ARE ADDED TO SIMULATE PERTURBATION ON THE V

OPENINGS AT THE MAIN STAGE.

* IF(TIME.LT.TOPEN) GO TO 1588

* YCMFV = FZMFV * (i + PMFVNZ/100)

* IF(YCMFV.GE.100.0)YCMFV=FZMFV

"1588 CONTINUE

YCMFV = fzycmf

ENDIF

* IF(ICCNTL.EQ.2) TIMECP=TIMECP+DTMC

TIMECP = TIMECP + DTMC

C

C***** THESE VALUES ARE TO FREEZE THE OPENINGS OF CONTROL VALVES

* Simulation loop invariant perturbations added.

C

IF ( IPFLAG .EQ. 0 .AND. STIME + DTMC .GE. TOPEN) THEN

FZOPV = YCOPOV

fzopvb = FZOPV * ( i. + .01 * POPVNZ )

IF ( fzopvb .GE. i00.0 ) fzopvb = FZOPV
FZFPV = YCFPOV

fzycf = FZFPV * ( i. + .01 * PFPVNZ )

IF ( fzycf .GE. i00.0 ) fzycf = FZFPV

FZMOV = YCMOV

fzycm = FZMOV * ( i. + .01 * PMOVNZ )

IF ( fzcm .GE. i00.0 ) fzycm = FZMOV

FZMFV = YCMFV

fzycmf = FZMEV * ( i. + .01 * PMFVNZ )

IF ( fzycmf ._E. i00.0 ) fzycmf = FZMFV

FZCCV = YCCCV

fzycc = FZCCV * ( I. + .01 * PCCVNZ )

IF ( fzycc .GE. i00.0 ) fzycc = FZCCV

IPFLAG = 1

ENDIF

C

C*****

C*****

C*****

C

4000 IF ( STIME .GE. TIMEPR .OR. first ) THEN
PCF = PCFACT * PCIE

IF ( .NOT. first ) TIMEPR=TIMEPR+DTMC

FOLLOWING IS THE SCHEDULE OF HANDLING DIFFERENT INSTRUMENTATION

TIME DELAYS DURING THE SAMPLING TIME PERIOD DTMC (=0.02) OF

CONTROL LOOP.
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C

C*****

C*****

C*****

C

C

ENDIF

IF ( STIME .GE. TIMETR .OR. first ) THEN
TO=TOD2

IF( .NOT. first ) TIMETR=TIMETR+DTMC
ENDIF

SSM0870O

EXECUTION OF VALVE OPENING COMMANDS ***********

NOTICE THE OUTPUT COMMANDS ARE USING THE OLD (YCxxVL) VALUES STO

CURRENT CALCUALTED VALUES ARE TO BE SENT OUT IN NEXT TIME INTERV

THE RATE OF CHANGE IS LIMITED TO 200% OPENING/SEC.

Method changed to eliminate a multiply and divide per value.

IF ( STIME .GE. TIMEVC .OR. first ) THEN

IF (TIME .GT. TCLF .AND. TIME .LT. TCUT) THEN
XRFPV = dtml00

ELSE

XRFPV = dtm200

ENDIF

yxdiff = YCFPVL - XCFPOV

abdiff = ABS( yxdiff )

IF ( abdiff .LT. XRFPV ) THEN

XCFPOV = XCFPOV + SIGN( abdiff, yxdiff )
ELSE

XCFPOV = XCFPOV + SIGN( XRFPV, yxdiff )
ENDIF

yxdiff = YCOPVL - XCOPOV

abdiff = ABS( yxdiff )

IF ( abdiff .LT. dtm200 ) THEN

XCOPOV = XCOPOV + SIGN( abdiff, yxdiff )
ELSE

XCOPOV = XCOPOV + SIGN( dtm200, yxdiff )
ENDIF

yxdiff = YCOMVL - XCMOV

abdiff = ABS(_yxdiff )

IF ( abdiff .LT. dtm200 ) THEN

XCMOV = XCMOV + SIGN( abdiff, yxdiff )
ELSE

XCMOV = XCMOV + SIGN( dtm200, yxdiff )
ENDIF

SSM08800

yxdiff = YCCVL - XCCCV

abdiff = ABS( yxdiff )

IF ( abdiff .LT. dtm200 ) THEN

XCCCV = XCCCV + SIGN( abdiff, yxdiff )
ELSE

XCCCV = XCCCV + SIGN( dtm200, yxdiff )
ENDIF
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yxdiff = YCFMVL- XCMFV
abdiff = ABS( yxdiff )
IF ( abdiff .LT. dtm200 ) THEN

XCMFV= XCMFV+ SIGN( abdiff, yxdiff )
ELSE

XCMFV= XCMFV + SIGN( dtm200, yxdiff )

ENDIF

ENDIF

IF(ICCNTL.EQ.2) TIMEVC=TIMEVC+DTMC

IF ( STIME .GE. TIMFMA) THEN

IF(IFIND.EQ.0) IFIND=I

IF(IOIND.EQ.0) IOIND=I
TIMFMA=TIMFMA + DTMC

ENDIF

IF ( STIME .GE. TIMFME ) THEN
TIMFME = TIMFME + DTMC

IF( IFIND .EQ. 3) THEN
NCF=KOUNTF

KOUNTF=0

IFIND=0

ENDIF

IF( IOIND .EQ. 3 ) THEN
NCO=KOUNTO

KOUNTO=0

IOIND=0

ENDIF

ENDIF

*4050 IF(TIME.LT.TIMFMC) GO TO 4060
* TIMFMC=TIMFMC+DTMC

C

C***** QF0, Q0, RHOH, AND RHO0 ARE NEVER USED EXCEPT PRINT-OUTS ******
C

* QF0=67.11*300000./(NCF+I.0E-5) Computations for output only

* Q0=22.95*3000001/(NCO+I.0E-5) are to be done in offline

* RHOH=DENF plotting programs, not in the
* RHO0=DENO simulation

4060 IF(TIME.LT.TIFfMRF) RETURN
C

C***** EMRF IS THE CALCULATED MIX-RATION FROM MEASURED VARIABLES OF

C***** CHAMBER PRESSURE AND FUEL FLOW RATE

C

IF ( STIME .GE. TMRC) THEN

IF (NMR .EQ. i) THEN

EMRF = PCNS / (C2 * DW(2)) - 1.0
ELSE

EMRF = FR / (C2 * DW(2)) - 1.0

SSM08900

SSM09000

SSM09100
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C
C
C
C

C

C

C

C

C

C

C

C

C

C

C

ENDIF

ENDIF

Here is where the KOUNT variables affect the simulation. There is

an effect only when TIME .GE. TMRC

IF ( TIME .LT. TMRC) THEN
EMRF = 6.0

ELSE IF ( NCO.EQ.O .OR. NCF.EQ.O) THEN
EMRF = 0.

ENDIF

F = ( FAI*PCF + FBI*EMRF*PCF +FCI*EMRF +FDI ) * TFACT

F = AINT(F/512.)*512.

TIMMRF = TIMMRF + DTMC

FCOMP = F

END

The function TLIMIT was removed. Its interpolation is done by

fgen. Its data was reconstructed from the interpolation
coefficients below.

FUNCTION TLIMIT(FR,OXPLIM,XOPOMS,YCOPOV,NMR0

PURPOSE: COMPUTE THE OPOV COMMAND LIMITS USING FLIGHT 38 - MERGE

**********************

INPUT:

FR = COMMAND PC

XOPLIM = MAXIMUM OPOV POSITION ALLOWED

XOPOMS = VALUE OF OPOV POSITION AT RPL (NOMINALLY 65%)

YCOPOV = CONTROLLER COMMAND VALUE OF XOPOV BEFORE LIMITING

NMR = FLAG TO SELECT METHOD OF MIXTURE RATIO COMPUTATION

OUTPUT:

TLIMIT = LIMITED YCOPOV

DIMENSION EPLTAB(II), AITAB(II), AOTAB(II)

DATA EPLTAB/ 0.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, i00.0,

1 105.0,110.0,1000./

DATA AITAB / 0.0, .I00, .118, .218, .340, .414, .428, .447,

1 .689,1.564,3.722/

DATA AOTAB / 0.0,49.55,48.29,40.79,31.03,24.74,23.48,21.71,

1 -2.57,-94.4,-331.78/

DATA S / 8 /

The y value is available from the interpolation coefficients

SSM09900

C

C

SSMI0000

SSMI0100
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* a0(i), al(i) as y(i-l) = a0(i) + al(i) * x(i-l)
* where x = EPLTAB and y = TLIMIT:

* TLIMIT = 49.55, 56.55, 57.14, 58.23, 59.93, 62.0,
* 66.33, 69.82, 77.64, 3390.

* TLIMIT vs. EPLTAB was put in 'ssme.dat', as fcn #
* fcn #57

64.18,

84, after

'emco.for':

SUBROUTINEEMCO0

C
C PURPOSE: COPUTE ACTUATOR POSITIONS DURING PNEUMATIC SHUTDOWN

C DURING THE EMERGENCY CUT-OFF THE VALVE COMMANDS HAS A SPECIAL

C CIRCUIT FOR SEQUENTIALLY SHUT-DOWN (OR OPEN) THE VALVES.
C

C !!!!! THIS PORTION OF PROGRAM HAS NOT BEEN CHECKED OUT BECAUSE OF THE

C !!!!! OF DOCUMENT ON THE ACTUAL SHUT-DOWN PROCEDURE AND DYNAMICS

C

C

C******ARGUMENT******

C INPUT:

C N = INITIALIZATION ARGUMENT was eliminated

C

C******COMMON USAGE******

VARIABLES

PFPOV, POPOV, DWFPO,DWOPO,PFPOI,POPOI

PMOV, DWMOV,RHOOP3,RHOOP2,POINJ

P(3),P(7),RHO(3) ,RHO(7),P(10),P(8)

XFPOV,XOPOV,XMOV,XMFV,XCCV

C INPUT:

C

C

C

C

C

C

C OUTPUT:

C VARIABLES

C THETA,DTHETA
C

LACK

SSMI0500

DESTINATION

HOTGAS

OXIDF

FUELF SSMI0600

VALDYM

DESTINATION

VALDYM

DOUBLE PRECISION DTHETA, ESAC, ESA, DESA, ESV, DESV SSMI0700
DOUBLE PRECISION TIME

DIMENSION FRDEL(5),FS(5),TL(5),PCT(5),AI(5),A2(5),A3(5) ,BI(5),S(5)0800
1

2

3

4

5

6

7

,D(5) ,E (5) ,CKTI (5) ,CKLI (5) ,HKTI (5) ,HKLI (5) ,CKT2 (5) ,CKL2 (5) ,

HKT2(5),HKL2 (5),CKT3 (5) ,CKL3(5),HKT3 (5) ,HKL3 (5) ,HTO(5,3) ,W2 (3)

,H2(3),H3(3),ORFMAX(3),ORFMIN(3),TOMAX(3) ,TOMIN(3),PNFRIC(3)

,PNLOAD (3) ,PNORGX (3) ,PNK(3) ,WTO (3) ,Y (5) ,AO (5) ,PHID (5) ,X2DOT (5)

,FYI (5) ,FY2 (5) ,XIDOT (5) ,Ii (5) ,XI (5) ,DY (5)

,NI (5) ,PIN (5)

, W(5) ,DEN (5) ,PD(5) ,A4 (5)
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REAL L(5) ,M(5) ,MU(5) ,KTI(5) ,KLI(5),KT2(5) ,KL2(5),KT3(5) ,KL3(5) ,
* KT0(5) ,K3
DIMENSION XP(5), vGI(5), XHE(5)
LOGICAL JK(5)
REAL dmesq(5), twod(5), sqm(5), slx(5)

PARAMETER( PI = 3.141597, degprd = 180. / PI,

+ vperi = 8.0/(386.1 * PI ) )

INCLUDE 'blank.com'

INCLUDE 'units.com'

INCLUDE 'out.com'

INCLUDE 'contrl.com'

INCLUDE 'oxid.com'

INCLUDE 'hgas.com'

C

C

C

C

C

CALL fgset( 34 )

CALL fgset( 35 )

CALL fgset( ii )

CALL fgset( 14 )

CALL fgset( 16 )

CALL fgset( 32 )

CALL fgset( 36 )

FR = fgen( 36, 108, I00. )

SSMII400

I0

READ(run,10) PHE, PR, FRDEL, FS, TL,

+ TEMP, PCT, (AI(I), A2(I), I=i,5 ),

+ A3, BI, S, L, M, D, E,

+ MU, CKTI, CKLI, HKTI, HKLI, CKT2,

+ CKL2, HKT2, HKL2, CKT3, CKL3, HKT3, HKL3,

+ ((HTO(I,J), I=1,5 ), J=l,3 ),

+ WZ, H2, H3, ORFMAX, ORFMIN, TOMAX, TOMIN,

+ PNFRIC, PNLOAD, PNORGX, PNK, WTO,

+ TSFPOV, TSMOV, TSMFV,

+ (AT(I),I=I,5), (BT(I),I=I,5),

3, (CS(I),I=I,5), (CPS(I),I=I,5), (DSS(I),I=I,5)

4, (ESS (I), I=l, 5) , (VPD (I) ,I=l, 5) , (A4 (I), I=l, 5)

FORMAT (//2X,6g12.4)

SSMII500

THE FOLLOWING TIME CONSTANT WERE SET TO 0.0 DURING THE CUT-OFF.

HOWEVER, DURING THE INITIALIZATION OF THE PROGRAM THESE VALUES SHOULD

BE SAVED BEFORE THE EMCO(1) WAS CALLED DURING THE DATA READING.

TIMEVC=0.0

TIMEPR=0.0

TIMECP=0.0

If there are values to save, then don't

change them.
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C

C
C
C

C
C
C
C
C
C
C

TIMETR=0.0

TPT=TPA
PRC=PR
PPB=PHE

TEMP IS THE TEMPERATUREINDICATOR, 1=COLD, 2=NORMAL, 3=HOT

W3= (ORFMAX(
K3=4.*146.2
XV=(PPB*.I3

1 *PNK(IT)

IF (TEMP.LE. I. 0) GAM=SQRT(. 86158)
IF (TEMP.EQ.2.0) GAM=SQRT(. 83974)
IF (TEMP.EQ.3.0) GAM=SQRT(. 7895)
IT=TEMP+0.1
G2=4. "146.2". 62"W2(IT) *H2 (IT)/GAM

IT) -ORFMIN(IT) )
*. 62*W3*H3 (IT)/GAM
98-PR*.1398-PNFRIC(IT)-6.0*PNLOAD (IT) -6. 0*PNORGX(IT)
)/(PNE (IT) *6.0)

IF (XV.LT. 0. ) XV=I.E-5
IF(XV.GT.WTO(IT)) XV=WTO(IT)
S3= (E3* (XV-ORFMIN(IT)) )/(ORFMAX (IT) -ORFMIN(IT))
IF (XV. LT.ORFMIN(IT)) G3=. 000001
IF (XV. LT.ORFMIN(IT)) G2=. 000001
IF (XV.GE.ORFMAX(IT) ) G3=K3
GE=SQRT(I./((I./G3) **2+ (l./S2) **2) )

1 = FPOV

2 = OPOV

3 = MOV

4 = MFV

5 = CCV

+

DO 720 I=I,5

ETI (I) =CKTI (I)

EL1 (I) =CELl (I)

ET2 (I) =CKT2 (I)

EL2 (I) =CEL2 (I)

KT3 (I) =CKT3 (I _

EL3(I)=CEL3(I)

IF( TEMP .GE. 2.0 )

KTI (I)=HETI (I)

EL1 (I )=HELl (I )

KT2 (I )=HET2 (I )

EL2 (I )=HKL2 (I )

KT3 (I) =HET3 (I)

EL3 (I )=HEL3 (I )

ENDIF

CG0 = ( D(I)**2 +

THEN

M(I)**2 + L(I)**2 - E(I)**2

( 2.*D(I)*SQRT( M(I)**2 + L(I)**2 ) )

SQRT(I. - CG0**2)

ATAN2 (SG0, CG0)

SG0 =

GA0 =

) /

SSMII900

SSMI2000

SSMI2100

SSM12200

SSM12300
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BE0 = ATAN(M(I) / L(I) )

AO(I) = PI - GA0 - BE0

KT0(I) = 146.2*.62*HTO(I,IT)/GAM
XHE(I) =0.

IF(XV.LE.TOMIN(IT) ) THEN

vGI(I) = I.E6

ELSEIF ( XV .GT. TOMAX(IT) ) THEN

vGl(I) = 1.0 / (KT0(I)*(TOMAX(IT) - TOMIN(IT) ) )
ELSE

vSl(I) = 1.0 / ( KT0(I)*(XV - TOMIN(IT) ) )
ENDIF

720 CONTINUE

DO 5 I = i, 5

Y(I) = THETA(I) / PCT(I)

DY(I) = -I.0E-5

CALL unint0(Y(I), 198 + I )

X2DOT(I) = DY(I)

XIDOT(I) = DY(I)

XI(I) = Y(I)

dmesq(I) = D(I)**2 + M(I)**2 - E(I)**2

twod(I) = 2. * D(I)

sqm(I) = M(I) ** 2

slx(I) = L(I) + S(I) - XI(I)
5 CONTINUE

RETURN

ENTRY EMCO

I000 CONTINUE

PIN (i) =PFPOV

PIN (2 )=POPOV

PIN (3 )=PMOV

PIN (4) =P(3)

PIN (5) =P(7)

W (1 )=DWFPO

W (2 )=DWOPO

W (3 )=DWMOV

W(4) =DW(3)

W(5) =DW (7)

DEN (1 )=RHOOP3

DEN (2 )=RHOOP3

DEN (3 )=RHOOP2

DEN (4 )=RHO (3 )

DEN (5 )=RHO (7 )

PD (I) =PFPOI

PD (2) =POPOI

PD (3 )=POINJ

PD(4) =P(lO)

PD(5) =P(8)

XP(1) = .01 * XFPOV

SSM12400

SSM12500

SSM12600
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W

15

2O

40

5O

XP(2) = .01 * XOPOV

XP(3) = .01 * XMOV

XP(4) = .01 * XMFV

XP(5) = .01 * XCCV

XIDOT(5)=DTHETA(5)

DO 2000 I=i,5

IF(I.EQ.I.AND.THETA(2).GT.TSFPOV) GO TO 2000

IF(I.EQ.3.AND.THETA(2).GT.TSMOV) GO TO 2000

IF(I.EQ.4.AND.TIME.LE.TSMFV) GO TO 2000 SSM12700

IF(I.EQ.5.AND.TIME.LE.TSMFV) GO TO 2000 requires too many tests of I

GO TO ( 15, 50, 20, 40, 40 ), I

IF ( THETA(2) .GT. TSFPOV ) GO TO 2000

GO TO 50

IF (THETA(2) .GT. TSMOV ) GO TO 2000
GO TO 50

IF ( STIME.LE.TSMFV ) GO TO 2000
CONTINUE

IF (NI(I) .EQ. 0 ) GO TO 422
Y(I) = THETA(I) / PCT(I)
DY(I) = -I.0E-5
X2DOT(I) = DY(I)
XlDOT(I) = DY(I)
XI(1) = Y(X)
NI(I)=I

Moved to EMCO

IF(Y(I) .LE. 0.) GO TO 2000

X2 = Y(I) SSM12800

CG=(D(I)**2+M(I)**2+(L(I)+X2)**2-E(I)**2)/(2.*D(I)*SQRT(M(I)**2+(

* L(I)+X2)**2)) was replaced by

x21 = X2 + L(I)

x21sq = x21 *_ 2

vdenBE = i. / Xl0th(sqm(I) + x21sq, 5 )

CG = (dmesq(i) + x21sq ) * vdenBE / twod(I)

SG = Xl0th( I. - CG**2, 5 )

GA = ATAN2(SG, CG)

BE = ATAN( M(I)/x21 )

A = PI - GA - BE

PHI = A - A0(I)

PHID(I) = degprd * PHI

special functions analysis

not completed on this
module

IF( X2DOT (I)
TP= 0.

ELSE

.EQ. 0. ) THEN
SSM12900
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C
C

+

+

+

THK=FGEN (Ii (I) ,2, XP(I)/100. )

TP(I) =SIGN (AT (I) + (BT(I) +0.8*ESS (I)) * (PIN (I) -8 ./386.1/DEN(I) * (W(I)/

PI/VPD (I) **2) *'2) +0.8*DSS (I) +CPS (I) +CS (I) * (PIN (I) -PD (I)) ,

XIDOT(I))+THK*W(I)**2/DEN(I)/VPD(I)/1728. was replaced by

THK = fgen(II(I), I + 103, xp(I) )

TP : SIGN(AT(I) + (BT(I) + 0.8*ESS(I) ) *

(PIN(I) - vperi/DEN(I)*( W(I)/VPD(I)**2 )**2 ) + O.8*DSS(I) +

CPS(I) + CS(I)*(PIN(I) -PD(I) ), XlDOT(I) ) +

THK*W(I)**2 / ( DEN(I)*VPD(I)*1728. )

ENDIF

FBI=MU (I) *ABS (FYI (I))

FB2=MU (I) *ABS (FY2 (I))

BVI = BI(I)*.5
BV2 = BVI

IF(ABS(X2DOT(I)) .LT..9E-4) JK(I)=l

JK(I) = JK(I) .OR. X2DOT(I) .LT..9E-4

IF(JK(I) ) THEN

ERIC1 =-SIGN( FS(I)*.5, X2DOT(I) )
FRIC2 = FRICI

ELSE

SSMI3000

IF(I.LT.3.OR.I.EQ.5) FR=FGEN(34,2,PHID(I))

IF(I.GT.2)FR=FGEN(35,2,PHID(I))

IF( I .LT.3 ) THEN

FR = FGEN( 34, 108 + I, PHID(I) )
ELSE

FR = FGEN( 35, 108 + I, PHID(I) )
ENDIF

FR = FR + FRDEL(I)

FRICI = -SIGN(FR*.5, XIDOT(I) )

FRIC2 = -SIGN(FR*.5, X2DOT(I) )
ENDIF

Why lookup twice for I =

replaced by

SSMI3100

SINA=SIN (A)

COSA=COS (A) replaced by

sinBE = M(I) * vdenBE
cosBE = x21 * vdenBE

SINA = SG * cosBE + CG * sinBE

COSA = SG * sinBE + CG * cosBE

U1 = D(I) * SINA

U2 = -.5*(E(I)**2-(M(I)-UI)**2)**(-.5)*(-2.*(M(I)-UI)*(-D(I)*COSA))

replaced by

dmul = M(I) - U1

U2 = -.5 / Xl0th( E(I)**2 - dmul**2, 5 ) * twod(I) * dmul * COSA
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UA = (Ul + U2) / (UI - U2)

TANDI = dmul / (slx(I) - D(I)*COSA )

TAND2 = dmul / ( D(I)*COSA + x21 )

XDHE = -X2DOT(I)

XHE(I) = S(I) - X2

SIGN1 = SIGN(I., X2DOT(I) )

Q1 = AI(I) * XIDOT(I)

Q2 = A2(I)*X2DOT(I) + A4(I)*XDHE

IF (XV .LE. TOMIN(I) ) QI=0.

IF ( XV .LE. ORFMIN(I) ) Q2=0.

Q3 = Q2 - Q1

PRI = (KT3(I)*ABS(Q3) + KL3(I) )*Q3 + PR

C1 = (KTI(I)*ABS(QI) + KLI(I) )*(-QI)

C2 = (KT2(I)*ABS(Q2) + KL2(I) )*Q2

Pl = PRI - SIGN1*(AI(I)*XlDOT(I)*vGI(I) )**2

IF( XV .LE..046) THEN

P2 = PHE

ELSE

P2 = SIGN1*( ( (a2(I) -A4(I) )*X2DOT(I)

ENDIF

D1 = -TANDI*D(I)*COSA - U1

vD2 = 1.0 / ( U1 - TAND2*D(I)*COSA )

FXl = ( P1 + Cl - PRC )*AI(I) + FRICl - BVI*XlDOT(I)

FX2 = ( TP + FXI*DI )*vD2

FYI(I) = -FXI * TANDI

FY2(I) = FX2 * TAND2

SSM13200

)*vGE)**2 + PRI SSM13300

VA= (-(A2 (I) -A4 (I)) * ( (A2 (I)-A4 (I))/GE) **2+DI/D2*AI (I) * (AI (I) *UA/GI 400

X (I)) **2) *SIGN1

VB=-BV2-DI/D2 * (-BVI*UA)

VC=- (PRI+C2) * (A2 (I) -A4 (I)) -PHE*A3 (I) +FRIC2-1./D2* (TP (I) +Of* (AI (I) *

X PRI+CI*AI (I) +FRICI-PRC*AI (I)) ) +PRC*A2 (I)

VA = ( (A2(I) - A4(I) )*'2 * vGE)**2 +

+ DI*_D2*( AI(I)*(AI(I)*UA*vGI(I) )**2 )*SIGN1 SSM13400
VB = DI*vD2*BgI*UA - BV2

VC = FRIC2 - (PRI + C2)*(A2(I) - A4(I) ) - PHE*A3(I)

- vD2*( TP + DI*( AI(I)*(PRI + C1 - PRC) + FRICI ) )

+ PRC*A2(I)

VRAD = VB**2 - 4.*VA*VC

IF ( VRAD .GE.0. ) THEN

X2DOT(I) = ( -VB - SQRT(VRAD) )/(2.*VA)

DY(I) = X2DOT(I)

PHIDOT = X2DOT(I) / (UI - U2) * degprd

XIDOT(I) = UA * X2DOT(I)

XI(I) = - twod(I)*COSA + S(I) - X2

THETA(I) = PHID(I)

DTHETA(I) = PHIDOT

Y(I) = pruint(DY(I), Tstep, 198 + I )

+

+

SSM13500
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JK(I) = .FALSE.
ELSE

1500 WRITE( event, 1510) STIME, I
1510 FORMAT(' AT ',FI0.4, ' VALVE',I3, ' MOVING IN WRONGDIRECTION')

ENDIF
2OO0 CONTINUE

RETURN SSM13600
END
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C
C
C
C
C

PURPOSE: SIMULATE POGOSUPPRESSOROPERATION

C
C
C
C
C
C
C
C
C

POGOSUPPRESSORSYSTEMIS THE "STABILIZER" OF THE OXIDIZER SYSTEM.
IT USESTHE PRESSURIZEDHELIUM SYSTEMTO SUPPLY ENOUGHOXID LINE
PRESSUREAT THE BEGINNING OF THE OPERATION. A BACKFLOWLINE IS ALSO
USEDTO DRAIN THE OVERFLOWOF THE EXCESSOXIDIZER DURING THE OPEATION.

POGOSYSTEMHAS THREE DUCTS/VALVESCONNECTED:
OI2: HOPOINPUT DUCT, DOWNSIDE OF THE POGOACCUMULATOR
RIV TUBE: OVERFLOWTUBE BACKTO OXID TANK
DIFFUSER VALVE: INPUT VALVE FOREITHER PRESSURIZEDHELIUM OR

PRESSURIZEDLOX FROMHPOPOUTLET.

C******ARGUMENT******
C INPUT:
C I = INITIALIZATION ARGUMENTinactivated
C
C******COMMON USAGE******

C INPUT:

C VARIABLES SOURCE

C POI2,POD2,POJ OXIDF
C

C OUTPUT:

C VARIABLES

C DWO,DWGOP,OWHOP
C

******************************************************************

* DOUBLE PRECISION TIME replaced by STIME

DESTINATION

OXIDF

C

SSM80400

INCLUDE 'blank.com'

INCLUDE 'pogo.com'
INCLUDE 'oxid.com'

PARAMETER ( NPTS = 4, MPTS = 12 ) SSM81100

DIMENSION WGTAB(NPTS), FACTAB(NPTS), PGTAB(MPTS), SATTAB(MPTS),

+ SATvPG(MPTS), FACvWG(NPTS)

INTEGER Tstep

PARAMETER ( Tstep = 0, TooBig = I.E50 )

PARAMETER ( workc = 12.0 * 778.16 )

DATA WGTAB /

DATA FACTAB /

DATA PGTAB /
+

DATA SATTAB /
+

0.0 , 0.2 , 0.3 , 1.0 /

0.0 , 0.2 , 0.9 , 1.0 / SSM80900

0.022 , 6.7 , 20.2 , 52.6 , 98.5 , 148.2 r

201.7 , 298.2 , 404.2 , 511.5 , 611.9 , 731.38/

97.831 , 150.0 , 168.0 , 186.0 , 204.0 , 216.0 ,

226.0 , 240.0 , 252.0 , 262.0 , 270.0 , 278.24/
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C

C

DATA DTPSTH/ 4.0 /

DATA DTPSTL / 0.0 /

DATA QINT / 0.01792 /

DATA QNCON / 955.5 /

DATA QNEXP / 2.006 /

DATA QSLP / 0.00491 /

DATA TGOX / 650.0 /

DATA THE / 520.0 /

DATA THTHI / 2.0 /

DATA THTLO / 1.4 /

DATA TLOX / 180.0 /

Is Z below a function of the step size? If so, compute it so

step size can be changed.

SSM81000

DATA Z / 0.0005 /

R(X)=I./(772.8*X*X+I.0E-12)

DQHEAT=0.0

ISAVE = 1

JSAVE = 1

TSAT=0.0

WLOX= 0.0

WORK=0.0

X=0.0

SSM81600

READ (run,50) ATH, AIN, AHPV, AGC, RGC, RS, RGHS, RREC, ZREC, HP,

+ PHES, TGC, THEO, RHS, THEC, RGVO, ZCD, RGSL, VTOT,

+ RHPV, DTPSTL

50 FORMAT(//2X,6GI2.4) SSM81700

PI=POI2

P2 = POI2

PD = POI2

TPRINT = TPRil) - 0.i * DT

Input echo eliminated.

replaced by one print interval

CALL fgset( 42 )

CALL fgset( 43 )

DO 60 I = 2, MPTS

SATvPG(I) = (SATTAB(I) -SATTAB(I-I) ) /

+ (PGTAB(I) - PGTAB(I-I) )
6O CONTINUE

DO 70, I = 2, NPTS

FACvWG(I) = (FACTAB(I) - FACTAB(I-I) ) /

+ (WGTAB(I) - WGTAB(I-I) )
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70 CONTINUE

dwfac2 = 500. * DT
IF ( dwfac2 .LE. 1.0 ) THEN

dwfacl = 1.0 - dwfac2

ELSE

PRINT *, "Time step assumed less than 1/500 in pogosup."

STOP

END

tgox5 = 579.5 * TGOX
rhfac2 = 20. * DT

rhfacl = i. - rhfac2

CALL imint0( XHPV, 204, 0.0, i00.0 )

CALL imint0( XGC, 205, 0.0, i00.0 )

CALL unint0( UG, 206 )

CALL imint0( WLOX, 207, 0.00001, TooBig )

CALL imint0( WGOX, 208, 0.00001, TooBig )

CALL imint0( WHE, 209, 1.0E-08, TooBig )

CALL unint0( DWO, 210 )

CALL unint0( DWGAS, 211 )

CALL unint0( PD, 212 )

CALL unint0( DWRE, 213 )

The following restart section is added to initialization.

vRHOHE = 4636.0 * THE / PHES

TGAS

WLOX

WGOX

WHE

UG

RHOREC

IPR

= 470.0

= 16.24

= 1225.0 * POI2 / (579.5 * TGAS)

= 25.0 * POI2 / (4636.0 * TGAS)

= TGAS * (0.17811 * WGOX + 0.74824 * WHE)
= 0.01

= 2

SSM82000

C

C

C

C

C

C

C

C

C

C

C

COMPUTE GAS FLOWRATES INTO THE POGO ACCUMULATOR

COMPUTE VALVE POSITIONS

VALVE OPENING SCHEDULE TIMES ARE:

THEO: HELIUM VALVE OPENING TIME

THEC: HELIUM VALVE CLOSING TIME

TCUT: SYSTEM POWER CUT DOWN TIME

DTPSTL: SYSTEM POWER CUT TO PURGE DELAY

DTPSTH: TIME PERIOD OF HELIUM PURGE DURING POWER CUT DOWN
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

TGC: LOX VALVE OPENING TIME, THIS WORKS WITH "THEC"

XGC: VALVE OPENING OF LOX FLOW BACK FROM "OD2" DUCT, % OF AREA

XHPV: VALVE OPENING OF PRESSURIZED HELIUM SYSTEM, % OF AREA

(NOTE: XGC AND XHPV VALVES OPEN EXCLUSIVELY.)

IF ( STIME .LT. THEO

+ .OR. ( STIME .GT. THEC .AND. STIME .LT. TCUT + DTPSTL )

+ .OR. STIME .GT. TCUT + DTPSTH ) THEN SSM82100

TIME PERIODS WHEN HELIUM FLOWS ARE NOT EXISTING, START OR MAIN STAGE

XHPV = prlint( - RHPV, Tstep, 204 )

IF (XHPV .GT. 0.2) GO TO 260

IF (STIME .ST. TGC) THEN

XGC = prlint( RGC, Tstep, 205 )
ENDIF

IF (XGC .ST. 0.01) GO TO 300

IF (XHPV .LE. 0.01) THEN
DWG = 0.0

DWH = 0.0

GO TO 400

ENDIF

ELSE SSM82200

TIME PERIODS WHEN HELIUM FLOW DOMINATE, DURING START OR PURGE

XGC = prlint( - RGC, Tstep, 205 )

IF (XGC .GT. 0.2) GO TO 300

Do you really want to skip the integration of XHPV in this case?

XHPV = prlint( RHPV, Tstep, 204 )
ENDIF

COMPUTE HELIUM FLOWRATE INTO ACCUMULATOR

HELIUM FLOW INTO ACCUMULATOR, GOX FLOW MUST BE ZERO (OR ALMOST ZERO).

THE FOLLOWING SECTION OF PROGRAM CALCULATE THE HELIUM FLOW BY:

i) COMPUTE INITIAL FLOW VALUE WHEN XHPV < 0.2%

2) WHEN XHPV > 0.2%, USES THE SMOOTHING FACTOR OF 500*DT=O.I TO

CALCULATE THE NEXT FLOW VALUE: DWH(NEXT)=0.9*DWH(OLD)+O.I*DWH(IN)

(500*DT CAN BE CONSIDERED AS THE TIME DELAY OF THE DUCT.)
FOLLOWING NOTATIONS ARE USED:

PHES:

PI:

P2:

PGCO:

PG:

DWG:

DWH:

HELIUM SYSTEM PRESSURE

PRESSURE OF JUNCTION OF HELIUM DUCT AND GOX DUCT

PRESSURE BEFORE THE DIFFUSER

PRESSURE AFTER THE GOX VALVE

POGO SYSTEM PRESSURE

GOX FLOW INTO THE DIFFUSER

HELIUM FLOW INTO THE DIFFUSER
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C

C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C

260 RAHPV= R(XHPV * AHPV / i00.0)

IF (XHPV .LT. 0.2) THEN

DWH = SQRT( ABS(PHES - Pl) / ( vRHOHE * RAHPV ) )
ENDIF

dwsr = vRHOHE * DWH ** 2

PHPV = PHES - RHS * dwsr

P1 = PHPV - RAHPV * dwsr

IF (Pl .LT. P2) Pl = P2

PGCO = P1

DWG = 0.0

DWH = dwfacl* DWH +

+ dwfac2 * AIN * GFLOW(PI, P2, PI*vRHOHE, 1.0, 1.684)
P2 = PG + RGHS * DWH ** 2 * vRHOHE

GO TO 400

SSM82300

COMPUTE GOX FLOW INTO THE ACCUMULATOR

THIS IS THE FLOW FROM DUCT "OD2" TO THE DIFFUSER IN GAS OXID FORM TO

SUPPLY PRESSURE FOR POGO SYSTEM DURING THE MAIN STAGE OPERATION.

GAS OXID FLOW INTO ACCUMULATOR, HELIUM FLOW MUST BE ZERO (OR ALMOST ZERO
THE FOLLOWING SECTION OF PROGRAM CALCULATE THE HELIUM FLOW BY:

I) COMPUTE INITIAL FLOW VALUE WHEN XGC < 0.2%

2) WHEN XGC > 0.2%, USES THE SMOOTHING FACTOR OF 500*DT=O.I TO

CALCULATE THE NEXT FLOW VALUE: DWG(NEXT)=O.9*DWG(OLD)+0.1*DWG(IN)

(500*DT CAN BE CONSIDERED AS THE TIME DELAY OF THE DUCT.)
FOLLOWING NOTATIONS ARE USED:

PGCI: PRESSURE OF INPUT SIDE OF THE RETURING GOX VALVE

PGCO: PRESSURE OF OUTPUT SIDE OF THE RETURING GOX VALVE

300 RAGCV = R(XGC * AGC / i00.0)

vRHOGO = tgox5 / POD2

IF (XGC .LT. 0.2) THEN

DWG = SQRT(ABS(POD2 - PI) / (vRHOGO * RAGCV)
ENDIF

dwgr = vRHOGO _ DWG ** 2

PGCI = POD2 - RGSL * dwgr

PGCO = PGCI - RAGCV * dwgr

P1 = PGCO - RGVO * dwgr

IF (PI .LT. P2) Pl = P2

IF (PGCO .LT. PI) PGCO = P1

DWH = 0.0

DWG = dwfacl * DWG + dwfac2 *

+ GFLOW(PI, P2, PI/RHOGOS, 1.0, 1.4) * AIN
P2 = PG + RGHS * DWG ** 2 * vRHOGO

SSM82400

COMPUTE PROPERTIES IN THE ACCUMULATOR SSM82500

PROPERTIES IN THE ACCUMULATOR IS DEFINED BY THE FOLLOWING:

UG: TOTAL ENERGY OF THE GAS PHASE IN THE ACCUMULATOR
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C

C

C

C

C

C

C

C

C

c

DQHEAT: HEAT TRANSFERRED BETWEEN LOX AND GAS PHASE

WORK: WORK DONE BY GAS PHASE IN PUSHING LOX (-- P * Delta V)

DWLOX: LOX FLOW INTO THE ACCUMULATOR, INCLUDING:

DWO: LOX FLOW FROM DUCT "012"

DWQNCH: LOX FLOW FROM GAS PHASE DUE TO QUENCHING EFFECT
DWLO: LOX FLOW FROM THE ACCUMULATOR TO OXID TANK

DWGOX: GAS OXID FLOW INTO THE ACCUMULATOR, INCLUDING:

DWG: GAS OXID INPUT FROM "OD2" THROUGH XGC VALVE

DWQNCH: GAS FLOW TO LIQUID PHASE DUE TO QUENCHING EFFECT
DWGOP: GAS FLOW TO DUCT "OI2"

DWGO: GAS FLOW TO OXID TANK IN BACK FLOW TUBE

DWHE: HELIUM FLOW INTO THE ACCUMULATOR, INCLUDING:

DWH: HELIUM FLOW FROM HELIUM SUPPLY THROUGH XHPV VALVE

DWHOP: HELIUM FLOW TO DUCT "012"

DWHO: HELIUM FLOW TO OXID TANK IN BACK FLOW TUBE

400 DLTUG = 1.24471 * (DWH * THE - (DWHOP + DWHO) * TGAS)

1 + 0.24017 * (DWG * TGOX - (DWGOP + DWQNCH + DWGO) * TGAS)

2 +DQHEAT - WORK

UG = pruint( DLTUG, Tstep, 206 )

DWLOX = DWO + DWQNCH - DWLO

WLOX = prlint( DWLOX, Tstep, 207 )

DWGOX = DWG - DWQNCH - DWGOP - DWGO

WGOX = prlint( DWGOX, Tstep, 208 )
DWHE = DWH - DWHOP - DWHO

WHE = prlint( DWHE, Tstep, 209 )
VL

VG

TGAS

PG

RHOHE

RHOGOX

= WLOX / 0.04061

= AMAXI(I.O, VTOT - VL)

= UG / (0.17811 * WGOX + 0.74824 * WHE)

= (579.5 * WGOX + 4636.0 * WHE) * TGAS / VG

= PG / (4636.0 * TGAS)

= ms / (579.5 * TGAS)

SSM82600

COMPUTE FLOWRATES

* * * FLOWRATES AT THE ACCUMULATOR NECK SSM82700

THIS SECTION IS TO CALCULATE THE CONDITIONS OF THE LIQUID AND GAS FLOW

OF THE POGO SYSTEM. FOLLOWING NOTATIONS ARE USED:

ALIQ: FRACTION OF THE LOX IN THE DUCT BETWEEN "OI2" AND NECK

ALIQ=I FOR LOX FILLED DUCT, ALIQ=0 FOR GOX FILLED DUCT, AND

O<ALIQ<I FOR PARTIALLY FILLED DUCT
FAC: DIFFUSING FACTOR TO CALCULATE GAS FLOW IN A GAS MIXTURE

ALIQ = AMAXI(I.OE-IO, AMINI(I.O, VL/130.6))

DWO = prflow(DWO, Z, -RS/(RHOCD2*ALIQ**2), POI2-PG, 210)

The translation below is accurate, but the intent is doubted.

IF (VL .GE. VTOT - 1.0 .AND. DWO .GE. 0.0) THEN

CALL unint0( 0., 210 )
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C
C
C
C

C
C
C
C
C
C
C
C
C

DWO= 0.0
PG = POI2

ENDIF

500 IF (ALIQ .GE. 0.9999) THEN

DWGOP = O. 0

DWHOP = O. 0

ELSE

THE CONDITION OF PARTIALLY FILLED DUCT BETWEEN "OI2" AND POGO NECK.

DWGAS: TOTAL GAS FLOW (HELIUM AND GOX)

+

+

wgx = WGOX/AMAXl (i. OE-12, WGOX+WHE)

CALL intval( ISAVE, wgx, NPTS, WGTAB,

'Below WG table in pogosup.',

'Above WG table in pogosup.', 0 )

FAC = xlint( wgx , NPTS, WGTAB, FACTAB, FACvWG, ISAVE )

RHOG = PG / (TGAS * (579.5 * FAC + 4636.0 * (i.0 - FAC)))

DWGAS = prflow(DWGAS, Z, RS/(RHOG*(I.0-ALIQ)**2), PG-POI2, 211)

IF (WHE .GE. 1.0E-07) THEN

DWGOP = FAC * DWGAS

DWHOP = (i.0 - FAC) * DWGAS

ELSE

DWGOP = DWGAS

DWHOP = 0.0

ENDIF

ENDIF

SSM82800

COMPUTE THE FLOWRATES OUT THE RIV TUBE SSM82900

BACK FLOW TUBE CONDITIONS:

HP: LOX HEIGHT IN POGO ACCUMULATOR

AREAH: LOX AREA INSIDE BACK FLOW TUBE (RIV TUBE)

DWDUM: GAS FLOW OF RIV TUBE, (WHEN AREAH < ATH)

PD: PRESSURE OF THE DUCT OF RETURNING LOX, BEFORE CHECK VALVE

DWRE: RECIRCULATING FLOW INTO OXID TANK

700 HP = FGEN(42, 119, VL)

AREAH = FGEN(43, 120, HP)

DWDUM = GFLOW(PG, PD, PG*VG/(WHE+WGOX), 1.0,

1 (I.684*WHE+I.4*WGOX)/(WHE+WGOX)) * AMAXI(O.0, ATH-AREAH)

IF (WHE .GE. 1.0E-07) THEN

DWGO = DWDUM * WGOX / (WHE + WGOX)

DWHO = DWDUM - DWGO

ELSE

DWGO = DWDUM

DWHO = 0.0

ENDIF

800 DWLO = SIGN(SQRT(ABS(PG-PD) * RHOCD2 / R(AREAH)), PG-PD)

PD = pruint( (DWDUM + DWLO - DWRE) / ZCD, Tstep, 212 )

SSMS3000
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C
C
C
C

C
C
C
C
C
C

*

CALCULATING RECIRCULATING DUCT DENSITY USING TIME AVERAGE 20*DT(=.004)
LOOKS LIKE THE DUCT IS VERY HUGE AND TAKES LONG TIME TO FILL

RHOREC = rhfacl * RHOREC + rhfac2 *

1 (ABS(DWLO + DWGO + DWHO) / AMAXI(ABS(DWLO / RHOCD2

2 + DWGO / RHOGOX + DWHO / RHOHE), 0.00001))

DWRE = prflow(DWRE, ZREC, -RREC/RHOREC, PD-POJ, 213)

COMPUTE HEAT TRANSFER AND LOX QUENCHING

DQHEAT IS THE HEAT FLOW FROM LOX TO GAS. AS TO WHY IT IS A FUNCTION OF

IS UNKNOWN.

DQHEAT = (QSLP * AMAXI(DWO, 0.0) + QINT) * (TLOX - TGAS)

IF (TIME .ST. THTHI) GO TO 860

STIME=TIME SSM83100

DQHEAT = DQHEAT * AMAXI (0.0,(STIME-THTLO) / (THTHI-THTLO))
* $60 CONTINUE

C

C

C

C

C

C

sequence replaced by

IF ( STIME .LE. THTHI ) THEN

DQHEAT = (QSLP * AMAXI(DWO, 0.0) + QINT) * (TLOX - TGAS)
ELSE

DQHEAT = DQHEAT * AMAXl (0.0, (STIME-THTLO) / (THTHI-THTLO))
ENDIF

TSAT: THE SATURATING TEMPERATURE UNDER THE PRESSURE PG.

CALL intval( JSAVE, PG, MPTS, PGTAB,

+ 'The pressure PG is below SATTAB in pogosup.',

+ 'The pressure PG is above SATTAB in pogosup.', 0 )

TSAT = xlint( PG, MPTS, PGTAB, SATTAB, SATvPG, JSAVE )

DWQNCH = WGOX * QNCON *

+ XtoY( AMAXI(I.0, TGAS-TSAT), - QNEXP )

WORK = -PG * (DWO + DWQNCH - DWLO) / (workc * RHOCD2)

Eliminated PRINT OUT DATA

END
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'valdym.for':

C
C
c
C
C
C
c
C
C

PURPOSE: COMPUTEVALVE DYNAMICS

THIS SUBROUTINESIMULATE THEDYNAMICSOF THE VALVE SERVOSYSTEMAND
VALVE MOTION INCLUDING STICTIONS AND BACKLASHES. THE INPUTS ARE:
XCxyzV: POSITION COMMANDTO MOVEVALVE xyz.
THETA(): CURRENT VALVE POSITION, DEG

DTHETA(): CURRENT VALVE VELOCITY, DEG/SEC

C******ARGUMENTS******

C N = INITIALIZATION FLAG eliminated

C

C******COMMON USAGE******

C INPUT:

C VARIABLE

C XCFPOV,XCOPOV,XCMOV,XCMFV,XCCCV

C THETA, DTHETA

C

C

C

C

C

C

C

C

C

C

C

C

SOURCE

CNTROL

EMCO

OUTPUT:

VARIABLE

RFPOV,ROPOV

RMOV

RMFV,RCCV

XFPOV,XOPOV,XMOV,XMFV,XCCV
XOPOV

DESTINATION

HOTGAS

OXIDF

FUELF

EMCO

CNTROL

Double precision is probably unnecessary with double precision

accumulators in the integration routines. It should be restored only

on evidence of actual accuracy problems outside of integration.

DOUBLE PRECISION EVP, DDESA, DDESV, DVR, DELTA, ALIM, Q

DOUBLE PRECISION DTHETA, ESAC, ESA, DESA, ESV, DESV

DOUBLE PRECISION TIME

SSM83500

SSM83600

SSM83700

DIMENSION DPPC(5),THETAC(5),CL(5),CSV(5),A(5)

DIMENSION THETHY(5), THETST(5), DTHETI(5), DTHET2(5)

DIMENSION WINDUP(5), THETSK(5), THETBL(5), THETWU(5), THETMAX(5)

REAL CvA(5), vdppc(5)

INCLUDE 'blank.com'

INCLUDE 'out.com'

INCLUDE 'units.com'

INCLUDE 'contrl.com'

INCLUDE 'valves.com'
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C
C
C
C

C

C

SAVE

WINDUP IS ADDEDTO THE SIMULATION IN DATA FORMAT
THETMAXIS THE MAXIMUMACTUATORSTROKELIMIT

DATA WINDUP/0.091, 0.115, 0.i, 0.141, 0.067/
DATA THETMAX/79.0, 79.0, 84.25, 84.25, 80.0/

DATA SLOPF /0.0/ added to input parameters

Please rename this function.

Rename(Z) = 1.0 / (772.8 * Z**2 + 1.0E-12 )

ALIM biases the magnitude of Q down minutely. IF Q is small enough,

it is replaced by O.D0. It probably had been intended to function

differently. As it stands, ALIM was not considered of value and

was discarded. The reimplementer should note that double precision
outside the integrators has been eliminated.

ALIM(Q) = DMAXI(0.DO, DABS(Q) - I.D-20) * DSIGN(I.D0,Q)

rlimit(floor, ceiling, x ) = AMAXI( floor, AMINI( ceiling, x ) )

************************************************************************

* IF(FLAG.EQ.15.)GO TO 9999 is obsolete

* Unnecessary initializations were eliminated

READ( run, '(//2X, 6G12.4 )' )

+ CA, WA, SA, CSV, WSV, SSV, A, CL, CRS, TRS, CLS,

+ TLS, CMF, TMF, CM, WM, SM, CRVDT, CLVDT,

+ (THETHY(I), THETST(I), DPPC(I), I = i, 5),

The following input parameters were transferred from NAMELIST input

+

+

+

ARI, AR2, TL_ TH, XOMAX,

OPLEAK, OPXl, OPX2, FPLEAK, FPXl, FPX2, SLOPF,

IBKLASH, IWUSTN,

SSM84100

DELTA was made an input parameter.

+ DELTA

Functions of DELTA for Euler and AB2 integrators

h(1) = DELTA

DO 30 I=I,5

DESA (I) =0.0
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C
C
C
C
C
C

ESA(I)=0.0
DESV(I) =0.0
ESV(I) =0.0
THETA(I) =DPPC(i) *XCFPOV
THETA(2) =DPPC(2) *XCOPOV
THETA(3) =DPPC(3) *XCMOV
THETA(4) =DPPC( 4) *XCMFV
THETA(5) =DPPC(5) *XCCCV
vs (I)=0.0
EMF (I)=0.0

DVM (I) =0.0

VM(I)=0.0

THETIL(I) =0.0

THET2L(I) =0.0

THETAI (I) =0.0

THETA2 (I) =0.0

ISTIC(I) =i

IHYS (I) =I

DTHETL(I)=0.01

ESAC (I) =0.0

VR(I)=0.0

CvA(I) = CL(I) * CSV(I) / A(I)

vdppc(I) = i. / DPPC(I)
30 CONTINUE

fbklsh = FLOAT (IBKLASH)

fwustn = FLOAT (IWUSTN)

LOOP= (DT+0. 00001 )/DELTA
twosa = 2. * SA

twossv = 2. * SSV

vTRS = i. / TRS
crvs = CRVDT * CRS

vfpx = i. / (FPX2 - FPXI)

abfp = ABFPO * .01

vopx = 1.0 / (OPX2 - OPXI)

abopf = ABOPO * 0.01
abmov = ABMOV * 0.01

abmfv = ABMFV *'0.01

abccv = ABCCV * 0.01

RFBV = 1.0E+I2

SSM84900

SSM85000

DELTA=0.0001 SSM85040

DELTA IS CHANGED TO 0.00002 SECOND TO BETTER SIMULATE THE ANALOG SERVO

OF THE VALVE DYNAMIC. THIS IS NECESSARY WHEN APPLYING STEP INPUTS TO

THE VALVE OPENINGS.

DELTA=0.00002 DELTA was made an input parameter.

Initialize integrators:
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CALL unint0(DESA(I), 147 + I )

CALL imint0(ESA(I), 152 + I, -20.0, 20.0 )

CALL unint0(DESV(I), 157 + I )

CALL imint0(ESA(I), 162 + I, -20.0, 20.0 )

CALL imint0(THETA(I), 167 + I, 0.0, THETAMAX(I) )

CALL unint0(VR(I), 172 + I )

GO TO 310

205

C

C

C

C

C

C

SERVO CALCULATIONS

200 CONTINUE

THETAC(1)=DPPC(1)*XCFPOV SSM85100

THETAC(2)=DPPC(2)*XCOPOV

IF ( STIME .GE. TL .AND. STIME .LE. TH) THETAC(2)=DPPC(2)*I000.
THETAC(3)=DPPC(3)*XCMOV

THETAC(4)=DPPC(4)*XCMFV

THETAC(5)=DPPC(5)*XCCCV

SCALING FOR BACKLASH, WINDUP, AND STICTION FROM % OPENING TO DEGREE

DO 205 I=1,5

THETBL(I) = THETHY(I) * DPPC(I) * fbklsh

THETWU(I) = WINDUP(I) * DPPC(I) * fwustn

THETSK(I) = THETST(I) * DPPC(I) * fwustn
CONTINUE

DO 300 I=I,5

IF( TPA.GT.O.O .AND. STIME.GE.TPA) THEN
DO 210 J=I,LOOP

EVP = THETAC(I)*CRVDT - VR(I) SSM85200

DDESA=CA*WA**2*EVP-WA**2*ESAC(I)-2.0*SA*WA*DESA(I) replaced by

DDESA = _ ( CA*EVP - ESAC(I) ) * WA - twosa * DESA(I) ) * WA

DDESV = ((ESA(I) -ESV(I) ) * WSV- twossv*DESV(I) ) * WSV

DTHETA(I) = CvA(I) * ESV(I)

CvA(I) is CL(I)*CSV(I)/A(I)

DVR=THETA (I) *CRVDT*CRS/TRS-VR (I)/TRS replaced by

DVR = (THETA(I) * crvs - VR(I) ) * vTRS

C

C

C

c

c

C

TIIE POWER AMPLIFIER LIMIT SHOULD BE PUT AT THE OUTPUT END NOT IN
THE MIDDLE.

IF(ESA(I) .GT.23..AND.DESA(I) .GT.0.) DESA(I)=O.O

IF(ESA(I).LT.-23..AND.DESA(I) .LT.0.) DESA(I)=0.O
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C
C
C
C

C
C

C
C
C

C
C

The statements above illustrate how to limit the internal double
precision accumulator of an integrator, by zeroing the input rate.
The effect of the commenting out is to substitute an unlimited
accumulator, for the limited one, with limits applied to the
output of the integration. This is the approach used throughout
other modules of the simulation.

ESAC(I) =ESAC( I ) +ALIM (DESA(I ) ) * DELTA
ESA(I) =ESAC(I)

SSM85300

Without arguments to the contrary, it appears that the integration of
of ESA and ESV with old rates must be in error. Accordingly, the
higher order integrations are done first.

LIMITS ON INPUT AMPLIFIER ARE +-23 VOLTS.
ARE +-20 VOLTS.

AND LIMITS ON SERVOAMPLIFIER

IF(ESA(I).GT.23.) ESA(I)=23.
IF(ESA(I).LT.-23.) ESA(I)=-23.
IF(ABS(ESA(I)).LT.0.25) ESA(I)=0.0 replaced by

DESA(I) = pruint( DDESA, i, 147 + I )
ESA(I) = prlint(DESA(I), I, 152 + I )
IF (ABS(ESA(I)) .LT. 0.25) THEN

ESA(I) = 0.0
CALL imint0( 0.0, 152 + I, -20., 20. )

ENDIF

DESA(I)=DESA(I)+ALIM(DDESA)*DELTA was moved ahead of ESA integration

IF(ESV(I).GT.20..AND.DESV(I).GT.0.0) DESV(I)=0.O
IF(ESV(I).LT.-20..AND.DESV(I) .LT.0.0) DESV(I)=0.0

ESV(I) =ESV(I) +ALIM (DESV(I) ) *DELTA
IF(ESV(I).GT.20.) ESV(I)=20.
IF(ESV(I) .LT.-20.) ESV(I)=-20.

DESV(I) = pruint( DDESV, i, 157 + I )
ESV(I) = prlint(DESV(I), i, 162 + I )

DESV(I) =DESV( I ) +ALIM (DDESV)* DELTA
THETA(I ) =THETA(I ) +ALIM (DTHETA(I ) ) *DELTA

CALL intgrl(THETA(I), DTHETA(I), DELTA, 167 + I )

ACTUATORSTROKESARE LIMITED TO THE MAXIMUMTHETA

THETA(I) = rlimit( 0.0, THETMAX(I), THETA(I) )

VS(I )=VS(I ) +ALIM (DVS) *DELTA
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C
C
C
C

C

C

C

C

C

C

C

C

C

c

C

C

C

C

210

IF(EMF(I).GT.12.5.AND.DEMF.GT.0.0) DEMF=O.O

IF(EMF(I).LT.-12.5.AND.DEMF.LT.0.O) DEMF=0.O

EMF (I )=EMF (I )+ALIM (DEMF) *DELTA

VM (I )=VM (I )+ALIM (DVM (I ) )*DELTA

DVM (I )=DVM (I )+ALIM (DDVM) *DELTA

VR (I )=VR (I )+ALIM (DVR) *DELTA

VR(I) = pruint( DVR, i, 172 + I )

CONTINUE

ENDIF

SSM85400

NEW PROGRAM

BACKLASH IS DEFINED AS THE AMOUNT OF ACTUATOR OUTPUT SHAFT TRAVEL

REQUIRED TO REVERSE DIRECTION OF VALVE BALL MOTION UNDER CONDITIONS

OF ZERO LINKAGE WINDUP AND TORQUE LOADING. THE VALUES USED HERE IS

HALF OF THE AMOUNT OF THE TOTAL TRAVELING, WELL HALF ON EACH SIDE.

+

+

IF ( I .EQ. 3 .AND.

THETA(I) .GT. 33.8 .AND. THETA(I) .LT. 84.0 ) THEN
FAC = 0.0

ELSE IF( I .EQ. 4 .AND.

THETA(I) .GT. 38.3 .AND. THETA(I) .LT. 75.8 ) THEN
FAC=0.0

ELSE

FAC = i. 0

ENDIF

IF (ABS(THETA(I) -THETAI(I) ) .LT. THETBL(I)*FAC ) THEN

DTHETI(I) = 0.0

THETIL(I) = THETAI(I)

ELSE IF (ABS(DTHETA(I)) .LT.I.0E-06) THEN

DTHETI(I) = 0.0

IF(THETAI(I) .LE.THETA(I)) THEN

THETAI(I) = THETA(I) - THETBL(I)*FAC
ELSE

THETAI(I). = THETA(I) + THETBL(I)*FAC

ENDIF

ELSE

IF (THETAI(I) .LE.THETA(I)) THEN

THETAI(I) = THETA(I) - THETBL(I)*FAC
ELSE

THETAI(I) = THETA(I) + THETBL(I)*FAC

ENDIF

DTHETI(I) = DTHETA(I)
ENDIF

WINDUP AND STICTION SIMULATION:

WINDUP IS DEFINED AS THE AMOUNT OF ACTUATOR OUTPUT SHAFT TRAVEL REQUIRED
AFTER LINKAGE BACKLASH HAS BEEN ABSORBED TO INITIATE VALVE MOTION.

STICTION IS DEFINED AS THE AMOUNT OF VALVE BALL OVERTRAVEL RESULTING
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C
C
C
C

C

C
C
C
C
C
C
C
C

C
C
C

FROMA CHANGEIN LINKAGE WINDUPDURINGTHE TRANSITION FROMA STATE OF
STATIC FRICTIONAL RESISTANCETO SLIDING FRICTIONAL RESISTANCEAT
START OF BALL MOTION.

+

IF(ABS(DTHETI(I)) .LT. 1.0E-06) DTHET2(I)=0.0

IF(ABS(DTHET2(I)) .LT. 1.0E-06 .OR.

ABS(THETAI(I) - THETA2(I)) .LE. (THETWU(I) - THETSK(I)) ) THEN

IF (ABS (THETAI (I) -THETA2 (I)) .LE. THETWU (I)) THEN

DTHET2 (I) =0.0
ELSE

DTHET2(I) = DTHETI(I)

ENDIF

IF (THETA2(I) .ST. THETAI(I) ) THEN

THETA2(I) = THETAI(I) + THETWU(I) - THETSK(I)

ELSE

THETA2(I) = THETAI(I) - THETWU(I) + THETSK(I)

ENDIF

ELSE

DTHET2(I) = DTHETI(I)

IF (THETA2(I) .GT. THETAI(I) ) THEN

THETA2(I) = THETAI(I) + THETWU(I) - THETSK(I)

ELSE

THETA2(I) = THETAI(I) - THETWU(I) + THETSK(I)

ENDIF

ENDIF

300 CONTINUE SSM85800

THIS SECTION OF CODE USES THETA2(I) AS THE ACTUAL VALVE OPENINGS TO

FIND THE VALVE OPENING AREAS AND VALVE RESISTANCES.

THE LEAK (FPLEAK AND OPLEAK) PHENOMENA DEFINED IN THE FOLLOWING IS NOT

CLEAR. HOWEVER, BOTH OPLEAK AND FPLEAK ARE SET TO 0.0 IN INPUT DATA.

FUEL PREBURNER OXIDIZER VALVE

Continuation point for initialization

310 CONTINUE

IF ( SLOPF .GT. .01 ) THEN
XFPOV = XCFPOV

ELSE

XFPOV = rlimit( 0.0, i00.0, THETA2(1)* vdppc(1) )

ENDIF

AFPOV = FGEN(18, 99, XFPOV)

+ + FPLEAK * rlimit( 0.0, abfp, (XFPOV - FPXl) * vfpx )

RFPOV = Rename(AFPOV)

OXIDIZER PREBURNER OXIDIZER VALVE SSM85900

IF ( SLOPF.GT..01 ) THEN
XOPOV = XCOPOV
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C
C
C
C

C
C
C

C
C
C

C
C
C

C
C
C
C
c
C

ELSE IF( STIME .GE. TL .AND. STIME .LE. TH ) THEN
XOPOV= XOPOV+ 210. * DT

XOPOVHAS A MAXIMUMINCREASING RATE OF 210%/SEC AND MAXIMUMDECREASING
RETE OF 270%/SEC. not percents

ELSE

XOPOVfollows THETA2(2)/DPPC(2) perfectly between limits imposed by
max rates and fixed limits O. and I00. Otherwise XOPOV
increases at the maximum rate. There is no need to use a higher
order integrator here, because at the constant limit rate,
Euler's is exact.

XOPOV= AMINI( i00., XOPOV+ 210.*DT,
+ AMAXI( 0., XOPOV- 270.*DT, THETA2(2)*vdppc(2) ) )

ENDIF
XOPOV= AMINI( XOMAX, XOPOV )

AOPOV = FGEN(17, i00, XOPOV) + OPLEAK *

+ rlimit( 0., abopf, ( XOPOV - OPXl) * vopx )

ROPOV = Rename(AOPOV)

MAIN OXIDIZER VALVE

XMOV = THETA2(3) * vdppc(3)

AMOV = FGEN(6, i01, XMOV) * abmov

RMOV = Rename(AMOV)

MAIN FUEL VALVE

XMFV = THETA2(4) * vdppc(4)

AMFV = FGEN(31, 102, XMFV) * abmfv

RMFV = Rename(AMFV)

COOLANT CONTROL VALVE

XCCV = THETA2(5) * vdppc(5)

ACCV = FGEN(19, 103, XCCV) * abccv

RCCV = Rename(ACCV)

SSM86000

FUEL BLEED VALVE

IF(TIME.LE.TFBV) GO TO 400

RFBV=AMINI(I.OE+I2,0.OI2/(AMINI(20.O*(STIME-TFBV), I-0)))

GO TO 410

* 410 CONTINUE

RETURN

END

SSM86100

SSM86200
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'cstar.for':

C
C
C
C
C
C
C

FUNCTION CSTAR0(EMR,P) SSM36700

C
C PURPOSE: INTERPOLATEC* FROMTABLE VS PRESSUREAND MIXTURE RATIO
C
C******ARGUMENTS******
C INPUT:

N = INITIALIZATION FLAG inactivated
EMR = MIXTURE RATIO
P = PRESSURE,PSI

OUTPUT:
CSTAR = CHARACTERISTICVELOCITY, FT/SEC

SSM36800

**************************************************************

DIMENSION CS(12,9), mR(12)

REAL MR(9), scspr(12), vdmr(9)
INCLUDE 'units.com'

READ(run,10)NPR,NMR

READ(run,II) (mR(I),I=I,NPR), (MR(I),I=I,NMR)

i0 FORMAT(//2X,2II2)

ii format(//2X,6Gl2.4)

READ(run, 12) ( (CS (I,J) ,I=I,NPR) ,J=I,NMR)

12 FORMAT(2X,12F6.0)

CALL xyset( NPR, PR, NMR, MR, CS, scspr, vdmr )
RETURN

FUNCTION xylint( x, y, nx, xp, ny, yp, sx, vdy, table,

+ itop, jtop )

SUBROUTINE xyset( nx, xp, ny, yp, table, sx, vdy )

ENTRY CSTAR( EMR, P )
***********************************************************************

CALL intval( If, EMR, NPR, PR,

+ 'EMR below range of PR in CSTAR.',

+ 'EMR above range of PR in CSTAR.', 0 )

CALL intval( Jl, P, MPR, MR,

+ 'P below range of MR in CSTAR.',

+ 'P above range of MR in CSTAR.', 0 )

CSTAR = xylint( EMR, P, NPR, PR, NMR, MR, scspr, vdmr, CS, II, Jl)
END

SSM36900
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'qflux.for':

C
FUNCTIONH2SATH(P)

C
C PURPOSE: CALCULATEHYDROGENSATURATIONENTHALPY
C
C******ARGUMENTS******
C INPUT:
C P : PRESSURE, PSI

C OUTPUT:

C H2SATH : SATURATION ENTHALPY, BTU/LB
C

C ENTER PRESSURE,P IN PSIA

C RETURN SATURATED VAPOR ENTHALPY IN

C

************************************************************************

DIMENSION H(10),DH(10)

C

DATA H / 275.,283.8,287.3,287.3,285.3,281.7,276.4,269.5,260.,243./

DATA DH / .44,.175,0.,-.1,-.18,-.265,-.345,-.475,-.85,-3. /
C

IF( P .LT. 187.5) THEN
H2SATH = 0.

ELSE SSM24500

* I = INT(P/10.) / 2 + 1

* H2SATH = H(I) + DH(I)*(P-20*I+20)

C

H2SATH = H(I)
END IF

END

SSM24300

SSM24400

BTU/LB (NBS REF H + 200)

was replaced by

+ DH(I) * (P - 20.0 * AINT( P * 0.05 ) )

FUNCTION QFLUX(TW,TF,P,HF) SSM24700

C

C PURPOSE: CALCULATE HYDROGEN BOILING HEAT FLUX
C

********************* SSM2
C INPUT:

C TW

C TF

C P

C HF

C

C OUTPUT:

= WALL TEMPERATURE, DEG R

= FLUID TEMPERATURE, DEG R

= FLUID PRESSURE, PSI

= FLUID ENTHALPY, BTU/LB
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C
C
C

C
C
C
C
C
C
C
C
C
C

QFLUX = HEAT FLUX TO FLUID, BTU/IN2-SEC

CALCS. HEAT FLUX FOR NUCLEATE, TRANSITION AND FILM BOILING REGIONS
BASEDON DATA FROMR-5598, FIG.26, PG. 90

THE PARAMETERVALUES USED HEREIS SLIGHTLY DIFFERENT FROMTHE ONES
GIVEN IN THE DOCUMENTPAGE 32 AND PAGE33.
I ASSUMETHAT THIS IS NOT TOO IMPORTANTBECAUSETHAT THE HEAT TRAN
IS ONLY A SMALL FACTION OF THE ENERGYFLOWOF THE SYSTEM.

* The replacement code assumes that the limits are intended, and
avoids repeatedly taking logarithms of limiting constants.

************************************************************************

rlimit(floor, ceiling; x) = AMAXI( floor, AMINI( ceiling, x) )
************************************************************************

HS = H2SATH(P)

IF ( TW .LT. 80.0 .OR. HF .ST. HS) THEN
QFLUX = 0.0

ELSE

* X=ALOGI0 (AMAXl (0.01, TW-TF) )

* Y=AMAXI((2.0+4.0*X-2.0*X**2)*AMINI(I.0,AMAXI(0.0, (100.0-TF)/40.0))

* * ,2.1 + X )

* QFLUX=I0.0**(AMAXI(0.01,AMINI(5.0,Y)))/5.184E+05

+

+

test = TW - TF

IF ( test .GT. 0.01 ) THEN

X = ALOGI0( test )

Y = AMAXI( 2.1 + X, 0.05 * (i.0 + X * (2.0 - X) ) *

rlimit( 0.0, 40.0, i00.0 - TF ) )

QFLUX = 1.0 /

XntoYn( 0.I, rlimit( 0.01, 5.0, Y ) * 1.929E-6 )
ELSE

QFLUX = 1.0

ENDIF SSM24800
ENDIF

END

THE SETPT( ) FUNCTION IS NOT USED

'h2vp.for':

FUNCTION H2VP(T)

C

C PURPOSE: CALCULATE HYDROGEN SATURATION PRESSURE
C

C IT IS USED FOR CALCULATING CAVITATION OF HYDROGEN PUMPS.
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C FOR A GIVEN TEMPERATURE, IF THELIQUID HYDROGEN PRESSURE

C IS LESS THAN THE VAPOR PRESSURE AT CERTAIN POINT THEN BUBBLES

C WILL START TO GROW. THIS HAPPENS ESPECIALLY ON THE FOLLOWING

C EDGE OF THE PUMP BLADE WHERE THE PRESSURE IS LOWEST.

C

C******ARGUMENTS******

INPUT:

T = TEMPERATURE, DEG R

C

C

C

C

C

C

OUTPUT:

H2VP = SATURATION PRESSURE, PSI

H2VP can be speeded up considerably by using an fgen linear

approximation. One function can be used for all three segments,

eliminating the tests for segment boundaries 29.0 and 32.976

DATA CA, CB, CC, CD, CE

+ 2.0062, -50.09708, 1.0044, 1.748495E-2, 1.317E-03

+ CF, CG /

+ -5.926E-5, 3.913E-6 /

/
/,

TK=T/I.8 replaced by
TK = T * .555555

+

IF( TK. LT. 32.976 ) THEN

ALOGPV = CA + CB/(TK + CC) + CD * TK

H2VP = XtoY( i0.0, ALOGPV )

IF(TK .GT. 29.0) THEN
tk29 = TK - 29.0

tk29sq = tk29 ** 2
H2VP = H2VP + tk29 *

( tk29sq * (CE + tk29sq * (CF + tk29sq * CG ) ) )
is faster than

PVAPOR=PVAPOR+CE*(TK-29.0)**3+CF*(TK-29.0)**5+CG*(TK-29.0)**7)

SSM24100

ELSE

H2VP = H2VP * 14.696

END IF

ELSE

H2VP = 0.

END IF

END

SSM24200

'oprime.for:

SUBROUTINE OPRIM0

* Initializes integrators for OPRIME
************************************************************************
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C

C

C

C

C

C

C

INTEGER Tstep

PARAMETER (NVOL=4, MAIN=6, MAXC=5)

PARAMETER (MAXIT=30, TOL= .0005)

PARAMETER ( Tstep = 0, TooBig = I.E20 )

LOGICAL FLAG, prpOK

DIMENSION P(MAXN), RHO(MAXN), RHOP(MAXN), U(MAXN), UP(MAXN),

$ H(MAXN), T(MAXN), TW(MAXN), D(MAXN),AHT(MAXN) ,

$ W(MAXN) , VOL(MAXN) , QC(MAXN) , QF(MAXN) , QB(MAXN) ,

$ QOUT (MAXN)

DIMENSION DW(MAXC) , DWP(MAXC) , R(MAXC), Z(MAXC)

Keep all local variables between calls

SAVE

DATA RHOV /9.693E-4/

DATA RHOVAL/9.693E-4/

DATA RHOP3 /.03944 /

DATA RHOSL /.0365 /

DATA HSL / -39.1 /

DATA HV/ 39.4 /

DATA HL / -50.0 /

DATA RLINE /6.331E-4/

DATA ZLINE / .02 /

DATA XLINE / 2563. /

DATA WPOVI / -2.2 /

DATA WPOV / -2.2 /

DATA WPOVP / 0.0 /

DATA FLAG / .TRUE.

DATA DWLINE/ 0.0 /

DATA DWLINP/ 0.0 /

DATA P1 / 103.2 /

/

DATA P /MAXN*I4.7 /, RHO /MAXN*4.69E-5/,

$ H /MAXN*II7.4 /, U /MAXN*83.6 /,

$ T /MAXN*540. /, TW /MAIN*540. /,

$ QF/MAXN*0.0 /, QB /MAXN*0.0 /,

$ DW/MAXC*0.0 /, DWP /MAXC*0.0 /

RHOP /MAXN*4.69E-5/,

UP /MAIN*83.6 /,

QC /MAIN*0.0/,

QOUT /MAIN*0.0/,

DATA D /0.0, 2"1.40, 1.45, 1.75, 0. /

DATA AHT/0.0, 40.25, 30.25, 155.9, 198., 0. /

DATA W /0.0, 1.13, .85, 4.4, 5.5, 0. /

DATA VOL/0.0, 2,12.35, 29.3, 27.8, 0. /

DATA R /0.0,

DATA Z /.020,

2".5E-4, I.E-4, -78.0E-4 /

2*.0065, .0080, .013 /

Statement function UNEWF deleted. It is only used once.

SSM50400

SSM50500

SSM50600

SSM50700

SSM50800
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C

C

CHGF(CHG,XNEW,OLD)=AMAXI(CHG,ABS( XNEW-OLD) / (ABS (OLD) +. 1

replaced by relaxation system.

))

OXHPF(RH )=AMAXI(.0149,.0149+.013*(RH -5.E-4)/.0389)

OXHPF(RH )=AMAXI(.0149,.0149 + .3342"(RH - 5.E-4) )

replaced by

************************************************************************

CALL imint0( WPOV, 178, -TooBig, .05 )

CALL unint0( WPOVP, 179 )

CALL imint0(P(1), 184, 37., TooBig )

CALL unintO( DWLINE, 185 )

CALL unint0(DW(1), 186 )

DO i0 I = 2, MAXN-I

CALL unint0(TW(I), 178+I )

CALL unint0(DW(I), 185+I )

CALL unintO(RHOP(I), 189+I )

CALL unintO(RHO(I) * (i. + U(I) ), 193+I )

I0 CONTINUE

RETURN

C

C

C

C

C

C

C

C

C

C

C

C

C

ENTRY OPRIME(P0,PC,RVALVE,DWINJ,DWVALV)
************************************************************************

THIS SUBROUTINE IS TO CALCULATE THE PRIME CHARACTERISTICS OF

THE FPOV AND OXID INJECTOR FOR FUEL PREBURNER. THIS SUBROUTINE IS

ONLY CALLED BY FUELF SUBROUTINE. THERE MUST BE A BIG DIFFERENCE BETWEEN

THE FPOV AND OPOV SET UP. THE OPOV USES A SIMPLIFIED VERSION OF THE

PRIMING FUNCTION.

THIS SUBROUTINE USES THE ITERATION TO FIND THE NEW STEADY STATE VALUES

FOR A GIVEN CONDITION.

THE INJECTOR IS DIVIDED INTO SIX NODES AND THE ITERATION IS TO FIND THE

ENERGY BALANCE AMONG THEM. OF THE SIX NODES, THE FIRST NODE IS THE

FPOV VALVE, AND THE LAST NODE IS THE INJECTOR OUTLET. THESE ARE USED AS

THE BOUNDARY CONDITIONS.

************************************************************************

C

C PRIME VALVE BUBBLE

C

WPOV = prlint( (RHOSL/RHOVAL - I.) * DWVALV, Tstep, 178)
,

• WPOV =< .05

IF ( FLAG ) THEN

X = i. - WPOV/WPOVI

HT = AMINI( I00., 100.+(X-.5)*(HV-100.)* 2.5 )

SSM51000

H(1) = AMINI(HT, (HV+.900/.100*(HV-HSL))-X*(HV-HSL)/.100) replaced by
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C

C

C

C

C

200

C

hvhsl = HV - HSL

H(1) = AMINI(HT, HV + hvhsl*(9.0 - 10.*X) )

X = (H(1) - HSL) / hvhsl

IF( X.LT. i. ) THEN

RHOVAL = I./(X/RHOV + (I. - X)/RHOSL )
ELSE

RHOVAL = RHOV * HV / H(1)
END IF

IF (WPOV .GT. -.001) THEN

The effect of the reset is hold WPOV output at 1.0, but

compute X above with a WPOV of .05 If this is right, it

should be recoded to look intentional.

WPOV = i.

CALL imint0( WPOV, 178, -TooBig, .05 )

WPOVP = pruint( DWVALV, Tstep, 179 )

IF( WPOVP .LT. .04 ) THEN
hlhsl = HL - HSL

H(1) = HSL + 25. * WPOVP * hlhsl

RHOVAL = RHOSL + (H(1) - HSL)/hlhsI*(RHOP3 - RHOSL)

ELSE

RHOVAL=RHOP3

H(1)=HL
FLAG = .FALSE.

ENDIF

ENDIF

ENDIF

SSM51100

SSM51200

H (MAXN) =H (MAXN-I)

P (MAXN) =PC

RHOP (1 )=RHOVAL

RHOP (MAXN) =RHOP (MAXN- 1 )

DO II0 I=2,MAXNrl

QC (I) =. 0227/D (I) **i. 8*OXHPF (RHO (I)) *AHT (I) *I. 5 replaced by

QC(I)=.03405/( D(I)* Xl0th(D(I), 8) ) * OXHPF(RHO(I))*AHT(I) M51300

TW(I) = pruint( - QOUT(I) /(W(I) * FGEN(22, I13+I, TW(I)) ),
+ Tstep, 178+I )

ii0 CONTINUE

BEGIN ITERATION LOOP

prpOK = .TRUE.

DO 310 ITER = i, mxopit

P1 = trlint( XLINE*(DWLINP - DWP(1)*RHOP3/RHOVAL),

+ Tstep, 184 )
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C

C

P(1) = relax( prpOK, PI, P(1), 12 )

DWLINP = trflow( DWLINE, ZLINE, -RLINE/RHOP3, P0 - P(1), 185 )
IF( RHOVAL .LT. I.E-3 ) THEN

DWP(1) = GFLOW(P(1), P(2), p(1)/RHOVAL, i., 1.4) /
Xl0th( 772.8*RVALVE, 5)

SSM51500
ELSE

DWP(1) = trflow(DW(1), Z(1), -RVALVE/RHOVAL, P(1)-P(2) , 186 )

ENDIF

DO 300 I = 2, MAXN-I

J=I-i
DWNEW = trflow(DW(I), Z(I), -R(I)/RHOP(I), P(I)-P(I+l),

185 + I )
+

IF( I.LT.MAXN-I ) THEN

DWP (I) =DWNEW SSM51600
ELSE

DWP(I)=.5*( DWP(I)+ DWNEW )

ENDIF
RHOP(I) = truint( (DWP(J) - DWP(I) ) / VOL(I), Tstep, 189+I )

DWIN = recpos(DWP(J) ) - recpos(DWP(I) )

HIM = recpos(DWP(J) ) * H(I-I) - recneg(DWP(I) ) * H(I+I)

DWOUT = recpos(DWP(I) ) - recneg(DWP(J) )

Replaced the reference to the statement function UNEWF with:

UP(I) = truint(QOUT(I) + HIN -
+ DWOUT,P (I) / (RHOP (1) "9336 •*VOL (I)) +

+ DWIN/VOL(I), Tstep, 193+I )

+

+

+

3OO

H(I) = UP(I) + p(I)/(RHOP(I) * 9336.)

CALL o2pt(H(I), RHOP(I), I+4, PNEW, T(1) )

P(1) = relax( prpOK, PNEW, P(I), ll+I )

DWA = .5*( ABS(DWP(I) ) + ABS(DWP(J) ) )

QF(I) = QC(I) * XtoY(T(I)/TW(I), 0.47) * XlOth( DWA, 8) *

(TW(I) - T(I) )

QB(I) = O. •
HG = AMINI(28.7 + 2.13*ALOG(P(I) ), 38.6 - .00762"P(I) )

IF (H(1) .LT. HG)

QB(I) = AMIMI( DWA*(HG - H(I) ),
OXBOIL(TW(I), T(I) ) * AHT(I) )

QOUT(I) = QF(I) + QB(I)

CONTINUE

RHOP (MAXN) =RHOP (MAXM- i)

IF ( prpOK ) GO TO 400

310 CONTINUE

SSM50900

SSM51700

SSM51800
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C

C

C

C

C

Convergence failure if do loop is completed

CALL wrchg( 12, 16, "OPROP convergence failure." )

400 CONTINUE

Formatted output to unit 6 was deleted.

DO 500 I=2,MAXN-I

DW(I) = step( 185 + I )

RHO(I) = step( 189 + I )

U(I) = step( 193 + I )
500 CONTINUE

SSM52300

DW(1) = step( 186 )

Pl = step( 184 )

DWLINE = step( 185 )

DWINJ = DW(MAXC)

DWVALV = DW(1)

END

SSM52400

FUNCTION OXBOIL(TW, T)

C

C THIS FUNCTION IS THE BOILING HEAT TRANSFER OF THE OXIDIZER INSIDE THE

C INJECTOR. THE OUTPUT IS THE HEAT TRANSFER RATE BTU/IN**2 FROM THE WALL
C TO OXID.

C

C

PARAMETER ( twlo = 10.**.4217, twhi = 10.*,1.135,

+ oxb01 = 1.929E-6 * I0.** -.29, tenl = 10.*'1.75 )

X=ALOGI0(AMAXI(.01,TW-T))

Y=AMAXI(5.15-Z.3*(X-I.)**2,1.75+I.02*X)

OXBOIL=I0.**Y*I.929E-6 is faster when reduced to

twmt = TW - T

IF ( twmt .LE. .01 ) THEN
OXBOIL = oxb01

ELSEIF ( twlo .LE. twmt .AND. twmt .LE. twhi ) THEN

OXBOIL = tenl * XtoY( twmt, 1.02 )
ELSE

X = ALOGI0( twmt )

OXBOIL = XtoY( I0., 5.15 - 2.3 * (X - I)*'2 )
ENDIF

END
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'trbtrq.for':

FUNCTIONTRBTQ0

C
C FUNCTION TRBTRQ(S,UC,T, PI,PRII,NCH, IFLG,CP, DW,G)
C

C PURPOSE: COMPUTE TURBINE TORQUE AS A FUNCITON OF INPUTS
C

C THE EQUATIONS AND FUNCTION TABLES USED ARE DESCRIBED IN PAGE

C 37-38 (ANALOG SIMULATION) OF THE DOCUMENT.
C ARE INCOMPLETE.

C

C******ARGUMENTS******

C INPUT:

C S = SPEED, RAD/SEC

C T = TEMPERATURE, DEG R

C PI = NOT USED eliminated

c PRII = PRESSURE RATIO, OUT/IN

C NCH = TURBINE DESIGNATION, I=LPFT, 2=HPFT, 4=HPOT
C IFLG = FLAG=0 FOR INPUT MODE eliminated

C CP = SPECIFIC HEAT AT CONSTANT PRESSURE, BTU/LBM-DEG R

C DW = FLOWRATE, LB/SEC
C G = GAMMA

C

C OUTPUT:

C UC = ISENTROPIC VELOCITY RATIO

C TRBTRQ = TURBINE TORQUE
C

C

C

SSM37300

THE EQUATIONS IN PAGE 24

SSM37400

DIMENSION NFG(4),D(4)

PARAMETER ( const = 12. * 0.1446 )

DATA NFG/38,39,0,40/

DATA D/7.4,10.19,6.0,I0.09/

CALL fgset( 38 )

CALL fgset( 39 )

CALL fgset( 40 )

TRBTQ0 = 0.0

RETURN

Next to make TRBTQ0 a function so the

entry TRBTRQ will be one.

ENTRY TRBTRQ(S, UC, T, PRII, NCH, CP, DW, G)

C

DH = AMAXI( 1.0E-04, CP*T*(I. - XTOY( PRII, (S - l.)/S ) ) )

sqrtdh = Xl0th( DH, 5 )

SSM37500
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UC = D(NCH)*S / ( 5371.2 * sqrtdh )

EF = fgen(NFG(NCH), 129 + NCH, UC)

TRBTRQ = const * EF * DW * sqrtdh * D(NCH)

RETURN

END
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APPENDIX B: SUPPORTINGINPUT DATA FILES

This appendix shows the contents of input data files
supporting the report version of the SSMEsimulation.

'ssme.run' is an edit-and-run file of input parameters
defining the run. The top line is a run identifying header, which
is reproduced on the output file.

BALDATAFILE FROMRKDYN 10/84 MODFOR FUEL2/NEW PROP,O2PROP,STARTDATA
RESTRT RESUME PERTB iwrite
false false false I00

DT DPR DPL DPUN TPUN TSTOP
0. 0002 0.01 .00567 15. 40. 4 .00

TPA PCMALF DTVC DTPR DTCVP DTTR
40.0 0. . 008 .005 . 0035 . 015

m

DTFMRE DTFMC DTMRFC DTFMRA DTMCX DTLM

.012 .013 .017 .001 .02 .006

NON ZRO MO DETS T PCTPERT TO PEN TPERT DTPERT

0 0 0. 116.9999 i00. i00.

rxfact (i) rxfact (2) rxfact (3) rxfact (4) rxfact (5) rxfact (6)
1.0 1.0 1.0 1.0 1.0 1.0

rxfact (7) rxfact (8) rxfact (9) rxfact (I0) rxfact (ii) rxfact (12)
1.0 1.0 1.0 1.0 1.0 1.0

rxfact (13) rxfact (14) rxfact (15) rxfact (16)
1.0 1.0 1.0 1.0

m

AHTI (4) AHTI (5) AHTI (6) AHTI (12) CDPFPI CTQFPI

1.4049E 04 3.8770E 03 2.6510E 03 3.4395E 04 1.0000E 00 1.0000E 00

CDPFP2 CTQFP2 CTQFTI CDPOPI CTQOPI CDPOP2

1.0000E 00 1.0000E 00 8.9498E-01 1.0000E O0 1.0000E 00 1.0000E 00

CTQOP2 CDPOP3 CTQOP3 CTQOTI2 FT2 S AFT2

1.0000E 00 1.0000E 00 1.0000E 00 1.0000E 00 8.7225E-01 9.4153E 00

CTQFT2 EOT2S AOT2 CTQOT2 AFI EFFCM

1.0072E+00 9.3861E-01 2.9433E+00 I.O000E O0 2.4725E+01 1.0000E+00

ACN THRSTC AHTC4 AHTC5 AHTC6 ABMOV

8.1810E+01 1.5626E+02 2.7770E+03 2.0200E+02 2.4600E+02 1.4460E+01
......... _ ........ m ......
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ABOPO ABFPO ABCCV ABMFV DMOT2 DMFTI
3.7982E-01 2.4034E 00 6.8180E 00 1.5590E 01 1.0090E 01 6.6300E 00

DMFT2 CP(2) CP(3) ANOTI BNOTI CNOTI
1.0190E+01 1.9595E-06 1.2981E-04 4.1430E-03 1.6814E-04 1.9595E-06

AOTI BOTI R(1) R(3) R(4) R(5)
1.0998E 00 1.6443E-01 1.2981E-04 7.0952E-06 7.2660E-05 2.4327E-03

m

R(6) R(7) R(8) R(9) R(IO) R(II)
1.3170E-03 3.0090E-04 4.0210E-06 7.7691E-05 5.1824E-05 4.8890E-05

R(12) R(I3) RFCOD RFMCF RFMCO RACV
1.3370E-04 4.4319E-04 6.7547E-06 5.3910E-05 9.9706E-05 1.7584E-01

RBAF RPFS RSFS RFPFI ROPFI RITN

9.4648E-04 1.1741E-02 5.5757E-03 1.3360E-04 5.3980E-04 I.I030E-03

RMCI RFTIV ROS RFPOI ROPOI RFPOL

6.8150E-05 2.0600E-04 4.1367E-07 7.9780E-03 5.6486E-02 6.3310E-04

ROPOL RFT2C ,ROP2C ROI ROCOD RMOVL

3.8800E-03 4.9240E-01 7.1738E+00 3.5000E-05 1.1683E-06 3.1148E-05

ROP3C ROTIF QHT412 TFACT

3.9354E+01 2.1890E-04 8.2044E-02 1.0110E+00

ELENF(1) ELENF(2) ELENF(3) ELENF(4) ELENF(5) ELENF(6)
43.0 72.0 82.0 90.0 40.0 0.0

ZFL(1) ZFL(2) ZFL(3) ZFL(4) ZFL(5) ZFL(3)

9.159E-4 3.003E-3 3.163E-3 1.928E-3 8.520E-4 0.

ZFC(1) ZFC(2) ZFC(3) ZFC(4) ZFC(5) ZFC(6)
0.0 9.615E-4 2.191E-3 1.129E-3 8.944E-4 6.213E-4

RIF(1) RIF(2) RIF(3) RIF(4) RIF(5) RIF(6)
1.026E-5 3.379E-5 3.027E-5 2.766E-5 2.092E-5 0.0

DHYD(1) DEHYD(2) DEHYD(3) DEHYD(4) DEHYD(5) DEHYD(6)
ii.0 6.0 3.51 4.73 2.16 1.53

DEHYD(7) DEHYD(8) DEHYD(9) DEHYD(IO) DEHYD(II) DEHYD(12)
2.455 3.6 2.637 3.68 2.49 7.17

truncated - full file on diskette
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The function generation tables are contained in the editable file
'ssme.dat':

No: 24 Pts: 2

0.0 14.7
m

No : 30 Pts : 4

0.

i000.

No: 22 Pts: 3

0. .02

No: 9 Pts: 4

0.

40.

No. Pts

7 4

92

No. Pts

i0 2

No. Pts

51 13

.0358

.0410
m

.0370

.000

NO. Pts

52 5

2.102

No. Pts

1.4 275.

.81

CPM VS TEMP

I000.

PAvs TIME

I0.0 14.7

LPFT NORM AREA VS ETAFTI

1.065

.12

FUEL TANK PRESSURE VS TIME

2.3 46.

300. 1.005

2000. .12

46.

46.

FUEL TANK ENTHALPY VS TIME

0 92 1.65

i0 92

MFV DIFFUSER THERMAL FACTOR VS TIME

0 • 1 • i00. 1 •

DELTA-P/RHO*N**2 VS DW/RHO*N FOR LPFP

-26.1 •0467 -17.4 •0397

0.0 •0335 I0. •0380

27. 8900 .04100 32. 3600 .0400

42.50 .0350 50.0 .0225
m-

i00. 0.

TORQ/RHO*N**2 VS DW/RHO*N FOR LPFP
0. 1.080 31.00 1.88

60.0 2.720 80.00 0.00

DELTA-P/RHO*N**2 VS DW/RHO*N FOR HPFP

256
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92 1.95

-8.7

20.

37.8

55.0

38.17



53

• 1760

.1730

• 1630

0.0

13

No. Pts

54 I0

i. 912

3.018

5.50

No. Pts

3 6

No. Pts

5 2

No. Pts

37 4

-11.3 .229 -7.5 .195

0.00 .1630 4.00 .1700

i0.00 .1730 12.00 .1690

16.00 .1480 20.00 .1150

i00.0 -.I00

TORQ/RHO*N**2 VS DW/RHO*N FOR HPFP

-3.8

8.00

14.00

30.00

0. .300 4.00 1.116 8.00

10.00 2.319 12.00 2.672 14.00

16.00 3.178 20.00 3.527 30.00

i00.00 5.500

MAIN CHAMBER PRIMING FUNCTION

O. 0.

46.2 i.

OXID TANK ENTHALPY VS TIME

0. -56.56 i00. -56.56

55.

OXID TANK PRESSURE VS TIME

0. 55. 2.3

55.55. 40.

OX PREVALVE R VS TIME

44 2 0.0 i. 516E-6 I0.0 I. 516E-6

DELTA-P/RHO*N**2 VS DW/RHO*N FOR LPOP

45 12 -40. .0530 0.0 .0408

.0417 I0. .0413 15. .0398

.0379 25. .03610 30.0 .03400

.03160 40.0 .02850 45.0 .0244

0.0195

0.00 1.700

TORQ/RHO*N**2 VS DW/RHO*N FOR LPOP
46 12 -40.0 1.7
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1.40

1.1250

1.510

1.890

i0.0

25.

40.

DELTA-P/RHO*N**2 VS
47 14 O.

.0143 4.0

.0140

.01329

.01109

TORQ/RHO*N**2 VS
48 14 0.

m

.1182 4.0

.1327 6.50

.1414 8.0835
m

.1415 9.3598

DELTA-P/RHO*N**2 VS
49 13 0.

.00884 .30

.00974 .60

.00944 .90

.00781 1.5

1.00

1.254

1.635

DW/RHO*N FOR HPOP
.01418

.01426

6.50 .01386

8.0835 .01266

9.3598 .01025

DW/RHO*N FOR HPOP

file

DW/RHO*N

.ii01

.1216

.1361

.1439

.1390

FOR PBP

.0086

.00902

.01012

.00893

.00545

15.00

30.

45.

2.0

5.00

7.0

8.509

12.00

2.0

5.00

7.0

8.509

12.0

.i

.40

.70

1.0

is truncated - full file

1.00

1.380

1.764

.01428

.01417

.01364

0.01194

0.00504

.1156

.1270

.1388

.1435

.1052

.0087

.0093

.00987

0.0084

on diskette

20.0

3.0

6.00

7.50

8.9344

3.00

6.0

7.5

8.9344

.2

.50

.80

i.i
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The data for output is selected by editing the 'select.out'

Study Run
0 ITS( PFSP )
0 ITS( P10P )
0 ITS( PIIP )
0 ITS( PI2P )
0 ITS( P4P )
0 ITS( P13P )
0 ITS( P5P )
0 ITS( P6P )

Identifying header line.

1 ABMOV
1 ACCV
1 AFPOV
1 AGC
1 AHPV
1 AIN
1 AMFV
1 AMOV
1 AN
1 AOPOV
1 APV
1 ATH
1 DATA
1 DDWI

1 XMFV
1 XMOV
1 XOPOV
1 YCCCV
1 YCFPOV
1 YCMFV
1 YCMOV
1 YCOPOV
1 ZCOM
1 ZFIG
1 ZOIN
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