NASA-TM-108657

SSTAC/ARTS REVIEW OF THE DRAFT INTEGRATED TECHNOLOGY PLAN (ITP)

Volume I: June 24-25

Plenary Session

Briefings from the June 24-28, 1991 Conference McLean, Virginia

National Aeronautics and Space Administration Office of Aeronautics, Exploration and Technology Washington, D.C. 20546

(NASA-TM-108651)SSTAC/ARTS REVIEWN93-20329OF THE DRAFT INTEGRATED TECHNOLOGYPLAN (ITP).VOLUME 1: PLENARYSESSION (NASA)306 pUnclas

G3/81 015060a

. • •

SSTAC/ARTS REVIEW OF THE DRAFT ITP McLean, Virginia June 24-28, 1991

Volume I: June 24-25

Plenary Session

TABLE OF CONTENTS

- A. SSTAC/ARTS Conference Agenda
- B. Integrated Technology Plan Overview -- Gregory M. Reck
- C. Space Exploration Initiative Strategy & Technology Needs -- Lewis Peach
- D. Office of Space Science and Applications: Strategic Planning and Technology Issues -- Dr. Joseph K. Alexander
- E. NASA Office of Space Flight: Mission User Technology Needs & Applications -- Ronald J. Harris
- F. Office of Space Operations Plans and Technology Needs -- Hugh S. Fosque
- G. Integrated Technology Plan External Review -- Joseph F. Shea
- H. Integrated Technology Plan Overview -- Gregory M. Reck
- I. Integrated Technology Plan User Accomodation Summary -- John C. Mankins
- J. Integrated Technology Plan: Science Thrust -- Wayne R. Hudson
- K. Exploration Technology Thrust Summary -- John C. Mankins
- L. Transportation Focused Technology Program -- David R. Stone
- M. Space Platforms Focused Technology Program -- Dr. Judith H. Ambrus
- N. Integrated Technology Plan: Operations Thrust -- Geoff Giffin
- O. Information Sciences & Human Factors Strategic Plan -- Lee Holcomb
- P. Aerothermodynamics -- Dr. Kristin A. Hessenius

- Q. Materials & Structures Overview -- Samuel L. Venneri
- R. Propulsion and Power -- Earl E. VanLandingham
- S. In-Space Technology Experiments Program -- Jon Pyle
- T. University Programs Overview -- Gregory M. Reck
- U. Department of Energy -- Dr. Tom Finn
- V. Technology Development for America's Future Competitiveness -- John M. Swihart
- W. List of Attendees

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM EXTERNAL ITP REVIEW

. AGENDA DAY I (6/24/91) 8:30 AM Welcome and Overview A. Aldrich (OAET) 9:00 AM Workshop Logistics G. Reck (OAET/RS) 9:30 AM Space Exploration Initiative Plans and M. Craig (OAET/RZ) Technology Needs 10:15 AM BREAK 10:30 AM NASA Office of Space Science and J. Alexander/Panel (OSSA) Applications Plans and Technology Needs 12:00 NOON LUNCH 1:00 PM NASA Office of Space Flight Plans R. Harris/Panel (OSF) and Technology Needs 2:30 PM NASA Office of Space Operations C. Force (OSO) Plans and Technology Needs 3:00 PM BREAK 3:15 PM Panel Discussion Chair: J. Shea/Panei (SSTAC) 5:00 PM CLOSE 6:00 PM RECEPTION

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM EXTERNAL ITP REVIEW

AGENDA DAY II (6/25/91)				
8:30 AM	Integrated Technology Planning Overview	G. Reck (OAET/RS)		
10:30 AM	BREAK			
10:45 AM	Thrust Summaries I: Space Science and Planetary Surface Exploration	W. Hudson (RS) J. Mankins (RS)		
12:00 NOON	LUNCH			
1:00 PM	Thrust Summaries II: Transportation, Space Platforms and Operations	D. Stone (RS) J. Ambrus (RS) G. Giffin (RS)		
2:30 PM	BREAK			
2:45 PM	R&T Base Summaries: Information Sciences & Human Factors, Aerodynamics, Materials and Structures, Power & Propulsion, Flight Programs, and Systems Analysis & University Programs	L. Holcomb (RC K. Hessenius (RF) S. Venneri (RM) E. VanLandingham (RP J. Levine (RX) G. Reck (RS)		
5:00 PM	CLOSE			

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM EXTERNAL ITP REVIEW

AGENDA Day III (6/26/91)					
8:30 AM	NASA Administrator's Perspective and Discussion	R. Truly (NASA)			
9:30 AM	BREAK				
9:45 AM	Technology Working Sessions — Computing, Data, Communications — Power and Thermai — Materials and Structures — Propulsion — Human Support — Aerothermodynamics — Automation & Robotics — Controls, Sensors & Microdevices	All			
12:00 NOON	LUNCH				
1:00 PM	Technology Working Sessions (cont.)	All			
2:45 PM	BREAK				
3:00 PM	Technology Working Sessions (cont.)	All			
5:00 PM	CLOSE				
6:00 PM	BANQUET	J. R. Thompson (invited)			

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM EXTERNAL ITP REVIEW

AGENDA DAY IV (6/27/91)				
8:30 AM	Technology Working Sessions 	All		
10:15 AM	BREAK			
10:30 AM	Technology Working Sessions (cont.)	All		
12:00 NOON	LUNCH			
1:00 PM	External Review Team Working Meetings - Specifics TBD	All		
2:45 PM	BREAK			
3:00 PM	External Review Team Working Meetings - Specifics TBD (continued)	All		
5:00 PM	CLOSE			

INTEGRATED	TECHNOLOGY PLAN	FOR	THE CIVIL SPACE PROGRAM
	EXTERNAL	ITP	REVIEW

0AS7	AGENDA DAY V (6/28/91)				
8:30 AM	External Review Team Working Meetings - Specifics TBD	All			
10:15 AM	BREAK				
10:30 AM	External Review Team Working Meetings - Specifics TBD (continued)	All			
12:00 NOON	LUNCH				
1:00 PM	External Review Team Working Meetings - Specifics TBD (continued)	All			
2:45 PM	BREAK				
3:00 PM	External Review Team Working Meetings - Specifics TBD (continued)	All			
5:00 PM	CLOSE				

	INTEGRATED TECHNOLOGY PLAN OVERVIEW
	Presentation to: THE ITP EXTERNAL REVIEW TEAM
-0-4-27-	Gregory M. Reck Director for Space Technology Office of Aeronautics, Exploration and Technology June 24, 1991

NASA ACTION PLAN

ADVISORY COMMITTEE ON THE FUTURE OF THE U.S. SPACE PROGRAM

RECOMMENDATION 8:

That NASA, in concert with the Office of Management and Budget and appropriate Congressional committees, establish an augmented and reasonably stable share of NASA's total budget that is allocated to advanced technology development. A two- to three-fold enhancement of the current modest budget seems not unreasonable.

In addition, we recommend that an agency-wide technology plan be developed with inputs from the Associate Administrators responsible for the major development programs, and that NASA utilize an expert, outside review process, managed from headquarters, to assist in the allocation of technology funds.

NASA ADMINISTRATOR ACTION:

Codes R/M/S/O/AA for Exploration (Code R lead): Provide an integrated agency-wide technology development plan (using the FY 91 appropriated budget as the base, and based on two- and three-fold budget increase); due at macro level 6/91; refined plan 11/91

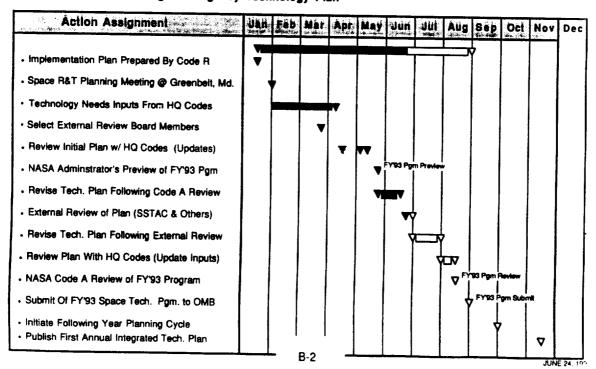
RECOMMENDATION 7:

That Technology Be Pursued Which Will Enable A Permanent, Possibly Man-Tended Outpost To Be Established On The Moon For The Purposes of Exploration And For The Development Of The Experience Base Required For The Eventual Human Exploration Of Mars.

That NASA Should Initiate Studies Of Robotic Precursor Missions and Lunar Outposts.

NASA ADMINISTRATOR ACTION: Include Technology Aspects in The Technology Planning Action Responding to Recommendation 8 INTEGRATED TECHNOLOGY PLAN PROCESS

-OAZ-


- INTERNAL NEEDS
 - AGENCY PROGRAM OFFICES REQUESTED TO DEFINE AND PRIORITIZE MISSION TECHNOLOGY NEEDS AS RECOMMENDED BY AUGUSTINE
- EXTERNAL NEEDS
 - SSTAC/ARTS MEMBERS REQUESTED TO PROVIDE INPUTS ON OVERALL CIVIL SPACE TECHNOLOGY NEEDS
 - COMSTAC RECOMMENDATIONS ON ELVS, COMMUNICATIONS ADVISORY GROUP RECOMMENDATIONS AND OTHER KEY TECHNOLOGY ASSESSMENTS UNDER EVALUATION
- DEVELOPMENT OF INTEGRATED TECHNOLOGY PLAN
 - PLANNING TEAMS FORMED TO REEXAMINE EXISTING TECHNOLOGY PLANS, ASSESS INCOMING USER OFFICE TECHNOLOGY NEEDS, AND PREPARE TECHNOLOGY PLANS
- EXTERNAL REVIEW
 - SSTAC/ARTS WILL CONDUCT REVIEW WITH PARTICIPATION BY ASEB, OTHER EXTERNAL EXPERTS IN JUNE
- STRUCTURE FOR ANNUAL PLANNING AND REVIEW
 PROCESS ESTABLISHED

SBF-0169

NASA ACTION PLAN

ADVISORY COMMITTEE ON THE FUTURE OF THE U.S. SPACE PROGRAM

Recommendation 8: Integrated Agency Technology Plan

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM EXTERNAL REVIEW APPROACH

OBJECTIVES

"NASA (SHOULD) UTILIZE AN EXPERT, OUTSIDE REVIEW PROCESS, MANAGED FROM HEADQUARTERS, TO ASSIST IN THE ALLOCATION OF TECHNOLOGY FUNDS"

- REVIEW THE PROCESS USED FOR DEVELOPING THE INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM
- ASSESS THE TECHNICAL CONTENT OF THE PROPOSED ITP
 - IDENTIFY KEY TECHNOLOGY AREAS THAT NEED TO BE ADDRESSED
 - FIRST-ORDER EVALUATION OF THE ESTIMATES OF "COST FOR ACCOMPLISHMENT"
 - RECOMMEND ADJUSTMENTS IN PRIORITIES AND RESOURCE PLANNING
- ASSESS THE ACCOMMODATION OF USER NEEDS
 - EVALUATE STRATEGIC AND NEAR-TERM TECHNOLOGY PLANS AGAINST TECHNOLOGY NEEDS OF FUTURE MISSIONS
 - RECOMMEND POTENTIAL CHANGES IN THE PHASING OF NEW PROGRAMS TO BETTER MEET TECHNOLOGY NEEDS

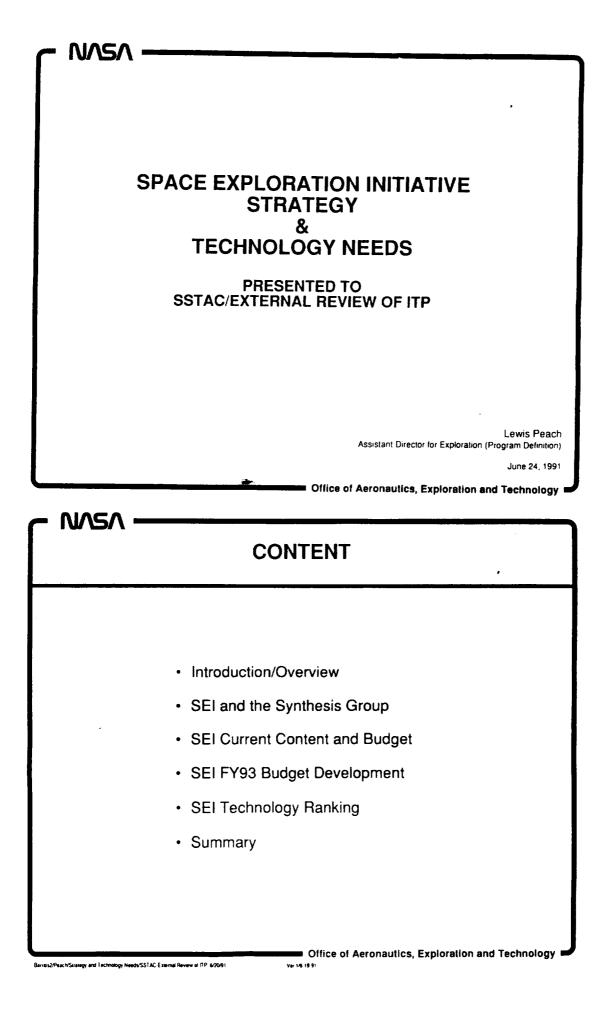
MAY 13, 1991 JCM-74F1

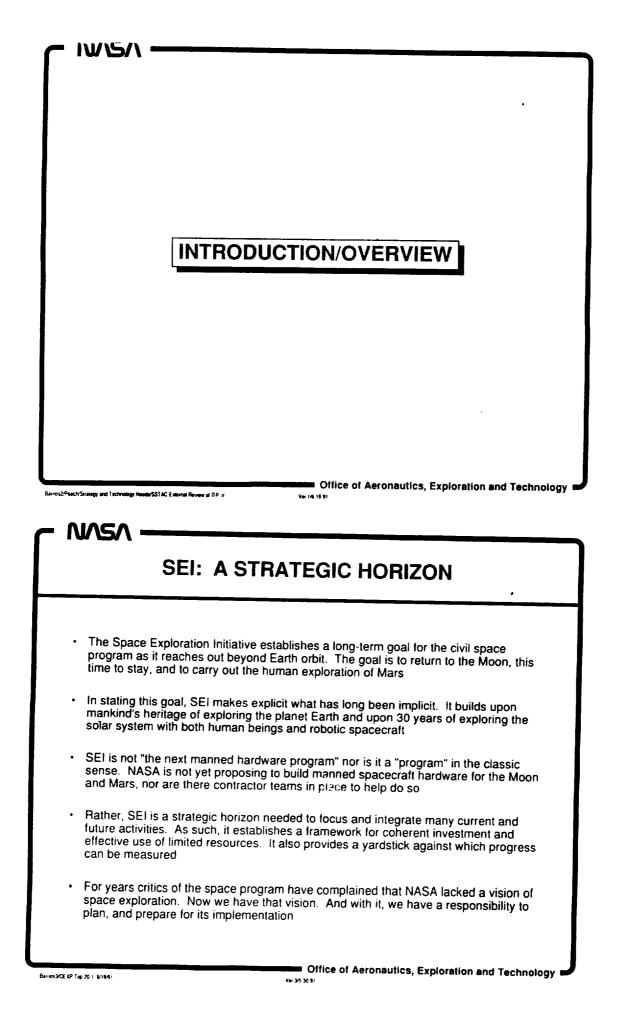
NASA ACTION PLAN ADVISORY COMMITTEE ON THE FUTURE OF THE U.S. SPACE PROGRAM

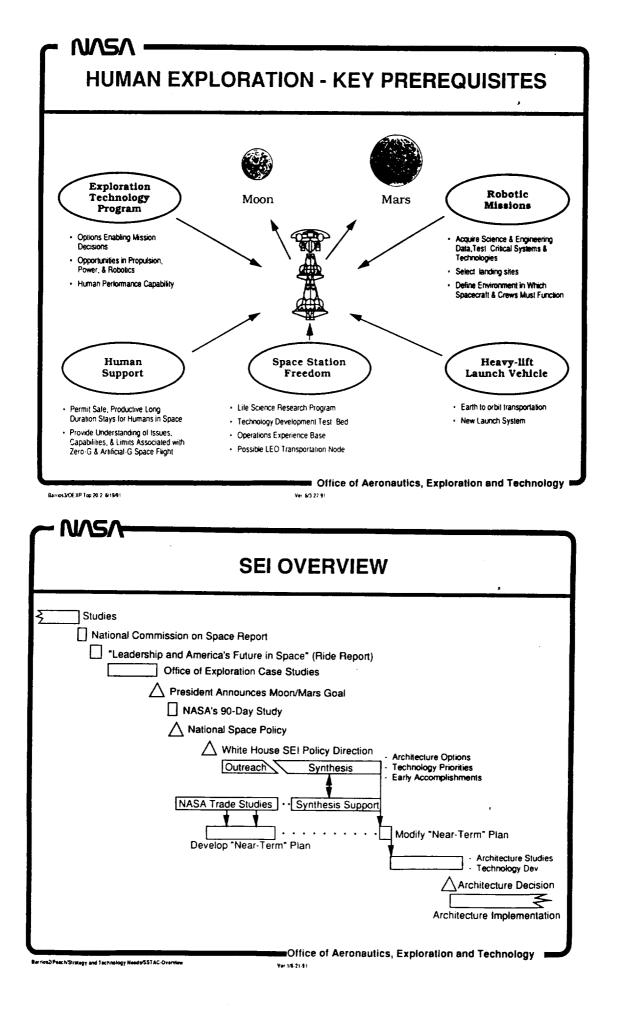
INTEGRATED TECHNOLOGY PLAN EXTERNAL REVIEW

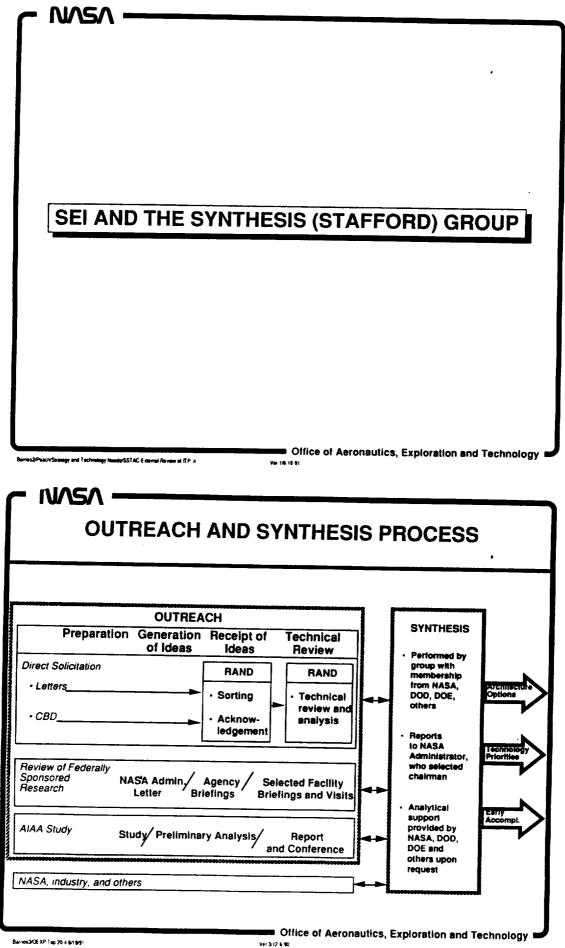
PRINCIPAL REVIEWERS

- SPACE SYSTEMS & TECHNOLOGY ADVISORY COMMITTEE (SSTAC)
- SSTAC AEROSPACE R&T SUBCOMMITTEE (ARTS)
- NATIONAL RESEARCH COUNCIL AERONAUTICS AND SPACE ENGINEERING BOARD (INVITED BY SSTAC)


SELECTED INDIVIDUALS FROM OTHER GROUPS


- SPACE SCIENCE AND APPLICATIONS ADVISORY COMMITTEE
- AEROSPACE MEDICINE ADVISORY COMMITTEE
- NATIONAL RESEARCH COUNCIL SPACE STUDIES BOARD
- DEPARTMENT OF DEFENSE
- OTHER GOVERNMENT AGENCIES (DEPARTMENTS OF TRANSPORTATION, COMMERCE, ENERGY, AND DEFENSE)
- NATIONAL SPACE COUNCIL STAFF
- AEROSPACE INDUSTRIES ASSOCIATION (AIA)


ITP REVIEW MEMBERS


DISCIPLINE GROUPS	SSTAC Members	ARTS MEMBERS	ASEB	INDUSTRY/UNIV	GOV'T/COI	MITTEE
OTHER	Shee	Young	Beggs Titland	Bangsund-AIA Winkler-AIA Swihart-NCAT	DOD Slewert Sevin Granato Bolino	DOC Pace Schneider SSR
AEROTHERMODYNAMICS	Bogdonoff	Bunling		Masek Lordi	Russel	<u>SSB</u> Landgrebe Hart
POWER	Rose	Gerreis Mullin Schoenfeld A. Hertzberg Massie			DOT Rappaport Scott SSAAC Holimann	DOE Finn
PROPULSION	Constantina Colladay	Mosler Weiss Sackheim Weidon Smith	F. Moore	Woodcock Kerrebrock-MIT Fuller	AMAC Holloway Nohier	
MATERIALS & Structures	Mar Norra	Woods Hoggett	Hedgepeth	Geribotti McGovern		
INFORMATION SCIENCES Communications	Dorfman			Barberis Golding		
Info Sci/Deta		Hubberth		Palermo		
HTSC		Gamota Yesensky				
Sensors	Janni			Hinkley Guenther		
A&R Systems		Dety	Cannon			
Controls	Freser	Rediess		Karas		
Photonics	Weiss			 		
HUMAN SYSTEMS	O'Nee!		McRuer	Malone Overmyer Spuriock Brouiliet		

6/21/9

Barnos3/OE XP Top 20 4 6/19/91

SYNTHESIS STATUS

- Report delivered to Vice President Quayle and NASA Administrator on June 11, 1991
- · Four distinct "architectures" (approaches) for SEI
- Fourteen long-lead critical technologies identified . . .
- Assumes major role of lunar phase is test-bed for Mars systems
- Supports Space Station Freedom as essential for life science research
- Initial assessment of Report in progress
 - Strip out top level recommendations
 - Finalize study/work plans
- Formal study to be initiated with Codes and Centers July 1-2, 1991

Men Office of Aeronautics, Exploration and Technology

NV2V -

Peach/Siralagy and Technology Needs/SSTAC External Review of ITP 6/21/91

SYNTHESIS GROUP REPORT ARCHITECTURES

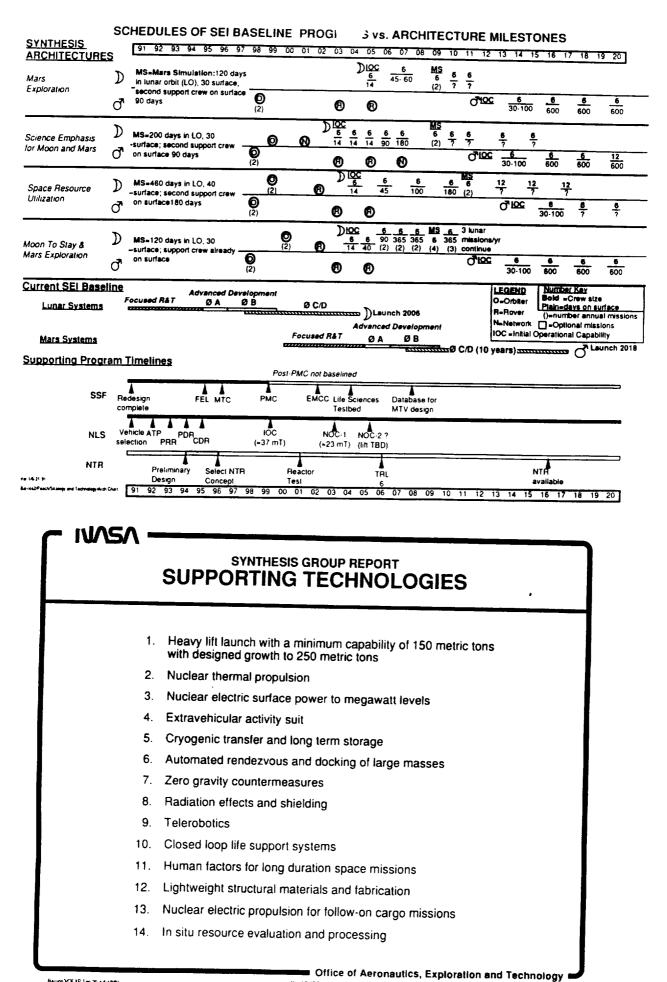
Pursuant to its charter, the Synthesis Group, chaired by retired USAF Lt. General Thomas Stafford, presented four alternative architectures for SEI. The Group defined an architecture as "both a set of objectives ordered to achieve an overall capability and the sequential series of missions (including specific technical activities) to implement these objectives."

Mars Exploration

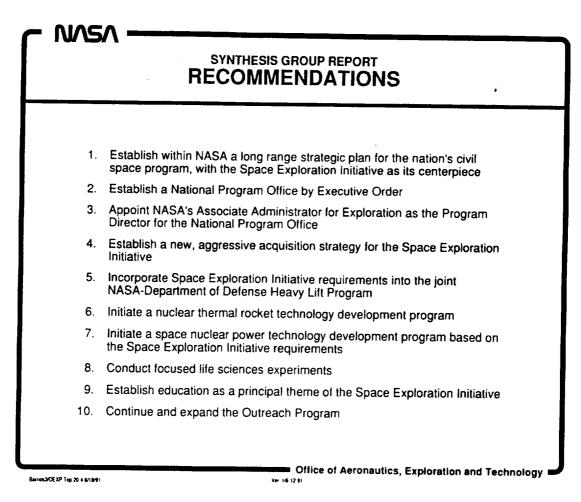
- emphasis on Mars, lunar activities simply support Mars missions

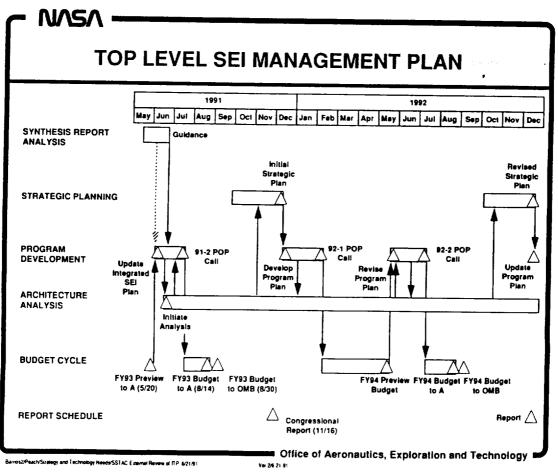
· Science Emphasis for the Moon and Mars

exploration of both Moon and Mars, using the Moon as an observation platform


The Moon to stay and Mars Exploration

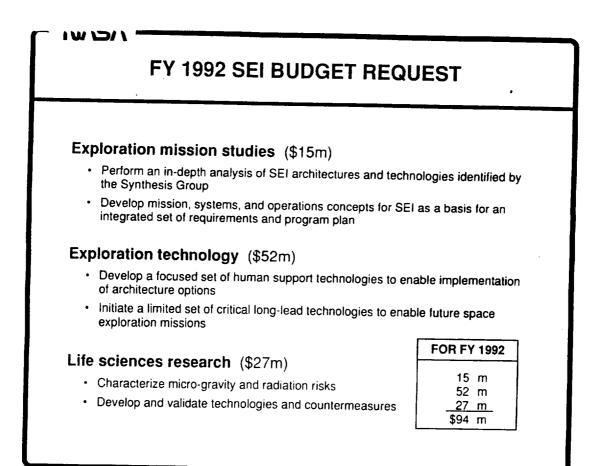
emphasis on a human presence on the Moon, with smaller crews engaged in exploration and science at Mars


Space Resource Utilization


emphasis on developing lunar resources for energy on Earth and for launch vehicle propellants

Barnos3/QE XP 1op 20 4 6/19/91

Ver 1/6 12 91

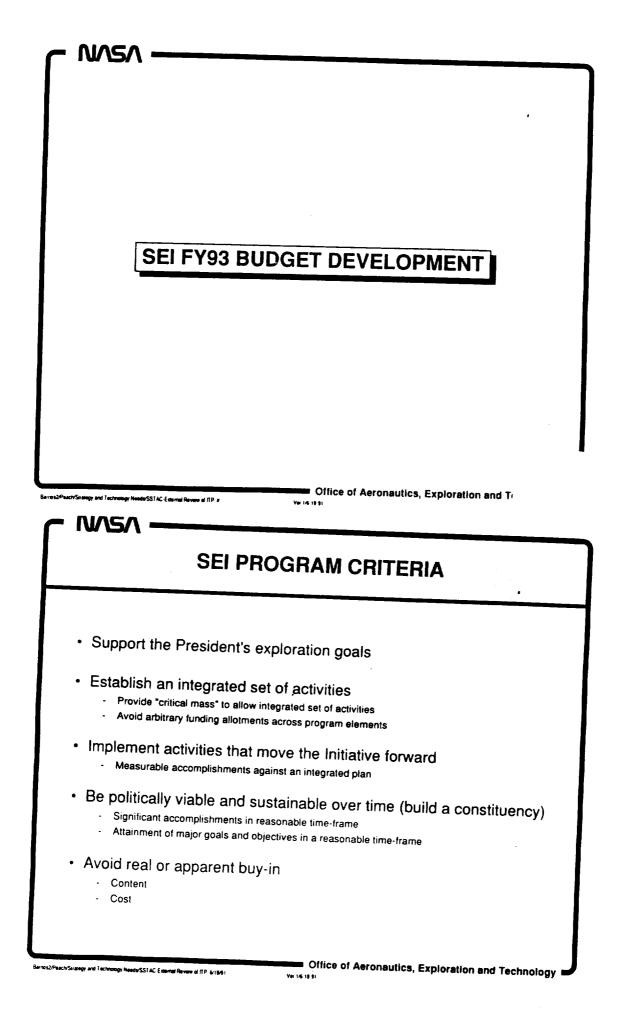


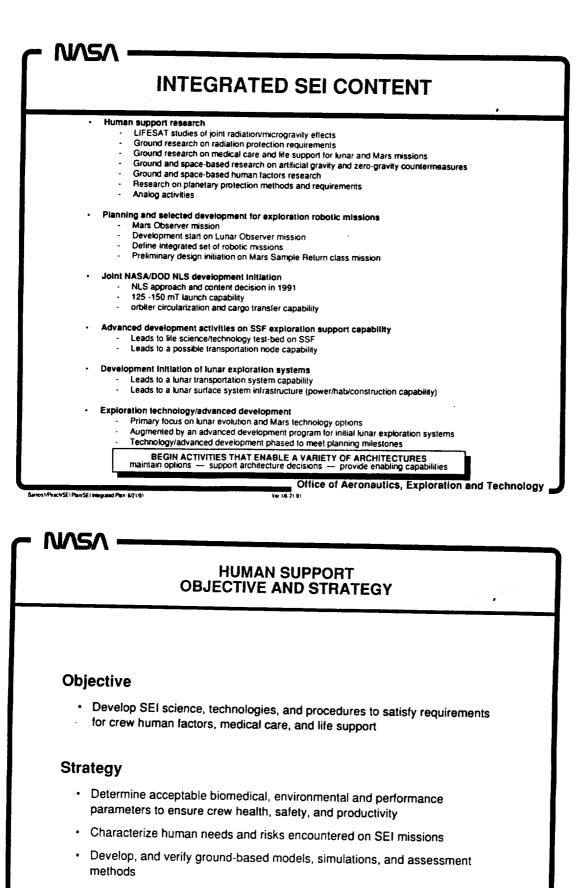
	IEAR-TERM STRATEGY FOR SEI
 Analy 	ze alternative mission architectures
	m wide array of system level studies
 Contir 	ue critical technology development
 Define for SE 	enabling science requirements and opportunities
 Focus archite 	key enabling activities that are transparent to cture:
	 Human support research Lunar/Mars robotic missions
	 Advanced propulsion and power
Near-term goa NASA Adminis	l is the definition of program options for review and approval by the trator, the National Space Council, the President and the Congress
	server, the President and the Congress
1/15/	Diffice of Aeronautics, Exploration and Technol Ver24 21 31
u/\s/	Ver 24 21 91
	URRENT CONTENT AND BUDGET
5/	ver24 21 st

Barros I/Peacl/Space Studies Board

Office of Aeronautics, Exploration and Technology

...


Barnos3/OE XP Top 20 4 6/19/91


• • • · · ·

Office of Aeronautics, Exploration and Technology

NASA FY 1992 BU DOLLARS IN I	NASA FY 1992 BUDGET REQUEST DOLLARS IN MILLIONS				
Exploration Mission Studies Exploration Technology - SP-100 - Space-based engine - - Nuclear propulsion - Nuclear thermal propulsion - Radiation fuse - Planetary protection - Radiation - Radiation - Radiation - Radiation - States - LifeSAT	FY92 REQUEST 15.0 52.0 20.0* 9.0 7.0* 50 20 16.0 80 30 40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.				
* Joint programs with DOE and DOD	94.0				

Barnos3/OE XP Top 20-4 6/19/91

· Develop, test, and validate technologies and countermeasures

3/Peach/SEI wegrated Plan 6/20/91

	HUMAN SUPPORT ELEMENTS
Science, 1 the requir	echnology and Operations will be integrated within each element to provide the second se
-	Gravity Countermeasures and Artificial Gravity. Understand mechanisms underlying physical debilitation and develop countermeasures Determine adequacy of countermeasures on SSF In parallel, develop artificial gravity concepts and simulations using ground based research and SSF
· · ·	tion Health and Radiation Protection Develop Solar Energetic Particle prediction capability Develop and validate measures of biological effects of galactic cosmic rays Develop and validate materials shielding analysis codes Characterize shielding materials in a design database Define shielding and other radiation countermeasure requirements Validate radiation health requirements using LIFESAT
• LIFES	Two spacecraft, six missions planned around four launches; 6/96, 2/97 (2 s/c), 3/98 (2 s/c), 12/98
	 Determine the relationship between radiation and microgravity/gravitational effects on biological systems Validate ground based assessments, models and simulations
- f b - [c - [upport Systems uther develop applicable science and technology of regenerative life support, to include bioregenerative concepts as well as physical/chemical Develop and validate systems for contamination monitoring and control and for partial/full bosure of air, water, food and waste, utilizing ground bases and SSF research bevelop concepts for lunar and Mars in-situ resource utilization (water, oxygen, etc.) to
SEI Integrated Plan 6/20	Office of Aeronautics, Exploration and Technolog
SEI Integrated Plan 6/20	
	Office of Aeronautics, Exploration and Technolog WH 32 28 91 HUMAN SUPPORT ELEMENTS (continued)
• EVA ((- E	Office of Aeronautics, Exploration and Technolog WH 32 28 91 HUMAN SUPPORT ELEMENTS (continued) Surface) Evolve planetary EVA systems to maximize productive EVA time through enhanced crew herformance, more efficient portable life support functions, and improved durability.
• EVA ((- EVA () - V • Human - V fa - V	Office of Aeronautics, Exploration and Technolog WH 3028 91 HUMAN SUPPORT ELEMENTS (continued) Surface) Solve planetary EVA systems to maximize productive EVA time through enhanced crew enformance, more efficient portable life support functions, and improved durability. eliability, and maintainability alidate surface EVA systems using developed lunar and Mars test-beds Factors se analog facilities (e.g., Antarctica base, undersea habitat) to develop systems and occedures that will establish a physical, psychological and sociological climate vorable to crew living and work environments ently approaches using habitat and transfor which a fine the
• EVA ((- EVA () - EVA () - E - V • Human - V fa - V fa - V - V fa - V - V	Office of Aeronautics, Exploration and Technolog W 30231 HUMAN SUPPORT ELEMENTS (continued) Surface) Solve planetary EVA systems to maximize productive EVA time through enhanced crew terformance, more efficient portable life support functions, and improved durability. eliability, and maintainability alidate surface EVA systems using developed lunar and Mars test-beds Factors se analog facilities (e.g., Antarctica base, undersea habitat) to develop systems and orcedures that will establish a physical, psychological and sociological climate vorable to crew living and work environments enty approaches using habitat and transfer vehicle simulation facilities se Space Station Freedom and lunar outpost as validation test-beds end Medical Care evelop in-flight and ground-based support systems to provide remote medical care in ent of injury or illness
 EVA (\$ EVA (\$	Office of Aeronautics, Exploration and Technolog with 228 if HUMAN SUPPORT Surface) Solve planetary EVA systems to maximize productive EVA time through enhanced crew enformance, more efficient portable life support functions, and improved durability. alidate surface EVA systems using developed lunar and Mars test-beds Factors se analog facilities (e.g., Antarctica base, undersea habitat) to develop systems and occedures that will establish a physical, psychological and sociological climate vorable to crew living and work environments entry approaches using habitat and transfer vehicle simulation facilities se Space Station Freedom and lunar outpost as validation test-beds end Medical Care evelop in-flight and ground-based support susteme to environ

2

ROBOTIC MISSIONS

Objectives

NIVe

- Reduce risk of manned missions by obtaining data to support their development •
- Validate technology and operations to be used on subsequent manned missions
- Obtain scientific knowledge of the Moon and Mars

Strategy

- · Develop engineering, operations, and science data bases
- Confirm models of planets with surface data
- Obtain detailed data on specific sites for manned landings
- Establish integrated mission set to satisfy robotic requirements •
- Determine suitable/desirable landing and outpost sites
- Conduct science investigations and develop basis for human science exploration •

Elements

- For the Moon, emphasis on selecting landing/outpost site
 - Lunar Observer
- For Mars, emphasis on science and human mission success
 - Mars Observer
 - Mars Observed
 Mars Characterization/Verification
 a candidate mission set

Samos1/PeacrySEI Plan/SEI Integrated Plan 6/21/91

NASA

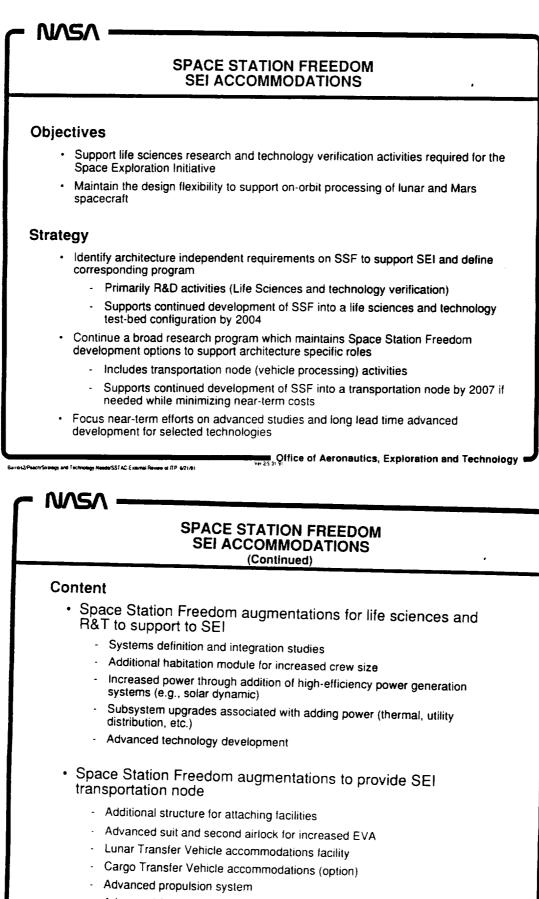
Office of Aeronautics, Exploration and Technology

EARTH-TO-ORBIT TRANSPORTATION

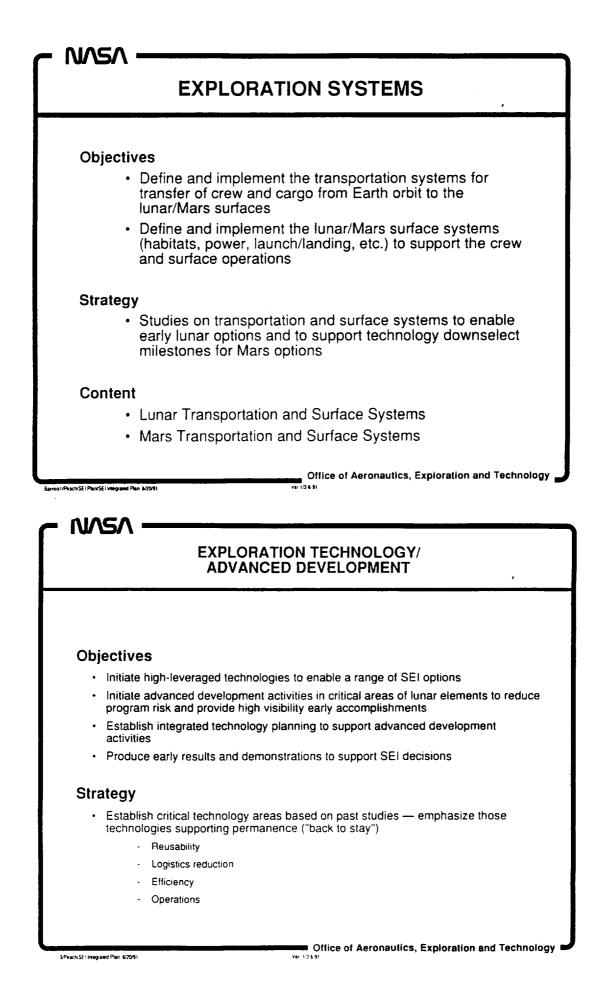
Objectives

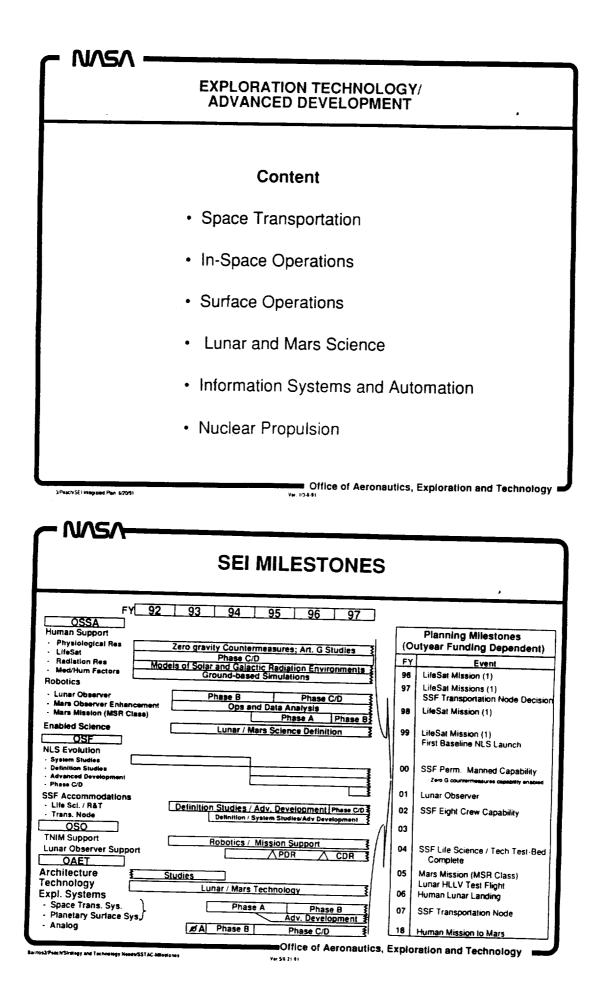
· Provide the transportation systems for cargo and crew delivery from Earth surface to Earth orbit

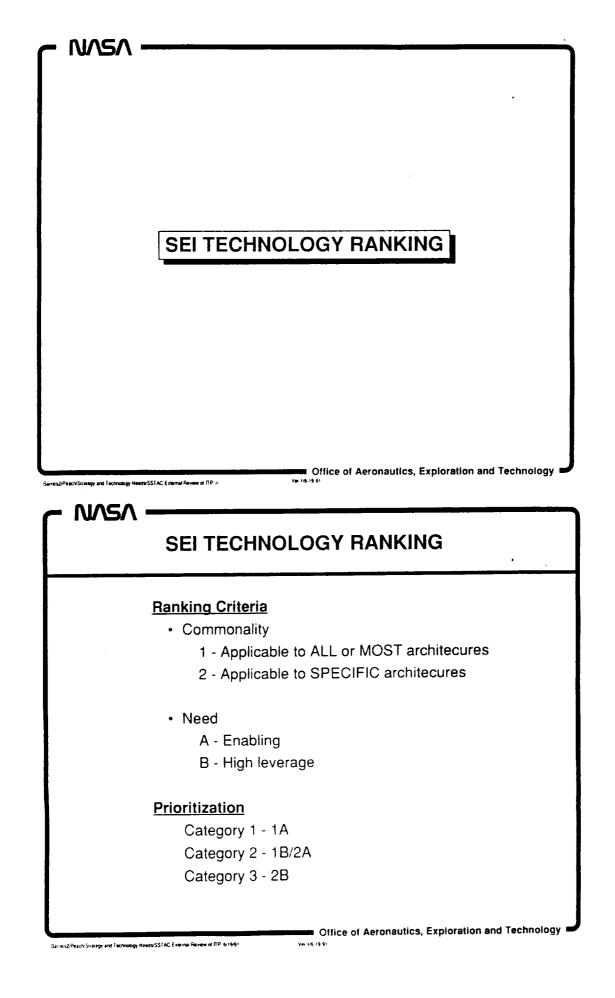
Strategy

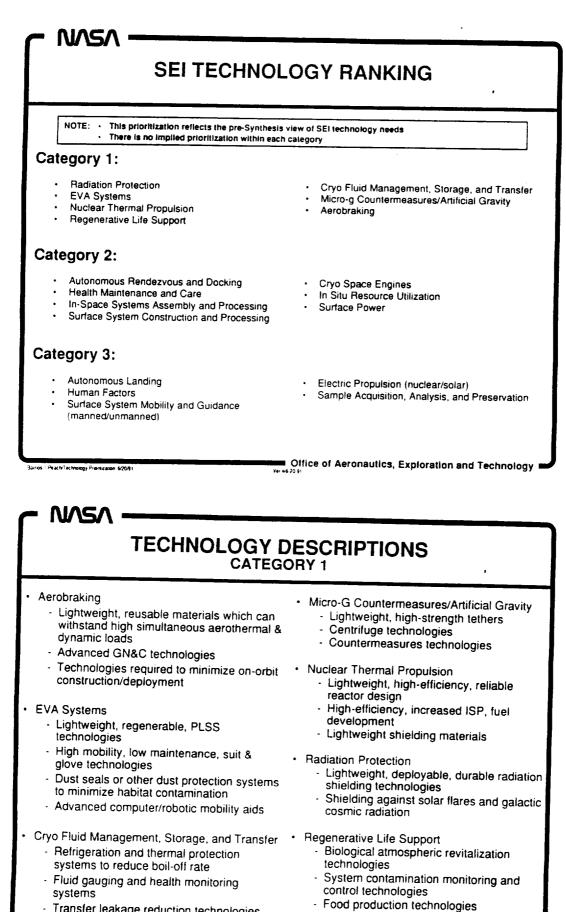

- New Launch System (NLS)
 - NLS is a key enabling system for any SEI architecture
 - NASA/DOD Advanced Launch System and Shuttle-Derived Vehicles are two possible approaches
 - NLS decision planned by end of 1991
 - . Initiation of prototype engine development in 1992
 - Initiate development on NLS in 1993 enable first launch in 1999 (37 mT) NASA Lunar (125 - 150mT)
 NASA Mars (225 - 275mT)

Crew support


- Use Shuttle fleet to transport crew to/from Earth orbit


- Robotic Mission Support
 - Use Expendable Launch Vehicles to support Robotic missions


3/Peach/SET integrated Plan 6/20/91



Advanced Automation and Robotics program to reduce EVA requirements

Transfer leakage reduction technologies

Barrios⊉Peach/Strategy and Technology Needs/SSTAC Enternal Review of ITP 6/21/91

Office of Aeronautics, Exploration and Technology Ver 1/6 19 91

- Waste recycling technologies

TECHNOLOGY DESCRIPTIONS CATEGORY 2

- Autonomous Rendezvous and Docking
 - Laser radar terminal guidance technologies
 - Structural attachment systems
 - Autonomous connection verification technologies
- Cryo Space Engines
 - Multiple restart, high maintainability, wide throttle range, high ISP engine technologies
 - Automated health monitoring and failure prediction technologies
- · Health Maintenance and Care
 - Health monitoring technology
 - Emergency surgery technology
- In-Space Systems Assembly and Processing
 - Al/expert systems for vehicle checkout
 - Non-destructive evaluation of assembled elements
 - Advanced controls and displays
 - Hazard detection systems

ros2/Peach/Scralegy and Technology Needs/SSTAC External Review of ITP 6/19/9

- Built-in diagnostics

- Surface Power
 - Advanced efficiency photovoltaic systems
 - Safe, efficient, nuclear energy systems
 - Advanced energy storage systems
 - Power conversion technoloiges
 - Advanced heat rejection technologies
 - Power management technologies
- Surface Systems Construction and Processing
 - Technologies for raditation shielding emplacement
 - Technologies for surface stabilization
- In-Situ Resource Utilization
 - LLOX production technologies including:
 - -- Feedstock benefication
 - -- Fluidized bed reactor
 - -- Vapor phase water electrolysis cell
 - -- Oxygen liquefaction

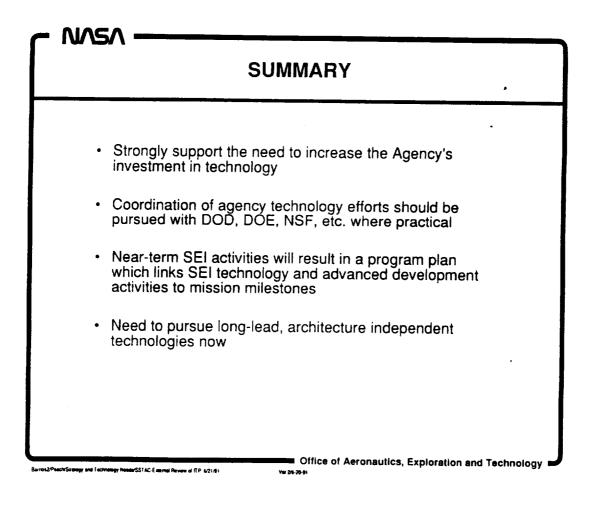
Office of Aeronautics, Exploration and Technology

TECHNOLOGY DESCRIPTIONS CATEGORY 3

· Autonomous Landing

NNSN

- Guidance Navigation & Control
- Transition from aero to propulsion
- Landing aids
- Hazard avoidance technologies
- Electric Propulsion
 - Nuclear electric propulsion technologies including:
 - -- Low specific mass nuclear power source
 - -- Nuclear conversion technologies
 - -- NEP radiation protection


Barros2/Peach/Strategy and Technology Needs/SSTAC-Esternal Review of ITP_5/19/91

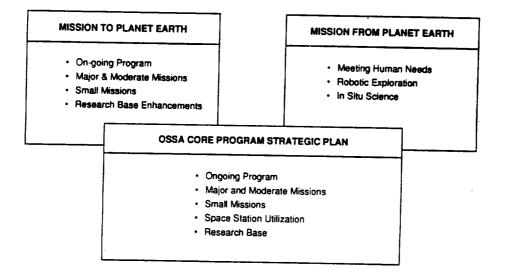
- Solar electric propulsion technologies
- Electric propulsion thruster development

- Human Factors
 - Human/machine interface technologies
 - Automated training aids
- Sample Acquisition, Analysis, and Preservation
 Teleoperation
 - Sample analysis/preservation technologies
 - Sensor technologies

Surface Systems Mobility and Guidance

- Hazard avoidance technologies
- Al/expert systems mobility technologies
- Advanced mobility aids

STRATEGIC PLANNING


Strategy

- Establish a Set of Programmatic Themes
- · Establish a Set of Decision Rules
- Establish a Set of Priorities for Missions and Programs within each Theme
- Demonstrate that the Strategy can Yield a Viable Program
- Check the Strategy for Technology Readiness and for Consistency with Resource Constraints, Such as Budget, Manpower, Facilities, and Launch Vehicle Availability

STRATEGIC PLANNING

Three Program Themes

CORE SCIENCE PROGRAM

Year	Ongoing Program	Major & Moderate Missions	Small Missions	Space Station Freedom Utilization	Research Base Enhancements
1989	Research and Analysis	Advanced X-Ray Astrophysics Facility	Scout-Class Explorers	Microgravity Facilities 1.8m Centrituge Attached Payloads Earth Observing System Payload Definition	SETI Microwave Observing Project CRAF/Cassini Advanced Technology Development Supernovs 1907A Suborbial Observation ER-2 Purchase
1990	Mission Operations and Data Analysis	CRAF/Caseiri	Total Ozone Mapping Spectrometer	Space Blology Initiative Definition Earth Observing System Payload Definition	Research and Analysis and Missions Operations and Data Analysis Corrections
1991	Aerospace Medicine Flight Projects	Earth Observing System*	Earth Probes*	Space Biology Initiative Biomedical Monitoring and Countermeasures†	
1992	Spacelabs and Other Carners		Lifesat* Earth Probes Augmentation*		Resources to Augment Research Community Data Revitalization Initiative Studies of Mesosphere and Lower Thermosphere
1993 Fhrough 1997		Orbiting Solar Laboratory† Spece Infrared Telescope Facility Lunar Observer† Gravity Probe-B Solar Probe	Microgravity Fundamental Science	Small & Rapid-Response Payloads	Statospheric Observatory for Infrared Astronomy Focused Astronomy Focused Research and Analysis, Suborbital, Advanced Technology Development, Data Systems Entencoments

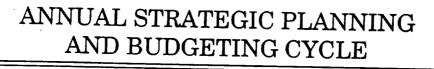
* Also See Mission to Planet Earth Strategy † Also See Mission from Planet Earth Strategy

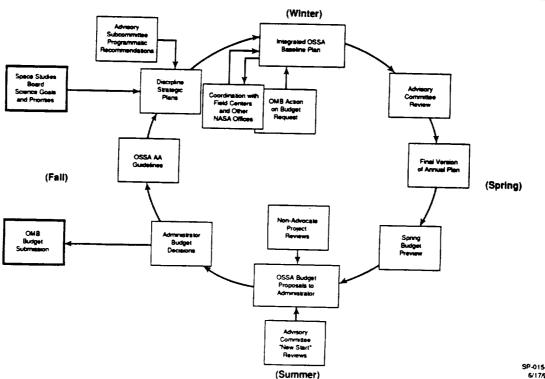
> SP-015-8c 6/20/91

MISSION TO PLANET EARTH (MTPE) STRATEGY

Phase	On-Going Program	Major & Moderate Missions	Small Missions	Research Base Enhancements
Near Term Monitoring and Focused Studies	Research and Analysis Mission Operations and Data Analysis Upper Atmosphere Research Satelitie (UARS) Ocean Topography Experiment (TOPEX/Poseidon) Atlas/SSBUV Flights Shuttle Imaging Radar (SIR) Flights Global Ocean Color Measurements Radarsat		Total Ozone Mapping Spectrometer (TOMS) NASA Scatterometer (NSCAT) Tropical Rainfall Measuring Mission (TRIMM)	EOS Interdisciplinary Investigations EOS Data and Information System (EOSDIS)
Comprehensive Long-Term Studies		Earth Observing System (EOS) - "A" Platform Series - "B" Platform Series EOS Synthetic Aperture Radar (SAR)	Follow-On Earth	Preliminary Global Climate Modeling
In-Depth Studies		Geostationary Platforms	Probe Missions	Comprehensive Global Cilmate Models

MISSION FROM PLANET EARTH (MFPE) STRATEGY




Phase	Meeting Human Needs	Robotic Exploration	In Situ Science
Robotics and Space Station Freedom	Space Biology Initiative*† Biomedical Monitoring and Countermeasures*†	Mars Observer†	Opportunities Definition Advanced Technology Development
	Lifesal**† Orbiting Solar Laboratory†	Lunar Observer†	
	Advanced Technology Development	Mars Environmental Survey	
Lunar Emplacement and Mars Robotics	Lunar Mission Systems	Mars Sample Return with Local Rover	Teleoperated Rover
		Mars Site Reconnaissance Orbiter	Lunar Transit Telescope Lunar Geology
Lunar Consolidation	Global Solar Monitors	Mars Rovers	Pressurized Rover Pressurized Laboratories
Lunar Operationa and Mars Emplacement	Mars I lie Sciences Test-Beds		Advanced Lunar Astronomical Facilities Mars Geology
	Mars Lite Sciences Test-Beds Mars Mission Systems	Additional Mars Rovers	Meteorological Stations Unpressurized Rover Mars Science Network

*FY 1991 Initiatives **FY 1992 Initiative †Also Part of Core Science Program

- Establish Realistic Budget Level
 - Strength of Core Science Program Requires Stable Level of Resources Comparable to Historical Allocation
 - Both Mission to Planet Earth and Mission from Planet Earth Require Resources Beyond the Core Level
- Match the Pace of the OSSA Program for Overarching Initiatives to the Pace at which NASA and the Nation Proceed as a Whole
- · Establish a Feasible Pace and Scale
- Preserve Program Balance
 - Always Adhere to Principle of Scientific Balance Among Disciplines within the Core Science Program
 - Proceed with Core Science Program in Parallel with **Overarching National Initiatives**

SP-015-03d 6/17/91

- 1991 OSSA Strategic Plan Reflects Current Strategy for Mid-1990's

 All Major Flight Projects in 1992 Ongoing Core Science Program will be Launched by 1998
- Next Step is to Select Successors to the Ongoing Program
 - Each OSSA Division Advisory Subcommittee of the Space Science and Applications Advisory Committee (SSAAC) Assessing Candidate Missions and Initiatives for Each Strategic Plan Theme
 - SSAAC will Hold First Triennial Review of Division Strategies and Proposed Mission Queues in the Summer of 1991
 - Recommendations will be Made for Inclusion in 1992 OSSA Strategic Plan
 - Themes and Decision Rules will Also be Reevaluated
 - SSAAC Recommendations will be Discussed with Space Studies Board and with Other Representative Groups in the Space Science Community Prior to Release of Draft 1992 Plan in Early 1992

ADVANCED TECHNOLOGY PROGRAMS

Advanced Instrument Technology Development and Pre-Phase-A Mission Studies	\$25 M
Phase-A Mission Studies—e.g. Future Explorers, Solar Probe, Mars Environmental Survey, Future Earth Probes, Lunar Observer, Thermosphere-lonosphere-Mesosphere Energetic and Dynamics Mission	20
Phase-B Mission Studies—e.g. Orbiting Solar Laboratory, Space Infrared Telescope Facility, Lifesat, Future Explorers, Centrifuge, Stratospheric Observatory for Infrared Astronomy	
Approximate Total (FY 1991)	\$95 M

OSSA TECHNOLOGY COORDINATION PROCESS

,

- COORDINATION BUILT ON PROCESS INITIATED IN 1987
- PROCESS STRENGTHENED IN FALL OF 1990:
 - -- OAET TECHNOLOGY INTERFACES ASSIGNED FOR EACH OSSA DIVISION
 - -- GRASSROOTS APPROACH TO DEFINING TECHNOLOGY REQUIREMENTS
 - -- OAET LIAISON
- DIVISION TECHNOLOGY REQUIREMENTS DERIVED FROM OSSA INTEGRATED MISSION LIST AND STRATEGIC PLAN
- OSSA FRONT OFFICE PARTICIPATION AND ENDORSEMENT OF PRIORITIES
- PRIORITY REQUIREMENTS TO BE UPDATED FOLLOWING THE OSSA/SSAAC SUMMER STRATEGIC PLANNING RETREAT
- JOINTLY SPONSORED WORKSHOPS & TECHNOLOGY INFORMATION MEETINGS ONGOING

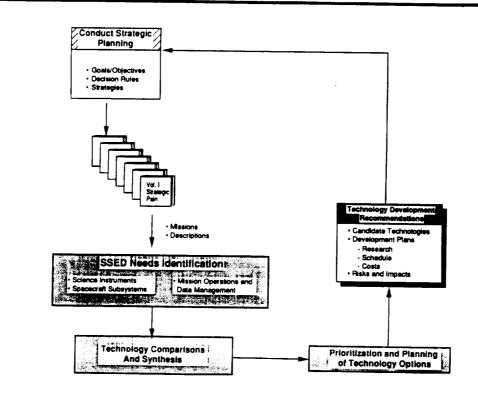
		OSS		<u>NTERIN</u> INOLOGY		אר	THE	E UPDATED OSSA/SSAAC	
_	GI	ouped Acc	ording t	o Urgenc	y & Co	ommo	nality	KSHOP	REVISED: APRIL 12, 1991
erm	SIS 1.2 THz Heterodyne Rec. Active SAR integrated circuit Passive submm 600 GHz dioc	Shielding	High Frame Rate, High Resolution Video& Data	Lightweight, PSR	Fluid Disgnostics	Radiation	Descent Imager	Mini-RTC	Mini-Camera
F	SZ.SE.) Detectors (SE, SL, SZ, SS	(SZ 2E 22)	Compression (SN, 1		(SN)	Monitoring (SB)	(SL)	(SL)	(SL)
lear	opical, Ge, Xe, non-cryo 1.6 150µ IR, extended µ CCD, hig energy detectors, sensor readou	h Jechnology It	Solar Arrays/Cells	Biomedical 8 Analysis	ad Hard Parts t Detectors (SZ. SL)	Solid/Liquid Interface Characterization	Laser Light Scattering n	High Temperature Materials For	K-band Transponders
2	Efficient Ouiet	(SN, SZ, SB)	(SL SZ SE)	(SB)	(32, 3L)	(SN)	(SN)	Fernaces (SN	n) (SZ)
	Refrigerator/Freezer	Extreme Upper Atmosphere Instrument Platforms (SS)	Batteries Long life time High energy dens (SL, SZ)	Environmental i ity Control &	Space Qualified maser & ion Clocks (SZ)	Field Portable Gas Chromato- graphs (SB)	Advanced Furnace Technology (SN)	Ultra-high Gigabil/sec Telemery (SZ)	Mini S/C Sabsystems (SL)
	Lasers: Long-life, Stable & Tunable (SE, SZ, SL, SB)	Solar Probe/ Mercury Orbiter Thermal Shield & Protection (SS, SL)	Auto Sequencing & Command Generation, Auto S/ Monitoring & Fault	Combustion Disgnostics	Plasma Wave Antennas/ Thermal	Regenerative Life Support	Non-Contact Temperature Measurement	3-D meckagin	
	·	Interferometer-specific Tech:	Recovery (SL).	(SN)	(\$\$)	(SB)	(SN)	(SZ)	(SB)
	High Volume, High	- picometer metrology	32 Ghz TWT Optical		roved EVA Suit/ S (EMU)		ocial Purpose Rap oreactor Sam		Animal & Plant
	Rate, On-board Storage	active delay lines control-structures interact.	Communication (SL_SS)	& AI (SN, SL, SB)	(SB)	System Sir	mulator Syst. & R	tum /	Reproduction Vids
	(SE_SL_SN)	(SZ, SL, SB)			Mini Ascent	(SZ)	(SB) Capi Non-Destructiv	bility (SB)	(SB)
	Controlled Structures/ Large Antenna Structure	Robotics	SIS 3 Thz Heterodyne	SETI Technologies	Vehicle/	Auto Sample	Monitoring		on-Destructive
	Arrays/Depioyable	(SN, SL)	Receiver	Optical/Laser Detection	n Lander Deceleration	Transfer, Auto	Capability	Trackens, C	Collection
	(SE, SZ, SS, SB)		(SZ)	(SB)	Uecereration (SL)	Landing	(58)	Actuators (SZ)	(SB)
Lerm	Interspacecraft Ranging & Positioning Precision Sensing Pointing & Control (SS, SZ, SL) Large Filled Apertures	Parallel Software (SE, SL) Environment for Model & Data Assimilation, Visualization Computational Techniques	Sample Acquisition Preservation, Probe, In-situ Inst., Drills, Corers, Penetrators	Biobarrier Analysis Capabilities SB, SL	High Resolution Spectrometer .) (SB)	Heat Shield for 16 Km/s	µg Medical	Dust Protection/ spiter's Rings (SL)	
Far]	lightweight & stable optics - Cryo optical ver., fab., test. Deformable mirrors 15-25m PSR (SL, SZ, SE)	50-100K w Ion Propulsion (NEP) (SL)	Radiation Shielding for Crews (SB)	X-ray Optics Tech: imaging system low cost optics Bragg concentrations coated apertures (\$2	Human Artificial Gravity Systems(SB)	CELSS Support Technologies (SB)		****	
		HEST	SB: 10 SN: 4 SE: 1 SS: 2 SL: 9 SZ: 6	2nd-HIGHEST PRIORITY	>	SE: 0 S			

TECHNOLOGY PLANNING ISSUES

- Openness of Technology Research Program
 Selection and Progress Evaluations by Peer Review
 - Extramural Participation in Reviews and in Research
- · Balance in Priorities
 - Near-Term Needs vs Out-Year Plans

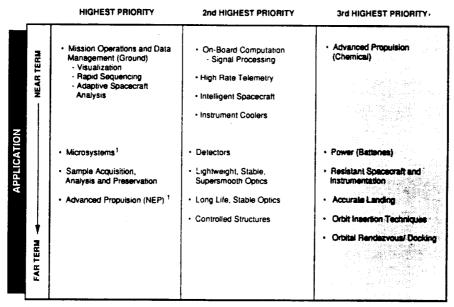
 - Big Technology Tasks vs Small Projects
 Enabling Technologies vs Enhancing Technologies
- Technology Transfer from the Laboratory Environment to Flight-Provision for Space Qualification of New Technologies
- Multidisciplinary Integration in OSSA

 Improving the Planning and Prioritization Process
 Funding Strong Multidivisional Programs
- OAET (OSSA) Participation in OSSA (OAET) Advanced Studies
 - Early Involvement - Ownership


SSED Technology Needs

June 24, 1991

Dudley McConnell


Solar System Exploration Division Advanced Programs Branch

NINSN

SSED's Technology Themes

- Develop instruments and sensors that enable or enhance the capability for achieving desired measurement objectives
- Enhance the cost effectiveness, reliabillity, and
 performance of spacecraft systems and subsystems
- Expand the operational capabilities, cost effectiveness, and efficiencies of ground- and space-based operations and data analysis systems

¹ Technology will require extended development schedules, and must be initiated early

Table 5. SSED's Technology Priorities, Grouped According to Anticipated Time Frame of Application

.

	Technologies						
Missions	de la constante		Sector A	Series Constraints	s south	Subo	
FY 94-98		1	1				
Lunar Observer		I	1				
Mars Lander Network		1	Î.	1	1	1	
Pluto Flyby/Neptune Orbiter/Probe		1	1	V	Ň		
Discovery NEAR			1				
TOPS (Keck II)		1	1				
Discovery OPT							
CDCF			+		ļ	$\left - \right $	
FY 99-03		ł	1				
Mars Sample Return		1	 			V	
Lunar Surface Missions				L		V	
Mercury Orbiter		- 1	 				
Venus Probe		 	1				
Uranus Orbiter/Probe			1	V			
Jupiter Grand Tour		1	1	√	V		
CNSR		1	1		<u> </u>		
Main Belt Rendezvous		1	1				
TOPS (Orbital)	V [1 1	√	1			

Table 2. Science Instrumentation: Summary of Technology Needs for SSED Missions

Missions			
FY94-98			
Lunar Observer	V	V	
Mars Lander Network		1	
Pluto Flyby/Neptune Orbiter/Probe	v	V	
Discovery NEA	V 1	V	1
TOPS (Keck II)	1	V	
Discovery OPT	1	V	
CDCF	1	. √.	
FY 99-03			
Mars Sample Return	V	V	
Lunar Surface Missions	V	V	
Mercury Orbiter	1	V	
Venus Probe	V	V	
Uranus Orbiter/Probe	V	V	V
Jupiter Grand Tour	1	N	V
CNSR	1	V	
Main Belt Rendezvous	V	V	
TOPS (Orbital)	1	1	

 Table 4. Information and Data Management Systems: Summary of Technology Needs for SSED Missions

	TECHNOLOGIES										
lissions	a de la de l		' 1 7 / 1			Course Course	Contraction of the second				
FY94-98			1		1						
Lunar Observer]	1	l ·					
Mars Lander Network		1		╀──	1		 	<u> </u>			├ ──┤
Pluto Flyby/Neptune Orbiter/Probe		1-	1 1	<u> </u>		\downarrow	1			V	<u> </u>
Discovery NEAR		1	+		+	1-	†	t		<u> </u>	<u>├</u>
TOPS (Keck II)			+	1	†	<u> </u>	<u> </u>	<u> </u>			
Discovery OPT		1	1	<u> </u>	1	1	1	†			
CDCF			r		1	<u> </u>					
FY 99-03											
Mars Sample Return	1		I		↓		V	1	V		V
Lunar Surface Missions	1		ł		 						
Mercury Orbiter			1		1				1	1	J.
Venus Probe	1	1			1				· -	1	1
Venus Orbiter/Probe			1	<u> </u>	T	V	V			· .	
Jupiter Grand Tour		1	V	V		v				1	
CNSR	V	1	V		IV		V		V		
Main Belt Rendezvous		V		V	1						
TOPS (Orbital)		<u> </u>									1

** Possible technology option

Table 3. Spacecraft Systems: Summary of Technology Needs for SSED Missions

Strategic Planning

- Maturing and institututionalizing a vigorous technology planning process within the Division - User-driven thrust, based on joint cooperation withOAET

- Developing an enduring, acceptable template for prioritizing and selecting technology development initiatives

Technology Implementation

- Optimizing the mix of joint OAET/OSSA technologies (enabling versus enhancing, high risk versus low risk, large versus small investments, etc.)

- Formulating focused, joint projects with other OSSA divisions that reflect and balance the participant's development needs, fiscal constraints, and schedules

- Improving the capability to effectively apply technologies, i.e., transition the technology to the flight project

	1990 19	995 2	000 20	05 20	10 2015
SOLAR PHYSICS		OSL SOHO	Solar Probe	LISM · 	
MAGNETOSPHERIC PHYSICS	GEOT/ WIN CRRES PO DE-1 FAST			Grand Tour Cli sphere Inager oral Cluster	Mercury Orbiter
IONO/THERMO/- MESOSPHERIC PHYSICS					ier/ENA imager th Connection)
COSMIC & HELIOSPHERIC- PHYSICS	IMP-8 SAMPED Ulysses Pioneer		Solar Probe	CR	Interstellar Probe
FUTURE EXPLORERS				Future Explorers	

CONSENSUS SCENARIO W/O SEI

SPACE PHYSICS TECHNOLOGY/MISSIONS NEEDS

ASTROMAG (FREE FLYER)** - NO PRESENTLY IDENTIFIED TECHNOLOGY ISSUES

THERMOSPHERE/IONOSPHERE/MESOSPHERE ENERGETICS AND DYNAMICS** - NO KNOWN ISSUES

SOLAR PROBE** - THERMAL SHIELD MATERIALS AND CONFIGURATION COMMUNICATIONS WHICH OPERATE IN THE PLASMA TURBULANCE NEAR THE SUN PLASMA WAVE ANTENNAS (ELECTRICALLY CONDUCTING) WHICH OPERATE AT HIGH T

INNER MAGNETOSPHERE IMAGER** - NO KNOWN TECHNOLOGY ISSUES

GRAND TOUR CLUSTER** - INTERSPACECRAFT POSITIONING AND RANGING SYSTEM

HIGH ENERGY SOLAR PHYSICS - CRYOGENIC COOLERS FOR SOLAR X-RAY AND GAMMA RAY DETECTORS

SPACE PHYSICS ENABLING TECHNOLOGY NEEDS

MESOSPHERE/LOWER THERMOSPHERE INSTRUMENT PLATFORM: A PLATFORM WHICH CAN SUPPORT IN SITU MEASUREMENTS OF ATMOSPHERIC PARAMETERS (PREFERABLY AT SUB-MACH VELOCITIES) IN THE ALTITUDE RANGE OF 60 - 150 KILOMETERS. NEED TO PERFORM GLOBAL MEASUREMENTS OF CONSTITUENT DENSITIES, TEMPERATURES AND DYNAMICS.

NON-CRYOGENIC LONG WAVELENGTH INFRARED DETECTORS: NEED FOR A NON-CRYOGENIC LONG WAVELENGTH (1.6-150 MICRON SPECTRAL REGION) INFRARED DETECTOR ARRAY FOR OBSERVATIONS OF SOLAR STRUCTURES AND DYNAMICS.

"NOTE: AT THE RECENT SPACE PHYSICS TECHNOLOGY WORKSHOP SEVERAL TECHNOLOGY AREAS WERE IDENTIFIED WHICH WOULD ENHANCE FUTURE SPACE PHYSICS MISSIONS (PROPULSION, DATA SYSTEMS, POWER SYSTEMS, SENSORS AND DETECTORS, ETC.)

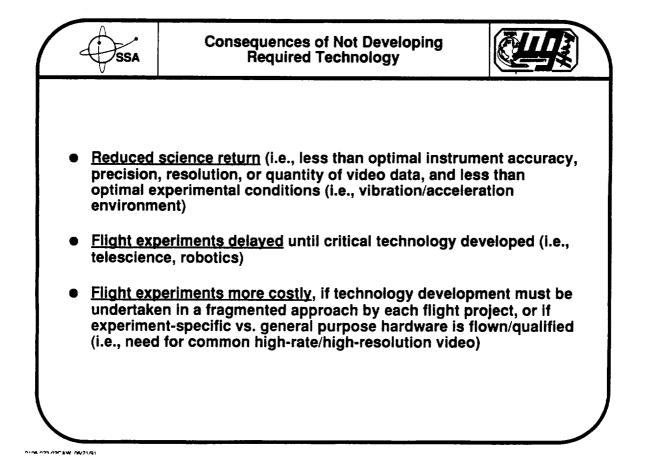
SSA	Microgravity Science and Applications Division	
Primary Goal	 To develop a comprehensive research fundamental sciences, materials scient biotechnology for the purpose of atta structured understanding of gravity-d physical phenomena in both Earth an environments. 	nce, and ining a lependent
Approach	 To perform ground-based research, for experiments in PI-specific hardware of facilities on manned carriers such as Transportation System and Space State and unmanned carriers such as Eureor sounding rockets. 	r multi-user the Space ition Freedom.
<u>Technology</u> <u>Needs</u>	 MSAD mission model has identified te developments as shown on the follow 	echnology ing chart.

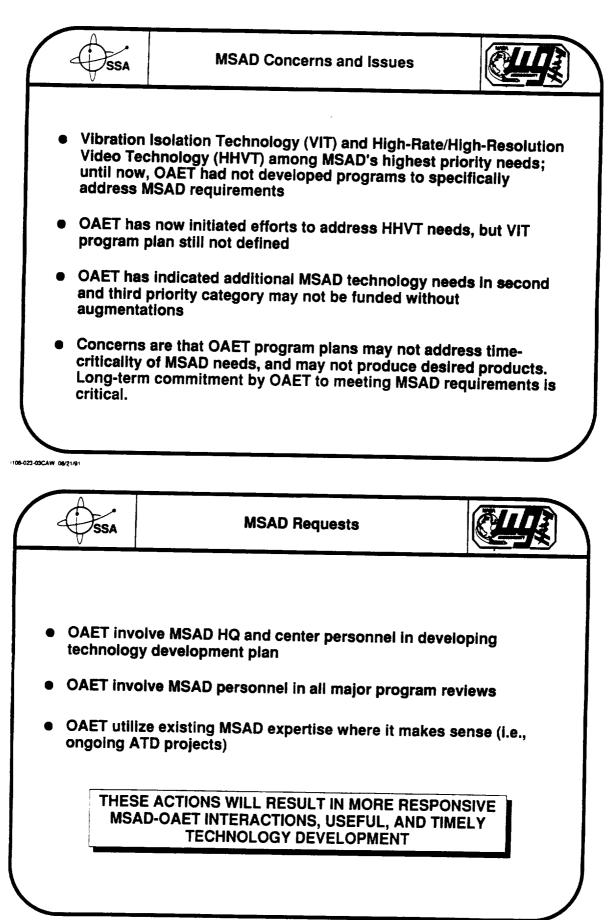
TABLE 2 - MSAD TECHNOLOGY REJUREMENTS PRIORITIZATION

1996	VIT	Fluid Diag.	HENT	High Volume Recording	TELESCIENCE	COMBUSTION DIAG.	ROBOTICS	IPC	Ш\$
1997	HENT	Combustion Diag.	High Volume Recording	VIT	TELESCIENCE	ROBOTICS	AFT	IFC	
1998	VIT	HHVT	FLUID DIAG.	TBLESCIENCE	IPC	ROBOTICS	High Volume Recording	AFT	HTMF
1999	HHIVT	VIT	fluid Dhag	TELESCIENCE	High Vollme Recording	ROBOTICS	NCTIN		
2000	нанит	COMBUSTION DIAG.	VIT	TELESCIENCE	High Vollme Recording	ROBOTICS			
2001	VIT	Fluid Diag.	HewT			TELESCIENCE	ROBOTICS	High Volume Recording	IPC
	HIG	HEST PRIORITY		2nd-HIGHEST P	RIORITY			3rd-HIGHEST	VTIECIE

ABOREVIATIONS:

HAVE - HOH TRAME RATE HIGH RESOLUTION VIDEO HTMF - HOH TRAPERATURE MATERIALS FOR PURPACES

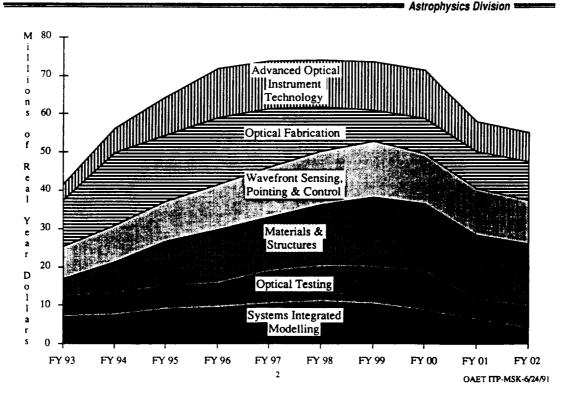

VIT- VIBRATION ISOLATION TECHNOLOGY


ULS- LASER LIGHT SCATTERING

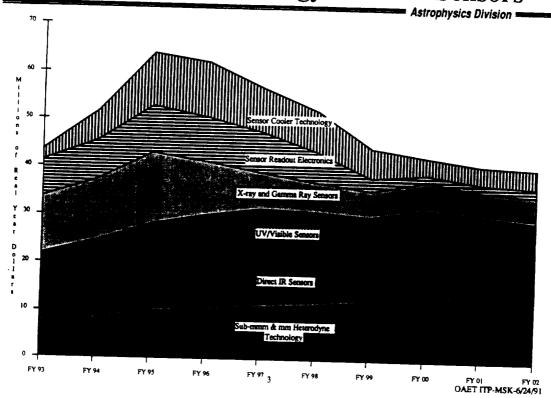
FC-SOUDILIOUID INTERFACE CHARACTERIZATION

AFT - ADVANCED FURNACE TECHNOLOGY

NOTH - NON-CONTACT TEMPERATURE MEASUREMENT



3-021-04CAW 08/21/01


NASA How OAET Can Support Astrophysics Division Needs?

- Focused technology development aimed at specific astrophysics missions in the OSSA Strategic Plan
- Long-term, core technology development principally in two area - sensors/detectors and optics - to enable small and moderate missions (Explorers) and sub-orbital instruments
- Integrated technology demonstrations and test-beds, both ground- and space-based
- Well managed technology development program within OAET
 - •• Use of peer-review of programs at NASA centers
 - •• Actively involve the astrophysics community of "instrument builders"

NASA Astrophysics Technology Needs in Optics

NASA Astrophysics Technology Needs in Sensors Astrophysics Division

Life Sciences Division Basic Science Technology Requirements

LifeSat	- Minimally invasive		
-	Centrifuge Enhancements - Vibration isolation - Torque damping - Maintainable on-orbit	New-Concept Plant and Animal Habitats – Automated provisioning/cleaning – Simplified access/subject handling – Compatible with centrifuge systems	Animal and Plant Reproduction Aids Non-Destructive Cosmic Dust Collection - Hypervelocity capture capability - Trajectory and velocity measuring
Planetary – Exploration	Mars Penetrators/Small Stations - Integral exobiology instruments	High-Resolution Spectrometer – Very high spatial resolution – Very high spectral resolution	Improved Analysis Instrumentation – Differential Scanning Calorimeter – GC/MS
-	Plescience Capabilities - Telepresence - Telemanipulation - Real-time analysis	Sample Analysis and Preservation - Biological sample preservation - Planetary protection compatibility	 Laser Diode Spectrometer Scanning Electron Microscope Life Detection Systems
based and Di Observatory -	nhanced Signal Processing and letection Systems for SETI Microwave signal detection Optical/laser signal detection	Special-Purpose Bioreactor Systems - Deep-sea simulators - Planetary surface simulators	Lunar Surface Infrared Astronomy Facilities
	ield-Portable Gas Chromatographs	Returned-Sample Biobarrier Analysis Capabilities - Telemanipulation - Enhanced biological analysis	Very-Long Baseline Interferometry Systems – Lunar surface mounted – Jupiter orbital, etc.
		Lunar Far-Side SETI and Radio Astronomy Facilities	

Life Sciences Division Human Support Technology Requirements

Space Shuttle	Improved EVA Suit/PLSS (EMU) – Dexterity/Manueverability – Zero prebreathe	Real-time Environmental Control – Contaminant monitoring – Contaminant removal	Real-time Radiation Monitoring - Personal dosimetry - Vehicle event-monitoring capability
Space Station	Improved EVA Suit/PLSS (EMU) – Dexterity/Manueverability – Zero prebreathe – Maintainable on-orbit Regenerative Life Support – Water reuse/storage – Air recycling – Waste Processing	Real-time Environmental Control – Contaminant/microbial monitoring – Contaminant/microbe control Real-time Radiation Monitoring – Personal dosimetry – Vehicle event-monitoring capability	Automated Biomedical Analysis – Minimally invasive Efficient, Quiet Refrigerator-Freezer Microbial decontamination methods Expert Systems for Medical Care
SEI	Regenerative Life Support - Water reuse/storage - Air recycling - Waste Processing - Food Production Planetary EVA Suit/PLSS - Light Weight - Dexterity/Manueverability - Zero prebreathe - Maintainable by crew Radiation Shielding for Crews Partial-g/µ-g Medical Care Delivery Systems	Real-time Environmental Control - Contaminant/microbial monitoring - Contaminant/microbe control Real-time Radiation Monitoring - Personal dosimetry - Vehicle event-monitoring capability CELSS Support Technologies - Low-energy illumination/light-piping - Nutrient monitoring and control - Waste proc. w/ nutrient recovery - Remote sensing of plant condition - Robotic cultivation/harvesting - Miniature food processing systems - Advanced food systems - Model-based process & system	Human Artificial Gravity Systems – Torque-neutralized – Tethered or rigid systems – Human-machine interface – μ-g or Partial-g applications

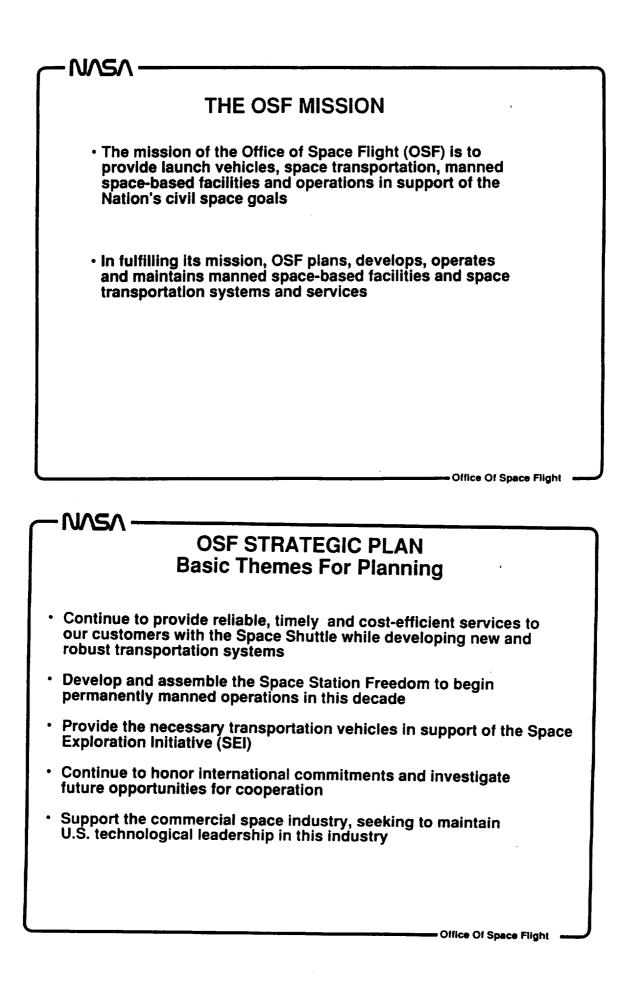
LAUNCH DATE/MISSION

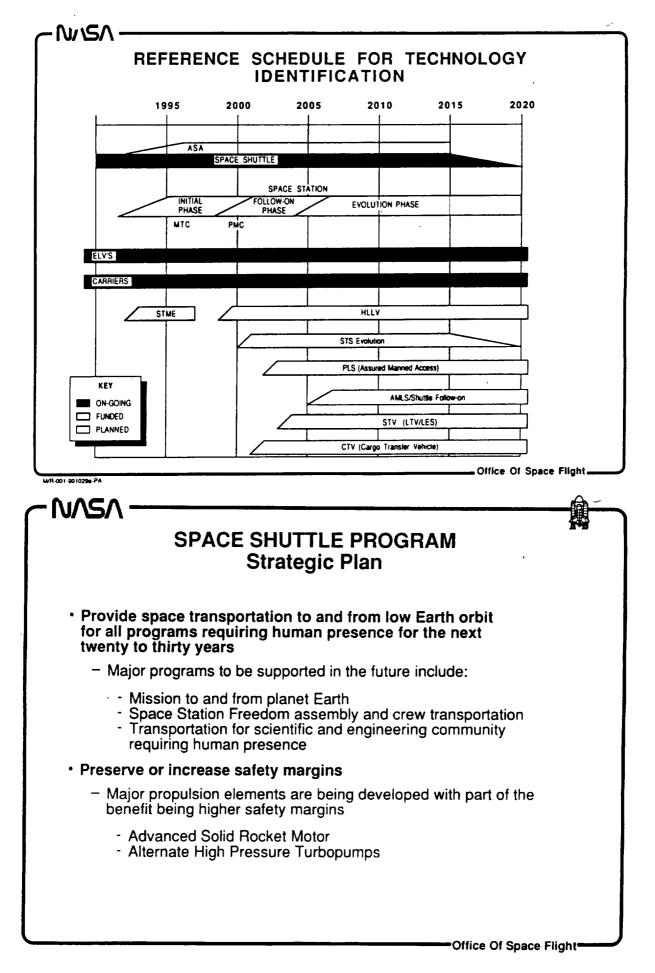
,

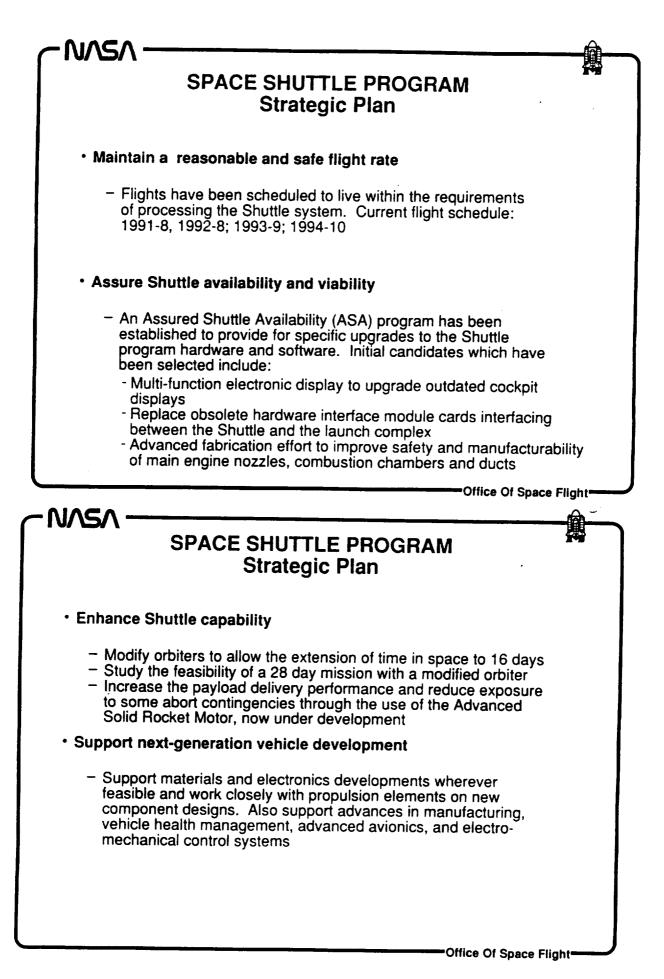
<u> </u>		1998 EOS-A1	2001 EOS-B1/SAR	2003 EOS-A2	2015 GEO
(Priority Order)	1.	5-yr-Life Mechanical Coolers			
ority	2		Sub-MN & Microwave Technology		
s (Pri	3.			Detector Technology ESP 13-18nm	
Technology Needs	4.		Long-Life Space Qual Lasers		
ology	5.			Hi-Density Hi-Data-rate On-Board Storage	
echn	6.				Large Antenna Structure Arrays
U L		Parailel Software Environment for Model & Data Assimilation			
	8.		More Efficient Solar Arrays		

COST ISSUES/RECOMMENDATIONS FOR OAET ADVISORY GROUP

• TO THE EXTENT THAT OUT-YEAR PLANNING IS TO BE REALIZED, WE NEED TO BUILD-ON AND AUGMENT EXISTING NEAR-TERM CODE S/R EFORTS:


- -- MECHANICAL COOLERS
- -- LAWS BRASSBOARD
- -- OPTICAL DISC RECORDERS
- ENCOURAGE USE OF PEER-REVIEW PROCESS TO TRACK PROGRESS

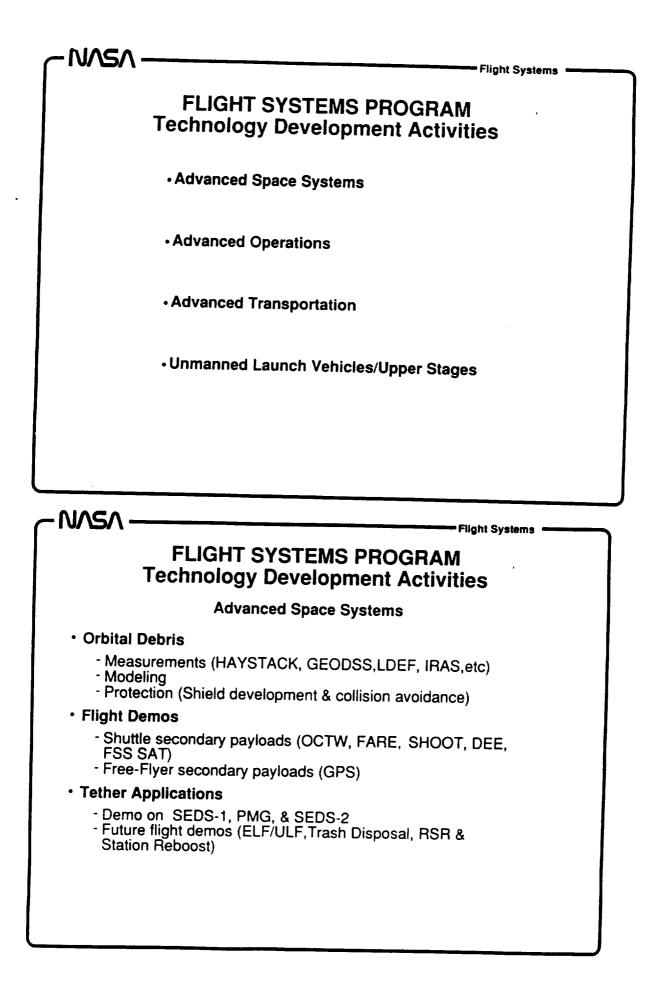

NASA OFFICE OF SPACE FLIGHT
Mission User Technology Needs & Applications Integrated Technology Plan External Review
Presentation to Space Systems & Technology Advisory Committee
June 24, 1991
Office Of Space Flight
N/S/
AGENDA
INTRODUCTION
- OSF Mission
- OSF Strategic Planning
SPACE SHUTTLE Strategic Planning
FLIGHT SYSTEMS
- Strategic Planning - Technology Development Activities
SPACE STATION FREEDOM
- Strategic Planning


- Technology Development Activities

OSF FUTURE TECHNOLOGY NEEDS

- Process of Identification
 NASA Program Unique Technologies (16)
 Industry Driven Technologies (5)
- SUMMARY

NASA Flight Systems FLIGHT SYSTEMS PROGRAM Strategic Plans Advanced Space Transportation • Establish requirements and define manned systems to initiate Shuttle replacement in 2005 and personnel transport for SEI • Develop NLS and define growth of HLLV capability for SEI • Develop NLS and define growth of HLLV capability for SEI • Acquire ELV launch services for U.S. Government Civil Customers • Provide access to unique/special NASA facilities • Exploit and support U.S commercial launch vehicle industry


FLIGHT SYSTEMS PROGRAM Strategic Plans

Upper Stage/Payload Carrier

- Sustain Spacelab until SSF PMC and provide Shuttle payload carriers
- Improve spacecraft servicing and retrieval in LEO
- Develop a CTV for payload transfer from NLS to SSF
- Establish requirements and initiate concept definition programs for Lunar/Mars transfer vehicles

Technology

Sustain advanced development activities for critical emerging technologies

-NASA

Flight Systems

FLIGHT SYSTEMS PROGRAM Technology Development Activities

Advanced Operations

• Shuttle Only Projects (12)

- Tile processing enhancements
- SSME testing improvements
- STS radiator and ET/SRB insulation inspection automation

• Future Launch Vehicle Projects (12)

- Operations optimization studies
- Automated mechanisms
- Advanced software applications (Neural Nets, Fuzzy Logic, Virtual Imaging)

Current & Future Program Projects (34)

- Application of expert systems, advanced graphics & optical data systems to mission operations
- Fiber optics application to ground audio/video/data communications
- Advanced sensors & instrumentation development

-NASA

FLIGHT SYSTEMS PROGRAM Technology Development Activities

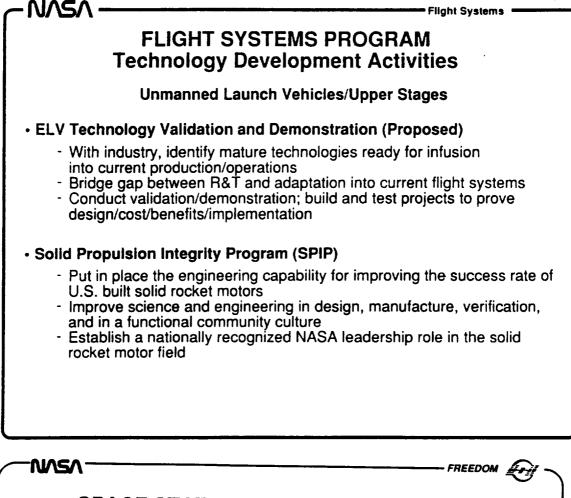
Advanced Transportation

Bridging Programs

- Electrical actuation

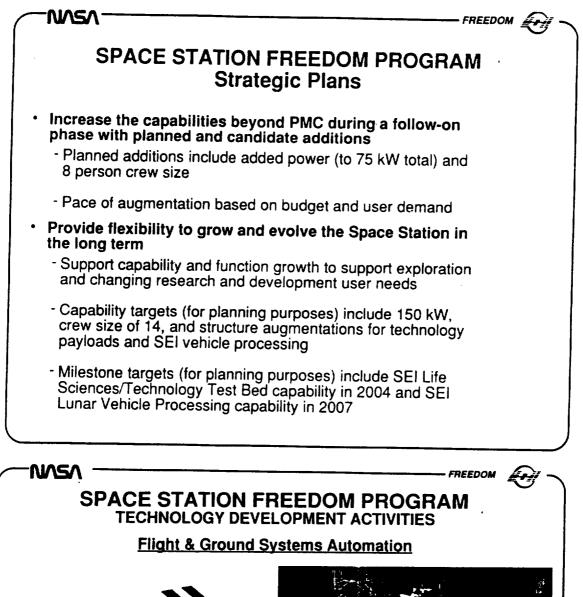
- Autonomous guidance, navigation & control
- Aluminum-Lithium alloys
- Potential new bridging programs:
 - Vehicle Health Management
 - Propulsion
 - Avionics
 Manufacturing
 - Manufacturing

Advanced Recovery


- Demos (drop tests of payloads with parafoils)
- Wind tunnel tests

Autonomous Rendezvous & Docking (CTV, MTV, LTV)

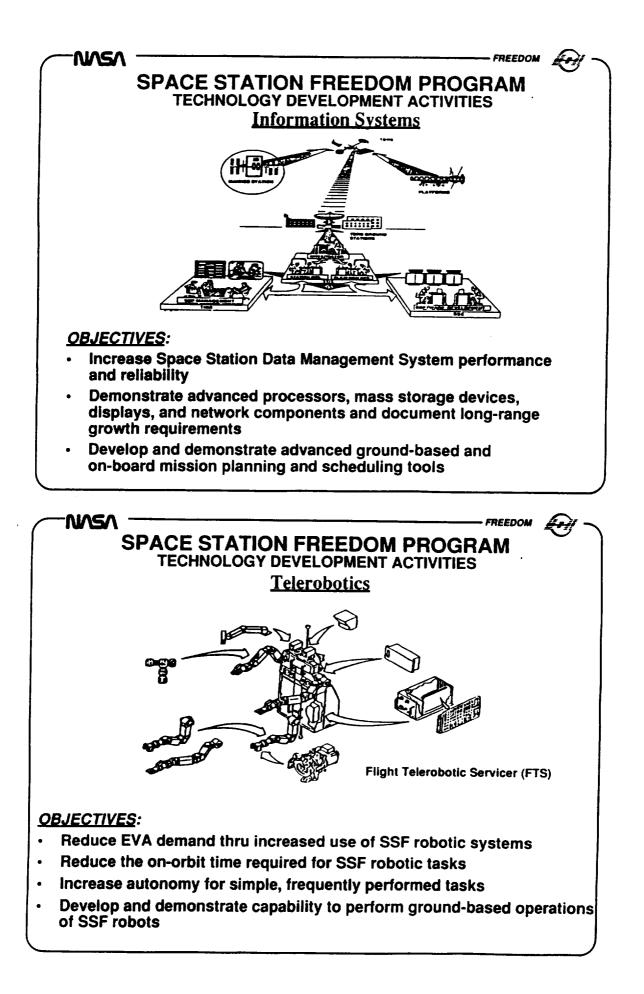
- Define requirements and develop ground prototypes
- Flight demonstrations

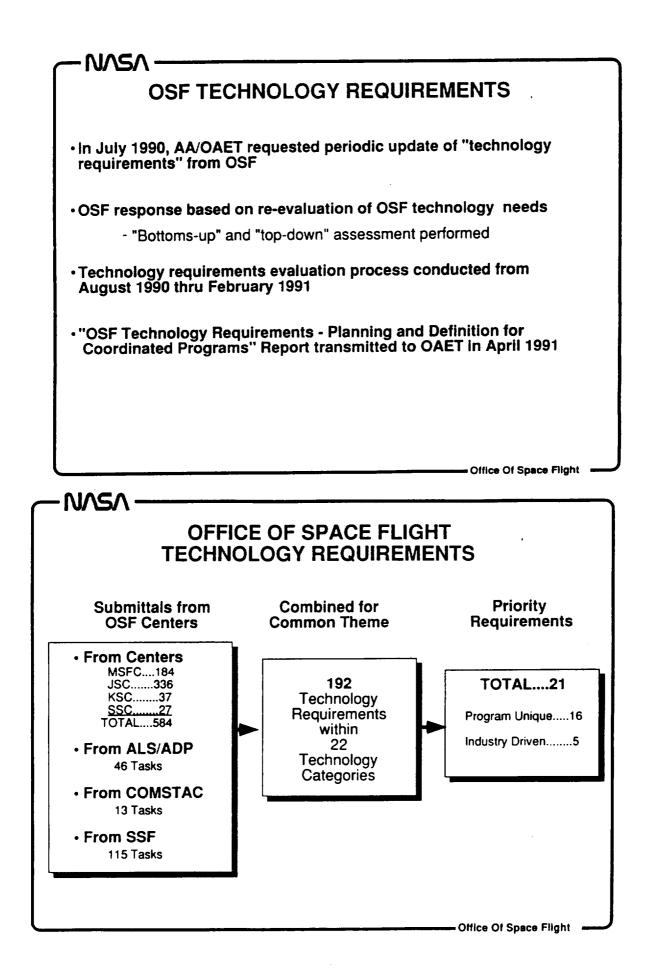

Cryofluid Management

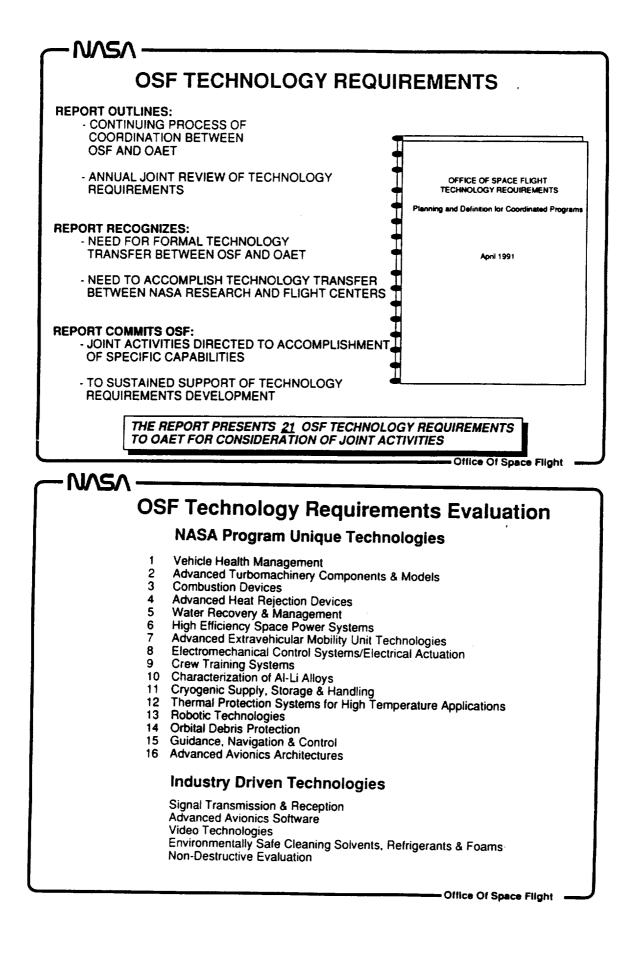
= Flight Systems

SPACE STATION FREEDOM PROGRAM Strategic Plans

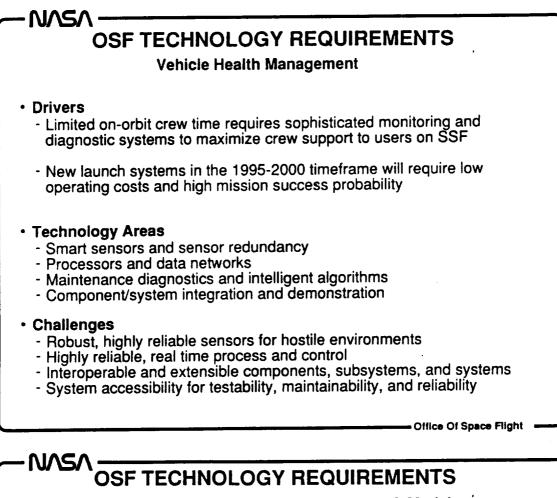
- Design, develop, assemble and test the initial phase of **Space Station Freedom**
 - Launch the first element of SSF in 1996
 - Provide a Man Tended Capability (MTC) by 1997
 - Provide a Permanently Manned Capability (PMC) by 1999
- During MTC, provide user operations capability during untended periods
 - Three utilization Shuttle flights per year to resupply/operate user experiments
 - Optimal conditions for microgravity science
- Provide continuous operations with four person crew during PMC
 - Significant life sciences capabilities including a centrifuge facility
 - Continued opportunities for microgravity and technology experiments
 - Assured return-to-earth capability for entire crew at all times







OBJECTIVES:


- In the areas of SSF distributed systems monitoring, fault detection, isolation, and repair:
 - Provide mature technology base for Space Station Freedom
 - Identify and document required design accommodations
- Demonstrate fault detection, isolation, and repair and data monitoring for payloads

E-12

Advanced Turbomachinery Components & Models

Drivers

- To design and develop advanced turbomachinery hardware for next generation of vehicles that:

- Operates with greater reliability
- Reduces production and operation costs
- Reduces maintenance time

Technology Areas

- Large scale bearings, seals and structures for launch vehicle LOX, LH2 & LHC turbines and pumps
- Design and demonstrate smaller scale T/P components and systems for STV
- Challenges
 - Extend and demonstrate ALS-ADP technologies in systems tests
 - Understand technologies required of commercial turbopumps and demonstrate through NASA R&T
 - Continue component tests and initiate systems demonstration of ALS/NLS wide margin, high operability T/P configurations
 - Verify evolving CFD/CAE/CAD models during ground testing program

- Office Of Space Flight

Combustion Devices

• Drivers

 To design and fabricate low cost, durable, reliable launch vehicle rocket motors compatible with space-based, fully reusable spacecraft propulsion systems for future space transportation vehicles

Technology Areas

- Fabrication methods for thrust chambers & related component for robust wide margin designs
- Expander cycle engine definition for STV
- Test program to assure design to cost capability

Challenges

- Demonstrate thrust chamber, nozzle, & injector concepts through ground testing program
- Define, build and test an advanced expander cycle engine
- Establish design and verify cost models for rocket thrust chambers

- Office Of Space Flight

OSF TECHNOLOGY REQUIREMENTS Advanced Heat Rejection Devices

Drivers

- Space Station Freedom Thermal Control System capability will be augmented commensurate with increased power generation capability in the 2000 to 2005 timeframe

Technology Areas

- Heat pumps
- Heat pipes

Challenges

- Heat pump that operates in microgravity with COP>4
- 60% mass reduction in heat pipes over state-of-the-art without reduction in performance
- Heat pipes which operate above 120 degrees Fahrenheit with >90% efficiency

= Office Of Space Flight

OSF TECHNOLOGY REQUIREMENTS Water Recovery & Management

• Drivers

- The water loop for Space Station Freedom is planned to be closed in the post 2000 timeframe, giving an opportunity to include new technologies
- Increases in SSF permanent crew size in the 2003 2006 timeframe will require reduced logistics and increased safety

Technology Areas

- Real-time microbial analysis
- Water reclamation and waste processing

Challenges

- Analysis methods and detectors which provide real-time detection and quantification of microorganisms using small sample sizes
- 100% recovery of water in the waste stream
- Simultaneous liquid / heterogeneous waste processing within a single unit
- Membranes and filters which resist fouling and have a long life

- Office Of Space Flight

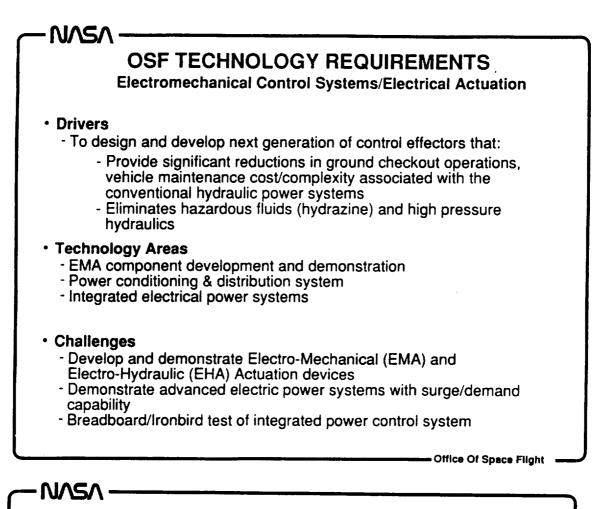
OSF TECHNOLOGY REQUIREMENTS Advanced EMU Technologies

Drivers

NVZV

A need for reducing the crew time overhead and logistics associated with EVA will develop

- -- As Space Station Freedom evolves and EVA maintenance requirements grow
- -- If SSF is used as an assembly / transportation node for on-orbit vehicle processing in the 2008 timeframe


Technology Areas

- Suit components
- Portable life support systems

Challenges

- Gloves which operate at 8.3 psi
- Regenerable carbon dioxide removal systems which operate for 8 hours
- Regenerable heat storage & rejection systems

- Office Of Space Flight

OSF TECHNOLOGY REQUIREMENTS Crew Training Systems

Drivers

- Long mission durations aboard Space Station Freedom will require enhanced procedure retention techniques

- Overall training life cycle costs for SSF crews must be reduced

Technology Areas

- Intelligent training development and support environments
- Virtual reality
- Large scale simulation and network communication

Challenges

- On-board accessibility to large ground-based training simulations
- Virtual reality with multisensory I/O
- Integration of training models, simulation S/W, and high-res displays
- Computer aided training utilizing autonomous learning techniques

--- Office Of Space Flight

NASA

OSF TECHNOLOGY REQUIREMENTS **Characterization of AI-Li Allovs**

Drivers

- Significantly reduced weight in spacecraft and launch vehicles

Technology Areas

- Characterization of AI-Li plate materials and joining processes
- Characterization of AI-Li alloy materials and joining processes for thin gauge applications
- Screen alloy combinations for compatibility and reusability

Challenges

- Continue activities initiated in ALS-ADP directed to heavy gauge fabrication and demonstrations for launch vehicle tanks
- Sustain screening and characterization and fabrication methods definition for reusable spacecraft tank and structural applications
- Explore alloy formulations compatible with oxygen, hydrogen, high radiation environments, etc.

NINS OSF TECHNOLOGY REQUIREMENTS

Cryogenic Supply, Storage & Handling

Drivers

- To design and develop Cryogenic Fluid Systems that must perform under critical zero-g conditions in support of propulsion and surface operations for Lunar/Mars as well as space-based operations

- Zero-g cryo technologies critical for pressure control, low boil-off, long-term fluid storage & contingency (refill/fill/drain) capability

Technology Areas

- Zero-g LN2/LH2 model validation & design codes

- Zero-g LH2 validation

Challenges

- Conduct test programs at MSFC and LeRC to develop necessary
- ground based technology base Initiate and sustain NRA Tasks identified by universities and industry in Cryo-technologies
- Evaluate viable long duration in-space flight experiments
- Sustain funding support of sub-critical zero-g cryogenic technologies to provide necessary flight tests for Lunar /Mars missions

Office Of Space Flight

Office Of Space Flight

OSF TECHNOLOGY REQUIREMENTS Robotic Technologies

• Drivers

NASA

- Space Station Freedom maintenance in the 2005 timeframe will be enhanced by increased autonomy and robustness for telerobots
- Vehicle assembly and processing in the 2008 timeframe will require increased capability for complex telerobotic tasks

Technology Areas

- Telerobotic control system software
- Sensing and sensor fusion
- Simplified collision avoidance and trajectory replanning
- Automated task planning and sequencing

Challenges

- Generalized solutions to 7-dof motion
- Multi-arm coordinated/cooperative control
- Reduced on-orbit computational capability
- Computational or communications-induced time delays

- Office Of Space Flight

OSF TECHNOLOGY REQUIREMENTS Orbital Debris Protection

• Drivers

NASA

- Uncertainties exist in prediction of the orbital debris environment
- Addition of pressurized modules on Space Station Freedom in the post 2000 timeframe will benefit from enhanced debris protection

Technology Areas

- Advanced Shielding
- High Velocity Impact (HVI) Testing

Challenges

- Significant protection / Ib-on-orbit increases over current whipple and multi-shock designs
- HVI testing for particles up to 2 cm diameter at 15 km/sec

Office Of Space Flight

NASA OSF TECHNOLOGY REQUIREMENTS

Guidance, Navigation & Control

Drivers

- Increased launch probability with real-time wind profiling
- Improvements in flight safety
- Reductions in operating costs

Technology Areas

- GN&C sensors and sensing devices
- Ground & onboard guidance algorithms
- Navigation & control algorithms
- LIDAR systems development and demonstration

Challenges

- Ground demonstrations & flight experience in GN&C autonomous systems operations
- All weather launch envelope with in-flight GN&C capability
- Active real-time vehicle dynamics, flight dynamics, and flight path control programs
- Demonstrate real-time atmosphere dynamics measurements

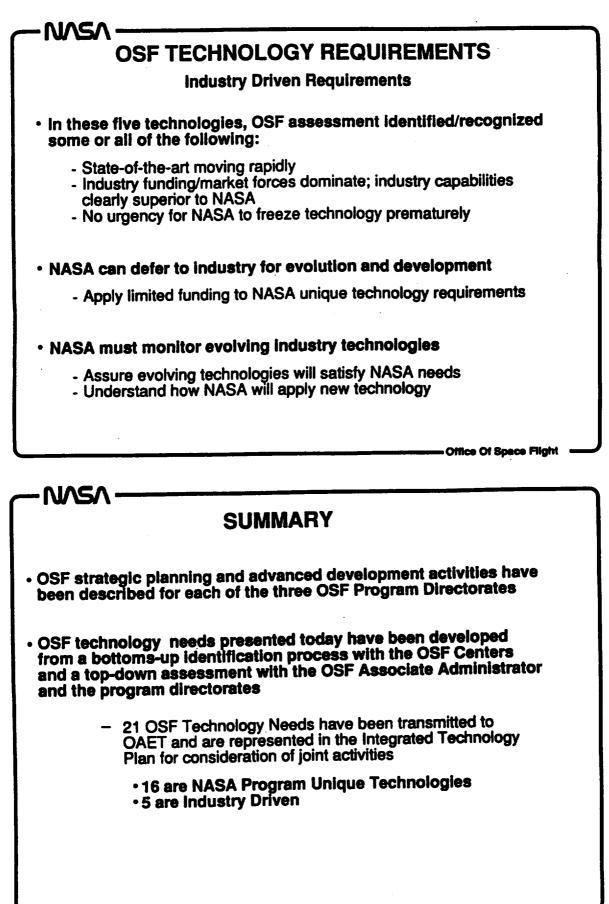
-Office Of Space Flight

OSF TECHNOLOGY REQUIREMENTS

Advanced Avionics Architecture

• Drivers

- Provide modular, scalable architectures with common interfaces; core concepts to allow support of multiple programs
- Autonomous real-time operating systems; automated FDIR & dormancy support
- Checkout automation & on-board built-in-test


Technology Areas

- Software technologies
- Data processing system & network components

Challenges

- Avionics system packaging technology
- Apply advanced avionics architectures/software to SSF systems
- Incorporate data processing, networking, monitoring and control architecture to NLS integrate-transport-and launch processes

- Office Of Spèce Flight

Office Of Space Flight

OFFICE OF SPACE OPERATIONS

PRESENTATION TO SPACE SYSTEMS AND TECHNOLOGY ADVISORY COMMITTEE

JUNE 24, 1991

HUGH S. FOSQUE, DIRECTOR ADVANCED SYSTEMS OFFICE

NASA OFFICE OF SPACE OPERATIONS

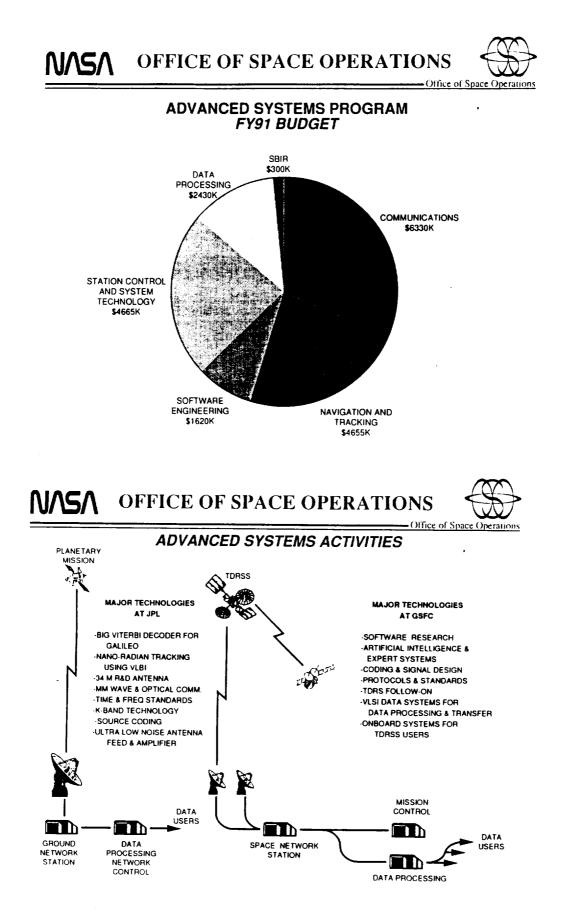
Office of Space Operations

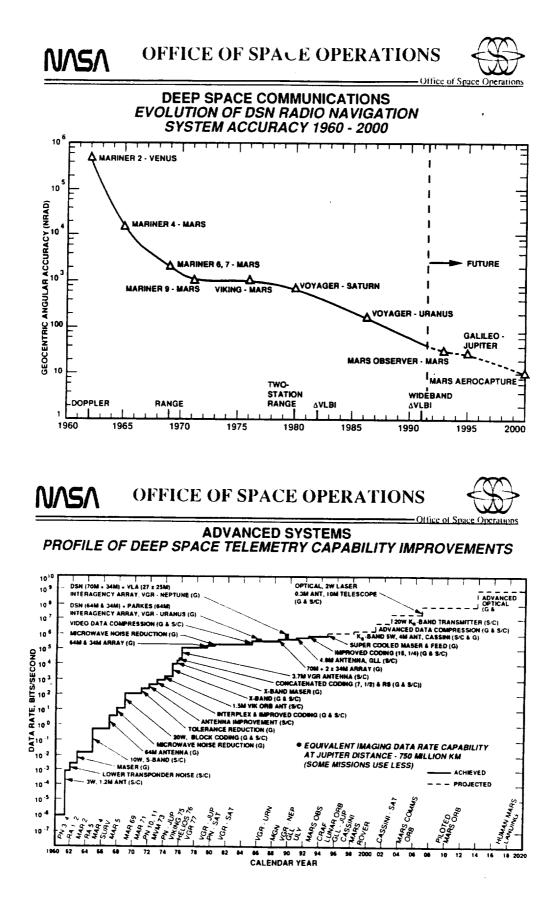
ADVANCED SYSTEMS PROGRAM PROGRAM DESCRIPTION

- OBJECTIVES: TO IMPROVE SYSTEM PERFORMANCE AND CAPABILITY TO MEET MISSION REQUIREMENTS WITH MINIMUM COST
- EMPHASIS: APPLIED RESEARCH, DEVELOPMENT, AND TECHNOLOGY TRANSFER TO IMPLEMENTATION
- APPROACH: ANTICIPATE REQUIREMENTS AND STIMULATE APPROPRIATE RESEARCH, DEVELOPMENT AND DEMONSTRATIONS
- RESOURCES: FY91 NOA \$20 MILLION

NASA **OFFICE OF SPACE OPERATIONS**

ADVANCED SYSTEMS PROGRAM CRITERIA FOR SELECTING TASKS


- TECHNOLOGY NEED ANTICIPATED BUT CURRENTLY UNAVAILABLE AND R&D PROGRESS NOT SUFFICIENT IN OTHER FEDERAL PROGRAMS OR INDUSTRY
- TECHNOLOGY IS SUITABLE FOR USE IN FUTURE MISSION **OPERATIONS**
- TECHNOLOGY HAS A HIGH POTENTIAL FOR:
 - INCREASING NETWORK VERSATILITY, RELIABILITY AND COST EFFECTIVENESS
 - MEETING PERFORMANCE NEEDS OF MULTIPLE USERS
- MATCHING SPACECRAFT DEVELOPMENT IS ANTICIPATED
- SUFFICIENT RESOURCES ARE AVAILABLE



ADVANCED SYSTEMS PROGRAM AREAS OF INVESTIGATION

- COMMUNICATIONS
- NAVIGATION AND TRACKING
- SOFTWARE ENGINEERING
- STATION CONTROL AND SYSTEM TECHNOLOGY
- DATA PROCESSING

F-3

SPACE TECHNOLOGY REQUIREMENTS TECHNOLOGY DEVELOPMENT DRIVERS

NEAR TERM:

- REFINE AND EXTEND STATE OF THE ART TECHNOLOGY TO MEET DEMANDS FOR ENHANCED CAPABILITIES
- BASICALLY UPGRADE EXISTING EQUIPMENT AND TECHNIQUES
- MORE POWER, HIGHER DATA RATES, LOWER ERROR RATE

LONGER TERM:

- DEVELOP NEW TECHNOLOGIES NEEDED FOR FUTURE MISSIONS
- DEPENDENT ON MISSION CHARACTERISTICS TO BE DEFINED BY USERS: - SPACE STATION, EOS, OTHERS

FAR TERM:

 LINKED TO EMERGENCE OF MISSION CHARACTERISTICS DEFINED BY USERS:
 DEVELOP NEW TECHNOLOGIES FOR LUNAR AND MARTIAN EXPLORATION (TECHNOLOGIES HAVE BEEN IDENTIFIED AND INCLUDED UNDER THE OAET EXPLORATION PROGRAM)

Office of Space Operations

SPACE TECHNOLOGY REQUIREMENTS MAJOR AREAS OF TECHNOLOGY DEVELOPMENT NEEDS

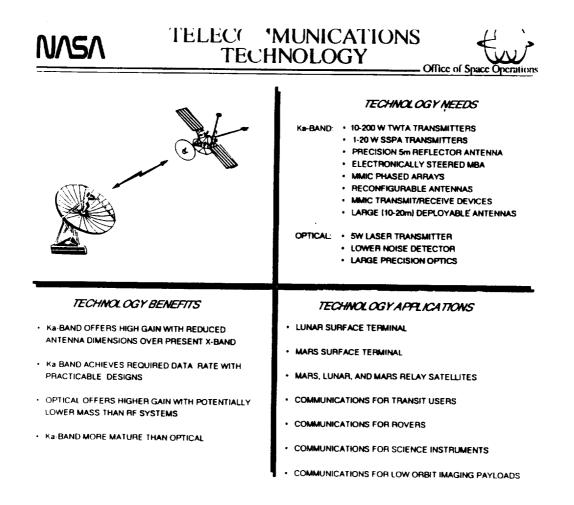
HIGH DATA RATE COMMUNICATIONS

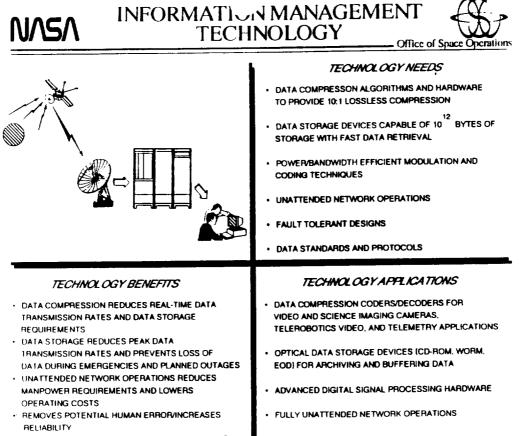
- OPTICAL AND MILLIMETER WAVE FREQUENCIES FOR SPACE-TO-GROUND AND SPACE-TO-SPACE LINKS
- EXAMPLES: HIGH DATA RATE LINKS BETWEEN:
 - USER S/C AND TDRSS
 - CROSS LINKS BETWEEN MULTIPLE TDRSS SPACECRAFT
 - TDRSS AND GROUND CONTROL STATIONS

ADVANCED DATA SYSTEMS

- DATA STORAGE, DATA COMPRESSION, AND INFORMATION MANAGEMENT SYSTEMS
- EXAMPLES:
 - HIGH CAPACITY OPTICAL AND MAGNETIC STORAGE SYSTEMS
 - ORDERS OF MAGNITUDE DATA COMPRESSION
 - INFORMATION MANAGEMENT SYSTEMS FOR CDOS, EOS, AND EXPLORATION PROGRAMS

NASA OFFICE OF SPACE OPERATIONS \leq

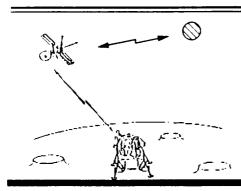

SPACE TECHNOLOGY REQUIREMENTS MAJOR AREAS OF TECHNOLOGY DEVELOPMENT NEEDS (CONT)


ADVANCED NAVIGATION TECHNIQUES

- ADVANCED TECHNIQUES FOR CRUISE, APPROACH, AND IN-ORBIT NAVIGATION FOR MANNED AND UNMANNED PLANETARY MISSIONS
- TRACKING ACCURACIES ON THE ORDER OF ONE NANORADIAN OR LESS

MISSION OPERATIONS

- INTRODUCE INCREASED AUTOMATION THRU THE USE OF ARTIFICIAL INTELLIGENCE, EXPERT SYSTEMS AND NEURAL NETWORKS
- DEVELOP TEST BEDS FOR TEST AND PROTOTYPING OF ADVANCED SOFTWARE
- DEVELOP TECHNIQUES FOR COORDINATION OF DISTRIBUTED SOFTWARE
- AUTOMATED PERFORMANCE ANALYSIS OF NETWORKED COMPUTING ENVIRONMENTS



 AUTOMATIC SCHEDULING PROVIDES MAXIMUM USE OF A LIMITED RESOURCE

NAVIGATION TECHNOLOGY

- Office of Space Operations

TECHNOLOGY BENEFITS

- A MARS-BASED NAVIGATION SYSTEM ELIMINATES THE TIME DELAY IN PROCESSING THE SIGNALS AT EARTH
- ON-BOARD NAV CAPABILITY WILL INCREASE ACCURACY AND PROVIDE SAFE AEROBRAKING
- REAL-TIME NAVIGATION REDUCES RISK AND
 INCREASES ACCURACY
- PROVIDES INCREASED SCIENTIFIC BENEFITS

- NAVIGATION TRANSPONDERS
- GPS-TYPE NAVIGATION RECEIVERS
- ALTIMETERS/PRESSURE/TEMPERATURE SENSORS
 NARROW-ANGLE AND WIDE-ANGLE CAMERAS
- INERTIAL MEASUREMENT UNITS
- STABLE LONG-LIFE CLOCKS AND OSCILLATORS

TECHNOLOGY APPLICATIONS

- LUNAR: PRECISION ORBIT DETERMINATION OF SCIENTIFIC ORBITERS
 - EARTH-BASED POSITION/VELOCITY DETERMINATION FOR ALL SYSTEM ELEMENTS
- MARS: REAL-TIME ON-BOARD NAV CAPABILITY FOR APPROACH, AEROCAPTURE, LANDING, EXPLORATIONS, ASCENT, RENDEZVOUS AND DOCKING
 - AUTONOMOUS NAVIGATION COMPUTERS
 - MARS-BASED NAVIGATION NETWORK
 - 2-5 MARS NAVIGATION SATELLITES

INTEGRATED TECHNOLOGY PLAN

EXTERNAL REVIEW

SSTAC / ARTS / ET AL

Μ	M T W		Th	Fri
		ADMIRAL TRULY		
				PLENARY REVIEW
		CHAIRMAN	тесн	OF PANEL 3 <u>hrs</u>
				SUMMARIES
			PANELS	
		TECH		
		PANELS	PHEPARE TECH	
			FASEL	
			SUMMARIES	

TECHNICAL DISCIPLINE LEADERS

POWER - ROSE

PROPULSION - MOORE

HUMANS - O'NEAL / HOLLOWAY

MTLS/STRUCTURES - MAR

SENSORS/INFO - JANNI / HUPBARTH

A & R / G & C - DALY / REDIESS

COMMUNICATIONS/PHOTONICS/HTSC - GOLDING

AEROTHERMO - BOGDONOFF

SPACE R&T PRIORITIES

REDUCE DEVELOPMENTAL UNCERTAINTIES

• COST, SCHEDULE

REDUCE COST OF ACCESS TO SPACE

- TRANSPORTATION
- OPERATIONS
- S/C SIZE
- INCREASE RELIABILITY
- ENHANCE MISSION PERFORMANCE
- ENABLE NEW CAPABILITIES
- BREADTH OF APPLICATIONS
- KEEP NASA TECHNICALLY CURRENT

POSSIBLE EVALUATION CRITERIA

• WHAT NEW OR IMPROVED CAPABILITY WILL RESULT IF SUCCESSFUL?

- WHO ARE THE POTENTIAL CUSTOMERS?
- IS IT A MAJOR STEP IN TECHNOLOGY?
- DOES EFFORT OVERLAP OTHER NATIONAL PROGRAMS?
- WHAT IS POSSIBLE TIME FRAME?
- ARE CLEAR ACCOMPLISHMENTS AND MILESTONES PLANNED?
- IS EFFORT FOCUSSED OR SPREAD AROUND?
- FOR EACH AREA, ARE PRIORITIES IN CORRECT ORDER?

• WHAT IS PERCEIVED VALUE OF ITEMS NOT RECOMMENDED FOR FUNDING?

SUGGESTED OUTLINE FOR TECH PANEL SUMMARIES

- BACKROUND
- STATUS
- KEY TECHNOLOGY OPPORTUNITIES
- POTENTIAL PAY OFFS
- CONSEQUENCE OF NO ACTION
- RECOMMENDATIONS
- ASSESSMENT OF PLAN

REFERENCE

SPACE TECHNOLOGY TO

MEET FUTURE NEEDS

NRC : 1987

INTEGRATION GROUP:

SSTAC

ASEB

AMAC

SSAAC

(CO)CHAIR'S OF TECH PANEL

	INTEGRATED TECHNOLOGY PLAN OVERVIEW
	Presentation to: THE ITP EXTERNAL REVIEW TEAM
-0-1-25	Gregory M. Reck Director for Space Technology Office of Aeronautics, Exploration and Technology June 25, 1991

ITP OVLAVIEW

- SPACE R&T PROGRAM APPROACH
- INTEGRATED TECHNOLOGY PLAN DEVELOPMENT

,

- INTEGRATED TECHNOLOGY PLAN STRUCTURE
- BUDGET DEVELOPMENT
- SUMMARY COMMENTS

NASA ACTION PLAN

ADVISORY COMMITTEE ON THE FUTURE OF THE U.S. SPACE PROGRAM

RECOMMENDATION 8:

That NASA, in concert with the Office of Management and Budget and appropriate Congressional committees, establish an augmented and reasonably stable share of NASA's total budget that is allocated to advanced technology development. A two- to three-fold enhancement of the current modest budget seems not unreasonable.

In addition, we recommend that an agency-wide technology plan be developed with inputs from the Associate Administrators responsible for the major development programs, and that NASA utilize an expert, outside review process, managed from headquarters, to assist in the allocation of technology funds.

NASA ADMINISTRATOR ACTION:

Codes R/M/S/O/AA for Exploration (Code R lead): Provide an integrated agency-wide technology development plan (using the FY 91 appropriated budget as the base, and based on two- and three-fold budget increase); due at macro level 6/91; refined plan 11/91

RECOMMENDATION 7:

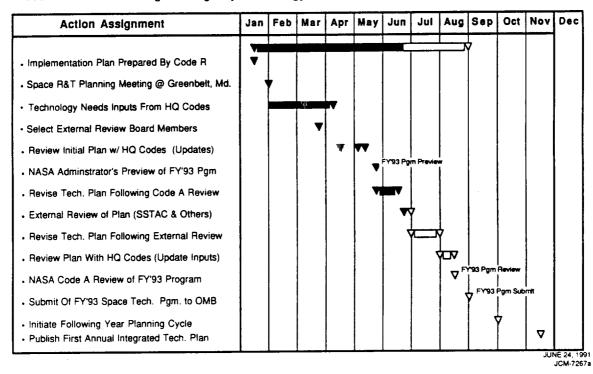
That Technology Be Pursued Which Will Enable A Permanent, Possibly Man-Tended Outpost To Be Established On The Moon For The Purposes of Exploration And For The Development Of The Experience Base Required For The Eventual Human Exploration Of Mars.

That NASA Should Initiate Studies Of Robotic Precursor Missions and Lunar Outposts.

NASA ADMINISTRATOR ACTION: Include Technology Aspects in The Technology Planning Action Responding to Recommendation 8

INTEGRATED TEC. INOLOGY PLAN PROCESS

=0a=7____


INTERNAL NEEDS

- AGENCY PROGRAM OFFICES REQUESTED TO DEFINE AND PRIORITIZE MISSION TECHNOLOGY NEEDS AS RECOMMENDED BY AUGUSTINE
- EXTERNAL NEEDS
 - SSTAC/ARTS MEMBERS REQUESTED TO PROVIDE INPUTS ON OVERALL CIVIL SPACE TECHNOLOGY NEEDS
 - COMSTAC RECOMMENDATIONS ON ELVs, COMMUNICATIONS ADVISORY GROUP RECOMMENDATIONS AND OTHER KEY TECHNOLOGY ASSESSMENTS UNDER EVALUATION
- DEVELOPMENT OF INTEGRATED TECHNOLOGY PLAN
 - PLANNING TEAMS FORMED TO REEXAMINE EXISTING TECHNOLOGY PLANS, ASSESS INCOMING USER OFFICE TECHNOLOGY NEEDS, AND PREPARE TECHNOLOGY PLANS
- EXTERNAL REVIEW
 - SSTAC/ARTS WILL CONDUCT REVIEW WITH PARTICIPATION BY ASEB, OTHER EXTERNAL EXPERTS IN JUNE
- STRUCTURE FOR ANNUAL PLANNING AND REVIEW PROCESS ESTABLISHED

NASA ACTION PLAN

ADVISORY COMMITTEE ON THE FUTURE OF THE U.S. SPACE PROGRAM

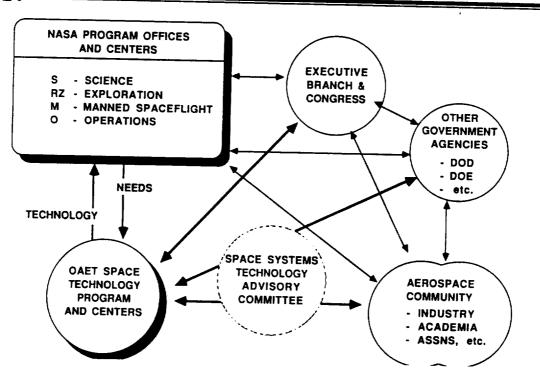
Recommendation 8: Integrated Agency Technology Plan

SPACE R&T LONG RANGE PLAN

=0aet

- IN JUNE 1990, DEVELOPMENT OF LONG RANGE PLAN (LRP) WAS INITIATED
 - TO IMPROVE PLANNING, RESPONSIVENESS AND MANAGEMENT OF THE SPACE R&T PROGRAM
 - FOLLOW ON TO THE SPACE R&T ASSESSMENT IN 1989
- OAET-LED EFFORT WITH STRONG CENTER AND MISSION OFFICE USER PARTICIPATION
- REACHED CONSENSUS ON SPACE R&T MISSION, GOALS, AND OBJECTIVES
 - TECHNOLOGY REQUIREMENTS TO MEET MISSION OFFICES' NEEDS IDENTIFIED IN 5 TECHNOLOGY THRUSTS
 - RESULTED IN RECOGNITION THAT SPACE R&T PROGRAM SHOULD BE REALIGNED SO THAT THRUSTS AND BUDGET LINES ARE CONSISTENT

SPACE R&T MISSION STATEMENT


- Ôaith

OAET SHALL PROVIDE TECHNOLOGY FOR FUTURE CIVIL SPACE MISSIONS AND PROVIDE A BASE OF RESEARCH AND TECHNOLOGY CAPABILITIES TO SERVE ALL NATIONAL SPACE GOALS

- IDENTIFY, DEVELOP, VALIDATE AND TRANSFER TECHNOLOGY TO:
 - INCREASE MISSION SAFETY AND RELIABILITY
 - REDUCE PROGRAM DEVELOPMENT AND OPERATIONS COST
 - ENHANCE MISSION PERFORMANCE
 - ENABLE NEW MISSIONS
- PROVIDE THE CAPABILITY TO:
 - ADVANCE TECHNOLOGY IN CRITICAL DISCIPLINES
 - RESPOND TO UNANTICIPATED MISSION NEEDS

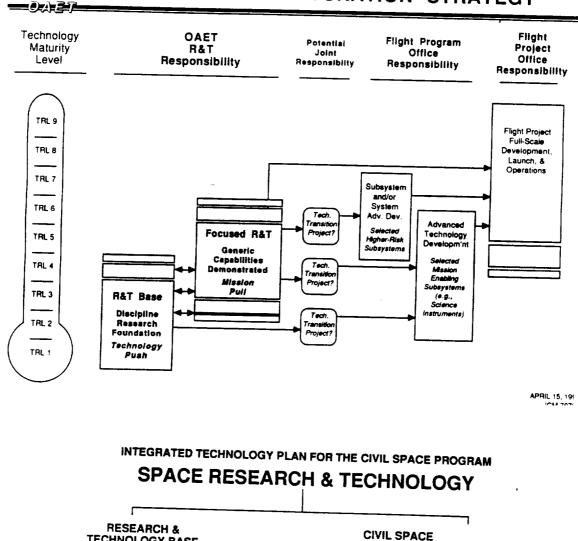
COMPLEX OAET CUSTOMER RELATIONSHIPS

-072-27-

INTEGRATED TECHNOLOGY PLAN FUR THE CIVIL SPACE PROGRAM

PROGRAM PRINCIPLES

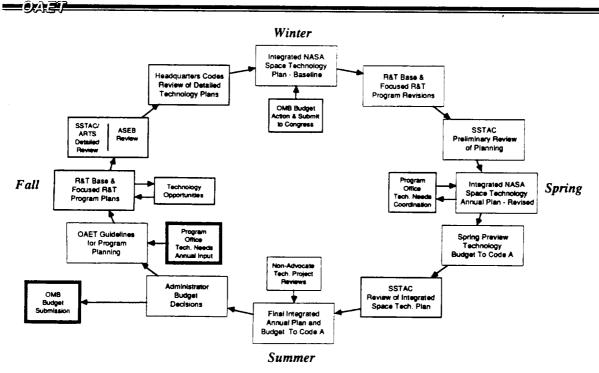
- STRESS TECHNICAL EXCELLENCE AND QUALITY IN ALL ACTIVITIES
 & ENSURE THE AVAILABILITY OF APPROPRIATE SUPPORT & FACILITIES
- BE RESPONSIVE TO THE CUSTOMERS & ASSURE TECHNOLOGY TRANSFER & UTILIZATION
- SUSTAIN COMMITMENT TO ON-GOING R&T PROGRAMS
- MAINTAIN THE UNDERLYING TECHNOLOGICAL SKILLS WHICH ARE THE WELL-SPRING OF NASA'S TECHNICAL CAPABILITY
- ASSURE THE INTRODUCTION OF NEW TECHNOLOGY ACTIVITIES ON A REGULAR BASIS
- MAINTAIN BALANCE AMONG NASA CUSTOMERS, CRITICAL DISCIPLINES, AND NEAR & FAR-TERM GOALS
- SUPPORT SCIENCE & ENGINEERING EDUCATION IN SPACE RESEARCH & TECHNOLOGY
- MAKE EFFECTIVE USE OF TECHNOLOGIES AND CAPABILITIES OF OTHER AGENCIES, INDUSTRY, ACADEMIA AND INTERNATIONAL PARTNERS
- ENHANCE THE NATION'S INTERNATIONAL COMPETITIVENESS


INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

TECHNOLOGY READINESS LEVELS

Basic Technology Research	LEVEL 1	BASIC PRINCIPLES OBSERVED AND REPORTED
Research To Prove Feasibility	LEVEL 2	TECHNOLOGY CONCEPT AND/OR APPLICATION FORMULATED
	LEVEL 3	ANALYTICAL & EXPERIMENTAL CRITICAL FUNCTION AND/OR CHARACTERISTIC PROOF-OF-CONCEPT
Technology Development	LEVEL 4	COMPONENT AND/OR BREADBOARD VALIDATION IN LABORATORY ENVIRONMENT
Technology	LEVEL 5	COMPONENT AND/OR BREADBOARD VALIDATION IN RELEVANT ENVIRONMENT
Demonstration	LEVEL 6	SYSTEM/SUBSYSTEM MODEL OR PROTOTYPE DEMONSTRATION IN A RELEVANT ENVIRONMENT (Ground or Space)
System/Subsystem Development	LEVEL 7	SYSTEM PROTOTYPE DEMONSTRATION IN A SPACE ENVIRONMENT
System Test, Launch	LEVEL 8	ACTUAL SYSTEM COMPLETED AND "FLIGHT QUALIFIED" THROUGH TEST AND DEMONSTRATION (Ground or Flight)
and Operations	LEVEL 9	ACTUAL SYSTEM "FLIGHT PROVEN" THROUGH SUCCESSFUL MISSION OPERATIONS

TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM NASA TECHNOLOGY MATURATION STRATEGY


TECHNOLOGY BASE TECHNOLOGY PROGRAM DISCIPLINE SPACE TRANSPORTATION RESEARCH SCIENCE TECHNOLOGY TECHNOLOGY Aerothermodynamics ETO Transportation Space Energy Conversion Science Sensing Propulsion Space Transportation **Observatory Systems** Materials & Structures Technology Flight Expts. Science Information Information and Controls In Situ Science Human Support Technology Flight Expts. Adv. Communications SPACE PLATFORMS TECHNOLOGY PLANETARY SURFACE EXPLORATION UNIVERSITY Earth-Orbiting Platforms PROGRAMS TECHNOLOGY Space Stations Deep-Space Platforms Surface Systems Technology Flight Expts. Human Support SPACE FLIGHT R&T Technology Flight Expts. **OPERATIONS** TECHNOLOGY SYSTEMS Automation & Robotics ANALYSIS Infrastructure Operations Info. & Communications Technology Flight Expts.

NASA ACTION PLAN

ADVISORY COMMITTEE ON THE FUTURE OF THE U.S. SPACE PROGRAM

TRANSPORTATION	SPACE_PLATFORMS	OPERATIONS Focused
<u>CO-CAPTAINS</u> OAET/RS (D. Stone) MSFC (G. Waltace)	 <u>CO-CAPTAINS</u> OAET/RS (J. Ambrus) LaRC (R. Hook) 	<u>CO:CAPTAINS</u> Program OAET/RS (G. Giffin) Teams KSC (W. Rock)
 IEAM MEMBERS OSF, JSC, LeRC, KSC, MSFC, JPL, LaRC 	• <u>IEAM MEMBERS</u> OSF, LeRC, GSFC, JPL OAET(RP,RM)	• IEAM MEMBERS GSFC, JPL, JSC, OSO, OSF, OAET/RC, RS,RM
ELEMENT PLANNERS OAET (RC.RF.RM,RP,RX) Centers (All)	ELEMENT PLANNERS OAET (RC,RM,RP,RX) Centers (LaRC,JPL,LeRC,JSC,GSFC	ELEMENT.PLANNEBS OAET (RC,RM,RP,RX) Centers (JSC,KSC,MSFC,JPL,GSFC)
USER INTERFACES OSF, OSSA, OAET/RZ	<u>USER INTERFACES</u> OSSA, OSF, OAET/RZ	USER INTERFACES OSF, OSO, OSSA, OAET/RZ
SPACE_SCIENCE	EXPLORATION • CO-CAPTAINS	• Aerodynamics R&T
OAET/RS (W. Hudson) JPL (W. Weber)	OAET/RS (J. Mankins) JSC (A. Dula)	Captain: K. Hessenius (RF) Base • Info. Sciences & HF Teams
• IEAM MEMBERS GSFC, JPL, LaRC, ARC, OAET/RS	• <u>TEAM MEMBERS</u> JSC, OSSA/SB,MSFC, JPL, ARC, OAET/RZ	Captain: L. Holcomb (RC) • <u>Materials_&_Structures</u> Captain: S. Venneri (RM)
 ELEMENT PLANNERS OAET (RC.RF.RM.RP.RX) Centers (JPL,LaRC.ARC,GSFC) 	ELEMENT PLANNERS OAET (RC,RM,RP,RX) Centers (JPL,LaRC,ARC,LeRC,JSC)	 Propulsion. Power & Energy
• USER INTERFACES OSSA (All)	USER INTERFACES OAET/RZ, OSSA	Elight Projects Captain: J. Levine (RX)

SPACE TECHNOLOGY PLANNING CYCLE

March 25, 1991 JCM-7207

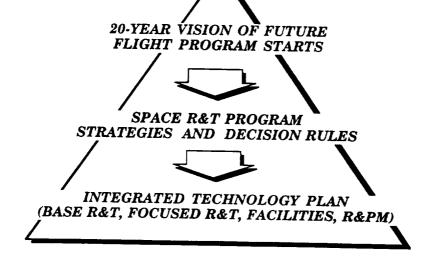
ITP OVF4VIEM

L>• INTEGRATED TECHNOLOGY PLAN DEVELOPMENT

INTEGRATED TECHNOLOGY PLAN STRUCTURE

SPACE R&T PROGRAM APPROACH

BUDGET DEVELOPMENT


SUMMARY COMMENTS

•

.

=0:4]=[=

0.221

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM SPACE R&T PROGRAM DEVELOPMENT

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

RESEARCH & TECHNOLOGY STRATEGY

5-YEAR FORECAST INCLUDES

'93 THRU '97: COMPLETION OF INITIAL SSF LIMITED SOME SHUTTLE IMPROVEMENTS NEW STARTS INITIAL EOS & EOSDIS SELECTED SPACE SCIENCE STARTS NLS DEVELOPMENT INITIAL SEI ARCHITECTURE SELECTION EVOLVING GEO COMMERCIAL COMMSATS MINOR UPGRADES OF COMMERCIAL ELVS

FLIGHT PROGRAMS FORECAST

10-YEAR FORECAST INCLUDES

NEW STARTS TO BE LAUNCHED IN 2003 THRU 2010

'98 THRU '03: SSF EVOLUTION/INFRASTRUCTURE MULTIPLE FINAL SHUTTLE ENHANCEMENTS ADVANCED LEO EOS PLATFORMS/FULL EOSDIS MULTIPLE SPACE SCIENCE STARTS NLS OPERATIONS/EVOLUTION EVOLVING LAUNCH/OPERATIONS FACILITIES INITIAL SEI/LUNAR OUTPOST START DSN EVOLUTION (KA-BAND COMMUNICATIONS) NEW GEO COMMERCIAL COMMSATS NEW COMMERCIAL ELVS

● 20-YEAR FORECAST INCLUDES

'04 THRU '11 MULTIPLE OPTIONS FOR NEW STARTS TO BE LAUNCHED IN 2009 THRU 2020

SSF-MARS EVOLUTION BEGINNING OF AMLS/PLS DEVELOPMENT MULTIPLE SPACE SCIENCE STARTS **DSN EVOLUTION (OPTICAL COMM)** INITIAL MARS HLLV DEVELOPMENT EVOLVING LUNAR SYSTEMS MARS SEI ARCHITECTURE CHOSEN LARGE GEO COMMSATS NEW COMMERCIAL ELVS

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM **RESEARCH & TECHNOLOGY STRATEGY**

-07.27

FOR NEAR-TERM NEEDS

ONGOING PROGRAM: IMPLEMENT KEY SELECTED NEW TASKS

IN '93-'97 BY 1993 THRU' 1997: COMPLETE THE DELIVER SELECTED HIGH-LEVERAGE SUBSYSTEM CAPABILITIES

FY'93 SPACE R&T PROGRAM STRATEGY

FOR END-OF-DECADE NEEDS

HIGH PRIORITY R&T; BEGIN TO PUT CRITICAL **R&T TESTBEDS &** FACILITIES IN PLACE

IN '93-'97 BY 1998 THRU' 2003: COMPLETE THE DELIVER MAJOR NEW SYSTEM CAPABILITIES ONGOING PROGRAM; BEGIN CONDUCT MAJOR DEMONSTRATIONS/FLIGHT EXPERIMENTS BEGIN SIGNFICANT USE OF SSF FOR R&T LEVERAGE NASP DEMONSTRATIONS

FOR LONG-TERM NEEDS

IN '93-'97 COMPLETE THE ONGOING PROGRAM; BEGIN SELECTED, LONG-TERM R&T EFFORTS

BY 2004 THRU: 2011 DELIVER MAJOR NEW SYSTEM CAPABILITIES BEGIN USE OF LUNAR OUTPOST FOR R&T ACHIEVE MARS TECHNOLOGY READINESS

GENERAL RULES

- USE EXTERNAL REVIEWS TO AID IN ASSURING PROGRAM TECHNICAL QUALITY
- PROVIDE STABILITY BY COMPLETING ON-GOING DISCRETE EFFORTS

DISCIPLINE RESEARCH

- ASSURE ADEQUATE SUPPORT TO MAINTAIN HIGH-QUALITY IN-HOUSE RESEARCH
 IN AREAS CRITICAL TO FUTURE MISSIONS
 - PROVIDE CAPABILITIES FOR AD HOC SUPPORT R&T FOR FLIGHT PROGRAMS
- PROVIDE GROWTH IN R&T BASE AREAS NEEDED FOR FUTURE FOCUSED PGMS
 OOORDINATE WITH ANNUAL FOCUSED PROGRAM PLANNING
- CREATE ANNUAL OPPORTUNITIES FOR THE INSERTION OF NEW R&T CONCEPTS
 GOAL: PROVIDE APPROXIMATELY 15-20% "ROLL-OVER" PER YEAR
- SUPPORT TECHNOLOGY PUSH FLIGHT EXPERIMENTS WHERE SPACE VALIDATION IS REQUIRED.

IN-STEP FLIGHT PROGRAMS

 MAINTAIN COMPETITIVELY-SELECTED STUDIES/IMPLEMENTATION OF IN-HOUSE AND INDUSTRY/UNIVERSITY SMALL-SCALE FLIGHT EXPTS, ORIENTED ON NASA'S TECHNOLOGY NEEDS

UNIVERSITY PROGRAMS

• EVALUATE TO FOCUS PARTICIPATION IN NASA SPACE R&T BY U.S. UNIVERSITIES AND COLLEGES - USING COMPETITIVE SELECTION

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM DECISION RULES: FOCUSED PROGRAMS

=0A37

GENERAL

- ANNUALLY ASSESS AND FUND PROJECTS IN ORDER OF PRIORITY AGAINST MISSION-DERIVED INVESTMENT CRITERIA
 - EXTERNAL REVIEW WILL BE USED TO AID IN ASSURING QUALITY
 - REVIEW WITH USER OFFICES WILL BE USED TO AID IN ASSURING RELEVANCE AND TIMELINESS
- PROVIDE STABILITY BY COMPLETING ON-GOING DISCRETE EFFORTS
- START A MIX OF TECHNOLOGY PROJECTS WITH SHORT-, MID- AND LONG-TERM OBJECTIVES EACH YEAR
- ASSURE BALANCED INVESTMENTS TO SUPPORT THE FULL RANGE
 OF SPACE R&T USERS
- FUND NEW TECHNOLOGY PROJECTS THAT HAVE PASSED INTERNAL REVIEWS AS REQUIRED (E.G., NON-ADVOCATE REVIEW FOR MAJOR EXPERIMENTS)

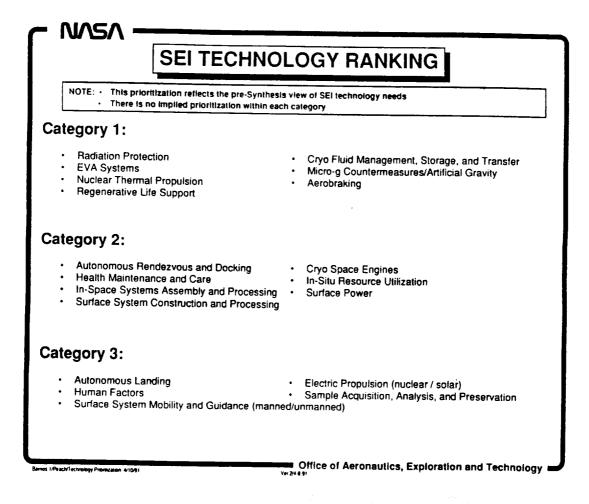
MAJOR FLIGHT EXPERIMENTS

- SUPPORT COMPETITIVELY-SELECTED IMPLEMENTATION OF IN-HOUSE AND INDUSTRY MAJOR TECHNOLOGY FLIGHT EXPTS IN ACCORDANCE WITH MISSION-DERIVED PRIORITIZATION CRITERIA
- FUND MAJOR FLIGHT EXPERIMENTS WHERE ADEQUATE GROUND-BASED R&T IS UNDERWAY OR HAS BEEN COMPLETED

ι

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM INVESTMENT PRIORITIZATION CRITERIA

----0azz


MISSION NEED	Engineering Leverage Performance (Including Reliability) Leverage of the Technology to A System Importance of That Technology/System Performance To A Mission And Its Objectives	
	<u>Cost Leverage</u> Projected Cost Reduction For A Given System/Option Projected Cost Reduction for A Mission of That Savings	
	Breadth Of Application Commonality Across Missions/Systems Options Commonality Across Systems in Alternative Mission Designs	
PROGRAMMATICS & TIMING	<u>Timeliness Of Planned Deliverables</u> Timing of the Mission Need for Technology Readiness Projected Duration of R&T Needed To Bring Technology to Readiness <u>Criticality Of Timely R&T Results To Mission Decisions</u> Timing of Mission Planning Need for Technology Results Importance of Technology To Mission Objectives/Selection <u>Uncertainty in Planned R&T Program Success/Schedule</u>	
SPECIAL ISSUES	Readiness to Begin A Focused Technology Project Commitment To An Ongoing R&T Program Interrelationships To Other Government Program(s) Projected "National Service" Factors	L8F4028

LBF40285

REVISED

OSSA TECHNOLOGY NEEDS TO BE UPDATED FOLLS ... ING THE OSSA/SSAAC SUMMER WORKSHOP Grouped According to Urgency & Commonality

đ	Submin & Microwave Tech: - SIS 1.2 THz Heterodyne Rec.		High Frame Rate, High Resolution	2.5 - 4m, 100K Lightweight, PSR	Fluid Diagnostics	Real-Time Rediation	Descent Image	Mini-RTG	Mini-Carnera
ē	Active SAR integrated circuits Passive submm 600 GHz diodes	Shielding (SZ,SE,SS)	Video& Data Compression (SN, S	L) (\$7.)	(SN)	Monitoring (SH)	(SL)	(SL)	(SL)
ar]	Detectors (SE, SL, SZ, SS) optical, Ge, Xe, non-cryo 1.6 to 150µ IR, extended µ CCD, high	Vibration Isolation Technology	Soiar Arrays/Cells	Automated Biomedical Analysis	Rad Hard Parts & Detectors	Solid/Liquid Interface Characterizatio	Laser Light Scattering	High Temperature Materials For	K-band Transponders
- P	energy detectors, sensor readout clecitonics A. while sensors	(SN, SZ, SB)	(SL, SZ, SE)	(SH)	(SZ, SL)	(SN)	(SN)	Furnaces (SN	() (SZ)
	Efficient, Quiet Refingerator/Freezer (SB)	Extreme Upper Atmosphere Instrument Platforms (SS)	Batteries Long life time High energy densi (SL, S7)	Real-Time Environmental ity Control & Monitoring (S	Space Qualified maser & ion Clocks 3) (SZ)	Field Portable Gas Chromato- graphs (SII)	Advanced Furnece Technology (SN)	Ultra-high Gigabit/sec Telemetry (S7)	Mini S/C Subsystems (SL)
	(513) Lascra: Long-lifé, Stable & Tunable	Solar Probe/ Mercury Orbiter Thermal Shield &	Auto Sequencing & Command Generation, Auto S/ Monitoring & Fault	Combustion	Plasma Wave Antennas/ Thermal	Regenerative Life Support	Non-Contact Temperature Measurement	3-D packagin for I MB Sol State Chips	8 Microbial id Decontamination Methods
	High Volume, High Density, High Data	Protection (SS, SL) terferometer-specific Tech: picometer metrology active delay lines control-structures interact.	Recovery(SL). 32 Ghz TWT Optical Communication	Telescience, Telescience, & Al (SN, SL, SB)	(SS) Improved EVA Suit/ PLSS (EMU) (SB)	Control B	imulator Syst. &	mpte Delivery	(SB) Animal & Plant Reproduction Aids
	(SE_SL_SN) Convolled Structures/ Large Amenna Structure Arrays/Deployable	(SZ, SL, SR) Robolics (SN, SL)	(SL, SS) SIS 3 Thz Heterodyne Receiver (SZ)	SETI Technologie Microwave & Optical/Laser Del (SB)	Vehicle/ Lander Deceleration	Auto Rendezvo Auto Sample Transfer, Auto Landing	Monitoring Capability (SB)	ive Low-drift Oygos,	(SB) Non-Destructive Cosmic Dust Collection (SB)
arm	& Positioning Precision Sensing Pointing & Control	Parallel Software (SE, SL.) Environment for Model & Data Assimilation, Visualization Computational Techniques.	(SZ) Sample Acquisition Preservation, Probe, In-situ Inst., Drilts, Corers, Penetrators (SL_S	& Returned-San Biobarrier Anatysis Capabilities -	Resolution	Heat Shield for 16 Km/s Earth Entry (SL)	Partial-g/ µg Medical Care Delivery Systems (SB)	Dust Protection/	
Ear Te	Large Filled Apertures - lightweight & stable optics - Cryo optical ver, fab., test. - Deformable mirrors - 15.25m PSR (SL, SZ, SE)	50-100K w Ion Propulsion (NEP) (SL)	Radiation Shielding for Crews (SB)	X-ray Optics Tech: imaging system kiw cost optics Bragg concentral coated apertures.	Artificial Gravity	CELSS Support Technologies (SB)			
	HIGH PRIO Taily Sit 5 SN-3 SE 8 SS 6 St 11 SZ-9		SH: 10 SN: 4 SE: 1 SS: 2 SU: 9 SZ: 6	2nd-HIGHEST PRIORITY		SE: 0	3rd HIO PRIO SN: 5 SS: 0 S7: 5	GHEST PRITY	

OSF Technology Requirements Evaluation

Technology Areas

Program Unique Technologies

_1	Vehicle Health Management	-
2	Advanced Turbomachinery Components and Models	
3	Combustion Devices	-
4	Advanced Heat Rejection Devices	
5	Water Recovery and Management	- 11-1-1-1
6	High Efficiency Space Power Systems	-
7	Advanced Extravehicular Mobility Unit Technologies	-
8	Electromechanical Control Systeme/Electrical Actuation	- . 191
9	Crew Training Systems	-
10	Characterization of Al-LI Alloys	-
11	Cryogenic Supply, Storage, and Handling	-
12	Thermal Protection Systems for High Temperature Applications	•
13	Robotic Technologies	-
14	Orbital Debris Protection	-
15	Guldance, Navigation and Control	-
16	Advanced Avionics Architectures	•
	Industry Driven Technologies	-
	Signal Transmission and Reception	
	Advanced Avionics Software	
	Video Technologies	• • •
	Environmentally Sale Cleaning Solvents, Refrigerants and Foams	
	Non-Destructive Evaluation	• 1
		рана — 1915 1917 —

1. High Data Rate Communications. This includes optical and millimeter wave radio frequencies for both space-to-ground and space-to-space applications to handle the high volumes of data transported in future programs. An example of space-to-space communication might be future communications cross links between our tracking and data relay satellites.

 Advanced Data Systems. This includes development of advanced data storage, data compression, and information management systems, which are required to meet the sophisticated needs of future planetary and exploration programs.

3. Advanced Navigation Techniques. This includes development of new techniques for navigation and their application to cruise, approach, and in-orbit navigation for manned and unmanned planetary missions.

4. Mission Operations. This includes incorporation of artificial intelligence, expert systems, neural networks, and increased automation in mission operations. Other work includes development of test beds to check out advanced software, coordination of distributed software, and automated performance analysis of networked computing environments.

Code O will be pleased to work with you on further definition of the requirements that affect our operations. The above-mentioned technologies are all high priorities for Code O. Those associated with the exploration program are obviously longer range needs.

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM EXTERNAL TECHNOLOGY PERSPECTIVES SUMMARY

SPACE SCIENCE

Precision Space Structures and Pointing Accuracy

PLANETARY SURFACE EXPLORATION

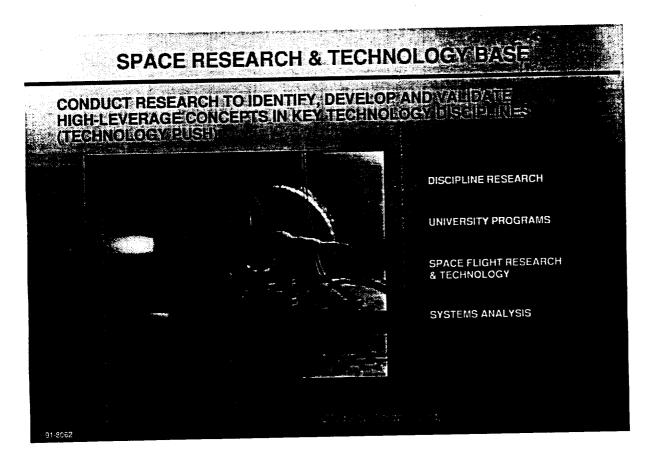
Regnerative Life Support Systems Radiation Protection for Long Missions Utilization of In Situ Materials/Propellants Artificial Intelligence Techniques Robotic & Microrobotic Systems Advanced EMUs Surface Rover Technologies (Pressurized and Unpressurized) Nuclear Electric Power High-Efficiency Lunar Radiators & Thermal Energy Storage Power Beaming Human Health Maintenance Reduced Gravity Countermeasures/Artificial Gravity Bioprocess-Grade Fluid Management Systems

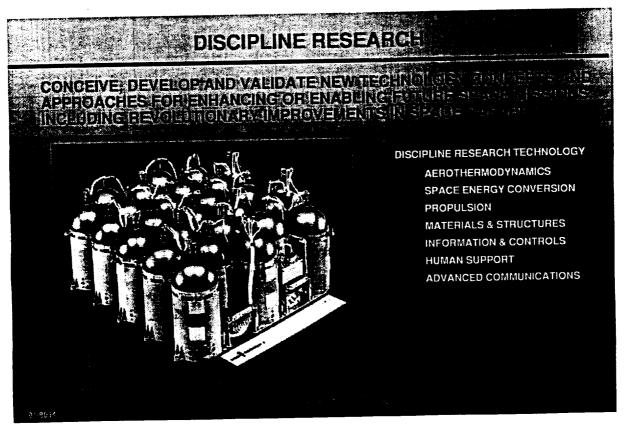
SPACE PLATFORMS

Composite Lightweight Structures Micrometeoroid and Debris Protection Long-Life Structures and Mechanisms Regnerative Life Support Systems Advanced EMUs Expanded Atomic Oxygen Database High-Efficiency, Radiation-Resistant, Lightweight PV Arrays High-Efficiency Power Processing Units Lightweight Batteries

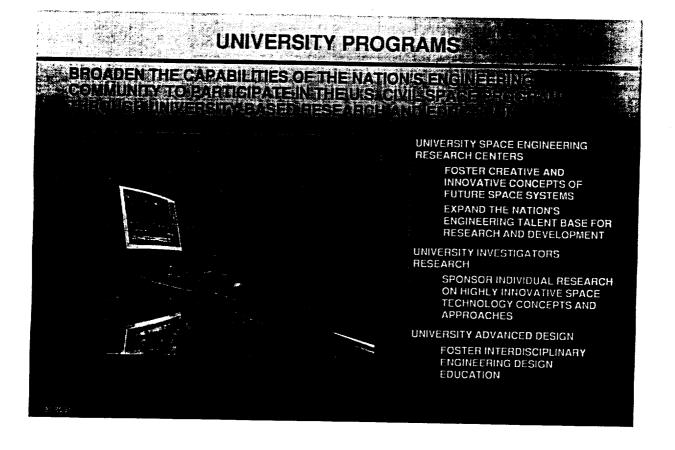
TRANSPORTATION

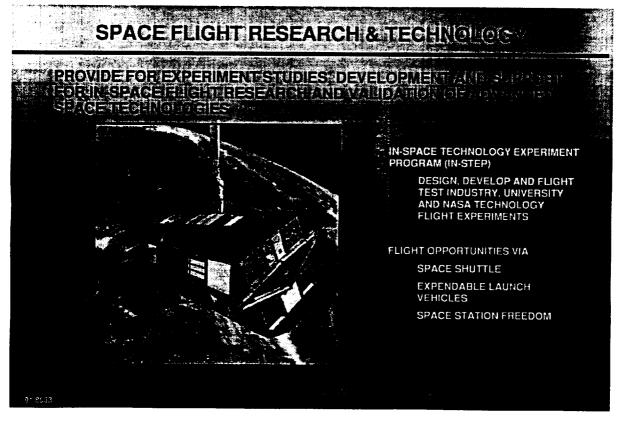
Economical Launch Systems (Manned and Unmanned) Software Productivity Enhancers Integrated Vehicle Health Monitoring and Maintenance Advanced Cryogenic (Oxygen/Hydrogen) Engines Fault-Tolerant Advanced Avionics with Open Architectures High-Performance/Composite Lightweight Structures Long-Life Structures and Mechanisms High-Performance, Storable Space Thrusters High-Performance, Storable Space Thrusters High-Power Electric Propulsion Nuclear Thermal Propulsion for Manned Interplanetary Missions Cryogenics Long-Duration Storage and Management Gun-Type Launch Systems Aerobraking (Thermal Protection Systems) Integrated RCS/Auxiliary Propulsion Lightweight, Fuel-Efficient Airbreather Propulsion Systems

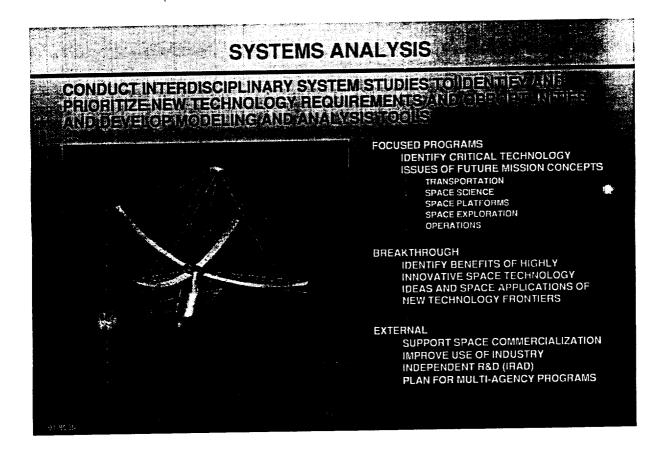

OPERATIONS

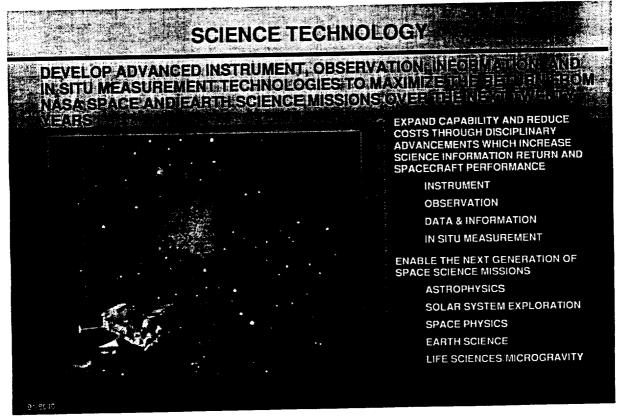

Data Management System Architecture and Software Systems Integration technologies (Software, etc.) Artificial Intelligence Techniques Safe Robotic Systems Advanced Communications (e.g., Laser & Millimeter Wave Technology)

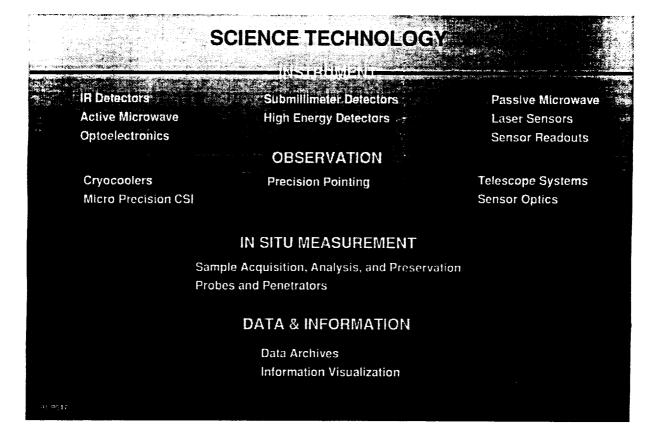
INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM **SPACE RESEARCH & TECHNOLOGY RESEARCH & CIVIL SPACE** TECHNOLOGY BASE **TECHNOLOGY PROGRAM** SPACE DISCIPLINE TRANSPORTATION SCIENCE RESEARCH TECHNOLOGY TECHNOLOGY Aerothermodynamics ETO Transportation Science Sensing Space Energy Conversion Space Transportation Technology Flight Expts. Propulsion **Observatory Systems** Materials & Structures Science Information In Situ Science Information and Controls Technology Flight Expts. Human Support SPACE Adv. Communications PLATFORMS TECHNOLOGY PLANETARY SURFACE **EXPLORATION** UNIVERSITY Earth-Orbiting Platforms TECHNOLOGY Space Stations Deep-Space Platforms PROGRAMS Surface Systems Technology Flight Expts. Human Support SPACE FLIGHT R&T Technology Flight Expts. **OPERATIONS** TECHNOLOGY SYSTEMS Automation & Robotics ANALYSIS Infrastructure Operations Info. & Communications Technology Flight Expts.

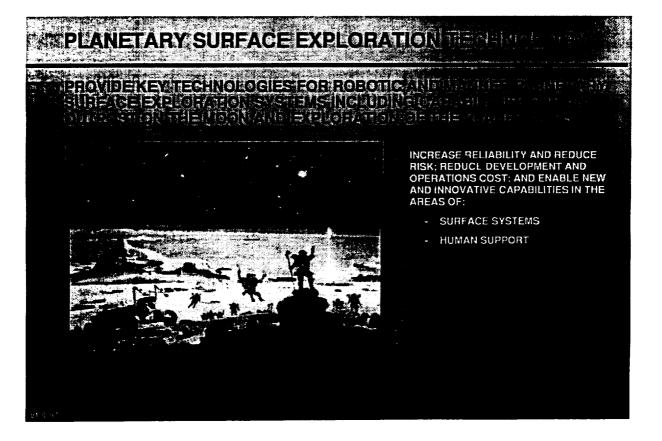

ITP OVERVIEW

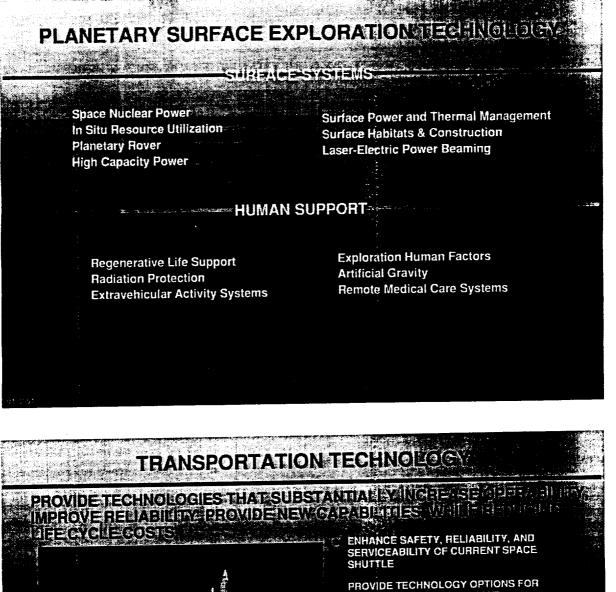

- SPACE R&T PROGRAM APPROACH
- INTEGRATED TECHNOLOGY PLAN DEVELOPMENT
- □ INTEGRATED TECHNOLOGY PLAN STRUCTURE
 - BUDGET DEVELOPMENT
 - SUMMARY COMMENTS






ORIGINAL PAGE IS OF POOR QUALITY





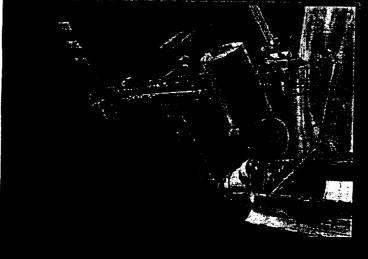
ORIGINAL PAGE IS OF POOR QUALITY

H-18 (1-2)

PROVIDE TECHNOLOGY OPTIONS FOR NEW MANNED SYSTEMS THAT COMPLEMENT THE SHUTTLE AND ENABLE NEXT GENERATION VEHICLES WITH RAPID TURNAROUND AND LOW OPERATIONAL COSTS

SUPPORT DEVELOPMENT OF ROBUST, LOW-COST HEAVY LIFT LAUNCH VEHICLES

DEVELOP AND TRANSFER LOW-COST TECHNOLOGY TO SUPPORT COMMERCIAL EVL'S AND UPPER STAGES


IDENTIFY AND DEVELOP HIGH LEVERAGE TECHNOLOGIES FOR IN-SPACE TRANSPORTATION, INCLUDING NUCLEAR PROPULSION, THAT WILL ENABLE NEW CLASSES OF SCIENCE AND EXPLORATION MISSIONS

TEANS	PORTATIO	N TECHN	Darote A
SSME Improvements Durable Thermal Protection Systems NEXT	Improved Heelth GENERATION MA	Monitoring.	Ight Structural Alloys Idar-Based Adaptive Guidance & Control & CRTS
Configuration Assessment High Frequency, High Voltage Power Management/Distribution Systems LOX/LH2 Propellant for OMS/RCS	Maintenance-f Advanced Reu		Composites & Advanced 2 Lightweight Metals Vehicle-Level Health Management For Autonomous Operations
Advanced Fabrication (Forming & Joining) STME Improvements	HEAVY-LIFT C On-Vehicle Adaptive Systems & Compon Actuators LOW-COST CO	e Guidance & Cont ents for Electric	rol Health Monitoring for Safe Operations AL-Li Cryo Tanks
Alternate Booster Concepts Advanced Cryogenic Upper Stag Engines	Low-Cost Fa	b./Automate d) DE	Continuous Forging Processes for Cryogenic Tanks Fault-Tolerant, Redundant Avionics
High-Power Nuclear Thermal & Elec High Performance, Multiple Use Cry Chemical Engine Highly Reliable, Autonomous Avior Low Mass, Space Durable Materials	ctric Propulsion yogenic nics	Long-Term, Low- Hydrogen	Loss Management of Cryogenic dezvous, Docking & Landing ologies

Low Mass, Space Durable Materials

282 SPACEPLATEORMS L D 1120

13

DEVELOP TECHNOLOGIES THAT WILL DECREASE LAUNCH WEIGHT AND INCREASE THE EFFICIENCY OF SPACE PLATFORM FUNCTIONAL CAPABILITIES

DEVELOP TECHNOLOGIES THAT WILL INCREASE HUMAN PRODUCTIVITY AND SAFETY OF MANNED MISSIONS

DEVELOP TECHNOLOGIES THAT WILL INCREASE MAINTAINABILITY AND REDUCE LOGISTICS RESUPPLY OF LONG DURATION MISSIONS

IDENTIFY AND DEVELOP FLIGHT EXPERIMENTS IN ALL TECHNOLOGY AND THRUST AREAS THAT WILL BENEFIT FROM THE UTILIZATION OF SSF FACILITIES

SPACE PLATFORMS TECHNOLOG

21661010000

Power Systems Structural Dynamics Oh-Orbit Non-Destructive Evaluation Techniques Thermal Management Advanced Information Systems Space Environmental Effects

SPACE STATIONS

Regenerative Life Support Integrated Propulsion and Fluid Systems Architecture

Extravehicular Mobility Telerobotics **Artificial Intelligence**

SPACE BASED LABORATORY AND TESTBED

Exploit Microgravity and Crew Interactive Capability to Advance and Validate Selected Technologies

DEEP SPACE MISSIONS

Power and Thermal Management

Propulsion

Guidance, Navigation and Control

OPERATIONS TECHNOL í A

DEVELOP AND DEMONSTRATE TECHNOLOGIES TO REDUCE THE CLOSITIO NASA OPERATIONS, IMPROVE THE SAFETY AND RELATIONS IN THE SAFETY AND RELATIONS OPERATIONS AND ENABLE NEW MORE COMPLET A COMPLET -NED STRAKEN

THE OPERATIONS THRUST SUPPORTS THE FOLLOWING MAJOR ACTIVITIES:

IN-SPACE OPERATIONS

FLIGHT SUPPORT OPERATIONS

GROUND SERVICING AND PROCESSING

PLANETARY SURFACE **OPERATIONS**

COMMERCIAL COMMUNICATIONS

THE FOLLOWING TECHNOLOGY AREAS ARE INCLUDED:

AUTOMATION & ROBOTICS INFRASTRUCTURE OPERATIONS INFORMATION & COMMUNICATIONS

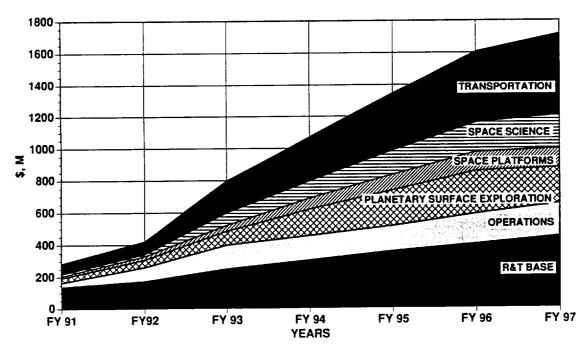
FLIGHT EXPERIMENTS

H-21 OF POOR CUALITY

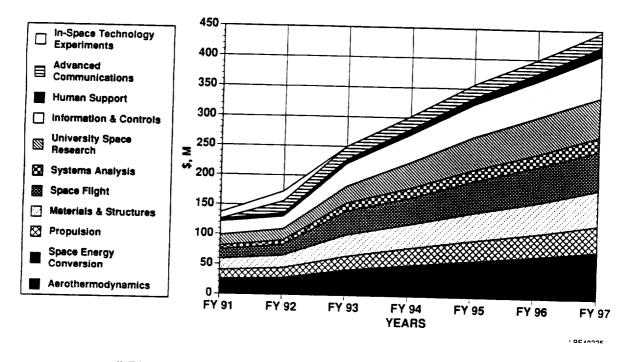
ITP OVERVIEW

- SPACE R&T PROGRAM APPROACH
- INTEGRATED TECHNOLOGY PLAN DEVELOPMENT
- INTEGRATED TECHNOLOGY PLAN STRUCTURE
- \Box
 - BUDGET DEVELOPMENT
 - SUMMARY COMMENTS

- Qazi

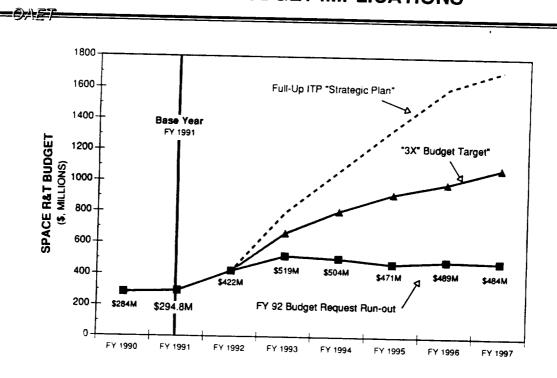

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM "Strategic Plan" ITP: CSTP Element Categorization

Space Science Technology	Submillimeter Sensing	Direct Detectors Microprecision	Active µweve Sensing Laser Sensing	Sample Acq., Analysis & Preservation	Passive Microwave Sensing	-	Optoelectrics ' Sensing & Processing	Probes and Penetrators	-
echnology	Cooler and Cryogenics	CSI Deta Visualization	Data Archiving and Retrieval	Telescope Op scal Systems	Sensor Electronics & Processing	-	Precision Instrument Pointing	Sensor Optical Systems	
Planetary Surface	Rediation Protection	Regenerative Life Support (Phys-Chem.)	Space Nuclear Power (SP-100)	High Capacity Power	Planetary Rovers	Surface Habitats and Construction	Exploration Human Factors		Antificial Gravity
Exploration Technology	-		Extravehiculer Activity Systeme	Surface Solar Power and Thermai Mgt.	in Shu Resource Utilization	Laser-Electric Power Beeming	Medical Support Systeme	-	-
Insportation Technology	ETO Propulsion	Aeroassist Fight Expt	Aeroaseist/ Aerobraking	Transfer Vehicle Aviorece	ETO Vehicle Avionics	ETO Vehicle Structures & Meterulis	Autonomous Rendezvous & Docking	COHE	Auxiliary Propulsion
	Cryogenic Fluid Systems	Nuclear Thermal Propulsion Adv. Cryo. Engines	Low-Cost Commercial ETO XPort	Nuclear Electric Propulsion	CONE	SEPS TFE	Autonomous Landing	TV Structures and Cryo Tankage	HEAD
Space Platforms	Platform Structures & Dynamics	Platform Power and Thermal Mgt.	Zero-G Llie Support	Platform Materials & Environ. Effects	Station- Keeping Propulsion	-	Spececraft On-Board Propulsion	Earth-Orbiting Plasform Controls	Advenced Retrigerator Systems
Technology			Zaro-G Advanced EMU	Platform NDE-NOI	Deep-Space Power and Thermal	-	Spacecrait GN&C	Debris Mapping Experiment	
Operations Technology	Space Data Systems	High-Rate Comm.	Artificiai Intelligence	Ground Data Systems	Optical Comm Flight Expt Navigation &	Flight Control and Operations	Space Assembly & Construction	Space Processing & Servicing	Photonica Data Systeme
	-	CommSet Communications	TeleRobotics	FTS DTF-1	Guidance Operator Syst./Training	CommSet Communicatins Flight Expts	-	Ground Test and 1 Processing 1	
	.	HIGHEST PRIORITY	•		2nd-HIGHEST PRIORITY &	•	 •	_3rd-HIGHEST PRIORITY ≬	


SPACE RESEARCH & TECHNOLOGY PROGRAM

— QAEI-

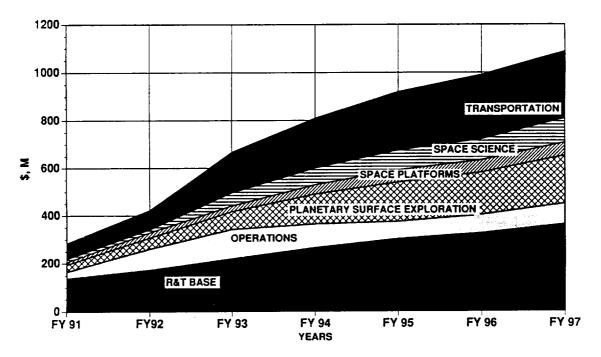
"STRATEGIC PLAN" FY 91 - 97 BUDGET BY THRUSTS

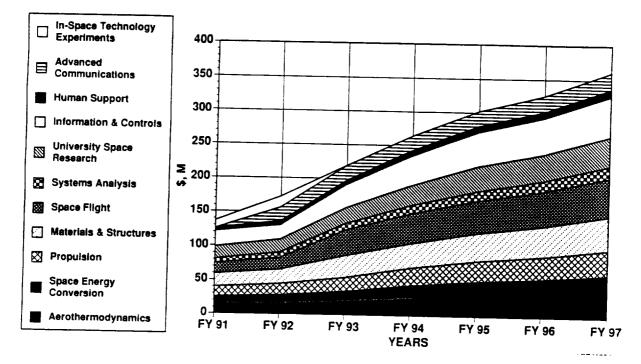


ORKEINAL PAGE IS OF POOR QUALITY = OAET

"STRATEGIC PLAN" FY 91 - 97 SPACE R&T BASE BY DISCIPLINE

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM SPACE R&T BUDGET IMPLICATIONS

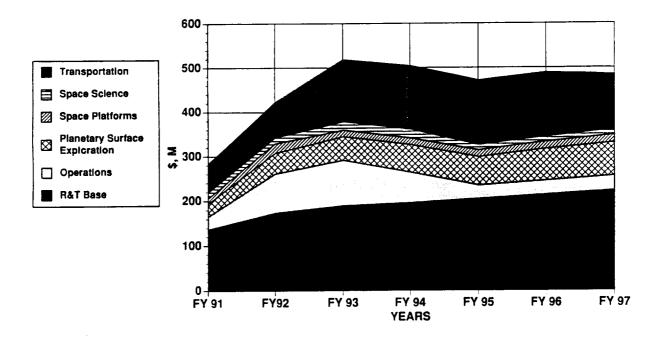

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM "3x Program" ITP: CSTP Element Categorization ('93)


Space Science Technology	Submillimeter Sensing	Direct Detectors Microprecision	Active µwave Sensing Laser Sensing	Sample Acq., Analysis & Preservation	- ,	-	-	-	-
, , , , , , , , , , , , , , , , , , ,	Cooler and Cryogenics	CSI Date Visualization	Data Archiving and Retrieval	Telescope Optical Systems	Sensor Electronics & Processing	-	-	-	_
Planetary Surface	Padiation Protection	Regenerative Life Support (Phys-Chem.)	Space Nuclear Power (SP-100)	High Capacity Power	Planetary Rovers		Exploration Human Factors	-	-
echnology	-		Extravehicular Activity Systems	Surface Solar Power and Thermal Mgt.	in Silu Resource Utilization	Laser-Electric Power Bearning	_	-	_
nsportation Technology	ETO Propulsion	Aeroaselst Flight Expt Nuclear Thermal	Aeroessist/ Aerobraking	Transfer Vehicle Avionics	ETO Vehicle Avionics	ETO Vehicle Structures & Materials	-	-	-
	Cryogenic Fluid Systems	Propulsion Adv. Cryo. Englnes	Low-Cost Commercial ETO XPort	Nuclear Electric Propulsion	CONE	-	_		-
Space Platforms Technology	Platform Structures & Dynamics	Platform Power and Thermal Mgt.	Zero-G Life Support	Platform Materials & Environ, Effects	_	_	Spececraft On-Board Propulsion	. .	
(connology)		-	Zero-G Advanced EMU	-	-	_	-	—	
Operations Technology	Space Data Systems	High-Rate Comm.	Artificial Intelligence	-	-	_	-	-	-
	-	CommSat Communicatina	TeleRobotics	FTS DTF-1	Operator Syst/Training		-	-	-

SPACE RESEARCH & TECHNOLOGY PROGRAM

--- Qaei

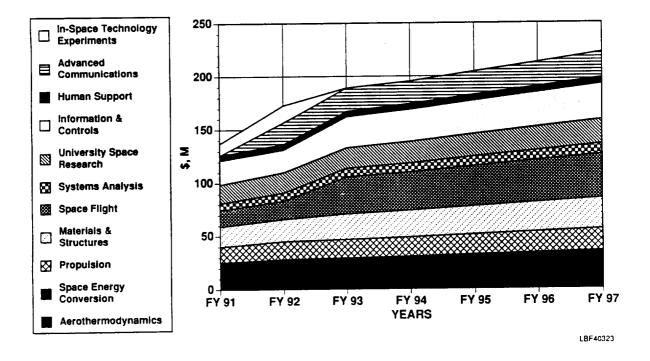
"3X PROGRAM" FY 91 - 97 SPACE R&T BASE BY DISCIPLINE


INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM Current Program ITP: CSTP Element Categorization

Space	Submillimeter	Direct	1						
Science Technology	Sensing	Detectors	_	-	' <u></u>	'-	-	1_	1
	Cooler and Cryogenics	Microprecision CSI	-	-	-	-	-	-	-
Planetary Surface Exploration	Padiation Protection	Regenerative Life Support (Phys-Chem.)	Space Nuclear Power (SP-100)	High Capacity Power	_	_	Exploration Human Factors	·····	
echnology		-	Extravehicular Activity Systems	-		-	-	-	-
echnology	ETO Propulsion	Aeroneelst Flight Expt	Aeroassist/ Aerobraking	-	-	_			
	-	Adv. Cryo. Engines	Nuclear Thermal Propulsion	Nuclear Electric Propulsion	-	-	-	_	
Space Platforms echnology	Platform Structures & Dynamics	_		-		_	-		_
	-	-	-	-	-	-	-		-
	Space Data Systems		Artificial Intelligence		-		-		-
		-	Telefiobatica	FTS DTF-1	-	-	-	_	-
-		HIGHEST			2nd-HIGHEST		ļ	3rd-HIGHEST	

SPACE RESEARCH & TECHNOLOGY PROGRAM

- Qaet


CURRENT FY 91 - 97 BUDGET BY THRUSTS

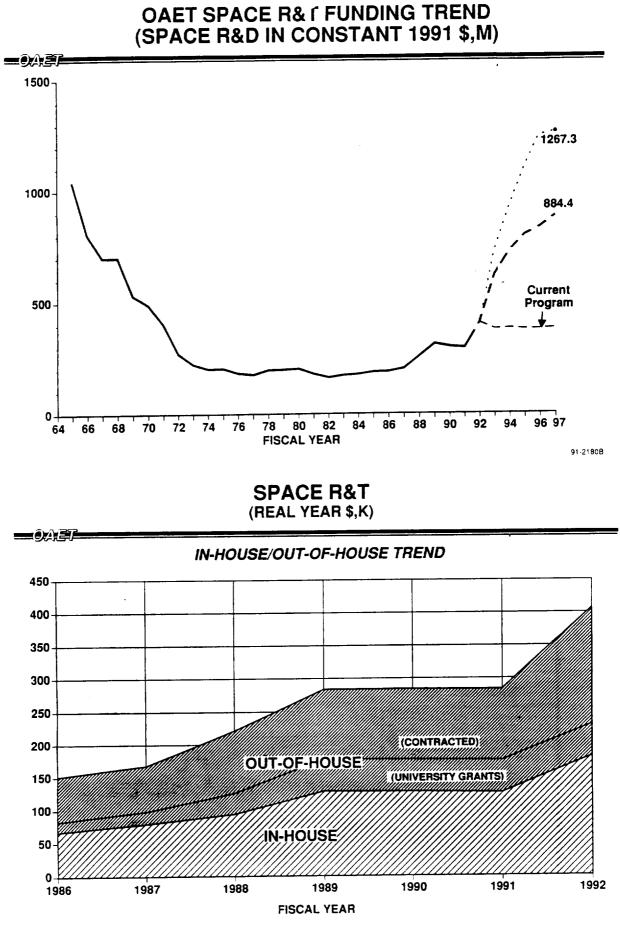
SPACE RESEARCH & TECHNOLOGY PROGRAM

=0aei

CURRENT FY 91 - 97 SPACE R&T BASE BY DISCIPLINE

ITP OVF3/NEM

- SPACE R&T PROGRAM APPROACH
- INTEGRATED TECHNOLOGY PLAN DEVELOPMENT


.

- INTEGRATED TECHNOLOGY PLAN STRUCTURE
- BUDGET DEVELOPMENT
- SUMMARY COMMENTS

Office of Aeronautics, Exploration and Technology FY 1992 BUDGET

(\$,	M)
------	----

APPROP.	AERO	TRANSAT.	SPACE	TOTAL
R&D	591.2	72.0	421.8	1085.0
R&PM	386.3	21.1	222.2	629.6
CofF	51.6	-	-	51.6
TOTAL	1029.1	93.1	644.0	1766.2

H-29

PURPOSE

=<u>9</u>()]]_____

PROVIDE A FORUM FOR PARTICIPATING GOVERNMENT AGENCIES TO IDENTIFY AND PROMOTE THE PURSUIT OF NEW OPPORTUNITIES FOR COOPERATIVE RELATIONSHIPS AND MONITOR ONGOING COOPERATIVE ACTIVITIES.

BACKGROUND/STRUCTURE

- INITIATED IN 1973, FORMALIZED WITH AF/NASA MOU IN 1984
- EXECUTIVE OVERSIGHT: AFSC and NASA OAET
- OPERATES THROUGH TECHNICAL COMMITTEES COMPOSED OF LABORATORY AND CENTER MANAGERS
- IDENTIFIES AND MONITORS STATUS OF:
 - DEPENDENT PROGRAMS
 - INTERDEPENDENT PROGRAMS
 - INDEPENDENT PROGRAMS

STIG EXPANDING TO INCLUDE ARMY, NAVY AND OTHER GOVERNMENT ORGANIZATIONS

STIG COMMITTEE STRUCTURE

ELECTRONICS AND INFORMATION PROCESSING

- · MICROWAVE & MILLIMETER WAVE TECHNOLOGY
- MICROELECTRONIC
- · E-O & SENSOR TECHNOLOGY

PROPULSION

- · LAUNCH VEHICLE PROPULSION
- · ORBIT TRANSFER/AUXILIARY
- PROPULSION

POWER

- · ENERGY PRODUCTION
- · ENERGY STORAGE
- · POWER MANAGEMENT
- · THERMAL MANAGEMENT

SPACE MATERIALS, STRUCTURES, DYNAMICS AND CONTROLS

- · MATERIALS
- · STRUCTURAL CONCEPTS
- · LARGE STRUCTURE DYNAMICS
- LARGE STRUCTURES
- FIGURE CONTROL
- · MODELING

FLIGHT DYNAMICS AND CONTROL

- FLIGHT DYNAMICS
- FLIGHT CONTROL

SPACE OPERATIONS TECHNOLOGY

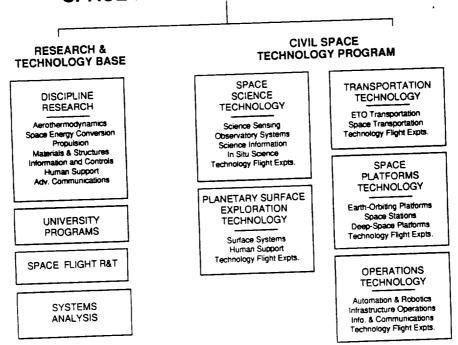
- · HUMAN FACTORS
- · ENVIRONMENT
- REMOTE OPERATIONS
- FLUID STORAGE AND TRANSFER

SPACE FLIGHT EXPERIMENTS

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM EXTERNAL REVIEW APPROACH

OBJECTIVES

"NASA (SHOULD) UTILIZE AN EXPERT, OUTSIDE REVIEW PROCESS, MANAGED FROM HEADQUARTERS, TO ASSIST IN THE ALLOCATION OF TECHNOLOGY FUNDS"


- REVIEW THE PROCESS USED FOR DEVELOPING THE INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM
- ASSESS THE TECHNICAL CONTENT OF THE PROPOSED ITP
 - IDENTIFY KEY TECHNOLOGY AREAS THAT NEED TO BE ADDRESSED FIRST-ORDER EVALUATION OF THE ESTIMATES OF "COST FOR
 - ACCOMPLISHMENT"

- RECOMMEND ADJUSTMENTS IN PRIORITIES AND RESOURCE PLANNING

ASSESS THE ACCOMMODATION OF USER NEEDS

- EVALUATE STRATEGIC AND NEAR-TERM TECHNOLOGY PLANS AGAINST TECHNOLOGY NEEDS OF FUTURE MISSIONS
 - RECOMMEND POTENTIAL CHANGES IN THE PHASING OF NEW PROGRAMS TO BETTER MEET TECHNOLOGY NEEDS

.

I Office of Aeronautics, Exploration and Technology

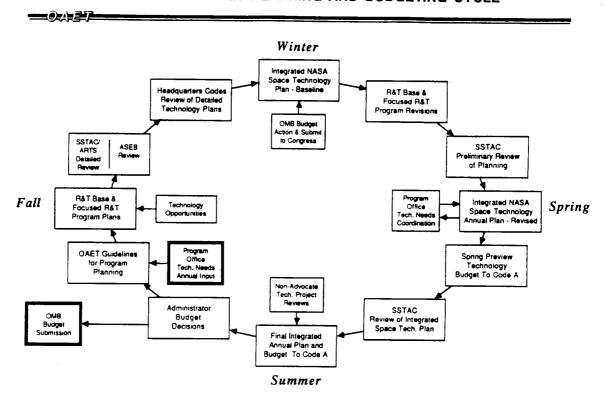
INTEGRATED TECHNOLOGY PLAN USER ACCOMMODATION SUMMARY

presentation to

THE ITP EXTERNAL EXPERT REVIEW TEAM

John C. Mankins

June 25, 1991


NATIONAL Aeronautics and Space Administration

INTEGRATED TECHNOLOGY PLAN EXTERNAL REVIEW USER NEEDS ACCOMMODATION SUMMARY

CONTENTS

- INTEGRATED TECHNOLOGY PLAN USER NEEDS OVERVIEW
- USER NEEDS ACCOMMODATION ASSESSMENT
- SPECIAL ASSESSMENT: ITP VS. PREVIOUS NATIONAL-LEVEL RECOMMENDATIONS
- SUMMARY

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM ANNUAL SPACE R&T PLANNING AND BUDGETING CYCLE

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM OSSA TECHNOLOGY NEEDS

	NEAR-TERM NEED	MID-TERM NEED	FAR-TERM NEED
HIGHEST PRIORITY	Sub-mm & µ-wave Sensing Long-Life Cryo Coolers/Cryo Shielding High-Energy Detectors Sensor Readout Electronics Vibration Isolation Technology Efficient/Quiet Refrigerator/Freezer Extreme Upper Atmosphere Instr. Platforms	Long-Life, Stable, Tunable Lasers Solar Probe/Mercury Orbiter Thermal Protect. High -Vol/Density/Rate Onboard Data Storage Interferometer-Specific Technology	Structures: LargerControlled/Deployed/Ant's Robotics Precision Inter-S/C Ranging/Positioning 50-100 Klowett ion Propulsion (NEP) Large Filled Apertures Parallel S/W Erv. for Model&Data Visualization Computational Techniques
2ND HIGHEST PRIORITY	High Frame Rate/Res. Video/Data Compress. 2.4 to 4 Meter, 100 K Lightweight PSR Solar Arrays/Cells Automated Blomedical Analysis Radiation Hardened Parts/Detectors Long-Lile/High-Energy Density Batteries Real-Time Environmental Control Space-Qualified Masers/Ion Clocks Fluid Diagnostics	Auto-Sequencing & CMD Generation Auto S/C Monitoring & Fault Recovery 32 GHz TWT/Optical Communications Telescience/Telepresence/Art. Intelligence Improved EVA Sur/PLSS (EMU) Combustion Devices Plasma Wave Antenne/Thermal	SIS 3 THz Heterodyne Receiver SETI Detector Technologies Mini-Ascent Vehicle/Lender Deceleration Radiation Shielding for Crewe SAAP/Probes/in Situ Instr's/Penetrations Human Antificial Gravity Systems X-Ray Optics Technology Returned-Sample Blobarrier Analysis Cep. High-Resoultion Spectrometer
3RD HIGHEST PRIORITY	Descent Imaging/Mini RTG/Mini Camera K-Band Transponders Utra -High Gigabitsec, Telemetry Mini-Spacecraft Subsystems Real-Time Radiation Monitoring Solid/Liquid Interface Characterization Laser Light Scattering High-Temperature Mattis for Funaces Field-Portable Gas Chromatographs Adv. Furnace Technology	Regenerative Life Support Thermal Control System Non-Contact Temp. Measurement 3-0 Packaging for 1MB Solid State Chips Microbial Decontamination Methods Animal and Plant Reproduction Aids Special: Purpose Bioreactor Simulator Syst. Repid Subject/Sample Delivery & Return Capability	Autonomous Rendezvous/Sample Xfer/Landing Non-Destructive Monstoring Capability Low-Drift Gyros/Trackers/Actuators Heat Shield for 16 km/sec Earth entry Partial-QL-G Medical Care Systems Dust Protection/Jupiter's Rings Non-Destructive Cosmic Dust Collection CELSS Support Technologies

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

OSF TECHNOLOGY NEEDS

		MSSION/SYSTEM APPLICATIONS FORECAST
	Vehicle Health Management	SSF. ACRV, STS, STV, CTV, PLS, NLS/HLLV, AMLS
NASA RAT	Advanced Turbomachinery (Components/Models)	SSF, STS, STV, ELVs, NLS/HLLV, AMLS
DRIVEN	Combustion Devices	SSF, STS, STV, ELVs, NLS/HLLV, AMLS
(Technology	Advanced Heat Rejection Technologies	SSF
Transfer	High-Efficiency Space Power Systems	SSF
to Industry)	Water Recovery and Management	SSF
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Advanced Extravehicular Mobility Unit	SSF
	Electromechanical Control Systems	STS, STV, CTV, NLS/HLLV, AMLS
	Crew Training Systems	SSF
	Characterization of AI-Li Alloys	STS, STV, CTV, NLS/HLLV, AMLS
	Cryogen Storage, Handling & Supply	SSF, STS, STV, CTV, AMLS
	TPS for High-Temp. Applications	STV, PLS, NLS/HLLV, AMLS
	Guidance, Navigation & Control	SSF, ACRV, STS, STV, CTV, PLS, NLS/HLLV, AMLS
	Robotic Systems	SSF, STV, CTV, AMLS
	Orbital Debris	SSF, CTV, AMLS
I	Advanced Avionics Architectures	SSF, ACRV, STS, STV, CTV, PLS, NLS/HLLV, AMLS
	Signal Transmission and Reception	SSF. STS. CTV. AMLS
R&T	Advanced Avionics Software	SSF, ACRV, STS, STV, CTV, PLS, NLS/HLLV, AMLS
DRIVEN (NASA	Non-Destructive Evaluation	SSF, ACRV, STV, CTV, NLS/HLLV, AMLS
Leverage	•	SSF, STV, CTV, AMLS
from	Environ, Safe Cleaning Solvents, Refrig./Foams	SSF, STS, PLS, AMLS (?)
(ndustry)	Video Technologies	337, 313, FL3, AML3 (1)

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM OSO TECHNOLOGY NEEDS

____0az7___

OSO HIGHEST-PRIOITY TECHNOLOGY NEEDS

High-Rate Communications

Optical and Millimeter Wave Radio Frequencies (for space-to-ground and space-to-space)

Advanced Data Systems

Advanced Data Storage, Data Compression, and Information Management Systems

Mission Operations

Artificial Intelligence, Expert Systems, Neural Networks, Increased Automation in Mission Operations, Testbeds for Advanced Software, Coordination of Distributed Software, and Automated Performance Analysis of Networking Computing Environments

Advanced Navigation Techniques

New techniques for cruise, approach, and in-orbit navigation

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM SEI OFFICE TECHNOLOGY NEEDS

Category 1 (Enabling and Common)

=0x}=7

Radiation Protection EVA Systems Nuclear Thermal Propulsion Regenerative Life Support Cryo. Fluid Mgt, Storage & Transfer Micro-G Countermeasures/Art. Gravity Aerobraking

Auto. Rendezvous & Docking

Health Maintenance & Care

In-Space Systems Assy/Processing

Surface Systems Construction/Processing

Cryogenic Space Engines

in Situ Resource Utilization

Surface Power

Category 2 (Enabling and Unique or High-Leverage and Common)

Category 3 (High-Leverage

and •Unique)

=0;;;;;;;=]=

Autonomous Landing Human Factors Surface System Mobility & Guidance Electric Propulsion

Sample Acquisition, Analysis & Preserv.

NOTE: THIS LISTING WAS DEVELOPED PRIOR TO THE RELEASE OF THE SYNTHESIS REPORT MSSION/SYSTEM APPLICATIONS FORECAST

INITIAL LUNAR, EVOLUTION, INITIAL MARS INITIAL LUNAR, EVOLUTION, INITIAL MARS INITIAL MARS MISSION INITIAL LUNAR, EVOLUTION, INITIAL MARS INITIAL LUNAR, EVOLUTION, INITIAL MARS INITIAL MARS INITIAL LUNAR, EVOLUTION, ROBOTIC MARS, INITIAL MARS

INITIAL LUNAR, EVOLUTION, ROBOTIC MARS, INITIAL MARS INITIAL LUNAR, EVOLUTION, INITIAL MARS INITIAL LUNAR, EVOLUTION, INITIAL MARS INITIAL LUNAR, EVOLUTION, INITIAL MARS EVOLUTION, INITIAL MARS INITIAL LUNAR, EVOLUTION, INITIAL MARS

INITIAL LUNAR, EVOLUTION, ROBOTIC MARS, INITIAL MARS INITIAL LUNAR, EVOLUTION, INITIAL MARS INITIAL LUNAR, EVOLUTION, ROBOTIC MARS, INITIAL MARS EVOLUTION, INITIAL MARS

INITIAL LUNAR, EVOLUTION, ROBOTIC MARS, INITIAL MARS

APRIL 23, 1991 JCM-6836a

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM SYNTHESIS GROUP SEI TECHNOLOGY NEEDS

HIGH PRIORITY AREAS

Heavy Lift Launch Nuclear-electric Surface Power Nuclear Thermal Propulsion Closed-loop Life Support System Telerobotics EVA Suits Radiation Effects/Shielding Long-duration Human Factors In Situ Resource Evaluation & Processing Autonomous Rendezvous/Docking Cryogen Transfer/Storage Light-weight Structural Mat'ls & Fabrication Nuclear Electric Prop. (Cargo) Zero-gravity Countermeasures

OTHER TECHNOLOGIES CITED (SELECTED EXAMPLES)

Virtual Reality Surface Habitats **Regenerative Fuel Cells** Solar Arrays Power Beaming Lunar Surface Factory Operations Mining, Excavation And Construction Sample Acquisition/Analysis High Rate Comm. & Navigation Lunar Surface Instrument Coolers Submillimeter/Optical Interferometers **Remote Sensors** Large Filled Aperture Telescopes **Robotic Probes** Aerobraking (Cited As Back-up Option) Chemical Propulsion (Back-up Option) Helium-3 Fusion

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

EXTERNAL TECHNOLOGY PERSPECTIVES SUMMARY

_____0A_27____

SPACE SCIENCE

Precision Space Structures and Pointing Accuracy

PLANETARY SURFACE EXPLORATION

Regnerative Life Support Systems Radiation Protection for Long Missions Utilization of In Situ Materials/Propellants Artificial Intelligence Techniques Robotic & Microrobotic Systems Advanced EMUs Surface Rover Technologies (Pressurized and Unpressurized) Nuclear Electric Power High-Efficiency Lunar Radiators & Thermal Energy Storage Power Beaming Human Health Maintenance Reduced Gravity Countermeasures/Artificial Gravity Bioprocess-Grade Fluid Management Systems

SPACE PLATFORMS

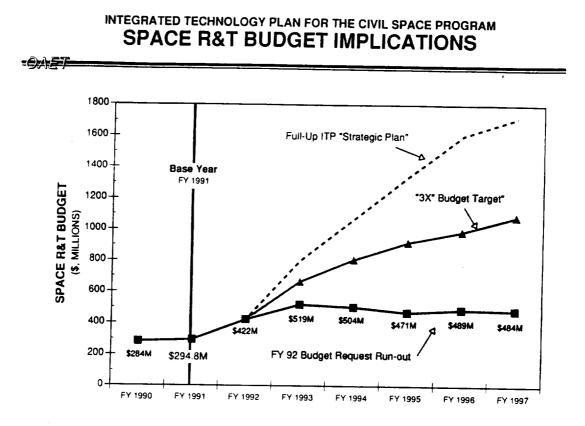
Composite Lightweight Structures Micrometeoroid and Debris Protection Long-Life Structures and Mechanisms Regnerative Life Support Systems Advanced EMUs Expanded Atomic Oxygen Database High-Efficiency, Radiation-Resistant, Lightweight PV Arrays High-Efficiency Power Processing Units Lightweight Batteries

TRANSPORTATION

Economical Launch Systems (Manned and Unmanned) Software Productivity Enhancers Integrated Vehicle Health Monitoring and Maintenance Advanced Cryogenic (Oxygen/Hydrogen) Engines Fault-Tolerant Advanced Avionics with Open Architectures High-Performance/Composite Lightweight Structures Long-Life Structures and Mechanisms High-Performance, Storable Space Thrusters High-Performance, Storable Space Thrusters High-Power Electric Propulsion Nuclear Thermal Propulsion for Manned Interplanetary Missions Cryogenics Long-Duration Storage and Management Gun-Type Launch Systems Aerobraking (Thermal Protection Systems) Integrated RCS/Auxiliary Propulsion Lightweight, Fuel-Efficient Airbreather Propulsion Systems

OPERATIONS

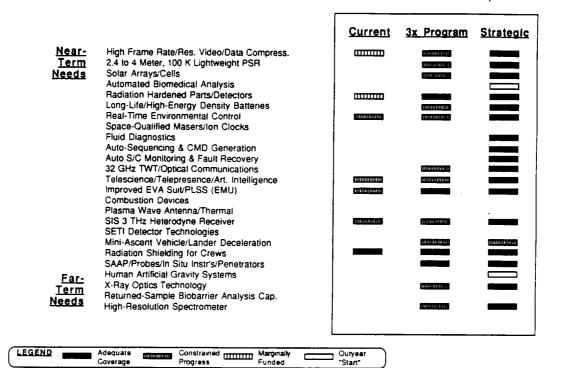
Data Management System Architecture and Software Systems Integration technologies (Software, etc.) Artificial Intelligence Techniques Safe Robotic Systems Advanced Communications (e.g., Laser & Millimeter Wave Technology)


INTEGRATED TECHNOLOGY PLAN EXTERNAL REVIEW USER NEEDS ACCOMMODATION SUMMARY

CONTENTS

 INTEGRATED TECHNOLOGY PLAN USER NEEDS OVERVIEW

- USER NEEDS ACCOMMODATION ASSESSMENT
 - SPECIAL ASSESSMENT: ITP VS. PREVIOUS NATIONAL-LEVEL RECOMMENDATIONS
 - SUMMARY

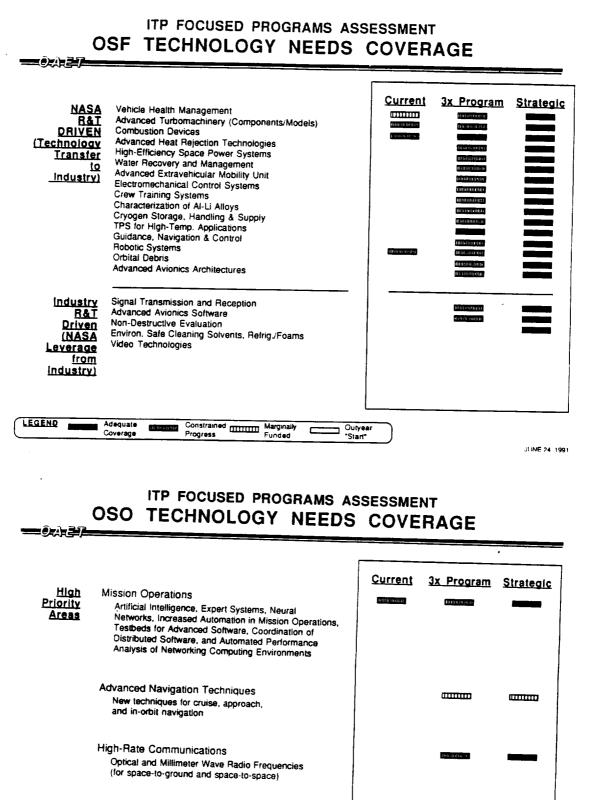


ITP FOCUSED PROGRAMS ASSESSMENT OSSA TECHNOLOGY NEEDS COVERAGE - HIGHEST PRIORITY

		Current	<u>3x Program</u>	Strateg
<u>Near-</u>	Sub-mm & µ-wave Sensing	manan	Defugead professors	
<u>Term</u> Needs	Long-Life Cryo Coolers/Cryo Shielding			
	High-Energy Detectors		10130181111011-	
	Sensor Readout Electronics			
	Vibration Isolation Technology	(111)	(1011111)	
	Efficient/Quiet Refrigerator/Freezer			
	Extreme Upper Atmosphere Instr. Platforms			
	Long-Life, Stable, Tunable Lasers			
	Solar Probe/Mercury Orbiter Thermal Protect.			
	High -Vol./Density/Rate Onboard Data Storage			
	Interferometer-Specific Technology	The REPORT OF A	that have a	
	Structures: Large/Controlled/Deployed/Ant'a	Hereitert (Hundstatia	
	Robotics		INTERNATION OF	
	Precision Inter-S/C Ranging/Positioning			
	50-100 Kilowatt Ion Propulsion (NEP)		مر المراجع ال	
Far-	Large Filled Apertures			
Term	Parallel S/W Env. for Model&Data Visualization			
Needs	Computational Techniques			

ITP FOCUSED PROGRAMS ASSESSMENT **OSSA TECHNOLOGY NEEDS COVERAGE - 2nd HIGHEST PRIORITY**

-0ait


INF 24 1991

ITP FOCUSED PROGRAMS ASSESSMENT **OSSA TECHNOLOGY NEEDS COVERAGE - 3nd HIGHEST PRIORITY**

"Start"

		Current	<u>3x Program</u>	<u>Strategi</u>
<u>Near-</u>	Descent Imaging/Mini RTG/Mini Camera			
<u>Term</u>	K-Band Transponders	1	An INTERPORT	
Needs	Ultra-High Gigabit/sec. Telemetry		100000000	
	Mini-Spacecraft Subsystems			
	Real-Time Radiation Monitoring			
	Solid/Liquid Interface Characterization			
	Laser Light Scattering			
	High-Temperature Mat'ls for Furnaces			
	Field-Portable Gas Chromatographs	1		
	Adv. Furnace Technology			
	Regenerative Life Support			
	Thermal Control System			
	Non-Contact Temp. Measurement			
	3-D Packaging for 1MB Solid State Chips			
	Microbial Decontamination Methods			
	Animal and Plant Reproduction Aids			
	Special-Purpose Bioreactor Simulator Syst.			
	Rapid Subject/Sample Delivery & Return Capability			
	Autonomous Rendezvous/Sample Xfer/Landing		1000000000	
	Non-Destructive Monitoring Capability Low-Drift Gyros/Trackers/Actuators		100013121.0	
	Heat Shield for 16 km/sec Earth entry			
F	Partial-G/µ-G Medical Care Systems		and could be	
Far-	Dust Protection/Jupiter's Rings			
<u>Term</u>	Non-Destructive Cosmic Dust Collection			
Needs	CELSS Support Technologies			
	occas support reallingues			

(LEGEND	Adequate Coverage	Constrained Progress	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	Outyear "Start"

Advanced Data Systems Advanced Data Storage, Data Compression, and Information Management Systems

> Constrained IIIIIII Marginally Progress Funded

LEGEND

Adequate

Coverage

hiter or trans

JUNE 24, 19 JCM-76

C

mmm

Outyear

Start*

ITP FOCUSED PROGRAMS ASSESSMENT SEI OFFICE TECHNOLOGY NEEDS COVERAGE

<u>Category 1</u> (Enabling and Common)	Radiation Protection EVA Systems Nuclear Thermal Propulsion Regenerative Life Support Cryo, Fluid Mgt, Storage & Transfer Micro-G Countermeasures/Art. Gravity			ogram Str	
<u>Category 2</u> (Enabling and Unique Or High-Leverage and Common)	Aerobraking Auto. Rendezvous & Docking Health Maintenance & Care In-Space Systems Assy/Processing Surface Systems Construction/Processing Cryogenic Space Engines In Situ Resource Utilization Surface Power	priority (187	(HOL)		
<u>Category 3</u> (High-Leverage and Unique)	Autonomous Landing Human Factors Surface System Mobility & Guidance Electric Propulsion Sample Acquisition, Analysis & Preserv.				
SYNTI	ITP FOCUSED PROGRA				J
SYNTI 	HESIS SEI TECHNOLOG	GY NEE	Urrent		n <u>Strate</u>
High Priority	HESIS SEI TECHNOLOG	GY NEE	Urrent	3x Program	
High Priority	Heavy Lift Launch Nuclear-electric Surface Power Nuclear Thermal Propulsion Closed-loop Life Support System Telerobotics EVA Suits Radiation Elfects/Shielding Long-duration Human Factors In Situ Resource Evaluation & Processing Autonomous Rendezvous/Docking Cryogen Transfer/Storage Light-weight Structural MatTls & Fabrication Nuclear Electric Prop. (Cargo) Zero-gravity Countermeasures Virtual Reality Surface Habitats Regenerative Fuel Cells Solar Arrays	GY NEE	Urrent		AGE

LEGEND Adequate Constrained Constrained Marginally Outyear JUNE 24, 1 Coverage Progress Funded Start JCM-:

ITP FOCUSED PROGRAMS ASSESSMENT EXTERNAL TECHNOLOGY NEEDS COVERAGE - I

Space Science	Precision Space Structures and Pointing Accuracy	<u>Current</u>	<u>3x Program</u>	Strategic
<u>Planetary</u> <u>Surface</u> Exploration	Regnerative Life Support Systems Radiation Protection for Long Missions Utilization of In Situ Materials/Propellants Artificial Intelligence Techniques Robotic & Microrobotic Systems Advanced EMUs Surface Rover Technologies (Pressurized and Unpressurized) Nuclear Electric Power High-Efficiency Lunar Radiators & Thermal Energy Storage Power Beaming Human Health Maintenance Reduced Gravity Countermeasures/Artificial Gravity Bioprocess-Grade Fluid Management Systems			
	Adequate Constrained Adequate Constrained	u)		

ITP FOCUSED PROGRAMS ASSESSMENT EXTERNAL TECHNOLOGY NEEDS COVERAGE - II

<u>Transportation</u>	Economical Launch Systems (Manned and Unmanned) Integrated Vehicle Health Monitoring and Maintenance Advanced Cryogenic (Oxygerv/Hydrogen) Engines Fault-Tolerant Advanced Avionics with Open Architectures High-Performance/Composite Lightweight Structures Long-Life Structures and Mechanisms High-Performance, Storable Space Thrusters High-Performance, Storable Space Thrusters High-Performance, Torable Space Thrusters High-Performance, Storable Space Thrusters Cong-Life Structures and Mechanisms High-Power Electric Propulsion Nuclear Thermal Prop. for Manned Interplanetary Missions Cryogenics Long-Duration Storage and Management Gun-Type Launch Systems Aerobraking (Thermal Protection Systems) Integrated RCS/Auxiliary Propulsion Lightweight, Fuel-Efficient Airbreather Propulsion Systems			
<u>Space Platforms</u>	Long-Life/Composite Lightweight Structures & Mechanisms Micrometeoroid and Debris Protection Regnerative Life Support Systems Advanced EMUs Expanded Atomic Oxygen Database High-Efficiency, Radiation-Resistant, Lightweight PV Arrays High-Efficiency Power Processing Units Lightweight Batteries	http://www.com	The order of the set of the set of the set of the set of set of the set of set of the set of set of the set of	
<u>Operations</u>	Data Management System Architecture and Software Software Productivity Enhancers Systems Integration technologies (Software, etc.) Artificial Intelligence Techniques Robotic Systems Advanced Communications (e.g., Laser & mm-Wave Tech.)		अध्यम्बद्धाः । सित्रः व्यक्तः क्रियाः व्यक्तः	
	Adequate Constrained Constrained Constrained Coverage Cov	·		

JUNE 24, 1991 JCM-7660f

INTEGRATED TECHNOLOGY PLAN EXTERNAL REVIEW USER NEEDS ACCOMMODATION SUMMARY

CONTENTS

- INTEGRATED TECHNOLOGY PLAN USER NEEDS OVERVIEW
- USER NEEDS ACCOMMODATION ASSESSMENT
- - SUMMARY

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM ASSESSMENT VS. NATIONAL RECOMMENDATIONS

,		"KEY	TECHNOL	OGY IDENTIFICA	TIONS	
TECHNOLOGY THRUSTS	<u>Augustine</u> (1990)	<u>Commerce</u> (1990)	<u>Defense</u> (1990)	<u>NRC (on HEI)</u> (1990)	NRC/ASEB (1987)	<u>NCOS</u> (1986)
· SPACE SCIENCE			a			
- (REMOTE) SENSING				C		
- OBSERVATORY SYSTEMS	3	ב	C			
- IN SITU SCIENCE	ū	L L	, a			
- SCIENCE INFORMATION		D	ū			
. SURFACE EXPLORATION			a			
- SURFACE SYSTEMS		C				
- HUMAN SUPPORT	∎		C			
. TRANSPORTATION		D	D			
- ETO TRANSPORTATION	=	C				
- SPACE TRANSPORTATION						
· SPACE PLATFORMS			G	Q		
- EARTH-ORBITING PLATFORMS			C			
- SPACE STATIONS	D D	a				
- DEEP-SPACE PLATFORMS	ū	c	Ľ			
· OPERATIONS						
- AUTOMATION & ROBOTICS	1		-		•	
- INFRASTRUCTURE OPERATIONS	a		a		Q	
- INFO AND COMMUNICATIONS					-	

=0:A:S-7-----

.

_____07.}___

.

SEVERAL PRIORITY TECHNOLOGY AREAS

- HEAVY LIFT LAUNCH VEHICLE - Evolutionary Inclusion of ALS Adv. Development Technology
- SHUTTLE

 Enhanced Reliability And Reduced Costs
- PROPULSION

 Advanced Rocket Engines That Don't Harm The Environment
- AERODYNAMICS/AEROBRAKING – Including Flight Evaluations
- NUCLEAR-ELECTRIC SPACE POWER
 10 to 100 MW Range
- SOLAR ELECTRIC GENERATORS - 10+ MW Range
- SPACE TETHERS AND ARTIFICIAL GRAVITY

- · MATERIALS
- · IN-SPACE MATERIALS PROCESSING
- AUTOMATED PLANTS TO PROCESS INDIGENOUS MATERIALS
- TRANSPORTATION AND COMMUNICATIONS FACILITIES
- · AUTOMATION AND ROBOTICS
- INFORMATION MANAGEMENT SYSTEMS
- DECENTRALIZED COMPUTERS
 - LIFE SUPPORT TECHNOLOGIES – Long Duration Closed Ecosystems and Life Support Systems
- RADIATION PROTECTION
- IMPROVED (SURFACE) SPACE SUITS

DEPARTMENT OF DEFENSE

CRITICAL TECHNOLOGIES PLAN (1990)

1990 LISTING*

•	SEMICONDUCTOR MAT'LS & MICRO- ELECTRONIC CIRCUITS	•	WEAPON SYSTEM ENVIRONMENT
•	SOFTWARE PRODUCIBILITY	•	DATA FUSION
•	PARALLEL COMPUTER ARCHITECTURES	•	COMPUTATIONAL FLUID DYNAMICS
•	MACHINE INTELLIGENCE AND ROBOTICS	•	AIR-BREATHING PROPULSION
•	SIMULATION AND MODELING	•	PULSED POWER
•	PHOTONICS	•	HYPERVELOCITY PROJECTILES
•	SENSITIVE RADARS	•	HIGH ENERGY DENSITY MATERIALS
•	PASSIVE SENSORS	•	COMPOSITE MATERIALS
•	SIGNAL PROCESSING	•	SUPERCONDUCTIVITY

SIGNATURE CONTROL · BIOTECHNOLOGY MATERIALS AND PROCESSES

*Note: Nuclear Technologies Excluded From Assessment

DEPARTMENT OF COMMERCE EMERGING TECHNOLOGIES (1990)

_____0_A_S_T____

SUMMARY

"AN EMERGING TECHNOLOGY IS ONE IN WHICH RESEARCH HAS PROGRESSED FAR ENOUGH TO INDICATE A HIGH PROBABILITY OF TECHNICAL SUCCESS FOR NEW PRODUCTS AND APPLICATIONS THAT MIGHT HAVE SUBSTANTIAL MARKETS WITHIN APPROXIMATELY 10 YEARS."

"IN LARGE DEVELOPED ECONOMIES SUCH AS THE UNITED STATES, ECONOMIC GROWTH REQUIRES THAT A SUBSTANTIAL NUMBER OF EMERGING TECHNOLOGIES BE UNDER DEVELOPMENT SIMULTANEOUSLY TO DIVERSIFY RISK AND BROADEN THE FUTURE INDUSTRIAL BASE."

"EMERGING TECHNOLOGIES ARE ALSO IMPORTANT BECAUSE THEY WILL DRIVE THE NEXT GENERATION OF R&D AND SPIN-OFF APPLICATIONS."

"... LEADERSHIP IN AN EMERGING TECHNOLOGY PROVIDES THE BASIS TO BECOME A MAJOR PLAYER IN DEVELOPING OR COMMERCIALIZING SUCCESSIVE GENERATIONS OF BREAKTHROUGHS IN THAT OR A RELATED TECHNOLOGY."

"TO REMAIN COMPETITIVE ... U.S. INDUSTRY MUST MATCH (INTERNATIONAL) DEVELOPMENTS BY INCREASING EMPHASIS ON RESEARCH AND DEVELOPMENT OF NEW PRODUCTS AND EMERGING TECHNOLOGIES..."

DEPARTMENT OF COMMERCE EMERGING TECHNOLOGIES (1990)

=0AST

1990 LIST

- . ADVANCED MATERIALS
- . ADVANCED SEMICONDUCTOR DEVICES
- ARTIFICIAL INTELLIGENCE
- BIOTECHNOLOGY
- DIGITAL IMAGING TECHNOLOGY
- . FLEXIBLE COMPUTER-INTEGRATED MANUFACTURING
- . HIGH-DENSITY DATA STORAGE
- HIGH-PERFORMANCE COMPUTING
- . MEDICAL DEVICES AND DIAGNOSTICS
- . OPTOELECTRONICS
- SENSOR TECHNOLOGY
- SUPERCONDUCTORS

=0:A:S:T=

=0:A:\$7

TECHNOLOGY DEVELOPMENT

SUMMARY

"STRATEGIES ARE NEEDED TO DEVELOP AND EMPLOY NEW TECHNOLOGIES THAT WILL ENABLE MORE RAPID OR COST-EFFECTIVE ACCESS TO AND HABITATION IN SPACE."

"DEVELOPING THESE STRATEGIES IMPLIES MAKING TRADE-OFFS AMONG ALTERNATIVE APPROACHES. AN IMPORTANT FACTOR IN THESE DECISIONS IS THE LEVEL OF HUMAN AND TECHNICAL RISK THAT IS ACCEPTABLE."

"A BALANCED TECHNOLOGY DEVELOPMENT PROGRAM WITH EMPHASIS ON CRITICAL LONG-TERM TECHNOLOGIES CAN HELP REDUCE RISKS AND PROVIDE IMPORTANT OPTIONS FOR THE FUTURE."

"DEVELOPMENT OF TECHNOLOGY FOR ARTIFICIAL GRAVITY AND COUNTERMEASURES TO MITIGATE ZERO-GRAVITY EXPOSURE SHOULD PROCEED IN PARALLEL WITH STUDIES OF THE PHYSIOLOGICAL EFFECTS OF MICROGRAVITY."

"SECOND TO THE NEED FOR SCIENTIFIC RESEARCH AND TECHNOLOGY DEVELOPMENT TO SUPPORT HUMANS IN SPACE IS THE NEED TO ADVANCED NATIONAL SPACE TRANSPORTATION CAPABILITIES."

"AN EMPHASIS ON ADVANCED HUMAN/MACHINE SYSTEMS CAN ENHANCE THE PRODUCTIVITY OF HUMANS IN SPACE AND INCREASE THEIR SAFETY."

Αр

NATIONAL RESEARCH COUNCIL ASSESSMENT OF NASA'S 90-DAY STUDY (1990)

KEY TECHNOLOGIES

- · HEAVY LIFT LAUNCH SYSTEMS
 - . KEY TECHNOLOGY GOALS:
 - INCREASED MASS AND DECREASED COSTS
 - ADVANCED MANUFACTURING
 - ADVANCED GN&C
- · ADVANCED PERSONNEL LAUNCH SYSTEMS
 - . KEY TECHNOLOGY GOALS:
 - ROBUST, RELIABLE, COST-EFFECTIVE OPERATIONS
 - REDUCED GROUND SUPPORT AND LAUNCH OPERATIONS REQ'TS

· SPACE TRANSPORTATION SYSTEMS

- . KEY TECHNOLOGY GOALS:
 - NUCLEAR THERMAL PROPULSION
 - NUCLEAR ELECTRIC POWER & PROPULSION
 - AEROBRAKING (DEMONSTRATIONS NEEDED)

4041

NATIONAL RESEARCH COUNCIL

ASSESSMENT OF NASA'S 90-DAY STUDY (1990)

_____A___T___

KEY TECHNOLOGIES

HUMAN & MACHINE OPERATIONS

• HUMAN SUPPORT AND SAFETY

- . KEY TECHNOLOGY GOALS:
 - CREW SAFETY
 - RADIATION PROTECTION/SHIELDING
 - ARTIFICIAL GRAVITY
 - CLOSED-LOOP LIFE SUPPORT SYSTEMS

. ADVANCED HUMAN-MACHINE SYSTEMS

- . KEY TECHNOLOGY GOALS:
 - INTEGRATED, VARIABLE CONTROL OPERATIONS & TELEOPERATIONS
 - ADVANCED INFORMATION MANAGEMENT SYSTEMS
 - VEHICLE MANEUVERING
 - VEHICLE SERVICING IN SPACE
 - IN-SPACE AND PLANET SURFACE ASSEMBLY & CONSTRUCTION
 - PLANETARY ROVERS AND SURFACE OPERATIONS
 - EXTRAVEHICULAR ACTIVITY AND EXPLORATION SYSTEMS
 - SAMPLE ACQUISITION, ANALYSIS & PRESERVATION
 - SCIENTIFIC PROBES/PENETRATORS

SPACE LEADERSHIP PLANNING GROUP RIDE REPORT TO THE NASA ADMINISTRATOR (1987)

=0:A:SI

TECHNOLOGY DEVELOPMENT

SUMMARY

"THE STRATEGY (FOR THE U.S. SPACE PROGRAM SHOULD) BEGIN BY INCREASING OUR CAPABILITIES IN TRANSPORTATION AND TECHNOLOGY -- NOT AS ENDS IN THEMSELVES, BUT AS THE NECESSARY MEANS TO ACHIEVE OUR GOALS IN SCIENCE AND EXPLORATION."

- "WE MUST ASK OURSELVES: "WHERE DO WE WANT TO BE AT THE TURN OF THE CENTURY?" AND "WHAT DO WE HAVE TO DO NOW TO GET THERE?" WITHOUT AN EYE TOWARD THE FUTURE, WE FLOUNDER IN THE PRESENT.
- "A CLEAR VISION PROVIDES A FRAMEWORK FOR CURRENT AND FUTURE PROGRAMS: IT ENABLES US TO KNOW WHICH TECHNOLOGIES TO PURSUE, WHICH LAUNCH VEHICLES TO DEVELOP, AND WHICH FEATURES TO INCORPORATE INTO OUR SPACE STATION AS IT EVOLVES."
- "THE MOST CRITICAL AND IMMEDIATE NEEDS ARE RELATED TO ADVANCED TRANSPORTATION SYSTEMS TO SUPPLEMENT AND COMPLEMENT THE SPACE SHUTTLE, AND ADVANCED TECHNOLOGY TO ENABLE THE BOLD MISSIONS OF THE NEXT CENTURY."

SPACE LEADERSHIP PLANNING GROUP RIDE REPORT TO THE NASA ADMINISTRATOR (1987)

KEY TECHNOLOGIES MISSION TO PLANET EARTH

· TECHNOLOGY GOALS:

- ENHANCED OBSERVATIONS - SOPHISTICATED SENSORS
- HANDLING & DELIVERY OF ENORMOUS QUANTITIES OF DATA - ADVANCED INFORMATION SYSTEMS
- · LONG OPERATING LIFE
- ADVANCED AUTOMATION AND ROBOTICS - FOR SPACECRAFT SERVICING
- TECHNOLOGIES FOR LEO-TO-GEO SPACE TRANSFER VEHICLES
- IN-SPACE ASSEMBLY AND CONSTRUCTION CAPABILITIES AT THE SPACE STATION

SPACE LEADERSHIP PLANNING GROUP RIDE REPORT TO THE NASA ADMINISTRATOR (1987)

=9-A-2-7-

KEY TECHNOLOGIES SOLAR SYSTEM EXPLORATION

• TECHNOLOGY GOALS:

- · AEROBRAKING
 - ROBOTIC MISSION AEROASSIST AT MARS
- · SOPHISTICATED AUTOMATION AND ROBOTICS
- · ADVANCED SAMPLING METHODS
- · HEAVY LIFT LAUNCH VEHICLE SYSTEMS

SPACE LEADERSHIP PLANNING GROUP RIDE REPORT TO THE NASA ADMINISTRATOR (1987)

KEY TECHNOLOGIES LUNAR OUTPOST

· TECHNOLOGY GOALS:

- · HEAVY LIFT LAUNCH VEHICLE SYSTEMS
- LIFE SUPPORT SYSTEMS
- AUTOMATION AND EXPERT SYSTEMS .
- SURFACE POWER TECHNOLOGIES .
- LUNAR MINING AND MATERIALS PROCESSING •
- REUSABLE SPACE TRANSFER VEHICLES
- · LEO-BASED VEHICLE STAGING - INCLUDING PROPELLANT MANAGEMENT/STRANSFER

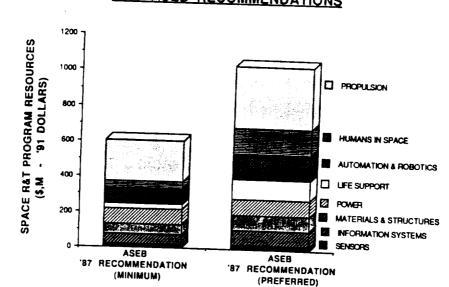
SPACE LEADERSHIP PLANNING GROUP RIDE REPORT TO THE NASA ADMINISTRATOR (1987) -0AZ7------

KEY TECHNOLOGIES HUMANS TO MARS

- · TECHNOLOGY GOALS:
 - · HEAVY LIFT LAUNCH VEHICLE SYSTEMS
 - · AUTOMATION AND ROBOTICS
 - FAULT-TOLERANT SYSTEMS
 - · AEROBRAKING
 - EFFICIENT INTERPLANETARY PROPULSION .
 - LEO-BASED VEHICLE STAGING - INCLUDING CRYOGEN MANAGEMENT/STRANSFER
 - · ADVANCED MEDICAL TECHNOLOGY
 - · LIFE SUPPORT SYSTEMS

NATIONAL RESEARCH COUNCIL ASEB: "SPACE TECHNOLOGY TO MEET FUTURE NEEDS" (1987)

TECHNOLOGY DEVELOPMENT


SUMMARY

"WE BELIEVE THAT IF A REASONABLE INVESTMENT IN R&T IS MADE, THE NATION WILL HAVE THE TECHNOLOGICAL OPTIONS READY WHEN NEEDED."

- "...OVER THE PAST 15 YEARS, (THE SPACE R&T) PROGRAM HAS BEEN SEVERELY RESTRICTED AND MAINLY FOCUSED ON RELATIVELY MODEST ADVANCES IN STATE-OF-THE-ART SUPPORT OF NEAR-TERM NASA MISSIONS."
- "... NASA'S PREOCCUMPATION WITH SHORT-TERM GOALS HAS LEFT THE AGENCY WITH A TECHNOLOGY BASE INADEQUATE TO SUPPORT ADVANCED SPACE MISSIONS."
- "FOR THE PAST 15 YEARS, LESS THAN 3 PERCENT OF THE TOTAL NASA BUDGET HAS BEEN INVESTED IN SPACE R&T. OF THAT, VIRTUALLY NONE HAS BEEN SPENT ON TECHNOLOGY DEVELOPMENT FOR MISSIONS MORE THAN FIVE YEARS IN THE FUTURE."

"...WE CONCLUDE THAT THE ADVANCED SPACE R&T PROGRAM (IS) SERIOUSLY UNDERFUNDED -- BY AT LEAST A FACTOR OF THREE."

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM ASSESSMENT OF PREVIOUS RECOMMENDATIONS

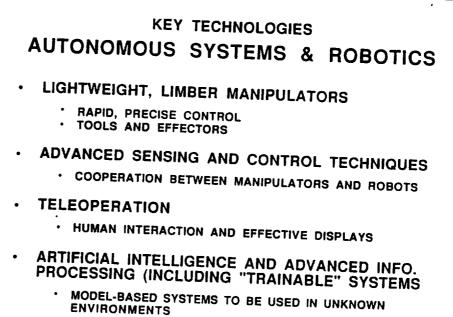
1987 ASEB RECOMMENDATIONS

NATIONAL RESEARCH COUNCIL ASEB: "SPACE TECHNOLOGY TO MEET FUTURE NEEDS" (1987)

> **KEY TECHNOLOGIES** ADVANCED PROPULSION

- A RANGE OF ADVANCED EARTH-TO-ORBIT ENGINES
 - REUSABLE, FAULT-TOLERANT, RELIABLE, ECONOMICAL
- REUSABLE CRYOGENIC ORBITAL TRANSFER VEHICLES
 - RELIABLE, FAULT-TOLERANT, LONG-LIVED
- HIGH-PERFORMANCE ORBITAL TRANSFER PROPULSION SYSTEMS (E.G., FOR HUMANS TO MARS MISSIONS)
 - THRUST GREATER THAN 10,000 LBS
 - · ISP GREATER THAN 800 SECONDS
- NEW SPACECRAFT PROPULSION SYSTEMS FOR • SOLAR SYSTEM EXPLORATION
 - · ISP GREATER THAN 1,200 SECONDS
 - · LOW-THRUST PRIMARY PROPULSION (NUCLEAR-ELECTRIC PROPULSION)

NATIONAL RESEARCH COUNCIL


ASEB: "SPACE TECHNOLOGY TO MEET FUTURE NEEDS" (1987)

______A____

KEY TECHNOLOGIES HUMANS IN SPACE

- **RADIATION PROTECTION**
 - · THREAT EVALUATION, PLUS SHIELDING
- CLOSED-CYCLE LIFE SUPPORT SYSTEMS
- IMPROVED EXTRAVEHICULAR ACTIVITY EQUIPMENT
 - · HIGH-PRESSURE SUITES, GLOVES, TOOLS AND MOBILITY AIDS
- AUGMENTATION OF HUMAN CAPABILITIES WITH AUTONOMOUS SYSTEMS AND ROBOTICS
 - AUTOMATED, TELEOPERATED AND ROBOTIC SYSTEMS
- HUMAN FACTORS .
 - · CREW SELECTION & TRAINING, PSYCHOLOGICAL STRESS, AND MAN-COMPUTER INTERFACES
- ARTIFICIAL GRAVITY

NATIONAL RESEARCH COUNCIL ASEB: "SPACE TECHNOLOGY TO MEET FUTURE NEEDS" (1987) =0-A:ET

- REAL-TIME EXPERT SYSTEMS AND PREDICTORS
- · ADVANCED IN-SPACE COMPUTING SYSTEMS

NATIONAL RESEARCH COUNCIL ASEB: "SPACE TECHNOLOGY TO MEET FUTURE NEEDS" (1987)

KEY TECHNOLOGIES

SPACE POWER SUPPLIES

- ADVANCED PHOTOVOLTAIC ARRAYS
- SOLAR DYNAMICS POWER SYSTEMS .
- SPACE NUCLEAR REACTOR POWER SYSTEMS .

NATIONAL RESEARCH COUNCIL ASEB: "SPACE TECHNOLOGY TO MEET FUTURE NEEDS" (1987)

KEY TECHNOLOGIES

MATERIALS AND STRUCTURES

- ADVANCED METALLIC MATERIALS
- COMPOSITE MATERIALS
- THERMAL PROTECTION SYSTEMS MATERIALS
- "HOT" STRUCTURES
- SPACE ENVIRONMENTAL EFFECTS ON MATERIALS
- DYNAMICS AND CONTROL OF LARGE, FLEXIBLE SPACE STRUCTURES
- DESIGN AND ANALYSIS TOOLS FOR STRUCTURAL DEVELOPMENT

NATIONAL RESEARCH COUNCIL

ASEB: "SPACE TECHNOLOGY TO MEET FUTURE NEEDS" (1987)

-0-A-27-----

KEY TECHNOLOGIES

INFORMATION AND CONTROL SYSTEMS

- AUTONOMOUS COMPUTING SYSTEMS DESIGNED FOR THE SPACE ENVIRONMENT
- HIGH-SPEED, LOW-ERROR RATE DIGITAL TRANSMISSION OVER LONG DISTANCES
- VOICE AND/OR VIDEO COMMUNICATIONS FOR CONTINUOUS REAL-TIME COMMUNICATIONS
- SPACE-BORNE TRACKING AND DATA-RELAY CAPABILITIES
- ENHANCED ON-BOARD COMPUTING CAPABILITIES
- INSTRUMENTATION TO MONITOR EQUIPMENT CONDITION AND TO AVOID HAZARDS
- GROUND DATA HANDLING, STORAGE, DISTRIBUTION AND ANALYSES

NATIONAL RESEARCH COUNCIL ASEB: "SPACE TECHNOLOGY TO MEET FUTURE NEEDS" (1987)

KEY TECHNOLOGIES SENSORS

PRINCIPLE AREAS

- · LARGE APERTURE OPTICAL AND QUASI-OPTICAL SYSTEMS
- DETECTION DEVICES AND SYSTEMS
- CRYOGENIC SYSTEMS
- IN-SITU ANALYSIS AND SAMPLE RETURN SYSTEMS

SUPPORTING AREAS

- RADIATION INSENSITIVE ON-BOARD COMPUTATIONAL SYSTEMS (HARDWARE AND SOFTWARE)
- HIGH-PRECISION ATTITUDE SENSORS AND AXIS TRANSFER SYSTEMS

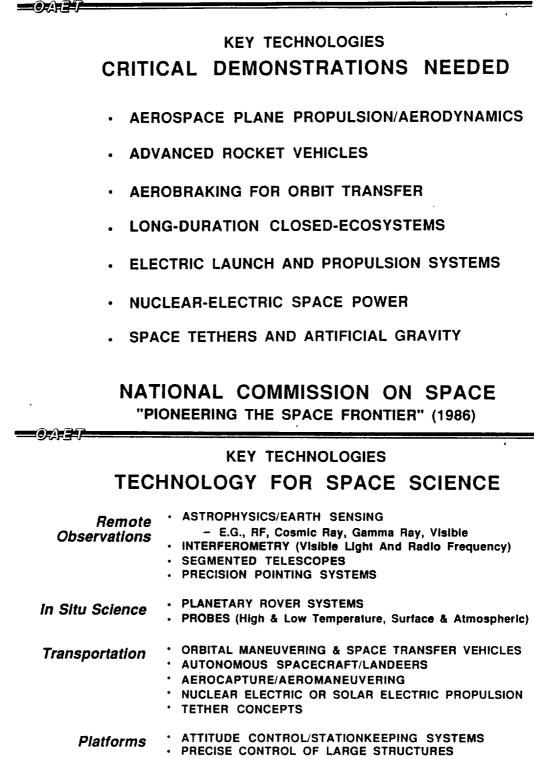
NATIONAL COMMISSION ON SPACE

"PIONEERING THE SPACE FRONTIER" (1986)

=0:ASI

TECHNOLOGY DEVELOPMENT

SUMMARY


"NASA IS STILL LIVING ON THE INVESTMENT MADE (DURING THE APOLLO ERA), BUT CANNOT CONTINUE TO DO SO IF WE ARE TO MAINTAIN UNITED STATES LEADERSHIP IN SPACE."

- "TECHNOLOGICAL ADVANCE IS CRITICAL TO ALL ... MAJOR ELEMENTS OF OUR RECOMMENDED PROGRAM: SCIENCE, EXPLORATION AND ENTERPRISE."
- "BECAUSE OF ITS CRITICAL ROLE IN GENERATING TECHNOLOGICAL OPPORTUNITIES, NASA'S SPACE RESEARCH AND TECHNOLOGY PROGRAM SHOULD BE TRIPLED, MOVING FROM ITS CURRENT TWO PERCENT OF NASA'S BUDGET TO SIX PERCENT."
- "AMERICAN LEADERSHIP ON THE SPACE FRONTIER REQUIRES AGGRESSIVE PROGRAMS IN TECHNOLOGY DEVELOPMENT."

"THE UNITED SATES MUST SUBSTANTIALLY INCREASE ITS INVESTMENT IN ITS SPACE TECHNOLOGY BASE."

NATIONAL COMMISSION ON SPACE

"PIONEERING THE SPACE FRONTIER" (1986)

NATIONAL COMMISSION ON SPACE

"PIONEERING THE SPACE FRONTIER" (1986)

=0AET

=0-A-E-T

KEY TECHNOLOGIES TECHNOLOGY FOR PILOTED SPACEFLIGHT

Surface Exploration	• TELEOPERATIONS
Exploration Human Support	 RADIATION DETECTION AND PROTECTION ADVANCED LIFE SUPPORT SYSTEMS ARTIFICIAL GRAVITY
Transportation	• SEMI-AUTONOMOUS ON-BOARD REPAIR, MAINTENANCE, AND REPLANNING
Platforms	• ZERO-GRAVITY SPACE SUITS • NON-SUIT ASTRONAUT EVA-CAPSULES
Operations	· AUTOMATION AND ROBOTICS

NATIONAL COMMISSION ON SPACE "PIONEERING THE SPACE FRONTIER" (1986)

KEY TECHNOLOGIES

TECHNOLOGY FOR NUCLEAR SPACE POWER

- ADVANCED RADIOISOTOPE THERMOELECTRIC GENERATORS (RTG'S)
- DYNAMIC NUCLEAR POWER SYSTEMS (E.G., DYNAMIC ISOTOPE POWER SYSTEMS - DIPS)
- · SP-100 SPACE NUCLEAR REACTOR POWER PLANT
- MULTI-MEGAWATT REACTOR POWER SYSTEMS

NATIONAL COMMISSION ON SPACE

"PIONEERING THE SPACE FRONTIER" (1986)

KEY TECHNOLOGIES

TECHNOLOGY FOR SPACE TRANSPORTATION

Earth-to-Orbit Transportation	 ADVANCED MANUFACTURING MATERIALS AND STRUCTURES (INCLUDING TPS) ENGINES GUIDANCE AND CONTROL ADVANCED FAULT-TOLERANT COMPUTERS REDUCED COST/COMPLEXITY LAUNCH OPERATIONS ADVANCED HYPERSONIC VEHICLES (NASP)
In-Space Transportation	 AEROBRAKING LONG-LIVED HYDROGEN/OXYGEN ENGINES NUCLEAR OR SOLAR ELECTRIC PROPULSION TETHER CONCEPTS NUCLEAR OR SOLAR ELECTRIC PROPULSION
Surface Operations	• PROCESSING OF EXTRATERRESTRIAL MATERIALS

NATIONAL COMMISSION ON SPACE "PIONEERING THE SPACE FRONTIER" (1986)

KEY TECHNOLOGIES TECHNOLOGY FOR SPACE INDUSTRY

- COMMUNICATIONS • E.G., FOR TELECOMUNICATIONS SATELLITES
- TRANSPORTATION • E.G., FOR EARTH-TO-ORBIT

- REMOTE SENSING • E.G., FOR EARTH RESOURCES/WEATHER SATELLITES
- SPACE MANUFACTURING • E.G., FOR MICROGRAVITY MATERIALS PROCESSING

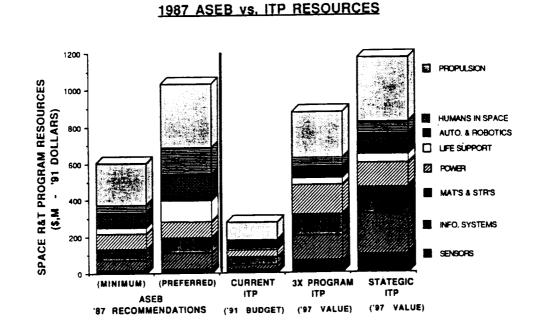
INTEGRATED TECHNOLOGY PLAN EXTERNAL REVIEW USER NEEDS ACCOMMODATION SUMMARY

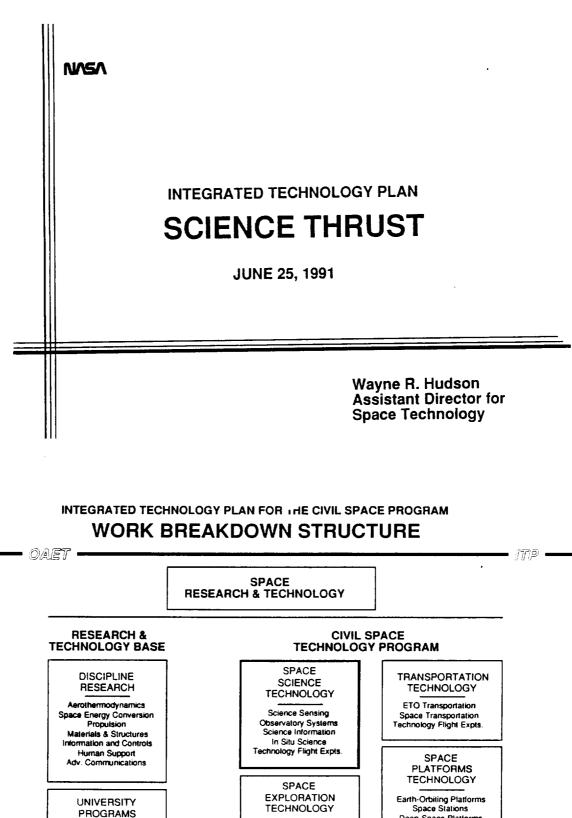
CONTENTS

- INTEGRATED TECHNOLOGY PLAN USER NEEDS OVERVIEW
- USER NEEDS ACCOMMODATION ASSESSMENT
- SPECIAL ASSESSMENT: ITP VS. PREVIOUS NATIONAL-LEVEL RECOMMENDATIONS

SUMMARY

=0A37


INTEGRATED TECHNOLOGY PLAN EXTERNAL REVIEW USER NEEDS ACCOMMODATION SUMMARY


SUMMARY

- "STRATEGIC" INTEGRATED TECHNOLOGY PLAN PROVIDES STRONG COVERAGE OF NUMEROUS USER-IDENTIFIED TECHNOLOGY NEEDS
 - SEVERAL OSSA TECHNOLOGY NEEDS NOT YET INTEGRATED INTO THE ITP
- INTEGRATED TECHNOLOGY PLAN CONSISTENT WITH RECOMMENDATIONS DEVELOPED BY EARLIER NATIONAL-LEVEL EXAMINATIONS OF U.S. CIVIL SPACE R&T INVESTMENTS
- ASSESSMENT OF ITP AGAINST USER NEEDS, EXTERNAL RECOMMENDATIONS WILL BE A CONTINUING, ANNUAL PROCESS
 - THIS EXTERNAL REVIEW IS A CRITICAL PART OF THIS PROCESS

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM ASSESSMENT OF PREVIOUS RECOMMENDATIONS

-0-1-57-

Space Stations Deep-Space Platforms Technology Flight Expts.

OPERATIONS TECHNOLOGY Automation & Robotics

Infrastructure Operations Info. & Communications Technology Flight Expts.

MAY 15, 1991 JCM-76502

Surface Systems

Human Support Technology Flight Expts.

SPACE FLIGHT R&T Flight Experiment Studies

IN-STEP

SYSTEMS

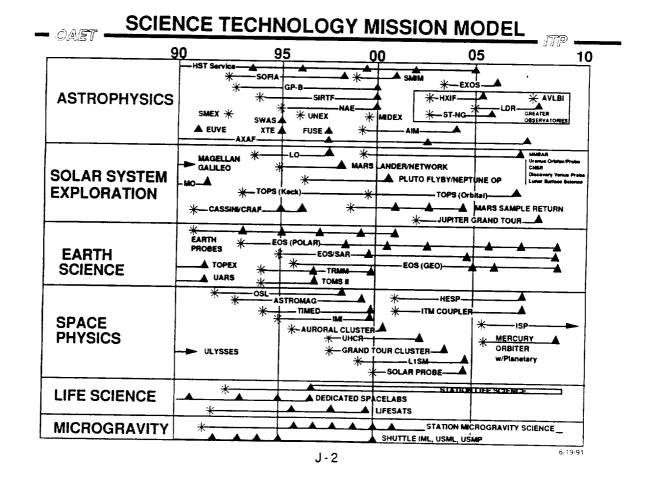
ANALYSIS

SCIENCE TECHNOLOGY PLAN

e oaet :

DEVELOP THE ADVANCED TECHNOLOGY REQUIRED FOR ACQUIRING AND UNDERSTANDING SCIENCE OBSERVATIONS FROM FUTURE NASA SPACE AND EARTH SCIENCE MISSIONS.

Space Based Instrument Component and Detector Technologies to Enable New Space Science Measurements


: ITP

Space Instrument Support and Observation Technologies to Maximize Science Return

Information Technology to Enable the Efficient and Effective Archiving, Retrieval, and Visualization of High Rate Data

Probes and Robotic Sample Handling to Enable Effective Remote In Situ Science on Planetary Surfaces

Validate Critical Technologies Through Space Flight Experiments to Facilitate Technology Transition to Future Programs

			A TECH				THE WOR	E UPDATED I OSSA/SSAAC KSHOP	
	Gro	uped Acco	ording to	o urgen	cy & Co	mmol	nality	,	APRIL 12, 1991
Term	Submm & Microwave Tech: SIS 1.2 THz Heterodyne Rec. Active SAR integrated circuits Passive submm 600 GHz diodes (SZ SE)			2.5 - 4m, 100K Lightweight, PSR	Fluid Diagnosucs (SN)	Reat-Time Radiation Monitoring (SB)	Oescent images	Mini-RTG (SL)	Mini-Camera
Vear ⁻	Detectors (SE, SL, SZ, SS) optical, Ge, Xe, non-cryo 1.6 to 150µ IR, extended µ CCD, high energy detectors, sensor readout electronics. & tutorel sensors.	Vibration Isolation Technology (SN, SZ, SB)	Solar Arrays/Cella (SL, SZ, SE)	Automated Biomedical Analysis (SB)	Rad Hard Parts & Detectors (SZ, SL)	Solid/Liquid Interface Characterization (SN)	Laser Light Scattering r (SN)	High Temperature Materials For Furnaces (SN	K-band Transponders) (SZ)
	Efficient, Quiet Refrigerator/Freeze (SB)	Extreme Upper Atmosphere Instrument Platforms (SS)	Batteries Long life time High energy densit (SL 5Z)	Real-Time Environmental ty Control & Monitoring (SB	Space Qualified maser & ion Clocks (SZ)	Field Portable Gas Chromato- graphs (SB)	Advanced Furnace Technology (SN)	Ultra-high Gigabit/sec Telemetry (SZ)	Mini S/C Subsystems (SL)
	Lasers: Long-life, Stable & Tunable (SE, SZ, SL, SB)	Solar Probe/ Mercury Orbiter Thermal Shield & Protection (SS, SL)	Auto Sequencing & Command Generation, Auto S/C Monisoring & Fault	Combustion	Plasma Wave Antennas/ Thermal (SS)	Regenerative Life Support	Non-Contact Temperature Measurement (SN)	3-D packaging for 1 MB Soli State Chips (SZ)	Microbial d Decontamination Methods (SB)
	Data Int High Volume, High 1 Density, High Data 1	erferometer-specific Tech: picometer metrology uctive delay lines control-structures interact. (SZ, SL, SB)	Recovery(SL) 32 Ghz TWT Opucal Communication (SL, SS)	Telescience,	mproved EVA Suit/ PLSS (EMU) (SB)	Control Bi System Si (SZ)	muiator Syst. & F (SB) Cap	npie Delivery F teturn / ability (SB)	(SB)
	Controlled Structures/ Large Anienna Structure Arrays/Deployable (SE, SZ, SS, SB)	Robotics (SN, SL)	SIS 3 Thz Heierodyns Receiver (SZ)	SETI Technologies – Microwave & Optical/Laser Deter (SB)	Vehicle/	Auto Rendezvo Auto Sample Transfer, Auto Landing	ui Non-Descructiv Monitoring Capability (SB)	Gygos, G	Non-Destructive Cosmic Dust Collection (SB)
erm	& Positioning Precision Sensing Pointing & Control	Parallel Software (SE, SL.) Environment for Model & Data Assimilation, Visualization Computational Techniques	Sample Acquisition & Preservation, Probe, In-situ Inst., Drills, Corers, Penetrators (SL, SE	Returned-Sump Biobarrier Analysis	Resolution	Heat Shield for 16 Km/s Earth Entry (SL)	Partial-g/ µg Medical Care Delivery Systems (SB)	Dust Protection/ Jupiter's Rings (SL)	
Far T	Large Filled Apertures lightweight & stable optics Cryo optical ver., fab., test. Deformable murrors 15-25m PSR (SL, SZ, SE)	50-100K w Ion Propulsion (NEP) (SL)	Radiation Shielding for Crews (SB)	X-ray Optics Tech: imaging system low cost optics Bragg concentratio coated apertures	Human Aruficial Gravity (SZ) Systems(SB)	CELSS Support Technologies (SB)			
	HIGH PRIOF Tally: SB: 5 SN: 3 SE: 8 SS: 6 SL: 11 SZ: 9		SB: 10 SN: 4 SE: 1 SS: 2 SL: 9 SZ: 6	2nd-HIGHEST_ PRIORITY		SE: 0	3rd HIG PRIOF SN: 5 SS: 0 SZ: 5		

OSSA TECHNOLOGY NEEDS ____ 0.aet _____

_____*JTP* _____

- * MERGED OSSA DIVISION NEEDS
- * TECHNOLOGY NEEDS PRIORITIZED BY URGENCY AND COMMONALITY
- * NEEDS PRIORITIZATION WILL REFLECT OSSA STRATEGIC PLAN
- * COMPARED CURRENT PROGRAM AGAINST NEED
- * TECHNOLOGY RESPONSES ARE IN ALL THRUSTS

SCIENCE TECHNULOGY PLAN STRATEGIC WORK BREAKDOWN STRUCTURE - OAET -

______ *ITP* ___

: ITP ____

Science Sensing	Observatory Systems	In Situ Science	Science Information
DIRECT DETECTORS	TELESCOPE OPTICAL SYSTEMS	PROBES AND PENETRATORS	
SUB- MILLIMETER	SENSOR	SAMPLE	
LASER SENSING	OPTICAL SYSTEMS	ANALYSIS AND PRESERVATION	
ACTIVE	COOLERS & CRYOGENICS		ANALYSIS
PASSIVE MICROWAVE	PRECISION INSTRUMENT POINTING		
SENSOR READOUTS	MICRO- PRECISION		
OPTO- ELECTRONICS			

SCIENCE TECHNULOGY PLAN

SCIENCE SENSORS

DEVELOP AND DEMONSTRATE SCIENCE SENSING COMPONENTS ACROSS THE ELECTRO-MAGNETIC SPECTRUM FOR INCREASED SENSITIVITY AS WELL AS GREATER SPATIAL AND SPECTRAL RESOLUTION.

DIRECT DETECTORS - IR, VISIBLE, GAMMA, XRAY

SUBMILLIMETER - ARRAYS, MIXERS, LOCAL OSCILLATOR

LASER - NEW WAVELENGTHS, LIFE, ARRAYS

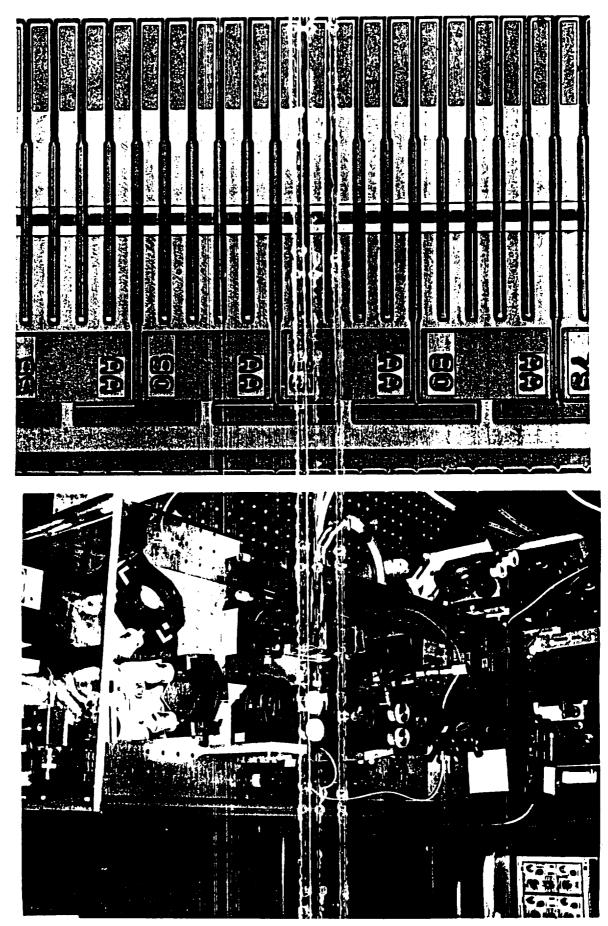
- OAET -

ACTIVE MICROWAVE - BROADEN FREQ BAND, HIGHER EFFICIENCY

PASSIVE MICROWAVE - MMIC COMPONENTS, ELECTRONIC STEERING

ELECTRONIC READOUTS - REDUCED HEAT LOAD, LOWER NOISE

OPTOELECTRONICS - SEMICONDUCTOR LASER, TUNABILITY


a a la construction de la construct EVERY SCIENCE MISSION REQUIRES SENSING TO MEET ITS SCIENTIFIC OBJECTIVES; THE QUALITY AND QUANTITY OF SCIENCE IS INCREASED BY IMPROVED SENSORS. CURRENT EMPHASIS IS IR DETECTORS FOR EOS & SIRTF.

SUBMILLIMETER SENSORS ARE USED FOR 03 DEPLETION AND C02; ARE FOCUS OF **BAHCALL REPORT.**

LASERS USED FOR WIND MEASUREMENT AND ATMOSPHERIC CONSTITUENTS.

MICROWAVE USED FOR SOIL MOISTURE AND GEOLOGY.

RADIOMETERS USED FOR GLOBAL PRECIPITATION.

J-5

OBSERVATORY SYSTEMS

ITP =

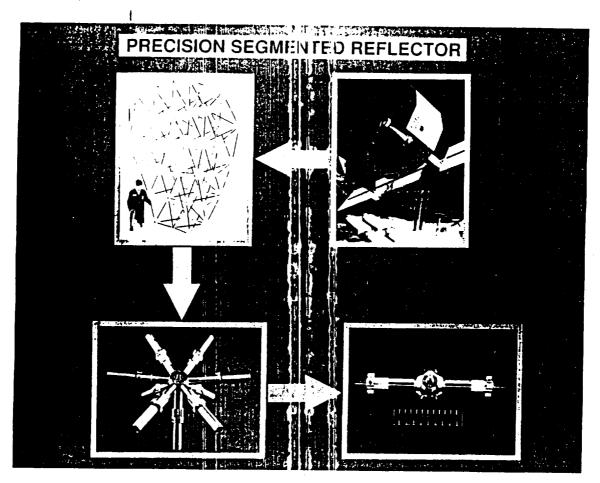
= OAET

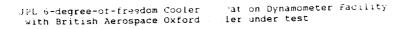
DEVELOP AND DEMONSTRATE SPACE INSTRUMENT SUPPORT AND OBSERVATION TECHNOLOGIES IN ORDER TO MAXIMIZE SCIENCE RETURN BY PROVIDING THE OPTIMUM OPERATING CONDITIONS FOR SCIENCE INSTRUMENTS.

TELESCOPE OPTICAL - LT WEIGHT MIRRORS, SEGMENTED REFLECTOR METEOROLOGY

SENSOR OPTICAL - MODELLING, GRATINGS, FILTERS

COOLERS & CRYOGENICS - 2-300K TEMPERATURE PRECISION POINTING - TWO ORDERS MAGNITUDE


MICROPRECISION CSI - SUBMICRON POSITIONING AND STABILIZATION


ACHIEVING FULL UTILIZATION OF SCIENTIFIC OBSERVATORIES REQUIRES THAT THEY ARE DYNAMICALLY CONTROLLED, THAT THEY OPERATE AT THE OPTIMUM THERMAL CONDITIONS, AND THAT THEY CAN BE STABLY POINTED AT DESIRED SCIENTIFIC EVENTS.

CURRENT EMPHASIS IS ON COOLERS FOR EOS IR INSTRUMENTS; WORK WOULD BE EXTENDED TO COVER COMPLETE 2K TO 300K RANGE FOR EOS, AXAF, SMMM

STABILIZATION FOR MICROGRAVITY PLATFORMS AND FIRST SPACE OPTICAL INTERFEROMETERS MOI, TOPS

REFLECTOR SMOOTHNESS, FACET FIGURE CONTROL

IN SITU SCIENCE

e oaet :

1. 1. 124 ...

الأسائية بعجم المقيو الأردي سيابذ وأكراري

TP =

DEVELOP PLANETARY PROBES AND ROBOTIC SAMPLE ANALYSIS AND PRESERVATION TO ENABLE REMOTE IN SITU SCIENCE

PROBES. PENETRATORS AND LANDERS - AEROMANEUVERING, IMPLANTING, ANCHORING AND IMPACT ABSORBERS

SAMPLE ACQUISITION, ANALYSIS AND PRESERVATION - SAMPLE SPECTRAL IDENTIFICATION, PHYSICAL AND CHEMICAL ANALYSIS; PRISTINE CONTAINMENT (THREE YEARS)

ROBOTIC EXPLORATION OF PLANETARY SURFACES WILL REQUIRE THE DEVELOPMENT OF INNOVATIVE CONCEPTS FOR PRECISE TARGETING OF HIGHLY ROBUST AND VERSATILE PROBES. ACQUISITION AND ANALYSIS OF SAMPLES IN SITU WILL BE REQUIRED TO OBTAIN HIGH QUALITY SAMPLES.

3200

POTENTIAL MISSION APPLICATIONS INCLUDE NEPTUNE, URANUS, PLUTO, ASTEROIDS, AND COMETS.

PROBES AND SAMPLE ACQUISITION COULD BE TESTED ON MOON BEFORE APPLICATION TO MARS SCIENCE PROGRAMS.

SCIENCE INFORMATION

DEVELOP AND DEMONSTRATE KEY TECHNOLOGIES TO ENABLE SUSTAINED, NEAR REAL-TIME CONVERSION OF MASSIVE DATA SETS FROM SPACE SCIENCE MISSIONS INTO SCIENTIFIC INFORMATION WHICH LEADS TO GREATER UNDERSTANDING OF SCIENTIFIC PHENOMENA

ARCHIVING AND RETRIEVAL - AUTONOMOUS CLASSIFICATION AND ASSOCIATIVE REFERENCE VISUALIZATION AND ANALYSIS - REAL-TIME PARAMETRIC DATA TOURING

SCIENCE INFORMATION TECHNOLOGIES ARE NEEDED TO SUPPORT THE UNPRECEDENTED VOLUME OF OBSERVATIONAL DATA WHICH WILL BE PRODUCED BY MISSION TO PLANET EARTH AS WELL AS ASTROPHYSICS AND PLANETARY MISSIONS.

in 20 million and the set of the set

OVER THE HISTORY OF THE SPACE PROGRAM DATA RATES HAVE INCREASED AT THE RATE OF TWO ORDERS OF MAGNITUDE PER DECADE

EOS PLATFORMS MAY GENERATE TERABYTES OF SCIENTIFIC DATA PER DAY

EOSSAR WILL ADD GREATLY TO THIS DATA RATE

e oaet =

GREAT OBSERVATORIES HST, GRO, AXAF, SIRTF

SCIENCE THRUST

r	SCIENCE SENSING	OBSERVATORY SYSTEMS	IN-SITU SCIENCE	SCIENCE INFORMATION
ASTROPHYSICS	DIRECT DETECTORS SUBMILLIMETER SENSOR READOUTS OPTOELECTRONICS	TELESCOPE OPTICAL SYSTEMS SENSOR OPTICAL SYSTEMS COOLERS & CRYOGENICS PRECISION POINTING MICROPRECISION CSI		ARCHIVING & RETRIEVAL DATA VISUALIZATION & ANALYSIS
SOLAR SYSTEM EXPLORATION	DIRECT DETECTORS SUBMILLIMETER ACTIVE MICROWAVE SENSOR READOUTS OPTOELECTRONICS	TELESCOPE OPTICAL SYSTEMS SENSOR OPTICAL SYSTEMS COOLERS & CRYOGENICS PRECISION POINTING MICROPRECISION CSI	PROBES & PENETRATORS SAMPLE ACQUISITION ANALYSIS & PRESERVATION	
EARTH SCIENCE	DIRECT DETECTORS SUBMILLIMETER LASER SENSING ACTIVE MICROWAVE PASSIVE MICROWAVE SENSOR READOUTS OPTOELECTRONICS	TELESCOPE OPTICAL SYSTEMS SENSOR OPTICAL SYSTEMS COOLERS & CRYOGENICS PRECISION POINTING MICROPRECISION CSI		ARCHIVING & RETRIEVAL DATA VISUALIZATION & ANALYSIS
SPACE PHYSICS	DIRECT DETECTORS SUBMILLIMETER SENSOR READOUTS OPTOELECTRONICS	SENSOR OPTICAL SYSTEMS COOLERS & CRYOGENICS PRECISION POINTING	PROBES & PENETRATORS	
MICROGRAVITY	DIRECT DETECTORS SENSOR READOUTS OPTOELECTRONICS	SENSOR OPTICAL SYSTEMS MCROPRECISION CSI	SAMPLE ACQUISITION ANALYSIS & PRESERVATION	ARCHIVING & RETRIEVAL DATA VISUALIZATION & ANALYSIS

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

"Strategic Plan" ITP: CSTP Element Categorization

Space Science Technology	Submililmeter Sensing	Direct I Detectors Microprecision	Active µwave Sensing Laser Sensing	Sample Acq., Analysis & Preservation	Passive Microwave Sensing		Optoelectrica Sensing & Processing	Probes and Penetrators	
(Calliology	Cooler and Cryogenics	CSI Data Visualization	Data Archiving and Retrieval	Telescope Optical Systems	Sensor Electronics & Processing		Precision Instrument Pointing	Sensor Optical Systems	
Planetary Surface Exploration	Radiation Protection	Regenerative Life Support (Phys-Chem.)	Space Nuclear Power (SP-100)	High Capacity Power	Planetary Roverá	Surface Habitats and Construction	Exploration Human Factors	. <u></u> .	Artifical Gravity
Technology			Extravehicular Activity Systems	Surface Solar Power and Thermal Mgt.	in Situ Resource Utilization	Laser-Electric Power Bearning	Medical Support Systems		
nsportation Technology	ETO Propulsion	Aeroassist Flight Expl Nuclear Thermai	Aeroassist/ Aerobraking	Transfer Vehicle Avionics	ETO Vehicle Avionics	ETO Vehicle Structures & Materials	Autonomous Rendezvous & Docking	COHE	Auxiliary Propulsion
	Cryogenic Fluid Systems	Propulsion Adv. Cryo. Engines	Low-Cost Commercial ETO XPort	Nuclear Electric Propulsion	CONE	SEPS TFE	Autonomous Landing	TV Structures and Cryo Tankage	неар
Space Platforms Technology	Platform Structures & Dynamics	Platform Power and Thermal Mg1.	Zero-G Life Support	Platform Materials & Environ, Effects	Station- Keeping Propulsion		Spacecraft On-Board Propulsion	Eanth-Orbiting Platform Controls	Advanced Refrigerato Systems
reclaiology			Zero-G Advanced EMU	Platform NDE-NDI	Deep-Space Power and Thermal		Spacecraft GN&C	Debris Mapping Experiment	
Operations Technology	Space Data Systems	High-Rate Comm.	Artificial Intelligence	Ground Data Systems	Optical Comm Flight Expt Navigation &	Flight Control and Operations	Space Assembly & Construction	Space Processing & Servicing	Photonics Data Systems
		CommSat Communicatins	TeleRobotics	FTS DTF-1	Guidance Operator Syst./Training	CommSat Communicatins Flight Expts		Ground Test and Processing	

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM CSTP GROWTH STRATEGIES

- OAET

FY 1993 SPACE SCIENCE TECHNOLOGY

- MP -

	CURRENT PROGRAM	"3x PROGRAM"	STRATEGIC PLAN
Science Sensing	IIII Direct Detectors IIII Submillimeter Sensing IIII Laser Sensing	 Direct Detectors Submillimeter Sensing Laser Sensing Sensor Electronics Active Microwave Sensing 	 Direct Detectors Submillimeter Sensing Laser Sensing Sensor Electronics Active Microwave Sensing Passive Microwave Sensing Optoelectronics Sensors
Observatory Systems	Coolers & Cryogenics Micro-Precision CSI	Coolers & Cryogenics Micro-Precision CSI Telescope Optical Systems	 Coolers & Cryogenics Micro-Precision CSI Telescope Optical Systems Precision Instr. Pointing Sensor Optics
Science Information		Data Visualization Data Archiving/Retrieval	Data Visualization Data Archiving/Retrieval
In Situ Science		SAAP	SAAP Probes/Penetrators
Tech. Flight Expts.			🗖 твр
	Adequately Constrained [] Funded Progress	Marginally Outyear Funded "Start"	

STRATEGIC SCIENCE THRUST BUDGET

-	FY91	FY92	FY93	FY94	FY95	FY96	FY97
SPACE SCIENCE TECHNOLOGY	17.2	17.5	72.8	98.7	136.7	169.5	191.1
SCIENCE SENSING	6.6	9.7	36.3	46.6	<u> </u>		
DIRECT DETECTORS	1.9	5.2	8.7		63.0	69.3	73.4
SUBMILLIMETER SENSING	1.2	1.3	7.1	9.9	11.1	10.7	11.1
LASER SENSING	3.5	3.2		7.8	8.1	8.7	9.3
ACTIVE MICROWAVE SENSING	3.5	J.2	8.7	9.8	11.2	12.9	13.3
PASSIVE MICROWAVE SENSING			5.2	8.9	12.4	11.7	11.6
SENSOR ELECTRONICS & PROC			4.0	7.0	12.0	16.0	16.5
OPTOELECTRONICS SENSORS			2.6	3.2	3.6	4.4	4.8
Structure and the sensers					4.6	4.9	6.8
DBSERVATORY SYSTEMS	9.9	7.8	24.9	29.1	40.5	EE 0	~~ ~
ELESCOPE OPTICAL SYSTEMS	4.7		8.0	9.0	11.0	55.3	69.2
COOLER & CRYOGENICS	1.2	3.8	9.5	9.9	10.4	15.9	19.3
SENSOR OPTICS			0.0	3.3		12.1	12.7
AICRO-PRECISION CSI	4.0	4.0	7.4	8.2	5.0	9.4	13.5
RECISION INSTRUMENT POINTING		4.0	7.4		10.1	10.9	11.2
				2.0	4.0	7.0	12.5
N SITU SCIENCE	0.7	0.0	5.1	11.8	16.5	26.1	29.7
AMPLE ACQ., ANALS. & PRES.	0.7		2.1	5.3	7.5	9.7	8.0
ROBES AND PENETRATORS			3.0	6.5	9.0	16.4	
			. –		5.0	10.4	21.7
	0.0	0.0	6.5	11.2	16.7	18.8	18.8
			4.0	6.7	8.7	9.8	10.2
ATA ARCHIVING AND RETRIEVAL			2.5	4.5	8.0	9.0	8.6

3X SCIENCE THRUST BUDGET

	FY91	FY92	FY93	FY94	FY95	FY96	FY97
SPACE SCIENCE TECHNOLOGY	13.2	13.5	55.2	70.6	83.4	87.8	103.2
SCIENCE SENSING	6.6	9.7	27.0	31.2	04.0		
DIRECT DETECTORS	1.9	5.2	8.6	9.7	34.9	35.4	43.1
SUBMILLIMETER SENSING	1.2	1.3	7.0	9.7 7.6	10.9	10.0	10.1
LASER SENSING	3.5	3.2	8.6		7.8	8.3	8.4
ACTIVE MICROWAVE SENSING	0.0	J.2		9.6	10.8	11.0	14.3
PASSIVE MICROWAVE SENSING			1.3	1.6	2.0	2.0	4.3
SENSOR ELECTRONICS & PROC OPTOELECTRONICS SENSORS			1.5	2.7	3.4	4.1	6.0
OBSERVATORY SYSTEMS	9.9	7.8	20.4	23.1	25.9	27.2	20.0
TELESCOPE OPTICAL SYSTEMS	4.7		7.9	9.0	11.1	11.7	32.3
COOLER & CRYOGENICS	1.2	3.8	8.4	9.9	10.1	10.3	14.4 12.7
SENSOR OPTICS MICRO-PRECISION CSI PRECISION INSTRUMENT POINTING	4.0	4.0	4.1	4.2	4.7	5.2	5.2
	3.7	0.0	1.5	5.2	7.0	7.9	9.4
SAMPLE ACQ., ANALS. & PRES. PROBES AND PENETRATORS	0.7		1.5	5.3	7.0	7.9	9.4
	0.0	0.0	6.3	11.1	15.6	17.0	
DATA VISUALIZATION			4.0	6.6	8.6	17.3	18.4
DATA ARCHIVING AND RETRIEVAL			2.4	4.5		9.0	9.3
			••• •	4.5	7.0	8.3	9.1

Office of Aeronautics, Exploration and Technology

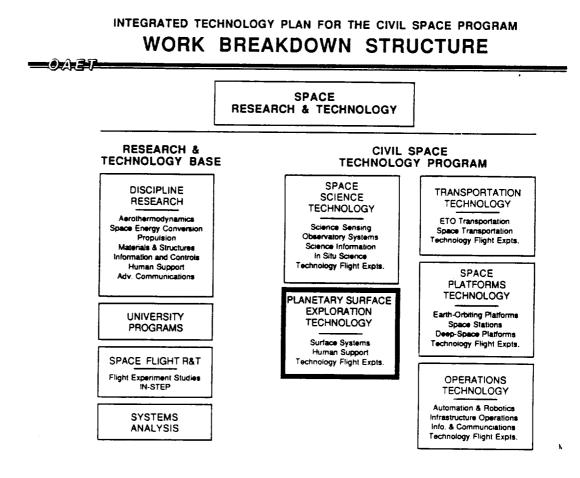
EXPLORATION TECHNOLOGY THRUST SUMMARY

presentation to

THE ITP EXTERNAL EXPERT REVIEW TEAM

John C. Mankins Manager, Exploration Technology Program (act.)

June 25, 1991


NAtional Aeronautics and Space Administration

PLANETARY SURFACE EXPLORATION TECHNOLOGY THRUST THRUST OVERVIEW

_____AZT

CONTENTS

- THRUST GOALS AND OBJECTIVES
- PLANETARY SURFACE EXPLORATION USER NEEDS
- OBJECTIVES AND CONTENT OF THE THRUST STRATEGIC PLAN
- CATEGORIZATION/PRIORITIZATION OF THE THRUST STRATEGIC PLAN
- GROWTH STRATEGIES SUMMARY
- ACCOMMODATION OF USER NEEDS

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM PROGRAM OVERVIEW

PLANETARY SURFACE EXPLORATION TECHNOLOGY THRUST

THRUST GOAL:

- DEVELOP AND DEMONSTRATE THE CRITICAL TECHNOLOGIES NEEDED FOR HUMAN AND ROBOTIC EXPLORATION OF PLANETARY SURFACES AND THE EMPLACEMENT OF HUMAN OUTPOSTS ON THE MOON AND MARS
- THRUST R&T OBJECTIVES:
 - TECHNOLOGIES TO ENABLE ADVANCED, COST-EFFECTIVE SURFACE SYSTEM OPERATIONS ON THE MOON AND MARS
 - -- TECHNOLOGIES TO SUPPORT SAFE AND EFFICIENT HUMAN ACTIVITIES DURING VERY LONG DURATION MISSIONS IN DEEP-SPACE AND ON PLANETARY SURFACES
 - VALIDATE CRITICAL TECHNOLOGIES THROUGH FLIGHT EXPERIMENTS AND FACILITATE TECHNOLOGY TRANSITION TO FUTURE PROGRAMS

-0-A-2-7----

CONTENTS

• THRUST GOALS AND OBJECTIVES

- > PLANETARY SURFACE EXPLORATION USER NEEDS
 - OBJECTIVES AND CONTENT OF THE THRUST STRATEGIC PLAN
 - CATEGORIZATION/PRIORITIZATION OF THE THRUST STRATEGIC PLAN
 - GROWTH STRATEGIES SUMMARY
 - ACCOMMODATION OF USER NEEDS

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM SEI TECHNOLOGY NEEDS

or IN SITO RESOURCE ONCLATION Lotate, minutation, initial Mars ih-Leverage SURFACE POWER Initial Lunar, Evolution, Initial Mars d Common) AUTONOMOUS RENDEZVOUS & DOCKING Initial Lunar, Evolution, Initial Mars g IN-SPACE SYSTEMS ASSY/PROCESSING Initial Lunar, Evolution, Initial Mars g CRYOGENIC SPACE ENGINES Initial Lunar, Evolution, Initial Mars Category 3 HUMAN FACTORS Initial Lunar, Evolution, Initial Mars			
d Common) E Chi o Dorte Nico REGENERATIVE LIFE SUPPORT Initial Lunar, Evolution, Initial Mars MICRO-G COUNTERMEASURES/ART. GRAVITY Initial Mars Mission MICRO-G COUNTERMEASURES/ART. GRAVITY Initial Lunar, Evolution, Robotic Mars, Initial Mars Category 2 HEALTH MAINTENANCE & CARE Initial Lunar, Evolution, Initial Mars Grabling SURFACE SYSTEMS CONSTRUCTION/PROCESSING Initial Lunar, Evolution, Initial Mars Int-Laverage SURFACE POWER Initial Lunar, Evolution, Initial Mars MIN-SPACE SYSTEMS ASSY/PROCESSING Initial Lunar, Evolution, Initial Mars MILANAN FACTORS Initial Lunar, Evolution, Initial Mars MUMAN FACTORS Initial Lunar, Evolution, Initial Mars MUNAN FACTORS Initial Lunar, Evolution, Initial Mars MUNAN FACTORS Initial Lunar, Evolution, Robotic Mars, Initial Mars </th <th>Category 1</th> <th>RADIATION PROTECTION</th> <th>Initial Luner, Evolution, Initial Mars</th>	Category 1	RADIATION PROTECTION	Initial Luner, Evolution, Initial Mars
Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Image: Longer Construction Imag		EVA SYSTEMS	Initial Lunar, Evolution, Initial Mars
MICHO-G CONTERMEASURES/ART: GRAVITY AEROBRAKING AEROBRAKING NUCLEAR THERMAL PROPULSION Initial Lunar, Evolution, Robotic Mars, Initial Mars Category 2 (Enabling and Unique) AUTONOMOUS LANDING	d Common)	REGENERATIVE LIFE SUPPORT	Initial Lunar, Evolution, Initial Mars
Actobriating Actobriating NUCLEAR THERMAL PROPULSION Initial Mars Mission Category 2 CRYO. FLUID MGT, STORAGE & TRANSFER HEALTH MAINTENANCE & CARE Initial Lunar, Evolution, Initial Mars SURFACE SYSTEMS CONSTRUCTION/PROCESSING Initial Lunar, Evolution, Initial Mars of SURFACE SYSTEMS CONSTRUCTION/PROCESSING Initial Lunar, Evolution, Initial Mars of IN SITU RESOURCE UTILIZATION Evolution, Initial Mars B SURFACE POWER Initial Lunar, Evolution, Initial Mars Initial Lunar, Evolution, Rebotic Mars, Initial Mars Initial Lunar, Evolution, Initial Mars IN-SPACE SYSTEMS ASSY/PROCESSING Initial Lunar, Evolution, Initial Mars IN-SPACE SYSTEMS ASSY/PROCESSING Initial Lunar, Evolution, Initial Mars IN-SPACE SYSTEMS ASSY/PROCESSING Initial Lunar, Evolution, Initial Mars Category 3 HUMAN FACTORS Initial Lunar, Evolution, Initial Mars SURFACE SYSTEM MOBILITY & GUIDANCE Initial Lunar, Evolution, Robotic Mars, Initial Mars SURFACE SYSTEM MOBILITY & GUIDANCE Initial Lunar, Evolution, Robotic Mars, Initial Mars B SURFACE SYSTEM MOBILITY & GUIDANCE Initial Lunar, Evolution, Robotic Mars, Initial Mars Ind Unique) ELECTRIC PROPULSION Evolution, Initial Mars		MICRO-G COUNTERMEASURES/ART. GRAVITY	Initial Mars Mission
Samuel Lonar, Evolution, Initial Mars Samuel Lonar, Evolution, Initial Mars <td< td=""><td></td><td></td><td>Initial Lunar, Evolution, Robotic Mars, Initial Mars</td></td<>			Initial Lunar, Evolution, Robotic Mars, Initial Mars
Category 2 (Enabling and Unique) HEALTH MAINTENANCE & CARE Initial Lunar, Evolution, Initial Mars B SURFACE SYSTEMS CONSTRUCTION/PROCESSING or ih-Leverage d Common) Initial Cunar, Evolution, Initial Mars B SURFACE POWER Initial Lunar, Evolution, Initial Mars B NIN-SPACE SYSTEMS ASSY/PROCESSING Initial Lunar, Evolution, Initial Mars B IN-SPACE SYSTEMS ASSY/PROCESSING Initial Lunar, Evolution, Initial Mars B IN-SPACE SYSTEMS ASSY/PROCESSING Initial Lunar, Evolution, Initial Mars B IN-SPACE SYSTEMS ASSY/PROCESSING Initial Lunar, Evolution, Initial Mars Category 3 h-Leverage and Unique) HUMAN FACTORS Initial Lunar, Evolution, Initial Mars Category 3 md Unique) HUMAN FACTORS Initial Lunar, Evolution, Initial Mars B SURFACE SYSTEM MOBILITY & GUIDANCE Initial Lunar, Evolution, Robotic Mars, Initial Mars B AUTONOMOUS LANDING Initial Lunar, Evolution, Robotic Mars, Initial Mars		3 NUCLEAR THERMAL PROPULSION	Initial Mars Mission
Category 3 Category 3 AUTONOMOUS LANDING Category 3 AUTONOMOUS LANDING Category 3 AUTONOMOUS LANDING Category 2 Category 2 Category 2 Category 2 Category 3 AUTONOMOUS LANDING Category 2 Category 2 Category 3 AUTONOMOUS LANDING Category 2 Category 2 Category 2 Category 3 Category 3 Ca		3 CRYO. FLUID MGT, STORAGE & TRANSFER	Initial Lunar, Evolution, Initial Mans
(Enabling and Unique or h-Leverage and Unique) SURFACE SYSTEMS CONSTRUCTION/PROCESSING Initial Lunar, Evolution, Initial Mars SURFACE POWER Initial Lunar, Evolution, Initial Mars With Structure SURFACE POWER AUTONOMOUS RENDEZVOUS & DOCKING Initial Lunar, Evolution, Initial Mars IN-SPACE SYSTEMS ASSY/PROCESSING Initial Lunar, Evolution, Initial Mars IN-SPACE SYSTEMS ASSY/PROCESSING Initial Lunar, Evolution, Initial Mars Category 3 h-Leverage and Unique) HUMAN FACTORS Initial Lunar, Evolution, Initial Mars SURFACE SYSTEM MOBILITY & GUIDANCE Initial Lunar, Evolution, Initial Mars SURFACE SYSTEM MOBILITY & GUIDANCE Initial Lunar, Evolution, Robotic Mars, Initial Mars SURFACE SYSTEM MOBILITY & GUIDANCE Initial Lunar, Evolution, Robotic Mars, Initial Mars SURFACE SYSTEM MOBILITY & GUIDANCE Initial Lunar, Evolution, Robotic Mars, Initial Mars SURFACE SYSTEM MOBILITY & GUIDANCE Initial Lunar, Evolution, Robotic Mars, Initial Mars SURFACE SYSTEM MOBILITY & GUIDANCE Initial Lunar, Evolution, Robotic Mars, Initial Mars SURFACE SYSTEM MOBILITY & AUTONOMOUS LANDING Initial Lunar, Evolution, Robotic Mars, Initial Mars	Category 2	HEALTH MAINTENANCE & CARE	Initial Lunar, Evolution, Initial Mars
or IN SITO RESOURCE ONCLATION Lotate, millinitial Lunar, Evolution, Initial Mars ih-Leverage SURFACE POWER Initial Lunar, Evolution, Initial Mars in-SPACE SYSTEMS ASSY/PROCESSING Initial Lunar, Evolution, Initial Mars initial Lunar, Evolution, Initial Mars Initial Lunar, Evolution, Initial Mars initial Common) Initial Lunar, Evolution, Initial Mars initial Common) Initial Lunar, Evolution, Initial Mars initial Lunar, Evolution, Initial Mars Initial Lunar, Evolution, Initial Mars initial Lunar, Evolution, Initial Mars Initial Lunar, Evolution, Initial Mars Category 3 HUMAN FACTORS Initial Lunar, Evolution, Initial Mars initial Unique) SURFACE SYSTEM MOBILITY & GUIDANCE Initial Lunar, Evolution, Robotic Mars, Initial Mars ind Unique) ELECTRIC PROPULSION Evolution, Initial Mars initial Lunar, Evolution, Initial Mars AUTONOMOUS LANDING Initial Lunar, Evolution, Robotic Mars, Initial Mars		SURFACE SYSTEMS CONSTRUCTION/PROCESSING	Initial Lunar, Evolution, Initial Mars
Image: Support of the support of th	and Unique	IN SITU RESOURCE UTILIZATION	Evolution, Initial Mars
d Common) Image: Autonomous Rendezvous & DOCKING Initial Lunar, Evolution, Robotic Mars, Initial Mars Image: I		SURFACE POWER	Initial Lunar, Evolution, Initial Mars
INSPACE STREAM ROBING SPACE ENGINES Initial Lunar, Evolution, Initial Mars Category 3 HUMAN FACTORS Initial Lunar, Evolution, Initial Mars Initial Lunar, Evolution, Initial Mars Initial Lunar, Evolution, Initial Mars SURFACE SYSTEM MOBILITY & GUIDANCE Initial Lunar, Evolution, Robotic Mars, Initial Mars Initial Unique) ELECTRIC PROPULSION Evolution, Initial Mars Initial Lunar, Evolution, Initial Mars AUTONOMOUS LANDING Initial Lunar, Evolution, Robotic Mars, Initial Mars	d Common)	AUTONOMOUS RENDEZVOUS & DOCKING	Initial Lunar, Evolution, Robotic Mars, Initial Mars
Category 3 HUMAN FACTORS Initial Lunar, Evolution, Initial Mars h-Leverage SURFACE SYSTEM MOBILITY & GUIDANCE Initial Lunar, Evolution, Robotic Mars, Initial Mars ELECTRIC PROPULSION Evolution, Initial Mars AUTONOMOUS LANDING Initial Lunar, Evolution, Robotic Mars, Initial Mars		IN-SPACE SYSTEMS ASSY/PROCESSING	Initial Lunar, Evolution, Initial Mars
Category 3 Initial Factors Initial Lunar, Evolution, Robotic Mars, Initial Mars Initial Lunar, Evolution, Robotic Mars, Initial Mars Initial Lunar, Evolution, Robotic Mars, Initial Mars Initial Lunar, Evolution, Robotic Mars, Initial Mars Initial Lunar, Evolution, Robotic Mars, Initial Mars	1	CRYOGENIC SPACE ENGINES	Initial Lunar, Evolution, Initial Mars
and Unique) a ELECTRIC PROPULSION Evolution, Initial Mars AUTONOMOUS LANDING Initial Lunar, Evolution, Robotic Mars, Initial Mars	Category 3	HUMAN FACTORS	Initial Lunar, Evolution, Initial Mars
AUTONOMOUS LANDING Initial Lunar, Evolution, Robotic Mars, Initial Mars	h-Leverage	SURFACE SYSTEM MOBILITY & GUIDANCE	Initial Lunar, Evolution, Robotic Mars, Initial Mars
	and Unique)	S ELECTRIC PROPULSION	Evolution, Initial Mars
SAMPLE ACQUISITION, ANALYSIS & PRESERV. Initial Lunar, Evolution, Robotic Mars, Initial Mars		AUTONOMOUS LANDING	Initial Lunar, Evolution, Robotic Mars, Initial Mars
		3 SAMPLE ACQUISITION, ANALYSIS & PRESERV.	Initial Lunar, Evolution, Robotic Mars, Initial Mars

PLANETARY SURFACE EXPLORATION TECHNOLOGY THRUST **TECHNOLOGY NEEDS**

SEI PLANETARY SURFACE EXPLORATION TECHNOLOGY NEEDS

- - EVA Systems
 - Regenerative Life Support
 - Micro-G Countermeasures/Artificial Gravity

Category II • Health Maintenance/Care

- Surface Construction and Processing
- In Situ Resource Utilization
- Surface Power

~ ~ ~ ~ ~

- Category III

 Human Factors
 - Surface System Mobility and Guidance (manned and unmanned

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM OSSA TECHNOLOGY NEEDS

	NEAR-TERM NEED	MID-TERM NEED	FAR-TERM NEED
HIGHEST PRICHITY	Sub-mm & µ-wave Sensing Long-Life Cryo Coolers/Cryo Shielding High-Energy Detectors Sensor Readout Electronics Vibration Isolation Technology Efficient/Quiet Reingerator/Freezer Extreme Upper Atmosphere Instr. Platforms	Long-Life, Stable, Tunable Lasers Solar Probe/Mercury Orbier Thermal Protect, High -Vol/Density/Rate Onboard Data Storage Interferometer-Specific Technology	Structures: Large/Controlled/Deployed/Ant'a Robotics Precision Inter-S/C Ranging/Positioning 50-100 Kilowati fon Propulsion (NEP) Large Filled Apertures Parallel S/W Env. for Model&Data Visualization Computational Techniques
2ND HIGHEST PRIORITY	High Frame Rate/Res. Video/Data Compress. 2.4 to 4 Meter, 100 K Lightweight PSR Solar Arrays/Cets Automated Biomedical Analysis Radiation Hardened Parts/Detectors Long-Lile/High-Energy Density Batteries Real-Time Environmental Control Space-Qualified Masers/Ion Clocks Fluid Diagnostice	Auto-Sequencing & CMD Generation Auto-SiC Monitoring & Fault Recovery 32 GHz TWT/Optical Communications Telescience/Telepresence/Art. Intalligence Improved EVA Suit/PLSS (EMU) Combustion Devices Plasma Wave Antenna/Thermal	SIS 3 THz Heterodyne Receiver SETI Detector Technologies Mini-Ascent Vehicle/Lander Deceleration Reclation Shielding for Crewe SAAP/Probes/in Situ Inst's/Penetrators Human Artificial Gravity Systems X-Ray Optics Technology Returned-Sample Biobarrier Analysis Cap. High-Resoution Spectrometer
3RD HIGHEST PRIORITY	Descent imaging/Mini RTG/Mini Camera K-Band Transponders Ultra-High Gigabit/sec. Telemetry Mini-Spacecraft Subsystems Real: Time Radiation Monitoring Solid/Liquid Interface Characterization Laser Light Scattering High-Temperature Metha for Fumaces Field-Portable Gas Chromatographs Adv. Furnace Technology	Regenerative Life Support Thermal Control System Non-Contact Termo. Measurement 3-D Packaging for 1MB Solid State Chipe Microbial Oecontamination Methods Animal and Plant Reproduction Alds Special-Purpose Bioreactor Simulator Syst. Rapid Subject/Sample Delivery & Return Capability	Autonomous Rendezvous/Sample Xter/Landing Non-Destructive Monitoring Capability Low-Drift Gyros/Trackers/Actuators Heat Shield for 16 kn/sec Earth entry Partial-GyL-G Medical Care Systems Dust Protector/Jupiter's Filings Non-Destructive Cosmic Dust Collection CELSS Support Technologies

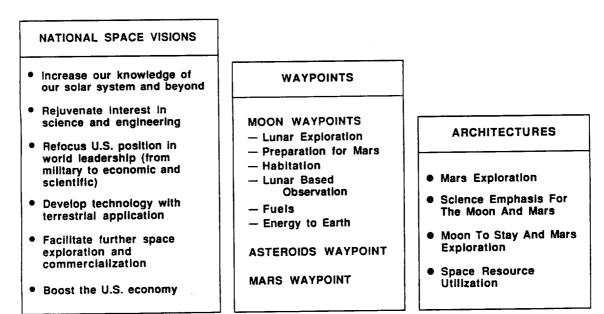
APRIL 20, JCM-

OSSA PLANETARY SURFACE TECHNOLOGY NEEDS

<u>Highest Priority</u> • Robotics (Rovers)

2nd-Highest • Real-Time Environmental Control & Monitoring

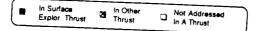
- Improved EVA Suit/PLSS (EMU)
- Human Artificial Gravity Systems
- Radiation Shielding for Crews


- 3rd-Highest

 Real-Time Radiation Monitoring
 - Regenerative Life Support
 - Partial-G/µ-G Medical Care Delivery Systems
 - CELSS Support Technologies

PLANETARY SURFACE EXPLORATION TECHNOLOGY THRUST SEI SYNTHESIS GROUP IMPLICATIONS

_____QA___7


OVERVIEW

PLANETARY SURFACE EXPLORATION TECHNOLOGY THRUST SYNTHESIS GROUP STUDY TECHNOLOGY NEEDS -0457

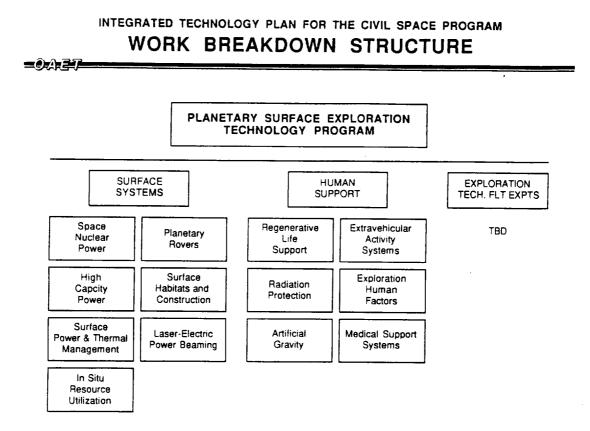
HIGH PRIORITY AREAS

- CLOSED-LOOP LIFE SUPPORT SYST.
- TELEROBOTICS
- NUCLEAR-ELECTRIC SURFACE POWER
- EVA SUITS
- RADIATION EFFECTS/SHIELDING
- LONG-DURATION HUMAN FACTORS
- IN SITU RESOURCE EVALUATION AND PROCESSING
- AUTO. RENDEZVOUS/DOCKING
- CRYOGEN TRANSFER/STORAGE
- MUCLEAR THERMAL PROPULSION
- HEAVY LIFT LAUNCH
- S LIGHT-WEIGHT STRUCTURAL MAT'LS & FABRICATION
- M NUCLEAR ELECTRIC PROP. (CARGO)
- ZERO-GRAVITY COUNTERMEASURES

OTHER TECHNOLOGIES CITED

- VIRTUAL REALITY
- SURFACE HABITATS
- REGENERATIVE FUEL CELLS
- SOLAR ARRAYS
- POWER BEAMING
- LUNAR SURFACE FACTORY OPERATIONS
- MINING, EXCAVATION AND CONSTRUCTION
- SAMPLE ACQUISITION/ANALYSIS
- HIGH RATE COMM. & NAVIGATION
- D LUNAR SURFACE INSTRUMENT COOLERS SUBMILLIMETER/OPTICAL INTER-
- FEROMETERS, & REMOTE SENSORS 3 LARGE FILLED APERTURE TELESCOPES
- ROBOTIC PROBES
- AEROBRAKING (Cited as Back-up Option)
- S CHEMICAL PROPULSION (Back-Up Option)
- HELIUM-3 FUSION

JUNE 20, 1991 JCM-7297


PLANETARY SURFACE EXPLORATION TECHNOLOGY THRUST THRUST OVERVIEW

CONTENTS

- THRUST GOALS AND OBJECTIVES
- PLANETARY SURFACE EXPLORATION USER NEEDS

-94:27

- OBJECTIVES AND CONTENT OF THE THRUST STRATEGIC PLAN
 - CATEGORIZATION/PRIORITIZATION OF THE . THRUST STRATEGIC PLAN
 - GROWTH STRATEGIES SUMMARY
- ACCOMMODATION OF USER NEEDS

PLANETARY SURFACE EXPLORATION TECHNOLOGY THRUST SURFACE SYSTEMS TECHNOLOGY AREA

AREA GOAL:

_____()/\`Z]_

- DEVELOP AND VALIDATE TECHNOLOGIES REQUIRED FOR RELIABLE, CAPABLE, AND SAFE SURFACE SYSTEMS OPERATIONS DURING LUNAR OUTPOST AND MARS EXPEDITION EXTENDED MISSIONS
- AREA R&T OBJECTIVES:
 - SAFE AND RELIABLE SPACE NUCLEAR POWER SYSTEMS TO SUPPORT EXPLORATION MISSIONS (10 Kwe to 1000 Kwe POWER)
 - DEVELOP AND DEMONSTRATE LOW MASS, RELIABLE LONG LIFE POWER CONVERSION FOR SPACE NUCLEAR REACTOR POWER SYSTEMS
 - ---- DEVELOP NON-REACTOR SURFACE POWER AND LOW-GRADE HEAT THERMAL MANAGEMENT TECHNOLOGIES TO SUPPORT EXPLORATION SURFACE OPERATIONS
 - --- DEVELOP MOBILE SURFACE SYSTEMS TECHNOLOGIES TO ENABLE ROBUST, FLEXIBLE AND EFFICIENT VEHICLE SYSTEMS FOR PLANETARY SURFACE EXPLORATION/OPERATIONS
 - ---- CAPABILITY TO EMPLACE AND BUILD PLANETARY OUTPOST AND CONCEPTS FOR HABITATS AND SURFACE ENCLOSURES
 - TECHNOLOGIES FOR UTILIZATION OF EXTRATERRESTRIAL MATERIALS FOR EXPLORATION OR OUTPOST OPERATIONS ON THE SURFACE OF THE MOON OR MARS
 - DEMONSTRATE POWER BEAMING FOR HIGH POWER DEEP-SPACE APPLICATIONS

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM PLANETARY SURFACE EXPLORATION TECHNOL

=0-A	SURFA	CE SYSTEM	IS					_	
JUSTIFICATION Surface Systems technologies are needed to enable a wide range of planetary surface exploration and operations; specific mission timing includes: • 1997 Technology readiness needed for early initial Lunar mission options • 2000 Technology readiness needed for later Luna Outpost emplacement/evolution • 2005 Technology readiness needed for initial Humans-to-Mars mission(s)		OBJECTIVES • Programmatic Develop and validate technologies for reliable, capable, and safe surface system operations during Lunar Outpost and Mars expedition extended missions • Technical Space Nuclear Power SP-100 FQS (10-1000 kWe) High-efficiency T-E conversion Planetary Rovers Surface Power and Thermal Mgt Surface Habitats/Construction Site preparation, dust mgt, habitats Point-to-point, compact power beaming Site preparation, dust mgt, habitats)) ion ibrication
		Surface Hab	itats/Consi	Inaction	Site	Prepara	tion.du	ocalPM/ umoth	AD abitata
AILEST	ONES	Laser-Electn	itats/Consi c Power Be	Inaction	Site	Prepara	tion.du	ocalPM/ umoth	AD abitata
• 1993	ONES Select RFC component technologies	Surface Hab	itats/Consi c Power Be	Inaction	Site	Prepara	tion.du	ocalPM/ umoth	AD abitata
• 1993 • 1994	ONES Select RFC component technologies Go/No-Go decision on laser/beam expander/PV R&T for laser power beaming	Budget Options	ES	FY	Site Poin	Prepara	tion.du	ocal PM/ H mgt, h act pow	AD abitats er beamine
 1993 1994 1995 	ONES Select RFC component technologies Go/No-Go decision on laser/beam expander/PV R&T for laser power bearning Restart nuclear assembly test sile		ES	truction saming	Site Poin	rarays, prepara t-to-poir	tion, dus	ocalPM/ umoth	AD abitata
 1993 1994 1995 1997 	ONES Select RFC component technologies Go/No-Go decision on laser/beam expander/PV R&T for laser power bearing Restart nuclear assembly test sile Complete testbed evaluation for early unpressunzed robotic rovers (piloted options); early RFC demon	Budget Options	ES	FY	FY 1993	FY 1994	FY 1995	ocal PMJ si mgi, h. act powe FY 1996	AD abitats er bearning FY 1997
• 1993 • 1994 • 1995	ONES Select RFC component technologies Go/No-Go decision on laser/beam expander/PV R&T for laser power bearning Restart nuclear assembly test sile	Budget Options (S.M) Current	FY 1991 24.0	FY 1992 30.6	FY 1993	FY 1994 29.6	FY 1995 24.8	FY 25.0	AD abitats er beamin FY 1997 25.2
 1993 1994 1995 1997 	ONES Select RFC component technologies Go/No-Go decision on laser/beam expander/PV R&T for laser power bearning Restart nuclear assembly test sile Complete testbed evaluation for early unpressunzed robotic rovers (piloted options); early RFC demos Complete Ground-Io-Sace taser power bearing	Budget Options (S.M)	ES FY	FY 1992 30.6 24.0	FY 1993 29.5 53.6	FY 1994 29.6 97.0	FY 1995 24.8 129.8	ocal PMJ si mgi, h act powe 1996 25.0 139.2	AD abitats Pr beamin 1997 25.2 159.0

JUNE 18, 1991

PLANETARY SURFACE EXPLORATION TECHNOLOGY THRUST HUMAN SUPPORT TECHNOLOGY AREA

- Qaiet

AREA GOAL:

 DEVELOP AND VALIDATE TECHNOLOGIES REQUIRED FOR RELIABLE, EFFICIENT, AND SAFE ASTRONAUT OPERATIONS DURING LUNAR OUTPOST AND MARS EXPLORATION MISSIONS

- AREA R&T OBJECTIVES:
 - --- SAFE, RELIABLE , AND EFFICIENT REGENERATIVE LIFE SUPPORT SYSTEMS
 - --- DEVELOP SHIELDING MATERIALS DATA AND BREADBOARDS TO PROTECT ASTRONAUTS FROM SOLAR AND COSMIC RADIATION DURING LONG-DURATION EXPLORATION MISSIONS
 - --- DEVELOP AND VALIDATE TECHNOLOGIES FOR MOBILE LIGHTWEIGHT, MULTI-USE EXTRAVEHICULAR ACTIVITY SUITS & PORTABLE LIFE SUPPORT FOR PLANETARY SURFACE OPERATIONS
 - ---- INCREASE UNDERSTANDING OF HUMAN PERFORMANCE FACTORS UNDER LONG-DURATION MISSION CONDITIONS AND INCORPORATE RESULTS INTO DATABASE AND REQUIREMENTS TO SUPPORT ENHANCED EXPLORATION SYSTEM DESIGNS
 - ---- DEFINE AND DEVELOP CONCEPTS FOR ARTIFICIAL GRAVITY FOR PILOTED MARS VEHICLES
 - PROVIDE CAPABILITY TO DEVELOP SYSTEMS AND EQUIPMENT REQUIRED TO MAINTAIN

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

PLANETARY SURFACE EXPLORATION TECHNOLOGY

HUMAN SUPPORT

JUSTIFICATION

Human support technologies are needed to assure safe and effective human operations during Lunar Outpost and Mars expedition missions; spectic mission needs timing includes:

- 1997 Technology readiness needed for early initial Lunar mission options
- 2000 Technology readiness needed for later Lunar Outpost emplacement/evolution
- 2005 Technology readiness needed for initial Humans-to-Mars mission(s)

OBJECTIVES

Programmatic

Develop and validate technologies for reliable, safe and efficient astronaut operations during future deep-space (Lunar and Mars) exploration missions

Technical

Regen. Life Support Radiation Protection EVA Systems Exploration Human Factors Artificial Gravity Remote Medical Care

Closed, Low-Cost Life Support Systems Shielding (withs10% uncertainty) Locally-mantained EVA for Lunar/Mars Safe/Efficient Humar/Machine Ops A-G Systems/Technology Assessments Emergency Lunar/Mars Medical Care

RESOURCES

MILESTONES

- 1992 Complete models of human locomotion in 1/6-gravity
- 1993 Deliver initial Lunar shielding concepts
- 1995 Initiate Adv. RLSS technology testbed; define initial remote medical care concepts
- 1997 Complete EVA Suit technology for early Lunar mission options (preliminary PLSS); radiation code with < 25% uncertainty
- 1999 Complete Lunar EVA R&T; guidelines for Lunar habitats; definition of advanced workstations; radiation to ≤ 10%
- 2000 Complete integrated Lunar Outpost advanced RLSS
 man-rated demonstrations
- 2000 Complete laboratory breadboards, analytical models of mechanisms/controls for artificial gravity vehicles

Budget Options (\$,M)	FY 1991	FY 1992	FY 1993	FY 1994	FY 1995	FY 1996	FY 1997
Current	3.8	16.0	24.0	33.5	39.0	47.0	51.6
3x Program	3.8	16.0	21.3	29.5	35.5	39.0	42.4
Strategic ITP	3.8	16.0	25.9	38.9	50.9	60.3	65.8

PLANETARY SURFACE EXPLORATION TECHNOLOGY THRUST THRUST OVERVIEW

=9a=7

CONTENTS

- THRUST GOALS AND OBJECTIVES
- PLANETARY SURFACE EXPLORATION USER NEEDS
- OBJECTIVES AND CONTENT OF THE THRUST STRATEGIC PLAN

• CATEGORIZATION/PRIORITIZATION OF THE THRUST STRATEGIC PLAN

- GROWTH STRATEGIES SUMMARY
- ACCOMMODATION OF USER NEEDS

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM "Strategic Plan" ITP: CSTP Element Categorization

Space Science Fechnology	Submillimeter Sensing	Direct Detectors Microprecision CSI	Active µwave Sensing Laser Sensing	Sensor Electronics & Processing	Passive Microwave Sensing		Optoelectric: Sensing & Processing	Probes and Penetrators	-
	Cooler and Cryogenics	Data Visualization	Data Archiving and Retrieval	Telescope Optical Systems	Sample Acq., Analysis & Preservation	-	Precision Instrument	Sensor Optical	-
Planetary Surface xploration schnology	Padiation Protection	Regenerative Life Support (Phys-Chem.)	Space Nuclear Power (SP-100)	High Capacity Power	Planetary Rovers	Surface Habitats and Construction	Pointing Exploration Human Factors	Systems	Antificat Gravity
		_	Extravehicular Activity Systems	Surface Solar Power and Thermal Mgt.	In Situ Resource Utilization	Laser-Electric Power Beaming	Medical Support Systems	-	
sportation chnology	ETO Propulsion Cryogenic	Aeroassist Filght Expt Nuclear Thermal Propulsion	Aeroassist/ Aerobraking	Transfer Vehicle Avionica	ETO Vehicle Avionica	ETO Vehicle Structures & Materials	Autonomous Rendezvous & Docking	COHE	Audi lary Propulsion
	Fluid Systems	Adv. Crya. Engines	Low-Cost Commercial ETO XPort	Nuclear Electric Propulsion	CONE	SEPS TFE	Autonomous Landing	TV Structures and Cryc	HEAD
	Platform Structures & Dynamics	Platform Power and Thermal Mgt.	Zero-G Life Support	Platform Materiais & Environ. Effects	Station- Keeping Propulsion	-	Spececraft On-Board Propulsion	Tankage Earth-Orbiting Platform	Advanced Refrigerato
			Zaro-G Advanced EMU	Platform NDE-NDI	Deep-Space Power and Thermal	-	Spacecraft GN&C	Controls Debris Mapping Experiment	Systems
	Space Data Systeme		Artificial Intelligence	Ground Data Systema	Optical Comm Flight Expt Navigation &	Flight Control and Operations	Space Assembly & Construction	Space Processing & Servicing	Photonice Date Systems
	i	Communicatins	TeleRobotics	FTS DTF-1	Guidance Operator Syst/Training	CommSat Communicatins Flight Expts		Ground Test and Processing	_
 •-		PRIORITY	 ₽ļ∢	<u>ب</u> ۽	PRIORITY 00		•	PRIORITY	

PLANETARY SURFACE EXPLORATION TECHNOLOGY THRUST

CONTENTS

- THRUST GOALS AND OBJECTIVES
- PLANETARY SURFACE EXPLORATION USER NEEDS
- OBJECTIVES AND CONTENT OF THE THRUST STRATEGIC PLAN
- CATEGORIZATION/PRIORITIZATION OF THE THRUST STRATEGIC PLAN

- GROWTH STRATEGIES SUMMARY
- ACCOMMODATION OF USER NEEDS

INTEGRATED TECHNOLOGY	PLAN	FOR	THE	CIVIL	SPACE	PROGRAM
-----------------------	------	-----	-----	-------	-------	---------

CSTP GROWTH STRATEGIES

	CURRENT PROGRAM	"3x PROGRAM"	STRATEGIC PLAN
Surface Systems	Space Nuclear Power	Space Nuclear Power High Capacity Power UIII Planetary Rovers UIIII Surface Power/Thermal UIIII ISRU UIIII Power Beaming	Space Nuclear Power High Capacity Power Planetary Rovers Surface Power/Therma ISRU Power Beaming Surface Hab/Construct.
Human Support	 Regen. Life Support Radiation Protection EVA Systems Explor. Human Factors 	Regen. Life Support Radiation Protection EVA Systems Explor. Human Factors	Regen. Life Support Radiation Protection EVA Systems Explor. Human Factors Remote Medical Care Artificial Gravity
Tech. Filght Expts.			С ТВО

JUNE 17, 199 JCM-751

PLANETARY SURFACE EXPLORATION TECHNOLOGY THRUST THRUST OVERVIEW

-94 E7-

-0:A=7-

CONTENTS

- THRUST GOALS AND OBJECTIVES
- PLANETARY SURFACE EXPLORATION USER NEEDS
- OBJECTIVES AND CONTENT OF THE THRUST STRATEGIC PLAN
- CATEGORIZATION/PRIORITIZATION OF THE THRUST STRATEGIC PLAN
- GROWTH STRATEGIES SUMMARY

ACCOMMODATION OF USER NEEDS

PLANETARY SURFACE EXPLORATION TECHNOLOGY

TECHNOLOGY NEEDS ACCOMMODATION

	USER NEEDS	SURFACE SYTEMS	HUMAN SUPPORT
Lunar Outpost	SE1 Category J: Radiation Protection, EVA Systems, Regenerative Life Support Category II: Health Maintenance and Care, Surface System Construction & Processing, In Situ Resource Utilization, Surface Power Category III: Human Factors, Surface Mobility and Guidance (manned/unmanned) QSSA Highest: Robotics (Rovers) 2nd-High; Environ. Control; EMU: Artificial-G 3rd-High; Rad. Monitor; RLSS; Med Care; CELSS	Space Nuclear Power High Capacity Power Planetary Rovers Surface Power/Thermal ISRU Surface Hab/Construct. Power Beaming	Regen. Life Support Radiation Protection EVA Systems Explor. Human Factors Remote Medical Care
Humans to Mars	SEI Category I: Radiation Protection, EVA Systems, Regenerative Life Support, Micro-G Countermeasures/Artificial Gravity Category II: Health Mantenance and Care, Surface System Construction & Processing, In Sku Resource Utilization, Surface Power Category III: Human Factors, Surface Mobility and Guidance (manned/unmanned) OSSA Highest: Robotics (Rovers) 2nd-High; Environ. Control; EMU; Artificial-G 3rd-High; Rad. Monitor; RLSS; Med Care; CELSS	Space Nuclear Power High Capacity Power Planetary Rovers Surface Power/Thermal ISRU Surface Hab/Construct. Power Bearning	Regen. Life Support Radiation Protection EVA Systems Explor. Human Factors Remote Medical Care Artificial Gravity
Robotic Lunar & Mars Exploration	<u>SEI</u> <u>Category III</u> : Surface Mobility and Guidance (manned/unmanned) <u>Highest</u> : Robotics (Rovers)	Planetary Rovers Surface Power/Thermal High Capacity Power	

JUNE 20, 1991

PLANETARY SURFACE EXPLORATION TECHNOLOGY THRUST TECHNOLOGY NEEDS ACCOMMODATION

- STRONG COVERAGE IN PLANETARY SURFACE EXPLORATION TECHNOLOGY THRUST OF USER NEEDS FROM OAET/RZ AND OSSA IN THE AREAS OF:
 - Lunar Outpost
 - Human to Mars
 - Robotic Lunar & Mars Missions
- PRELIMINARY ASSESSMENTS OF SEI SYNTHESIS GROUP REPORT UNDERWAY
 - Initial Impression: Coverage Of Surface Systems Related Technologies Needs is Good

BACK-UP CHARTS

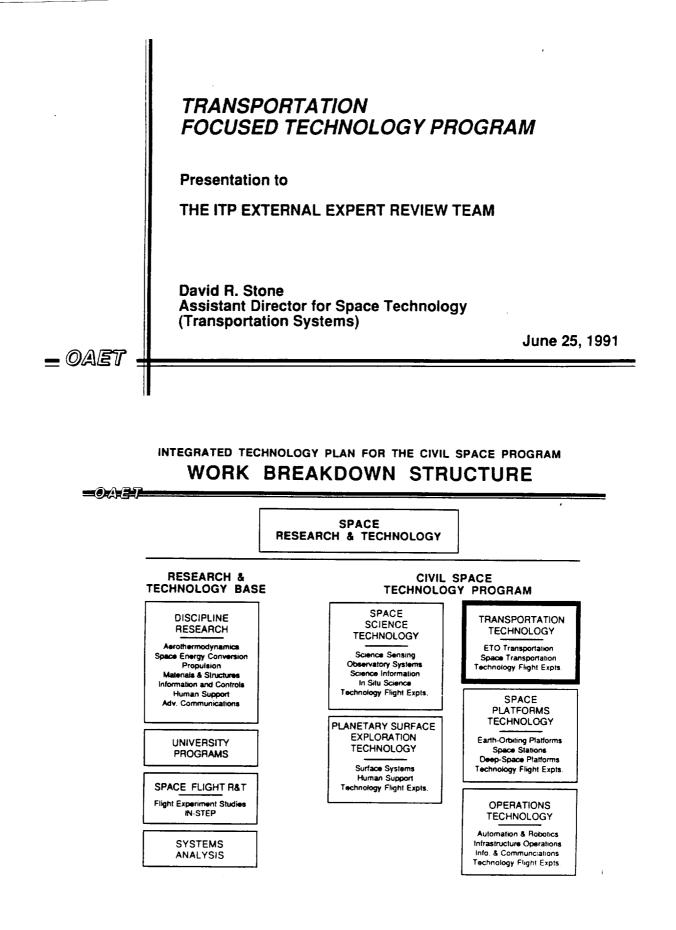
INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM PLANETARY SURFACE EXPLORATION THRUST

-0A-57------

"STRATEGIC PROGRAM" ITP RESOURCES

	<u>FY 1991</u>	<u>FY 1992</u>	FY 1993	EY_1994	<u>FY 1995</u>	FY 1996	<u>FY_1997</u>
THRUST TOTALS (S.M)	<u>27.8</u>	<u>46.6</u>	<u>91.6</u>	<u>176.5</u>	239.9	289.4	<u>253.8</u>
SURFACE SYSTEMS	24.0	<u>30.6</u>	<u>65.7</u>	137.6	189.0	<u>229.1</u>	<u>188.0</u>
Space Nuclear Power	10.0	20.0	25.0	25.0	26.0	27.0	28.0
High Capacity Power	10.4	10.6	11.1	16.8	23.0	30.5	23.0
Planetary Rovers	3.0		5.3	13.4	17.6	24.4	30.1
Surface Power & Thermal	0.6		5.0	11.7	18.5	24.2	25.3
In Situ Resource Utilization			3.5	6.0	9.7	14.5	15.7
Surface Habitats & Construction			2.3	4.8	8.5	9.7	14.5
Laser-Electric Power Beaming			13.5	56.9	82.5	90.8	41.0
HUMAN SUPPORT	<u>3.8</u>	<u>16.0</u>	<u>25.9</u>	38.9	50,9	60.3	<u>65.8</u>
Regenerative Life Support	1.9	8.0	12.0	18.0	20.0	24.0	25.1
Radiation Protection	0.5	3.0	6.9	7.8	8.5	9.7	10.0
EVA Systems (Surface)	0.9	4.0	5.0	8.0	11.0	12.0	12.5
Exploration Human Factors	0.5	1.0	2.0	3.1	5.8	6.3	6.7
Artificial Gravity					1.3	1.4	3.6
Remote Medical Care Systems				2.0	4.3	6.9	7.9

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM PLANETARY SURFACE EXPLORATION THRUST -0AZ7------


"3x PROGRAM" ITP RESOURCES

	<u>FY 1991</u>	<u>FY_1992</u>	<u>FY 1993</u>	<u>FY 1994</u>	<u>FY 1995</u>	<u>FY 1996</u>	<u>FY 1997</u>
THRUST TOTALS (S.M)	<u>27.8</u>	46.6	<u>74.9</u>	126.5	<u>165.3</u>	178.2	201.4
SURFACE SYSTEMS Space Nuclear Power High Capacity Power Planetary Rovers Surface Power & Thermal In Situ Resource Utilization	24.0 10.0 10.4 3.0 0.6	30.6 20.0 10.6	<u>53.6</u> 25.0 10.9 4.8 3.4	97.0 25.0 12.0 8.0 9.0	<u>129.8</u> 26.0 12.3 8.4 12.6	139.2 27.0 12.6 8.9 14.0	159.0 28.0 18.0 12.0 18.0
Surface Habitats & Construction Laser-Electric Power Beaming			1.5 8.0	3.0 40.0	6.2 64.3	6.7	8.0
HUMAN_SUPPORT Regenerative Life Support Radiation Protection EVA Systems (Surface) Exploration Human Factors Artificial Gravity Remote Medical Care Systems	3.8 1.9 0.5 0.9 0.5	16.0 8.0 3.0 4.0 1.0	21.3 10.0 5.8 4.5 1.0	29.5 15.0 6.5 7.0 1.0	35.5 17.0 7.0 8.5 3.0 	70.0 39.0 17.5 8.0 9.5 4.0 	75.0 <u>42.4</u> 18.0 8.4 11.0 5.0

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM PLANETARY SURFACE EXPLORATION THRUST -04-31------

"CURRENT RUN-OUT PROGRAM" ITP RESOURCES

	<u>FY 1991</u>	<u>FY 1992</u>	<u>FY 1993</u>	<u>EY_1994</u>	<u>FY_1995</u>	<u>FY_1996</u>	<u>FY_1997</u>
THRUST TOTALS (S.M)	27.8	<u>46.6</u>	<u>53.5</u>	<u>63.1</u>	63.8	72.4	
SURFACE SYSTEMS Space Nuclear Power High Capacity Power Planetary Rovers Surface Power & Thermal In Situ Resource Utilization	24.0 10.0 10.4 3.0 0.6	30.5 20.0 10.6 	29.5 25.0 4.5	29.6 25.0 4.6	24.8 20.0 4.8	25.0 20.0 5.0	76.8 25.2 20.0 5.2
Surface Habitats & Construction Laser-Electric Power Beaming		••••		 	****		
HUMAN SUPPORT Regenerative Lite Support Radiation Protection EVA Systems (Surface) Exploration Human Factors Artificial Gravity Remote Medical Care Systems	3.8 1.9 0.5 0.9 0.5	16.0 8.0 3.0 4.0 1.0	24.0 12.0 6.0 5.0 1.0	33.5 18.0 6.5 8.0 1.0	39.0 20.0 7.0 11.0 1.0	47.0 24.0 8.0 12.0 3.0	51.6 25.1 10.0 12.5 4.0

TRANSPORTATION ._ CHNOLOGY PROGRAM **GOAL AND OBJECTIVES**

PROVIDE VEHICLE SYSTEMS TECHNOLOGIES THAT SUBSTANTIALLY IMPROVE SAFETY & RELIABILITY, INCREASE SYSTEM AVAILABILITY AND PROVIDE NEW CAPABILITIES, WHILE REDUCING LIFE CYCLE COSTS - INCREASE SHUTTLE SAFETY MARGINS AND ON-TIME PERFORMANCE BY IMPROVING MAIN ENGINE COMPONENTS, AVIONICS AND OTHER SELECTED VEHICLE SYSTEMS - PROVIDE TECHNOLOGY OPTIONS FOR NEW MANNED SYSTEMS THAT COMPLEMENT THE SHUTTLE AND ENABLE NEXT GENERATION VEHICLES WITH RAPID TURNAROUND AND LOW OPERATIONAL COSTS - SUPPORT DEVELOPMENT OF ROBUST, LOW-COST **HEAVY LIFT LAUNCH VEHICLES** - DEVELOP AND TRANSFER LOW-COST TECHNOLOGY TO SUPPORT COMMERCIAL ELV'S AND UPPER STAGES - IDENTIFY AND DEVELOP HIGH LEVERAGE TECHNOLOGIES FOR SPACE TRANSPORTATION, INCLUDING NUCLEAR PROPULSION, THAT WILL ENABLE NEW CLASSES OF SCIENCE AND EXPLORATION MISSIONS Transportation . Jchnology Program SUMMARY OF USER NEEDS = Qavet = = 1779 = SPACE **OFFICE OF OFFICE OF EXPLORATION** SPACE SCIENCE COMMERCIAL SPACE FLIGHT INITIATIVE & APPLICATIONS SPACE SECTOR Program Unique Requirements Category 1 Propulsion & Fluid Systems Category 1 Vehicle Health Management Nuclear Thermal Low Cost Liquid Booster Engines 50-100 kw lon Propulsion Advanced Turbomachinery - New LOX/LH2 Propulsion (NEP) - Evolutionary Hydrocarbon Components & Models Cryo. Fluid Manag-Extreme Upper -Hybrid Propulsion Boosters ement Storage & **Combustion Devices** Advanced LO2/LH2 Upper Stage Transfer Almosphere Instrument Platforme Engines Electromechanical Control Pressure-Fed Engine & Turbo Pump Aerobraking Systems Clean Burning Solids -Cryo Storage & Management Characterization of Al-Li Alloys Leak Free Tubing & Fittings Category 2 <u>Category 2</u> Nuclear Thermal Propulsion Cryogen Storage Handling Electric Propulsion (Solar & Nuclear) & Supply Autonomous Rend-Miniture Ascent Vehicle/ ezvous & Docking Avionics Lander Deceleration TPS for High-Temp. Applications Low Cost Fault-Tolerant, Redundant Cryogenic Space Adaptive GN&C Engines Guidance Navigation & Control GPS Based Guidance Electromechanical Actuators/PMAC Advanced Avionics Architectures Automated Health Monitoring Category 3 Advanced Structures Industry Driven Technologies Al-Li Alloy Structure/Cryotanks Autonomous Landing Category 3 Lightweight Composites and Metal Electric Propulsion Matrix Structures Advanced Avionics Software Autonomous Rendezvous/Sample

Environ. Safe Cleaning Solvents, Retrig/Foams

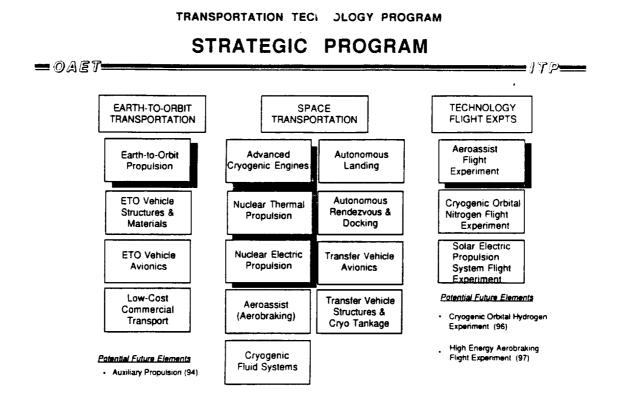
Non-Destructive Evaluation

Not Yet Addressed By ITP Strategic Planning

Transler & Landing

Automated Pre-Post Flight Data Analysis

Manufacturing & OPS


Computer Integrated Design, Man

Automated Inspection

& Test

Adaptive Computer Controlled Welding

mp

CURRENT FOCUSED PROGRAM

- OAET

TRANSPORTATION DECHNOLOGY PROGRAM EARTH-TO-ORBIT TRANSPORTATION

= /TP -----

EARTH-TO-ORBIT PROPULSION

HIGH RELIABILITY, HIGH DESIGN MARGINS & SERVICE LIFE, AUTONOMY

IN GROUND & FLIGHT OPERATIONS, REDUCED COSTS AND HIGHER PERFORMANCE

- ADVANCED TURBOMACHINERY, COMBUSTORS, SYSTEM MONITORING, VALIDATED DESIGN METHODOLOGIES & TOOLS, AND MANUFACTURING PROCESSES
- ADVANCED CONCEPTS WHICH WILL ENABLE ROUTINE, AFFORDABLE ACCESS TO SPACE

ETO VEHICLE STRUCTURES & MATERIALS

WEIGHT AND COST SAVINGS THROUGH ADVANCED METAL ALLOYS & COMPOSITES COUPLED WITH EFFICIENT FABRICATION, AUTOMATED PROCESSING & TEST

 CHARACTERIZATION OF AL-LI ALLOYS/ PROCESSING FOR CRYO TANKS, BUILT-UP STRUCTURES WITH MINIMUM WELD, AND AUTOMATED WELDING/NDE

INTEGRAL STRUCTURAL DESIGN/ANALYSIS AND METALLIC TPS FOR ADVANCED VEHICLES

ETO VEHICLE AVIONICS

REMOVAL OF MOST WEATHER CONSTRAINTS, GREATLY REDUCED TURNAROUND TIMES, AUTOMATED OPERATIONS, HIGHLY FAULT TOLERANT AND LOW MAINTENANCE SYSTEMS

- REAL-TIME WIND PROFILING, ADAPTIVE GN&C, MODULAR, SCALABLE ARCHITECTURES.
- AUTOMATED SOFTWARE, SENSORS AND ALGORITHMS FOR VHM, AND SMART EMA's

LOW-COST COMMERCIAL TRANSPORT

TAILOR R&T TO INDUSTRY NEEDS BY APPLYING AERONAUTICS APPROACH

INDUSTRY IDENTIFIED ENHANCEMENTS FOR TECHNOLOGY DEVELOPMENT

- OAET -

ADVANCED CRYOGENIC ENGINES

HIGH-PERFORMANCE, WIDE THRUST RANGE, MULTI-START LOX/LH2 ENGINE FOR LONG-DURATION IN-SPACE APPLICATION WITH MINIMAL CHECK-OUT/ OPERATIONS

 ADVANCED DESIGN/ANALYSIS TOOLS, COMPONENT-LEVEL IMPROVEMENTS, AND HARDWARE-REPRESENTATIVE ADVANCED EXPANDER CYCLE TEST BED TO PROVIDE REALISTIC ENGINE OPERATING ENVIRONMENT

NUCLEAR THERMAL PROPULSION

HIGH ISP OPTION WHICH HAS POTENTIAL TO GREATLY REDUCE EXPLORATION MISSION MASS IN LOW EARTH ORBIT, REDUCE MISSION TIME IN TRANSIT, AND INCREASE BOTH LAUNCH OPPORTUNITIES AND MISSION FLEXIBILITY

CONCEPTUAL DESIGNS, COMPONENT IMPROVEMENTS, VALIDATE CONCEPTS
 IN GROUND TESTS COOPERATIVELY WITH DOE AND DOD

NUCLEAR ELECTRIC PROPULSION

HIGH ISP OPTION WHICH COULD ENABLE FAR PLANETARY MISSIONS WITH EXPANDED SCIENCE CAPABILITIES AND EXPAND EXPLORATION MISSION OPTIONS

- DESIGN AND CONDUCT LONG-DURATION TESTS OF HIGH POWER ELECTRIC THRUSTERS
- DESIGN FLIGHT TEST OF SUBSCALE NEP SYSTEM WITH SP-100 CLASS SPACE REACTOR

CRYOGENIC FLUID SYSTEMS

TECHNOLOGY NECESSARY TO REDUCE COST AND PERFORMANCE PENALTIES ASSOCIATED CRYOGENIC HYDROGEN SYSTEMS, PARTICULARLY FOR LONG-DURATION SPACE MISSIONS

FLUID HANDLING, STORAGE, TRANSFER, SUPPLY, PRESSURE AND THERMAL CONTROL

TRANSPORTATION TECHNOLOGY PROGRAM SPACE TRANSPORTATION

AEROASSIST/AEROBRAKING

- QA/ET -----

PROVIDE SUBSTANTIAL REDUCTION IN MASS OR INCREASED PAYLOAD FOR ATMOSPHERIC CAPTURE MISSIONS

VALIDATED AERODYNAMIC CODES, TPS MATERIALS, ADAPTIVE GUIDANCE
 AND LIGHT WEIGHT STRUCTURAL CONCEPTS

AUTONOMOUS LANDING

REQUIRED FOR SAFE ROBOTIC PLANETARY LANDINGS NEAR SURFACE HAZARDS

 HAZARD DETECTION SENSORS, AVOIDANCE MODELING & ALGORITHMS, TERRAIN NAVIGATION TEST BED

AUTONOMOUS RENDEZVOUS & DOCKING

ENABLES ORBITAL OPERATIONS WITHOUT CREW FOR OPERATIONS TOO REMOTE FOR TELEOPERATIONS

ADVANCED LASER-BASED SENSOR DEVELOPMENT, ALGORITHMS AND MECHANISMS

TRANSFER VEHICLE AVIONICS

PROVIDE NEARLY AUTONOMOUS OPERATIONS WITH GREATLY REDUCED IN-SPACE LOGISTICS

 ADVANCED OPEN AVIONICS ARCHITECTURES, COMPONENTS, AND SOFTWARE; SMART, ROBUST SENSORS AND ALGORITHMS FOR VHM; AVIONICS TEST BEDS FOR VALIDATION

TRANSFER VEHICLE STRUCTURES & CRYO TANKAGE

 LOW-MASS, SPACE DURABLE MATERIALS REQUIRED FOR SAFE, COST-EFFECTIVE MISSIONS
 ADVANCED AL LI AND TITANIUM ALLOY CHARACTERIZATION, METAL MATRIX COMPOSITE CRYOTANK FABRICATION TECHNIQUES WITH INTEGRAL INSULATION

= MP ----

AEROASSIST FLIGHT EXPERIMENT

FLIGHT VALIDATE CRITICAL DESIGN REQUIREMENTS AND ENVIRONMENT

- RESOLVE RADIATIVE HEATING ISSUES & WALL CATALYSIS EFFECTS
- DEMONSTRATE NON-ABLATIVE TPS MATERIALS
- VERIFY AERODYNAMIC AND CONTROL CFD CODES

CRYOGENIC ORBITAL NITROGEN FLIGHT EXPERIMENT

VALIDATE DESIGN AND ANALYSIS TOOLS FOR CRYO FLUID MANAGEMENT IN SPACE

.

_____/YP____

- DEMONSTRATE 0-G ACQUISITION, TANK CHILLDOWN, NO-VENT FILL AND PRESSURE CONTROL TECHNOLOGIES
- PARTIALLY VALIDATE LH2 MANAGEMENT MODELS

SOLAR ELECTRIC PROPULSION SYSTEM FLIGHT EXPERIMENT. DEMONSTRATE SYSTEM READINESS AND IDENTIFY ENVIRONMENTAL EFFECTS

- CRITICAL PROPULSION, POWER, AND GN&C, TECHNOLOGIES FOR INERT GAS ION AND HYDROGEN ARCJET
- ADDED VALIDATION OF LH2 FLUID MANAGEMENT AND ADVANCED LIGHT-WEIGHT SOLAR ARRAYS

TRANSPORTATION TECHNOLOGY PROGRAM

ACCOMMODATION OF USER NEEDS

= oaet -----

PROGRAM TECH. AREAS USERS	ETO TRANSPORTATION	SPACE TRANSPORTATION	TECHNOLOGY FLIGHT EXPERIMENTS	MAJOR USER NEEDS Addressed
OFFICE OF SPACE FLIGHT	ETO Propulsion ETO Vehicle Avionica ETO Vehicle S & M Auxiliary Propulsion	Trane Veh Avonce) Trane Veh Structe Cryo Fluid Systems Adr. Cryo. Engine	CONE Fit Exp COHE Fit Exp	Venice Health Management Advanced Turbornschmeny Compa & Models Combustion Devices Electormechanical Control Systems Characterization of Al-U Alloys Cryo Storage, Handling, & Supply TPS for Hegh Tamparature Applications Advanced GN&C Advanced Anonce Architectures & Software Non-Destructive Evaluation
OFFICE OF Space Science And Applications		NEP Auto Rend & Docking Auto Landing	SEP Flight Exp. Aero assist Fit. Exp	50-100 kw Electric Propulsion (NEP) Miniture Accent Vehicle/Lander Deceleration Autonomous Renderzivous Autonomous Sample Transfer Autonomous Landing
SPACE EXPLORATION INITIATIVE		NTPNEP Cryo Fluid Systems Aeroasset Auto Rend /Landing Adv. Cryo. Engine Trans Veh Anonics Trans Veh Structs	Aero asset Pit Exp CONE Fit Exp H Energy AFE COHE Fit Exp.	Nuclear Thermal Propulsion Cryo Fluid Management, Storage, & Transler Aerobrahing Autonomous Rendezvous and Docking Advanced Cryo Scace Engines Autonomous Landing Electric Propulsion (Nuclear/Solar)
COMMERCIAL Space Sector	ETO Propulsion ETO Vehicle S & M ETO Vehicle Avionics Low-Cost Com Trane Auxiliary Propulsion	Adv Cryo Engines Nuclear Electric Prop Trans Veh Avionics (trans. Veh Structures) Cryo Fluid Systems	Soler Elec. Prop Esp	Low-cost Booster Engine/Reuse Hybrid & Pressue-Fed Boosters Advanced LOX/A2 Upper Stage Engine Electric Propulsion (Solar & Nuclear) Cryo Storage & Managament Leek free Tubes & Fittings Adaptive, Fault Tolarant GN&C GPS Based Guidance Electromechanical Actuators/PMAC Automated Health Monitoring ALL Aloy Stucture/Cryo tanks Compose & Metal Matris Succhare/Tanks Advanced Manufacturing Processes & Welder Camputer Integrated Design, Man & Lest Automated Pier Post Fight Data Analysis

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM "Strategic Plan" ITP: CSTP Element Categorization

Space Science Technology	Submillimeter Sensing Cooler and	Direct Detectors Microprecision CSI	Active µwave Sensing Laser Sensing	1	Passive Microwave Sensing		Optoelectrics Sensing & Processing	Probes and Penetrators	·
	Cryogenics	Data Visualization	Data Archiving and Retrieval	Telescope Optical Systems	Sample Acq., Analysis & Preservation		Precision	Sensor Optical	-
Planetary Surface Exploration Fechnology	Padaton Protection	Regenerative Life Support (Phys-Chem.)	Space Nuclear Power (SP-100)	High Capecity Power	Planetary Rovers	Surface Habitats and Construction	Pointing Exploration Human Factors	Systems —	Artifical Gravity
			Extravehicular Activity Systems	Surface Solar Power and Thermal Mgt.	In Situ Resource Utilization	Laser-Electric Power Beaming	Medical Support Systems	-	-
sportation echnology	ETO Propulsion	Aeroessist Filght Expt Nuclear Thermal Propulaton	Aeroeseist/ Aerobraking	Transfer Vehicle Avionics	ETO Vehicle Avianics	ETO Vehicle Structures & Materials	Autonomous Rendezvous & Docking	COHE	Auxiliary Propulsion
	Cryogenia Fluid Systems	Adv. Ciyo, Engines	Low-Cost Commercial ETO XPort	Nuclear Electric Propulsion	CONE	SEPS TFE	Autonomous Landing	TV Structures and Cryo	HEAD
Space Platforms schnology	Platform Structures & Dynamice	Platform Power and Thermal Mgt.	Zero-G Life Support	Platform Materials & Environ, Effects	Station- Keeping Propulsion		Spececraft On-Board Propulsion	Tankage Earth-Orbring Platform Controls	Advanced Reingerato
			Zero-G Advanced EMU	Platform NDE-NDI	Deep-Space Power and Thermal	-	Spacecraft GN&C	Debris Mapping Experiment	Systeme
perations chnology	Space Data Systems	High-Rate Comm.	Artificial Intelligence	Ground Deta Systems	Optical Comm Flight Expt Nevigetion &	Flight Control and Operations	Space Assembly & Construction	Space Processing & Servicing	Photonics Date
L	_ 	Communicatine	TeleRobotics	FTS DTF-1	Guidance Operator Syst/Training	Communicatins Communicatins Flight Expts	-	Ground Test and	Systems
H		PRIORITY	+	2	nd-HIGHEST PRIORITY			Processing L rd-HIGHEST PRIORITY	

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

CSTP GROWTH STRATEGIES

-0aet-

	CURRENT PROGRAM	"3x PROGRAM"	STRATEGIC PLAN
ETO Transport.	ETO Propulsion	ETO Propulsion ETO Mattls & Structures ETO Avionics Low-Cost Transport	ETO Propulsion ETO Mat'ls & Structures ETO Avionics Low-Cost Transport
Space Transport.	Adv. Cryo. Engines Nuclear Thermal Prop. Nuclear Electric Prop.	 Adv. Cryo. Engines Nuclear Thermal Prop. Nuclear Electric Prop. Aerobraking Auto. Rend. & Dock. Auto. Landing Cryo Fluid Systems ST Avionics 	 Adv. Cryo. Engines Nuclear Thermal Prop. Nuclear Electric Prop. Aerobraking Auto. Rend. & Dock. Auto. Landing Cryo Fluid Systems ST Avionics ST Martls & Structures Auxiliary Propulsion
Tech. Filght Expts.	AFE	AFE CONE	AFE Cryo. Orbital Nitrogen Expt SEPS Cryo Orbital Hydrogen Expt High-Energy Aerobr. Expt

TRANSPORTATION TECHNOLOGY PROGRAM

THRUST OVERVIEW

<u>ــــدر کرنز ــــد م</u>

BACK-UP CHARTS

							_ <u></u>
=9A:37						,	
	EV 1001	EV 1000	FY 1993	FY 1994	FY 1995	EY 1996	FY 1997
	<u>FY_1991</u>	<u>FY 1992</u>	<u>F1 1999</u>	<u>[]_]334</u>			
THRUST TOTALS (S.M)	<u>64.7</u>	<u>79.5</u>	<u>140.3</u>	143.0	<u>145.2</u>	<u>144.4</u>	124.0
EARTH-TO-ORBIT TRANS.	21.8	<u>28.7</u>	33.9	25.1	<u>26.4</u>	<u>27.6</u>	<u>28.8</u>
ETO Propulsion	21.8	28.7	33.9	25.1	26.4	27.6	28.8
·							
SPACE TRANSPORTATION	7.9	16.0	31.6	<u>51.1</u>	76.0	91.0	95.2
	4.0	9.0	12.6	13.2	14.0	14.7	15.4
Advanced Cryogenic Engines Nuclear Thermal Propulsion	4.0	9.0 5.0	13.0	22.0	39.0	50.3	52.6
Nuclear Electric Propulsion		2.0	6.0	15.9	23.0	26.0	27.2
NUCLEAR Electric / Topulation							
TECH. FLIGHT EXPERIMENTS	35.0	34.8	74.8	66.8	42.8	25.8	<u></u>
	35.0						
Aeroassit Flight Experiment	35.0	J4.0	14.6	, 00.0			

TRANSPORTATION TECHNOLOGY PROGRAM CURRENT PROGRAM BUDGET

TRANSPORTATION TECHNOLOGYPROGRAM (3X) PROGRAM BUDGET

F	<u>Y 1991</u>	<u>FY 1992</u>	<u>FY 1993</u>	EX 1004		•	
			1 1999	<u>FY_1994</u>	<u>FY 1995</u>	<u>FY 1996</u>	<u>EY 1997</u>
THRUST TOTALS (S.M)	<u>64.7</u>	<u>79.5</u>	<u>170.0</u>	<u>209.7</u>	246.2	<u>270.5</u>	279.0
EARTH-TO-ORBIT_TRANS.	<u>21.8</u>	<u>28.7</u>	42.9	<u>45.1</u>	<u>61.6</u>	78.6	97.8
ETO Propulsion	21.8	28.7	33.9	25.1	26.4	27.6	28.8
ETO Vehicle Structures & Materials			3.0	6.0	12.0	19.0	20.0
ETO Vehicle Avionics			1.8	4.0	6.2	9.0	12.5
Low Cost Commercial Transport			4.2	10.0	17.0	23.0	29.0
Auxiliary Propulsion						20.0	23.0
SPACE TRANSPORTATION	7.9	<u>16.0</u>	49.0	83.0	118.3		
Advanced Cryogenic Engines	4.0	9.0	14.9	16.7		<u>143.1</u>	<u>162.5</u>
Nuclear Thermal Propulsion	0.5	5.0	13.0	22.0	19.6 39.0	20.2	28.0
Nuclear Electric Propulsion		2.0	6.0	15.9	23.0	50.3	52.6
Aeroassist/Aerobraking	0.9		3.5	8.0	12.1	26.0	27 2
Cryogenic Fluid Systems	1.5		7.4	10.0	10.3	18.0	22.0
Autonomous Landing	0.5		1.2	2.8	3.5	10.8	10.0
Autonomous Rendezvous & Docking	0.5		1.3	3.5	4.5	4.0	4.5
Transfer Vehicle Avionics			1.7	4.1	6.3	4.8	5.5
Transfer Vehicle Structures & Materials					0.3	9.0	12.7
IECH. FLIGHT EXPERIMENTS	35.0	<u>34.8</u>	78. 1	81.6	66.3	48.8	10 7
Aeroassit Flight Experiment	35.0	34.8	74.8	66.8			<u>18.7</u>
Cryogenic Orbital Nitrogen Experiment			3.3	00.8 14.8	42.8	25.8	
Solar Electric Propulsion System Fit Exp			5.3	14.8	23.5	23.0	18.7
Cryogenic Orbital Hydrogen Experiment							•
High-Energy Aerobraking Flight Exp.							
					•		

TRANSPORTATION TECHNOLOGY PROGRAM STRATEGIC PROGRAM BUDGET

						,	
	Y <u>1991</u>	<u>FY_1992</u>	EY 1993	<u>EY 1994</u>	<u>FY 1995</u>	<u>FY 1996</u>	<u>EY 1997</u>
THRUST TOTALS (S.M)	<u>64.7</u>	<u>79.5</u>	<u>199.7</u>	<u>274.1</u>	<u>360.3</u>	<u>447.8</u>	512.5
EARTH-TO-ORBIT TRANS.	<u>21.8</u>	<u>28.7</u>	56.9	<u>71.7</u>	<u>125.3</u>	171.2	175 6
ETO Propulsion	21.8	28.7	33.9	35.4			<u>175.6</u>
ETO Vehicle Structures & Materials			4.0	8.0	36.9 15.9	42.7	45.1
ETO Vehicle Avionics			7.0	11.0	23.0	24.9	31.0
Low Cost Commercial Transport			12.0	15.0	∠3.0 44.1	35.0	36.5
Auxiliary Propulsion				2.3	5.4	57.7	47.1
SPACE TRANSPORTATION				2.5	3.4	10.9	15.9
SPACE TRANSPORTATION	<u>7.9</u>	<u>16.0</u>	<u>58.3</u>	<u>104.6</u>	156.1	214.6	204 5
Advanced Cryogenic Engines	4.0	9.0	15.0	24.0			<u>284.5</u>
Nuclear Thermal Propulsion	0.5	5.0	13.0	24.0	31.0	45.8	42.4
Nuclear Electric Propulsion		2.0	6.0	15.9	39.0	50.3	83.0
Aeroassist/Aerobraking	0.9		4.8	9.3	23.0	26.0	45.0
Cryogenic Fluid Systems	1.5		8.5	9.3 11.0	14.8	20.4	23.8
Autonomous Landing	0.5		2.0	4.5	11.3	11.8	11.0
Autonomous Rendezvous & Docking	0.5		2.0	4.5 5.0	6.0	7.0	7.3
Transfer Vehicle Avionics			5.0	5.0 9.0	7.0	7.3	7.7
Transfer Vehicle Structures & Materials			2.0	3.9	15.0	32.0	44.3
			2.0	3.9	9.0	14.0	20.0
TECH. FLIGHT EXPERIMENTS	35.0	34.8					
Aeroassit Flight Experiment			<u>84.5</u>	<u>97.8</u>	<u>78.9</u>	62.0	52.4
Cryogenic Orbital Nitrogen Experiment	35.0	34.8	74.8	66.8	42.8	25.8	
Solar Electric Propulsion System Fit. Exp.			3.4	19.4	24.6	25.0	14 5
Cryogenic Orbital Hydrogen Experiment			6.3	11.6	11.5	7.6	0.9
High-Energy Aerobraking Flight Exp.				•••		3.6	17.0
man energy herobiaking hight exp.							20.0

INTEGRATED TECHNOLOGY PLAN EARTH-TO-ORBIT TRANSPORTATION

is by/for: Personnel Launch System Shuttle Evolution, NLS evolution for initial lunar mission and Low-Cost ELV's Advanced Manned Launch System NLS evolution for initial mars mission	OBJECTIVES • Programmatic Develop and validate technologies that improve existing systems and enable new design-to-cost vehicles • Technical Main Engine: 3 fold reduction in cost; 10 fold increase in life Aux. Propulsion: Storable propellants near term; Integrated H/O for AMLS and OTV's Structures: 20-40% reduction in weight; 25% reduction in manufacturing cost Avionics: Adaptive/autonomous G&C fault tolerant, resilant architectures with electric actuators							
	RESOURCES	& vehic	le hea	ith mar	nagem			<u> </u>
Low cost manufacturing processes for SSME & STME thrust chamber								
Engine monitoring capability for pre-flight servicing & checkout; safe shutdown	Budget (\$,M)	1991				1995	1996	1997
1996 PLS technology validation complete: AI-Li structure; EMA's; Storable	CURRENT	21.8	28.7	33.9	25.1	26.4	27.6	28.8
	STRATEGIC			56.9	71.7	125.3	171.2	175.6
Test Bed Demo of Advanced Power Management System with 50 hp. EMA	(3X)			42.9	45.1	61.6	78.6	97.8
AMLS technology validation complete: Integral thermostructural concept tested; AdvancedManufacturing &design tools for main engine; Integrated H/O OMS/RCS system								
	initial lunar mission and Low-Cost ELV's Advanced Manned Launch System NLS evolution for initial mars mission INES Low cost manufacturing processes for SSME & STME thrust chamber Engine monitoring capability for pre-flight servicing & checkout; safe shutdown PLS technology validation complete: Al-Li structure; EMA's; Storable OMS/RCS propellants; Advanced TPS Test Bed Demo of Advanced Power Management System with 50 hp. EMA AMLS technology validation complete: Integral thermostructural concept tested; AdvancedManufacturing &design tools for main engine; Integrated H/O OMS/RCS	Shuttle Evolution , NLS evolution for initial lunar mission and Low-Cost ELV's Advanced Manned Launch System NLS evolution for initial mars mission Structures: Avionics: INES Low cost manufacturing processes for SSME & STME thrust chamber RESOURCES Engine monitoring capability for pre-flight servicing & checkout; safe shutdown Budget (\$,M) PLS technology validation complete: Al-Li structure; EMA's; Storable OMS/RCS propellants; Advanced TPS CURRENT STRATEGIC Test Bed Demo of Advanced Power Management System with 50 hp. EMA (3X) AMLS technology validation complete: Integral thermostructural concept tested; AdvancedManufacturing &design tools for main engine; Integrated H/O OMS/RCS (3X)	Shuttle Evolution , NLS evolution for initial lunar mission and Low-Cost ELV's H/O for Structures: 20-40% in manu Avionics: Adaptive resilant & vehic NLS evolution for initial mars mission Avionics: Adaptive resilant NLS evolution for initial mars mission Avionics: Adaptive resilant INES Low cost manufacturing processes for SSME & STME thrust chamber Engine monitoring capability for pre-flight servicing & checkout; safe shutdown Budget (\$,M) PLS technology validation complete: Al-Li structure; EMA's; Storable OMS/RCS propellants; Advanced TPS CURRENT Test Bed Demo of Advanced Power Management System with 50 hp. EMA (3X) AMLS technology validation complete: Integral thermostructural concept tested; AdvancedManufacturing &design tools for main engine; Integrated H/O OMS/RCS (3X)	Shuttle Evolution , NLS evolution for initial lunar mission and Low-Cost ELV's Advanced Manned Launch System H/O for AMLS NLS evolution for initial mars mission Structures: 20-40% reduction in manufacturing Advanced Manned Launch System NLS evolution for initial mars mission Adaptive/auto resilant architu & vehicle hea INES Adaptive/auto resilant architu & vehicle hea Low cost manufacturing processes for SSME & STME thrust chamber RESOURCES Engine monitoring capability for pre-flight servicing & checkout; safe shutdown Budget (\$,M) 1991 1992 PLS technology validation complete: Al-Li structure; EMA's; Storable OMS/RCS propellants; Advanced TPS CURRENT 21.8 28.7 Test Bed Demo of Advanced Power Management System with 50 hp. EMA (3X) (3X) AMLS technology validation complete: Integral thermostructural concept tested; AdvancedManufacturing &design tools for main engine; Integrated H/O OMS/RCS (3X)	Shuttle Evolution , NLS evolution for initial lunar mission and Low-Cost ELV's Advanced Manned Launch System H/O for AMLS and O Structures: 20-40% reduction in in manufacturing cos Adaptive/autonomou resilant architectures & vehicle health mar NLS evolution for initial mars mission Adaptive/autonomou resilant architectures & vehicle health mar INES Low cost manufacturing processes for SSME & STME thrust chamber Budget (\$,M) Engine monitoring capability for pre-flight servicing & checkout; safe shutdown Budget (\$,M) PLS technology validation complete: Al-Li structure; EMA's; Storable OMS/RCS propellants; Advanced TPS STRATEGIC Test Bed Demo of Advanced Power Management System with 50 hp. EMA (3X) AMLS technology validation complete: Integral thermostructural concept tested; AdvancedManufacturing &design tools for main engine; Integrated H/O OMS/RCS (3X)	Shuttle Evolution , NLS evolution for initial lunar mission and Low-Cost ELV's Advanced Manned Launch System H/O for AMLS and OTV's Advanced Manned Launch System Structures: 20-40% reduction in weight in manufacturing cost NLS evolution for initial mars mission Adaptive/autonomous G&C resilant architectures with e & vehicle health management INES Low cost manufacturing processes for SSME & STME thrust chamber RESOURCES Engine monitoring capability for pre-flight servicing & checkout; safe shutdown Budget (\$,M) 1991 1992 1993 1994 PLS technology validation complete: Al-Li structure; EMA's; Storable OMS/RCS propellants; Advanced TPS CURRENT 21.8 28.7 33.9 25.1 Test Bed Demo of Advanced Power Management System with 50 hp. EMA (3X) 42.9 45.1 AMLS technology validation complete: Integral thermostructural concept tested; AdvancedManufacturing &design tools for main engine; Integrated H/O OMS/RCS (3X) 42.9 45.1	Shuttle Evolution , NLS evolution for initial lunar mission and Low-Cost ELV's Advanced Manned Launch System H/O for AMLS and OTV's NLS evolution for initial mars mission Structures: 20-40% reduction in weight; 25% in manufacturing cost NLS evolution for initial mars mission Adaptive/autonomous G&C fault tresilant architectures with electric & vehicle health management INES Low cost manufacturing processes for SSME & STME thrust chamber Budget (\$,M) 1991 1992 1993 1994 1995 Engine monitoring capability for pre-flight servicing & checkout; safe shutdown Budget (\$,M) 1991 1992 1993 1994 1995 PLS technology validation complete: Al-Li structure; EMA's; Storable OMS/RCS propellants; Advanced TPS CURRENT 21.8 28.7 33.9 25.1 26.4 STRATEGIC 56.9 71.7 125.3 Test Bed Demo of Advanced Power Management System with 50 hp. EMA (3X) 42.9 45.1 61.6 AMLS technology validation complete: Integrat thermostructural concept tested; AdvancedManufacturing &design tools for main engine; Integrated H/O OMS/RCS (3X) 42.9 45.1 61.6	Shuttle Evolution , NLS evolution for initial lunar mission and Low-Cost ELV's Advanced Manned Launch System H/O for AMLS and OTV's NLS evolution for initial mars mission Structures: 20-40% reduction in weight; 25% reduction in manufacturing cost NLS evolution for initial mars mission Adaptive/autonomous G&C fault tolerant resilant architectures with electric actuate & vehicle health management INES Low cost manufacturing processes for SSME & STME thrust chamber Budget (\$,M) 1991 1992 1993 1994 1995 1996 Engine monitoring capability for pre-flight servicing & checkout; safe shutdown Budget (\$,M) 1991 1992 1993 1994 1995 1996 PLS technology validation complete: Al-Li structure; EMA's; Storable OMS/RCS propellants; Advanced TPS STRATEGIC 56.9 71.7 125.3 171.2 Test Bed Demo of Advanced Power Management System with 50 hp. EMA (3X) 42.9 45.1 61.6 78.6 AMLS technology validation complete: Integrat thermostructural concept tested; AdvancedManufacturing &design tools for main engine; Integrated H/O OMS/RCS (3X) 42.9 45.1 61.6 78.6

SPACE TRANSPORTATION

JUSTIFICATION

-0-a-2-7

oaet

Mission Needs

MILESTONES

• 1995

1995

1998

1998

1998

1999

2000

High performance, safe, and reliable space transportation for cargo and personnel using ground-based and space-based systems. Validation of technology by/for:

- Capability Upgrades for Current Upper Stages · 1995
- Initial Lunar Chemical Transfer Vehicle/Lande + 1996
- Solar Electric Propulsion Upper Stage · 1998
- Evolutionary Lunar Transfer Vehicle/Lander · 2002

- 100 KW Nuclear Electric Propulsion Upper Sta · 2003
- Mars Nuclear Space Transfer Vehicle · 2010

OBJECTIVES

Programmatic

Develop and validate technologies to enable high energy, high performance upper stages and cargo & personnel vehicles for Lunar and Mars missions

-]72**--**--

=]TP===

Technical

Initial Lunar Chemical Transfer Vehicle/Lander Solar Electric Propulsion Upper Stage Evolutionary Lunar Transfer Vehicle/Lander 100 KW Nuclear Electric Propulsion Upper Stage Mars Nuclear Space Transfer Vehicle	Adv. Cryo, Engines: NTP: NEP: Aeroassist: Cryo Fluid Systems: Structures & Cryo Ta Avionics:	4.5 hr 10 MV Valida In-spa Ink: Lightv Adap	s, fuel I Ne pow ated cod ace mai weight / btive/au	lifetime, ler with 3 des for L nageme Al-Li stru tonomol	autonor 3-10 yea _unar/Ma int of cry ucture & us G&C	ipander o mous rob urs lifetim ars missio ogenic fit composi composi VHM; fa actuators	iotic ope e ons uids ite crya 1 iult-toler	tank
AETB Test Beds Delivered	RESOURCES Budget (\$,M)	-	992	1993	1994	1995	1996	1997
Mars Entry Probes Code Validation AETB-1 System Fully Characterized	CURRENT	8.0	16.0	31.6	51.1	76.0	91.0	95.2
AFE Flight Data Code & TPS Assessment Complete for MRSR Aerocapture Validation	STRATEGIC			58.3	104.6	156.1	214.6	5 284.5
Complete Demo in Avionics Lab of Advanced Avionics Electric Power Management System	(3X)			49.0	83.0	118.3	143.1	162.5
Light-weight Materials Qualified for Space Lunar LTV Codes, TPS & Assembly Validated								

- Verity 1000 Hours operating lifetime of 500 kw NEP 2000
- First NTR Reactor Test Complete 2001
- Full System Ground Test of NTR Reactor Complete 2006

INTEGRATED TECH _OGY PLAN TECHNOLOGY FLIGHT EXPERIMENTS

JUSTIFICATION

Mission Needs

oaet

Enable safe, reliable and cost-effective transportation for cargo and personnel to Earth orbit, beyond and return to Earth. Validation of technologies by/for:

- + 1996 Initial Lunar Transfer Vehicle/Lander
- 1998 SEP Upper Stage
 2002 Evolution Lunar Transi
- 2002 Evolution Lunar Transfer Vehicle/Lander
 2003 NEP Upper Stage
- +2005 AMLS
- · 2006 Mars Nuclear Space Transfer Vehicle
- 2010 NLS Evolution for Initial Mars Mission

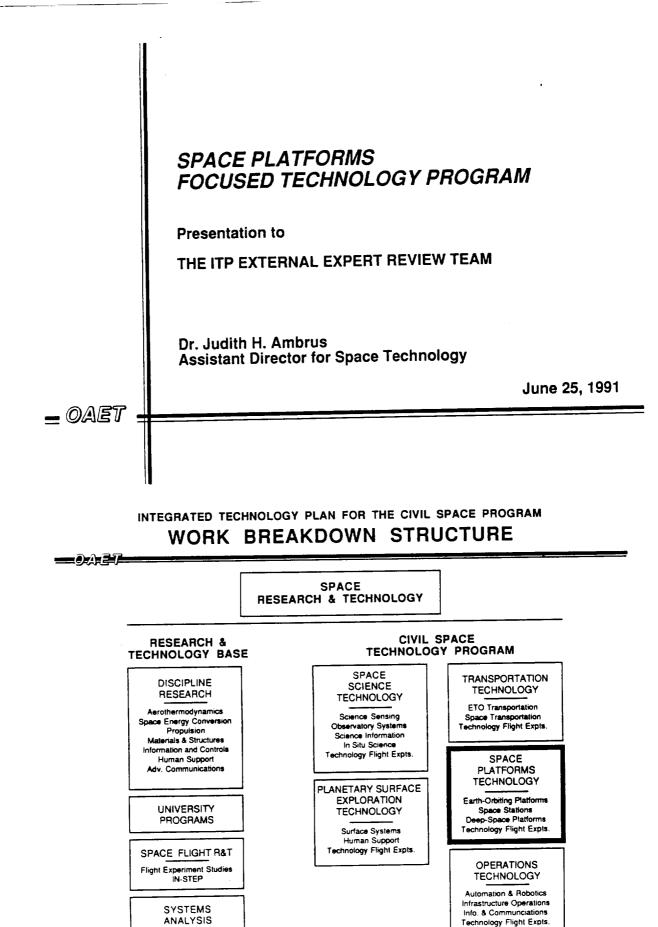
OBJECTIVES

Programmatic

Demonstrate Earth-to-Orbit and Space Transportation technologies and collect critical flight research data through the implementation of in-space technology experiments that support all vehicle systems.

,

Technical


RESOURCES

- AFE: Investigate critical design & environmental technologies applicable to design of aeroassisted space transfer vehicles
- SEPS: 30-cm, inert gas ion propulsion and an arcjet operated on cryogenically stored H2
- CONE: Partial model validation of non-vented liquid transfer analytical models using nitrogen; low-g demo of critical components.

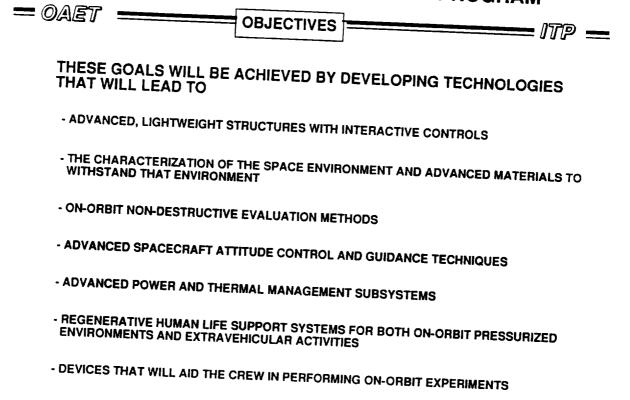
COHE: Full model validation of non-vented liquid transfer analytical models using hydrogen; low-g demo of critical components.

MILESTONES

• 1996 AFE Flight Test from Shuttle Budget (\$,M) 1991 1992 1993 1994 1995 1997 • 1996 SEPS FlightExperiment on DOD S/C CURRENT 35.0 34.8 74.8 66.8 42.8 25.8 --- • 1997 CONE STS Flight Experiment on Shuttle STRATEGIC 84.5 97.8 78.9 62.0 52.4 • 2001 COHE Flight Experiment launched on ELV (3X) 78.1 81.6 66.3 48.8 18.7

MAY 15, 1991 JCM-7650#

SPACE PLATFORMS TECHNOLOGY PROGRAM


= OAET - FOCUSED TECHNOLOGY PROGRAM GOAL

== *ITP* ==

THE GOAL OF THIS FOCUSED TECHNOLOGY PROGRAM IS TO ENHANCE FUTURE SCIENCE, EXPLORATION AND COMMERCIAL MISSIONS BY DEVELOPING AND VALIDATING TECHNOLOGIES THAT WILL

- ENABLE REDUCTIONS IN LAUNCH WEIGHT
- INCREASE LIFETIME.
- INCREASE MAINTAINABILITY, AND
- DECREASE LOGISTICS RESUPPLY NEEDS

SPACE PLATFORMS TECHNOLOGY PROGRAM

SPACE PLATFORMS TECHNOLOGY PROGRAM

_/TP == = OAET =SUMMARY OF USER NEEDS OFFICE OF OFFICE OF COMMERCIAL SPACE SCIENCE SPACE FLIGHT SPACE SECTOR & APPLICATIONS VIBRATION ISOLATION TECHN. **MICROMET. & DEBRIS PROT.** VEHICLE HEALTH MANAGEMENT EFFICIENT/QUIET REFRIG/FREEZER **EXPANDED AT. O DATABASE** ADV. HEAT REJECTION **CONTROLLED LARGE STRUCTURES** LT. WT/ HIGH EFF. PV ARRAYS HIGH EFF. POWER SYSTEMS LIGHT WT. BATTERIES WATER RECOVERY & MGMT. ADV. EMU SOLAR ARRAYS/CELLS ADV. EMU LONG LIFE, LT. WT. BATTERIES THERMAL ENERGY STORAGE **ORBITAL DEBRIS** LARGE SPACE STRUCTURES REAL TIME ENV. MONITORING GN&C HIGH TEMP. .MATERIALS IMPROVED EMU MINI RTG MINI-S/C SUBSYSTEMS **REGENERATIVE LIFE SUPPORT** MICROBIAL DECONT. METHODS THERMAL CONTROL SYSTEMS NON-DESTR. MONITORING CAP. LOW DRIFT GYROS, TRACKERS, ACTUATORS SPACE PLATFORMS TECHNOLOGY PROGRAM _____*ITP* ___ = OAET =WORK BREAKDOWN STRUCTURE DEEP SPACE FLIGHT EARTH ORBITING SPACE PLATFORMS STATIONS PLATFORMS EXPERIMENTS INSTEP **POWER & POWER &** REGENERATIVE THERMAL MGMT THERMAL MGMT **EXPERIMENTS** ECLSS **ADVANCED** STRUCTURES C. ON-BOARD ORBITAL EMU PROPULSION DEBRIS SENSOR STATION KEEPING **MATERIALS &** GN&C **ENV. EFFECTS** PROPULSION SSF USER NDE / NDI SUPPORT CONTROLS

SPACE PLATFORMS TECHNOLOGY PROGRAM

= 0 A ET =

EARTH ORBITING PLATFORMS

___ ITP __

POWER AND THERMAL MANAGEMENT

- PLANAR AND CONCENTRATOR ARRAYS
- SOLAR DYNAMIC MODULE GROUND TEST
- LONG LIFE, HIGH ENERGY DENSITY BATTERIES
 - HIGH TEMPERATURE PMAD
 - HIGH CAPACITY HEAT REJECTION

STRUCTURES AND DYNAMICS

- CONTROLS/STRUCTURES INTERACTIONS
- ADVANCED ADAPTIVE STRUCTURES
- STRUCTURAL DYNAMICS ON-ORBIT VERIFICATION

CONTROLS

- CONTROL HARDWARE FOR PRECISE ATTITUDE DETERMINATION

MATERIALS AND ENVIRONMENTAL EFFECTS

- DESCRIPTION OD SPACE ENVIRONMENT
- ADVANCED MATERIALS FOR SPACE ENVIRONMENT

NDE/NDI

- METHODOLOGY FOR ON-ORBIT DIAGNOSIS OF STRUCTURAL DEFECTS

SPACE PLATFORMS TECHNOLOGY PROGRAM

REGENERATIVE ENVIRONMENTAL CONTROL AND LIFE SUPPORT

- WATER RECLAMATION
- SOLID WASTE MANAGEMENT
- AIR REVITALIZATION
- MICROBIAL AND CHEMICAL SENSORS AND CONTROLS
- GROUND AND SPACE BASED TESTBEDS

ADVANCED EXTRAVEHICULAR MOBILITY UNIT

- 8.3 PSI CAPABILITY
- ON-ORBIT MAINTAINABILITY
- 52 EVA PER YEAR CAPACITY

PROPULSION

- RESISTOJET OPERABLE WITH ALL GASEOUS WASTE

SSF USER SUPPORT

- LOW NOISE, ENERGY EFFICIENT REFRIGERATOR WITH NON-TOXIC REFRIGERANT

= 0 AET =

DEEP SPACE PLATFORMS

== *ITP* ==

POWER AND THERMAL MANAGEMENT

- VERY LIGHTWEIGHT SOLAR ARRAYS
- REDUCED RADIO ISOTOPOE INVENTORY RTGs
- FAULT TOLERANT, RECONFIGURABLE PMAC
- CRYOGENIC THERMAL BUS

PROPULSION

- LOW CONTAMINATION, HIGH PERFORMANCE "HOT ROCKET" DESIGN, FAB AND TEST

GUIDANCE NAVIGATION AND CONTROL

- ADAPTIVE GUIDANCE TECHNIQUES WITH SYSTEMS AUTONOMY
- NAVIGATION TECHNIQUES, HARDWARE AND SOFTWARE
- FAULT TOLERANT CONTROL SYSTEMS, SENSORS AND ACTUATORS

SPACE PLATFORMS TECHNOLOGY PROGRAM

= OAET ==

FLIGHT EXPERIMENTS

____ ITP ==

DEBRIS MAPPING SENSOR

- CHARACTERIZE ORBITAL DEBRIS ENVIRONMENT IN 1 TO 10 mm RANGE
- LEO OPERATIONS ALTITUDE
- VISIBLE AND INFRARED SENSORS
- REPEATABLE SHUTTLE EXPERIMENT
- PHASE B NEARING COMPLETION

INSTEP FLIGHT EXPERIMENTS

- MEASUREMENTS AND MODELING OF JOINT DAMPING IN SPACE, 1994

- MIDDECK ACTIVE CONTROL EXPERIMENT, 1995

- MIDDECK 0-GRAVITY DYNAMICS EXPERIMENT, 1991
- THERMAL ENERGY STORAGE MATERIALS, 1993
- SOLAR ARRAY PLASMA INTERACTION EXPERIMENT, 1993
- TANK PRESSURE CONTROL EXPERIMENT, 1991
- PERMEABLE MEMBRANE EXPERIMENT, 1993
- TWO PHASE FLOW, 1994
- ELECTROLYSIS EXPERIMENT, 1992

	OAET USEF	SUPPORT	ASSESSME		<u> </u>	tp =
L	Jser Need Program Area	Earth Orbiting Platforms	Space Stations	Deep Space Platforms	Flight Experiments	Coll. Benefits
O S F	Vehicle Health Management High Efficient Power Systems Advanced Heat Rejection Devices Orbital Debris Water Recovery & Management Advanced EMU	NDE/NDI P & TH Mgmt Mats & Env .Eff	Reg. ECLS		InSTEP Debris Exp	OSO
000	Vibration Isolation Techn. Adv. Refrigerator/Freezer Controlled Large Structures Solar Arrays/Cells Long Life, Lt. Wt. Batteries Improved EMU Mini-RTG Mini-S/C Subsystems	Controls S & DYN P & Th Mgmt	SS User Supp	P & Th Mgmt)		0
A	Regenerative Life Support Microbial Decontam. Methods Thermal Control Systems Non-Destr. Monitoring Cap. Low Drift Gyros, Trackers, Actuators	NDE/NDI	Reg. ECLS	P & Th Mgmt		S E
	Micromet. & Debns Protection Expanded AO Data Base High temp. materials High Eff PV Arrays/ Light wt. batteries Adv. EMU Thermal energy storage Large space structures	Mats & Env. Eff P & Th Mgmt Str. & Dyn.	AEMU		InSTEP	

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM "Strategic Plan" ITP: CSTP Element Categorization

Space Science Technology	Submillimeter Sensing	Direct Detectors Microprecision	Active µwave Sensing Laser Sensing	Sensor Electronics & Processing	Passive Microweve Sensing	'_	Optoelectrics Sensing & Processing	Probes and Penetrators	-
	Cooler and Cryogenics	CSI Dela Visualization	Data Archiving and Retrieval	Telescope Optical Systems	Sample Acq., Analysis & Preservation		Precision Instrument Pointing	Sensor Optical Systems	-
Planetary Surface Exploration	Rediction Protection	Regenerative Life Support (Phys-Chem.)	Space Nuclear Power (SP-100)	High Capacity Power	Planetary Rovers	Surface Habitats and Construction	Exploration Human Factors		Artifical Gravity
Technology	-		Extravehicular Activity Systema	Surface Solar Power and Thermal MgL	In Situ Resource Utilization	Laser-Electric Power Beaming	Medical Support Systems	-	-
ansportation Technology	ETO Propulsion	Aeroesuist Flight Expt Nuclear Thermal	Aeroassist/ Aerobraking	Transfer Vehicle Avionica	ETO Vehicle Avianice	ETO Vehicle Structures & Materiais	Autonomous Rendezvous & Docking	COHE	Audillary Propulsion
	Cryogenia Fluid Systems	Propulsion Adv. Cryo, Engines	Low-Cost Commercial ETO XPort	Nuclear Electric Propulsion	CONE	SEPS TFE	Autonomous Landing	TV Structures and Cryo Tankage	HEAD
Space Platiorms Technology	Platform Structures & Dynamice	Platform Power and Thermal Mgt.	Zero-G Life Support	Platform Materiale & Environ. Effects	Station- Keeping Propulsion	-	Spececraft On-Board Propulsion	Earth-Orbiting Platform Controls	Advanced Refrigerate Systems
	-	-	Zero-G Advanced EMU	Platform NDE-NDI	Deep-Space Power and Thermal	-	Spececraft GN&C	Debris Mapping Experiment	
Operations Technology	Space Data Systems	High-Rate Comm.	Artificiai Intelligence	Ground Data Systems	Optical Comm Filght Expt Navigation &	Flight Control and Operations	Space Assembly & Construction	Space Processing & Servicing	Photonica Data Systems
	-	CommSet Communicatins	TeleRobotics	FTS DTF-1	Guidance Operator Syst/Training	CommSat Communicatins Flight Expts		Ground Test and Processing	-

JUNE 18, 1991 JCM-6800f

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

CSTP GROWTH STRATEGIES

	CURRENT PROGRAM	"3x PROGRAM"	STRATEGIC PLAN
Earth Orbiting Platforms	Plat. Structures/Dynamics	Plat. Structures/Dynamics Plat. Power/Thermal Syst. Maris/Environ. Effects	 Plat. Structures/Dynamics Plat. Power/Thermal Syst. Mat'ls/Environ. Effects Platform NDE-NDI Platform Controls
Space Stations		0000 Zero-G Life Support 0000 Zero-G EMU	Zero-G Life Support Zero-G EMU Adv. Refrigerator Systems Station-Keeping Propulsion
Deep-Space Platforms		S/C On-Board Propulsion	S/C On-Board Propulsion S/C Power & Thermal S/C GN&C
Tech. Flight Expts.			Debris Mapping Flt Expt
	Adequately IIIII Constrained [] Funded Progress	Marginally Outyear Funded "Slant"	JUNE

SPACE PLATFORMS TECHNOLOGY PROGRAM

= OAET =

=0-A-2-7

.

THE SPACE PLATFORM IS THE BACKBONE OF ALL ACTIVITIES IN SPACE

IMPROVEMENTS IN SPACE PLATFORM STRUCTURE AND UTILITIES WILL PAY OFF IN LOWER LIFE CYCLE COSTS AND MORE EFFICIENT **OPERATIONS**

THE STRATEGIC PLAN ADDRESSES ALL USER NEEDS AND HAS BEEN CONSTRUCTED TO HAVE TIMELY IMPACT ON PLANNED MISSIONS

THE "3X" FY 1993 BUDGET WILL DELAY OR SLOW DOWN SOME OF THE NEEDED TECHNOLOGY PRODUCTS, BUT WILL ENABLE A GOOD START TOWARD SOLVING THE MOST PRESSING PROBLEMS

EARTH ORBITI						
JUSTIFICATION	OBJECTIVES					
 Mission Needs 	Programmatic					
Advanced spacecraft structure and spacecraft bus technologies are needed to support	Develop and validate technologies that will decrease spacecraft launch weight, increase utility efficiency, increase lifetime and decrease life cycle costs					
1998 + Earth Orbiting Science 2000 + Space Station Freedom beyond PMC 2000 + Robotic and Human Exploration	Technical Power &Thermal Mgmt Structures &Dynamics Materials & Env. Effects NDE / NDI Controls Increase fault tolerance, lifetime					
MILESTONES	RESOURCES					
1992 CSI ground testbed operational 1994 Compl SSF model with preintegrated truss	Budget (\$M) 1991 1992 1993 1994 1995 1996 1997					
1995 Demo 100 Wh/kg, 1000 cycle battery cells 1997 Demo 300 W/m2 array 1997 Demo advanced star tracker	Current 6.5 10.7					
1997 Adv. materials ready for flight testing 1998 Thermal NDE method for coatings	Strategic 6.5 10.7 27.5 40.8 50.5 55.5 60.0					
1998 Heat nume dome						

1998 Heat pump demo

1999 New structural verification model 2000 Demo autonomous, fault tolerant PMAD

SPACE PLATFORMS TECHNOLOGY PROGRAM

ЗX

6.5

10.7 18.6 24.6 26.7 27.5 33..2

= OAET = SPACES	STATIONS TO THE STATIONS			
<u>JUSTIFICATION</u> Mission Needs 	OBJECTIVES			
MISSION Needs	Programmatic			
Advanced human support technologies are needed to support humans in LEO to support	Develop and validate technologies that will increase human productivity and safety in and around space station			
	Technical			
2000 + Space Station Freedom beyond PMC 2000 + Human Exploration	Regenerative ECLSDecrease logistics resupplyAdv. EMUIncrease EVA effectivenessPropulsionControl waste gas managementSSF User SupportIncrease utilization efficiency			
MILESTONES	RESOURCES			
1993 Assess SOA microbial sensors 1994 Develop component testbed 1995 Design Thermal Control Testbed	Budget (\$M) 1991 1992 1993 1994 1995 1996 1997			
1996 Resistojet with humid waste gas lifetime	Current 0			
demo 1997 Demo single train water reclamation 1997 Prototype 8.3 psi suit delivered	Strategic 0 0 8.4 18.1 24.2 27.5 24.6			
1997 Demo water train sensor/control/computer interface	3X 0 0 4.5 9.5 15.6 19.0 20.0			
1998 AEMU Env. testing complete 1999 Demo solid waste oxidation system				

.

- OAET - DEEP SPACE	PLATFORMS							
JUSTIFICATION	OBJECTIVES							
 Mission Needs 	Programmatic							
Advanced spacecraft bus technologies ar needed to support	Develop and validate technologies that will increase utility efficiency, increase lifetime and decrease life cycle costs							
1998 + Deep Space Missions, i.e. Mars Sample Return, Mercury Orbiter, Uranus Orbiter/Probe, Jupiter Grand Tour, etc	Technical Power & Thermal Mgmt Propulsion GN&C Increase efficiency, lifetime Decrease plume contamination Increase performance							
MILESTONES	RESOURCES							
1993 Assess RTG alternatives 1994 Hot rocket fab. complete	Budget (\$M) 1991 1992 1993 1994 1995 1996 1997							
1995 Design Thermal Control Testbed 1996 Demo 300 + W/kg Planar PV blanket	Current00							
1997 Complete dev. of GN&C components 1997 Demo adv. isotope PCU 1998 Demo lightweight radiator technology 1999 Develop GN&C software and system evaluation	Strategic 0 0 3.2 9.6 14.9 13.7 14.3							
	3X 0 0 1.2 3.0 4.3 1.2 0.0							

SPACE PLATFORMS TECHNOLOGY PROGRAM

	PERIMENTS							
JUSTIFICATION	OBJECTIVES							
Mission Needs All missions, depending on technology discipline, including 1998 + Earth Orbiting Science 2000 + Space Station Freedom beyond PMC 2000 + Robotic and Human Exploration	Programmatic Obtain data that can not be obtained on the ground and validate technologies to reduce risk to flight projects Technical Debris mapping Structures & dynamics Space plasma effects Fluid systems Combustion techn. Decrease risk to crew							
MILESTONES	RESOURCES							
1992 Conclude Phase B	Budget (\$M) 1991 1992 1993 1994 1995 1996 1997							
1993 Study cost reduction potential 1994 Begin Phase C/D	Current							
1998 Launch	Strategic 0 2.0 8.1 22.0 20.0							
Advocate other experiments within InSTEP AO process	3X 0 0 0 0 0							

	FY91	FY92	FY93	FY94	FY95	FY96	FY97
TOTAL	11.4	21.8	38.9	70.5	97.7	118.7	119.9
	11.4	21.8	27.3	40.8	50.5	55.5	60.0
POWER & THERMAL MANAGEMENT			5.1	10.2	13.5		
STRUCTURES & DYNAMICS	11.4	21.8	17.1	18.6	13.5	14.3	14.7
MATERIALS & ENV. EFFECTS	-	-	3.1	5.0	6.1	20.3	20.9
NDE/NDI	-		2.0	3.9	5.0	6.3	6.8
CONTROLS	•	•	-	3.5		6.1	6.3
	_			<u> </u>	6.2	8.5	11.3
SPACE STATIONS	•	-	8.4	18.1	24.2	27.5	24.6
REGENERATIVE ECLS	•		2.5	6.4	8.2	15.5	40.0
ADVANCED EMU	-		3.0	5.3	8.2	15.5 9.6	16.3
SSF USER SUPPORT	-	-	0.0	2.0	3.2 3.2		8.3
PROPULSION	-	-	2.9	4.4	3.2 3.6	1.5	0.0
			2.3		3.0	0.9	0.0-
DEEP SPACE PLATFORMS	•	•	3.2	9.6	14.9	13.7	14.3
POWER & THERMAL MANAGEMENT	-		2.0	3.5	6.0	7.6	
ON-BOARD PROPULSION	-	-	1.2	3.0	4.3	7.5	9.1
GN&C		•		3.0	-	1.2	
				3.1	4.6	5.0	5.2
	•	•	0.0	2.0	8.1	22.0	20.0
(INSTEP)	(5.8)	(7.6)	(5.3)	(4.9)	(6.2)	18 41	
ORBITAL DEBRIS	(1.0)	(1.9)	(0.0)	(4.9)	(6.3)	(5.1)	(6.5)

SPACE PLATFORMS TECHNOLOGY PROGRAM

= OAET	3X BU	DGET]===				== ITP
	FY91	FY92	FY93	FY94	FY95	FY96	FY97
TOTAL	11.4	21.8	24.6	39.1	51.1	51.6	54.4
EARTH ORBITING PLATFORMS	11.4	21.8	27.3	40.8	50.5	55.5	60.08
POWER & THERMAL MANAGEMENT STRUCTURES & DYNAMICS MATERIALS & ENV. EFFECTS	11.4	21.8	3.5 14.6	8.5 17.6	7.5 18.7	8.0 19.3	10.0 21.2
NDE/NDI CONTROLS	-	:	1.5	3.0 -	5.0 -	5.1	5.2
SPACE STATIONS	-	•	4.0	9.0	15.6	18.0	18.0
REGENERATIVE ECLS ADVANCED EMU SSF USER SUPPORT PROPULSION	- - -		1.8 2.2 -	4.7 4.3	8.2 7.4	10.0	13.0 5.0
DEEP SPACE PLATFORMS			1.0	3.0	4.3	1.2	•
POWER & THERMAL MANAGEMENT ON-BOARD PROPULSION GN&C	•		1.0	3.0	4.3	- 1.2	 - -
LIGHT EXPERIMENTS	•		- <u>-</u>	- <u></u> _	<u> </u>		• — — — — — —
(INSTEP) ORBITAL DEBRIS	(5.8) (1.0)	(7.6)	(5.3)	(4.9)	(6.3)	(5.1)	(6.5)

INTEGRATED TECHNOLOGY PLAN OPERATIONS THRUST

June 25, 1991

Geoff Giffin

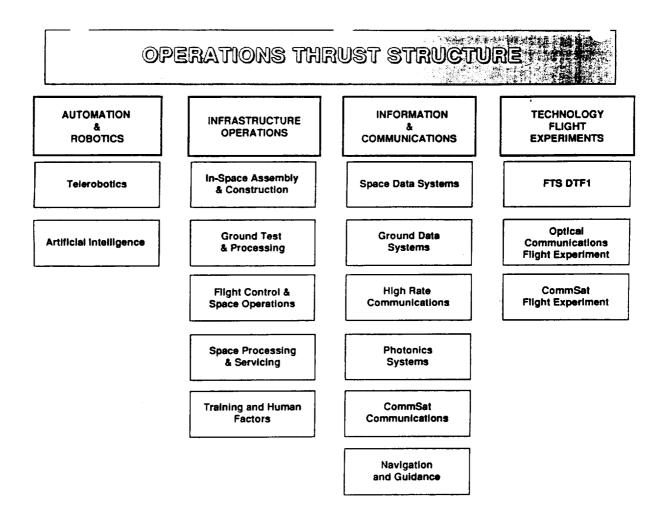
Office of Aeronautics, Exploration and Technology National Aeronautics And Space Administration

Washington, D.C. 20546

OPERATIONS TECHNOLOGY PROGRAM

- PROGRAM GOAL
- SUMMARY OF USER NEEDS
- THRUST STRUCTURE
- CURRENT PROGRAM
 - PROGRAM AREAS
 - PROGRAM ELEMENTS

OPERATIONS TECHNOLOGY PROGRAM PROGRAM GOAL


THE GOAL OF THE OPERATIONS THRUST IS TO DEVELOP AND DEMONSTRATE TECHNOLOGIES TO REDUCE THE COST OF NASA OPERATIONS, IMPROVE THE SAFETY AND RELIABILITY OF THOSE OPERATIONS, AND ENABLE NEW, MORE COMPLEX ACTIVITIES TO BE UNDERTAKEN.

THE OPERATIONS THRUST SUPPORTS THE FOLLOWING MAJOR ACTIVITIES:

- IN-SPACE OPERATIONS
- FLIGHT SUPPORT OPERATIONS
- GROUND SERVICING AND PROCESSING
- PLANETARY SURFACE OPERATIONS
- COMMERCIAL COMMUNICATIONS

OPERATIONS TECHNOLOGY PROGRAM SUMMARY OF USER NEEDS FOR OPERATIONS THRUST

OFFICE OF SPACE SCIENCE AND APPLICATIONS	OFFICE OF SPACE FLIGHT	OFFICE OF SPACE OPERATIONS		COMMERCIAL SECTOR
HIGH-YOLUME/ DEHSITY/RATE ON-BOARD DATA STORAGE STRUCTURES-LARGE/ CONTROLLED/ DEPLOYED/ANTENNA ROBOTICS J2 GHZ TWT/OPTICAL COMMUNICATIONS TELESCIENCE/ TELEPRESENCE/AI SIS 3 THZ HETERODYNE RECEIVER K-BAND TRANSPONDERS ULTRA-HIGH GIGABIT TELEMETRY REAL TIME RADIATION MONITORING	 CREW TRAINING SYSTEMS ROBOTIC SYSTEMS GUIDANCE, NAVIGATION AND CONTROL AUTOMATION 	OPTICAL/MM-WAVE HIGH RATE DATA COMMUNICATIONS FOR SPACE TO GROUND AND SPACE TO GROUND AND SPACE TO SPACE APPLICATIONS OEVELOPMENT OF ADVANCED DATA STORAGE, DATA STORAGE, DATA COMPRESSION, AND INFORMATION MANAGEMENT SYSTEMS NAVIGATION TECHNIQUES AND APPLICATIONS TO CRUISE, APPROACH, AND IN-ORBIT NAVIGATION FOR MAINED & UNMANNED PLANETARY MISSIONS MISSION OPERATIONS: AI, EXPERT SYSTEMS, NEURAL NETS, INCREASED AUTOMATION ADVANCED SOFTWARE TEST BED DEVELOPMENT, DISTRIBUTED SOFTWARE COORDINATION, AUTOMATED NETWORK PERFORMANCE ANALYSIS	IN-SPACE SYSTEMS ASSEMBLY AND PROCESSING HUMAN FACTORS SPACE DATA SYSTEMS HIGH-RATE COMMUNICATIONS TELEROSOTICS ARTIFICIAL INTELLIGENCE DEEP SPACE NAVIGATION	SPACE DATA SYSTEMS HIGH RATE COMMUNICATIONS FLIGHT CONTROL AND SPACE OPERATIONS

OPERATIONS TECHNOLOGY PROGRAM AUTOMATION & ROBOTICS TECHNOLOGY

JUSTIFICATION

- Automation and robotic technologies are needed to complement and support human activities in space and in ground operations
 - Artificial Intelligence
 - Telerobotics

OBJECTIVES

- Develop and validate technologies to enable increasing levels of automation in all areas of space and ground operations
 - Artificial Intelligence will increase capability and mission flexibility in all areas of manned and unmanned activities
 - Telerobotic technologies will support in-space operations (EVA & IVA) in support of both science & operations. Further needs for telerobotics exist in ground processing

MILESTONES

- 1992 Begin RANGER development and flight test planning
- 1994 Demonstrate PI-in-a-box in flight test
 Insert AI Tools in all MCC stations
- 1995 Perform RANGER flight test
- 1997 Complete development of Al analysis tools for planetary science

RESOURCES

Budget (\$,M)	1991	1992	1993	1 994	1995	1996	1997
on-going/ Runout	22.2	27.9	22.3	23.0	24.5	25.9	27.4

OPERATIONS TECHNOLOGY PROGRAM INFRASTRUCTURE OPERATIONS TECHNOLOGY

JUSTIFICATION

- Infrastructure operations technologies are needed to support complex missions and large space structures in a safe, cost-effective and reliable manner
- Space Assembly & Construction
- Ground Test & Processing
- Flight Control & Space Operations
- Space Servicing & Processing
- Training & Human Factors

OBJECTIVES

- Develop and validate technologies for reliable, safe, and efficient vehicle ground processing, space construction and mission operations activities
 - Reduce mission operations costs, enable more complex, multiple missions with fewer people
- Enable automated construction of large space platforms & structures to support science, exploration and humans in space
- Apply human factors technologies to training and operations to improve effectiveness

MILESTONES

- 1993 Implement crew coordination training program
- Implement countermeasure strategies for 1994 circadian disruption
- · 1997 Demonstrate intelligent support system for NASA Task Director

RESOURCES									
Budget (\$,M)	1991	1992	1993	1994	1 995	1996	1997		
ON-GOING/ RUNOUT	0.5		2.1	3.0	4.0	4.3	4.0		

OPERATIONS TECHNOLOGY PROGRAM INFORMATION & COMMUNICATIONS TECHNOLOGY

JUSTIFICATION

All areas of space activities can greatly benefit from improved capabilities in data processing, management and communications, which are necessary for new missions

- Space Data Systems
- Ground Data Systems
- High Rate Communications
- Photonics
- Commercial Satellite Communications
- Navigation & Guidance

OBJECTIVES

.

Develop and validate technologies to greatly expand capabilities in data, communications and deep space navigation systems

- Powerful space processors & computers
- Large space storage systems
- High bandwidth communications capability
- Photonic technologies for new data systems

MILESTONES

- 1994 Begin advanced tool development for software reuse, reliability assessment, risk management and software development process control
- 1995 Flight demo of SODR drive unit Demonstrate 3-D RAM technology
- 1997 Demonstrate phased array antenna Demonstrate integrated data systems testbed

RESOURCES							
Budget (\$,M)	1991	1992	1993	1994	1995	1996	1997
ON-GOING/ RUNOUT	5.7	4.9	24.0	33.1	43.5	47.0	56.0

OPERATIONS TECHNOLOGY PROGRAM TECHNOLOGY FLIGHT EXPERIMENTS

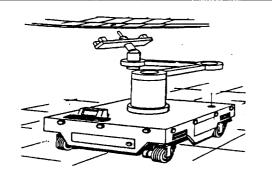
JUSTIFICATION Technology Flight Experiments are needed to validate in space the robotic technologies developed by the focused technology program

- FTS

- Optical Communications
- Commercial Communications

OBJECTIVES

000000000


- Develop and validate technologies for reliable, safe, and efficient operations for future use of space robotics missions
 - Flight demonstration of telerobotic capabilities is a necessary precursor to use of telerobots in a variety of space missions
 - New Deep space missions and Earth orbiting satellites will rely on optical communications to achieve necessary data rates and communications bandwidth.

MILESTONES

- 06/93 Deliver DTF-1 to KSC
- 10/93 Flight test DTF-1

MESOUNCES					-			
Budget (\$,M)	1991	1992	1993	1994	1995	1996	1997	
on-going/ Runout	(106.3)	55.0	75.0	40.0				

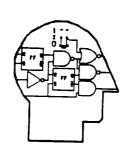
OPERATIONS TECHNOLOGY PROGRAM TELEROBOTICS

MILESTONES

- 1993 Complete non-planer truss assembly
- 1993 Perform compliant base Solar Max Repair
- 1995 Complete RANGER development & flight test
- 1995 Perform single operator Solar Max Repair
- 1996 Complete TR solar-dynamic-like structural assembly
- 1996 Complete development & test of serpentine
 STS inspection tool

OBJECTIVES

- Develop, integrate, and demo science and technology of telerobotics which leads to increasing the operational capability, safety, cost effectiveness, and probability of success of NASA missions.
 - Robotics
 - Supervisory Control
 - Advanced Launch Teleoperations
 - Launch Processing
 - Telepresence
 - Remote Science Operations


RESOURCES

Budget (\$,M)	1991	19 92	1993	1994	1995	1996	1997
ON-GOING/ RUNOUT	11.0	14.8	12.4	12.8	13.6	14.3	15.1

PARTICIPANTS

Jet Propulsion Lab Johnson Space Center Marshall Space Flight Center Langley Research Center Goddard Space Flight Center University of Maryland

OPERATIONS TECHNOLOGY PROGRAM ARTIFICIAL INTELLIGENCE

OBJECTIVES

- Develop, integrate, and demo science and technology of AI which leads to increasing the operational capability, safety, cost effectiveness, and probability of success of NASA missions.
- Mission operations assistance
- Data analysis techniques
- Autonomous control
- Knowledge-base technology

MILESTONES

- 1993 Complete automatic STS scheduler
- 1994 Al tools deplayed in all MCC stations
- 1994 Flight test Pl-in-a-box
- 1995 Complete STS model-based diagnosis
- 1996 Complete development of AI analysis tools for planetary science

RESOURCES							-
Budget (\$,M)	1991	1992	1993	1994	1995	1 996	1 99 7
ON-GOING/ RUNOUT	11.2	13.1	9.9	10.2	10.9	11.6	12.3

PARTICIPANTS

Ames Research Center Jet Propulsion Lab Johnson Space Center Kennedy Space Center Marshall Space Flight Center Lewis Research Center Goddard Space Flight Center

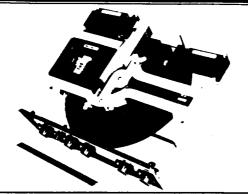
OPERATIONS TECHNOLOGY PROGRAM TRAINING AND HUMAN FACTORS

OBJECTIVES

- Adapt techniques, countermeasures, workload measures, and support aids for air-transport crews to enable and support space-operations ground, mission control, and flight crews.
 - Crew coordination
 - Circadian countermeasures
 - Crew workload
- Flight Deck Procedures
- Test Director Aids

MILESTONES

- 1993 Implement crew coordination training program
- 1994 Implement countermeasure strategies and instrument for circadian distribution
- 1995 Enhance training for high workload situations
- 1996 Combine developments into STS Procedures Advisor
- 1997 Intelligent support system for NASA Test
 Director


RESOURCES

Budget (\$,M)	1991	1992	1993	1994	1995	1996	1997
on-going/ Runout			2.1	3.0	4.0	4.3	4.0

PARTICIPANTS

Ames Research Center Johnson Space Center

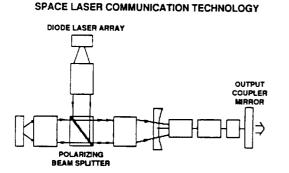
OPERATIONS TECH..JOLOGY PROGRAM SPACE DATA SYSTEMS

OBJECTIVES

- Develop advanced space qualifiable technologies for Space Data Systems to support Earth observing, astrophysics, microgravity and planetary exploration missions.
- General & special purpose processors
- Information extraction & data compression
- Nonvolatile RAM and block access data storage
- Onboard networks
- ASIC and system element design & validation libraries

MILESTONES

- 1993 Nonvolatile RAM element experimental results
- 1994 AIP engineering model critical design
- 1995 Flight demonstration of SODR Drive Unit; Demo 3-D RAM technology
- 1996 Adv. Flight Computer brassboard test; Demo of two port, dual head SODR
- 1997 Integrated testbed demonstration


<u>hegyunueg</u>					·		
Budget (\$,M)	1991	1992	1993	1994	1995	1996	1997
ON-GOING/ RUNOUT	5.7	4.9	14.6	20.0	24.5	25.0	25.0
PARTICIDANTS							

PARTICIPANTS

RESOURCES

Ames Research Center Johnson Space Center

OPERATIONS TECHNOLOGY PROGRAM HIGH RATE COMMUNICATIONS

MILESTONES

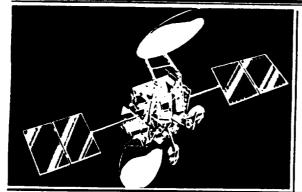
- 1993 Demonstrate an electronic power conditioner for 60 GHz TWT
- 1995 Demonstrate a 60-watt traveling wave tube amplifier breadboard at 32 GHz
- · 1995 Demonstrate breadboard coherent optical transponder
- 1996 Demonstrate a multibeam MMIC sub-array at 20 GHz
- 1997 Demonstrate an ultra-fast laser diode module for optical communications
- 1998 Demonstrate a phase-locked two-dimensional diode
 array

OBJECTIVES

 Develop technology to support advanced deep-space and near-Earth missions requiring transmission of high data rates (1) between planetary surfaces and spacecraft and (2) between spacecraft.

Perform technology development in primary areas of interest:

- Optical Communications
- RF Communications
- Digital Communication Systems Integration
- Communications Systems Integration


RESOURCES

Budget (\$,M)	1991	1992	1993	1994	1995	1996	1997
ON-GOING/ RUNOUT			5.4	7.1	10.0	12.5	18.0

PARTICIPANTS

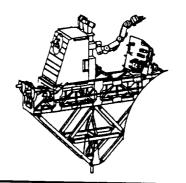
Goddard Space Flight Center Ames Research Center Jet Propulsion Laboratory Langley Research Center

OPERATIONS TECHINOLOGY PROGRAM COMMSAT COMMUNICATIONS

OBJECTIVES

- Develop new and enabling satellite and ground technologies to the level needed to remove the risk to the industry of introducing new communications services which will benefit the human race
 - Active phased array satellite antennas
 - Bandwidth- and power-efficient modem, coding and onboard routing and processing systems

MILESTONES


- 1995 Innovative new mobile and small fixed terminal developed; System level MMIC's developed
- 1997 Active phased array antenna developed using digital beam forming; breadboard optical processor/router developed
 1998
- Advanced mobile terminal components developed
- 1998 Proof-of-concept optical beam forming network completed
- 2000 Complete development of advanced onboard communications processing and routing subsystem

RESOURCES							
Budget (\$,M)	1991	1992	1993	1994	1995	1996	1997
on-going/ Runout			4.0	6.0	9.0	9.5	13.0

PARTICIPANTS

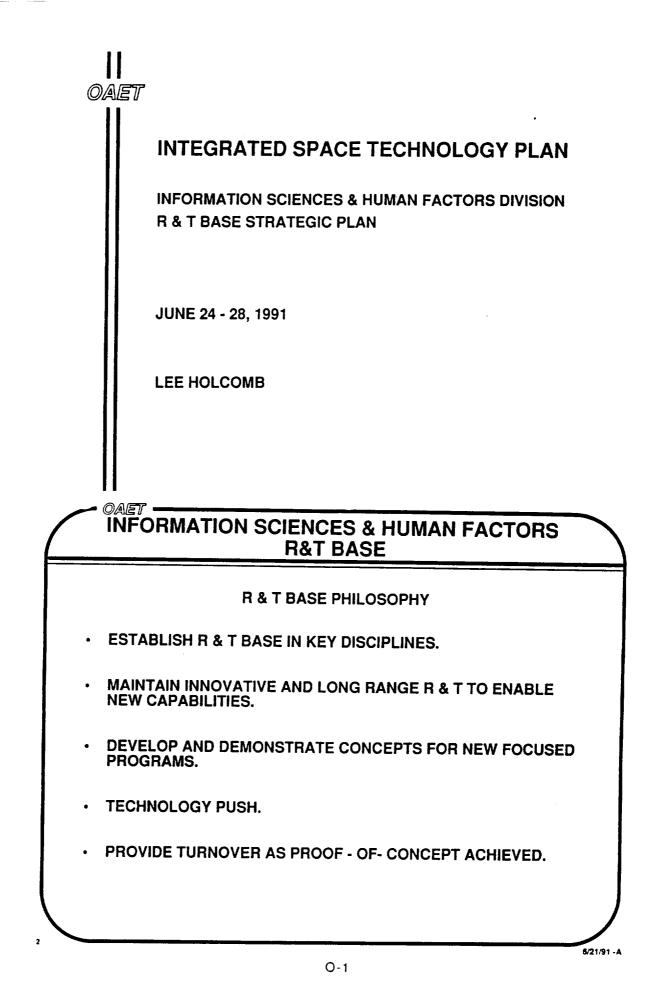
Jet Propulsion Laboratory Ames Research Center Langley Research Center Johnson Space Center

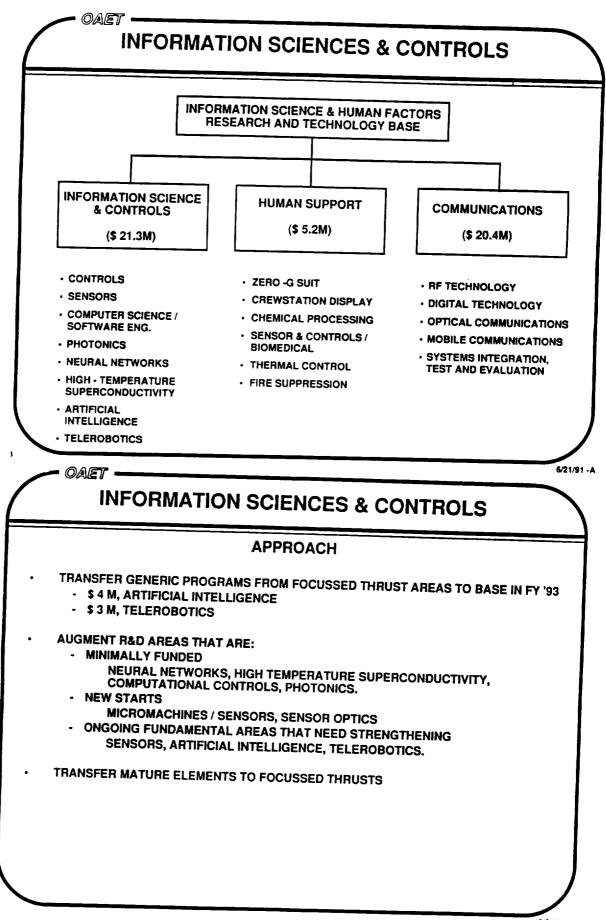
OPERATIONS TECHNOLOGY PROGRAM FLIGHT TELEROBOTIC SERVICER

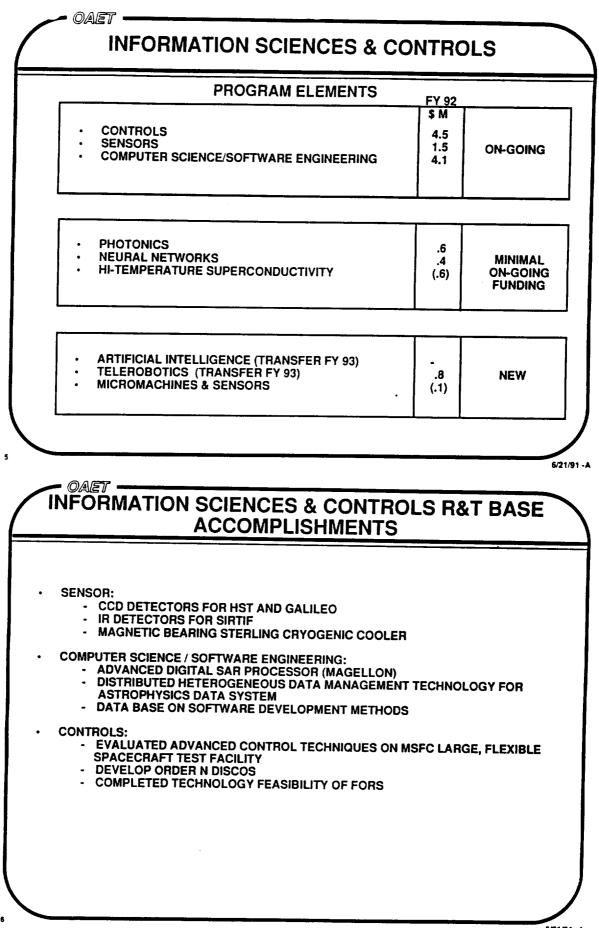
OBJECTIVES

- Demonstrate dexterous arm capabilities
- On specific building block tasks
- In microgravity utilizing flight qualifies hardware

MILESTONES


- 1991 Design Complete
- · 1992 Fabrication and assembly complete
- 1993 Integration and testing complete
- + 1993 Delivery to KSC
- 1993 Launch


RESOURCES


Budget (\$,M)	1991	1992	1993	1994	1995	1996	1997
on-going/ Runout	(106.3)	55.0	75.0	40.0			

PARTICIPANTS

Goddard Space Flight Center Martin Marietta Aerospace Group

OAET **INFORMATION SCIENCES & CONTROLS R&T BASE** ACCOMPLISHMENTS

ROBOTICS & AI:

- SCIENCE INSTRUMENT EXPERT SYSTEM
- AUTOMATIC DATA CLASSIFICATION AND ANALYSIS OF SPACE DATA (IRAS)
 - FUZZY LOGIC CONTROLLER DEMONSTRATED IN LABORATORY
- NEUTRAL BUOYANCY SIMULATION OF TELEOPERATOR/EVA REPAIR OF HST ORU CHANGE OUT (U. MD)
- LEGGED MOBILITY ON INDOOR TESTBED (CMU)
- END POINT CONTROL OF FLEXIBLE MANIPULATORS (STANFORD)

- Oaet · **INFORMATION SCIENCES & CONTROLS R&T BASE CURRENT PROGRAM MILESTONES**

SENSORS

- SYNTHETIC MATERIALS FOR IR DETECTORS (10 300 μ) (FY '94)
- LASER DIODES FOR INJECTION LOCKING AND PUMPING (FY '94)
- DEMONSTRATE ADVANCED OPTICAL CORRELATOR FOR RECOGNITION OF -MOVING AND ARBITRARILY ORIENTED OBJECTS (FY '96)
- **COMPUTER SCIENCE / SOFTWARE ENGINEERING**
- PROTOTYPE, SAFETY CRITICAL SOFTWARE OPERATING SYSTEM KERNEL (FY '93)
- PORTABLE, FULLY FUNCTIONAL "ENCYCLOPEDIA OF SOFTWARE COMPONENTS" AND **REUSE SYSTEMS (FY '95)**

CONTROLS

- LARGE SPACE INTERFEROMETER METROLOGY SYSTEM DESIGN (FY '92)
- ADAPTIVE ON-BOARD ASCENT GUIDANCE ALGORITHMS (FY '93)
- INTERMITTENT LOOP CLOSURE FOR DISCOS (FY '93)
- THERMAL AND CONTROL INTEGRATION FOR TREETOPS (FY '94)
- MICROMACHINE GYRO CONCEPT DEMONSTRATION (FY '95)

OAET **INFORMATION SCIENCES & CONTROLS R&T BASE CURRENT PROGRAM MILESTONES**

AI / TELEROBOTICS

- LEARNING CAPABILITY ADDED TO SCHEDULER (FY '93)
- AUTOCLASS FOR STS LAUNCH SITE WEATHER PREDICTION (FY '94)
- NEXT GENERATION FREE-FLYER TELEOPERATED SERVICER IN NEUTRAL BUOYANCY (FY '94)
- UNTETHERED LEGGED MOBILITY ON RUGGED OUTDOOR TERRAIN (FY '94)
- FAULT TOLERANT DUAL ACTUATOR MODULE (FY '94)
- COOPERATIVE AUTONOMOUS ROBOTS ASSEMBLE STRUCTURE (FY '96)

• Oaet -**INFORMATION SCIENCES & CONTROLS R&T BASE CONSTRAINED "3X" PROGRAM MILESTONES**

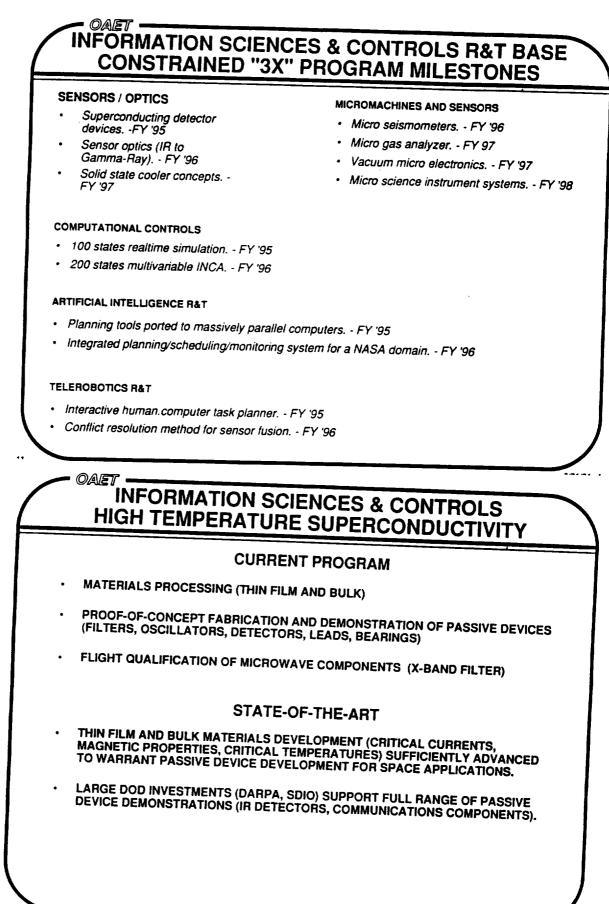
6/21/91 -A

6/21/91 -A

HIGH TEMPERATURE SUPERCONDUCTIVITY

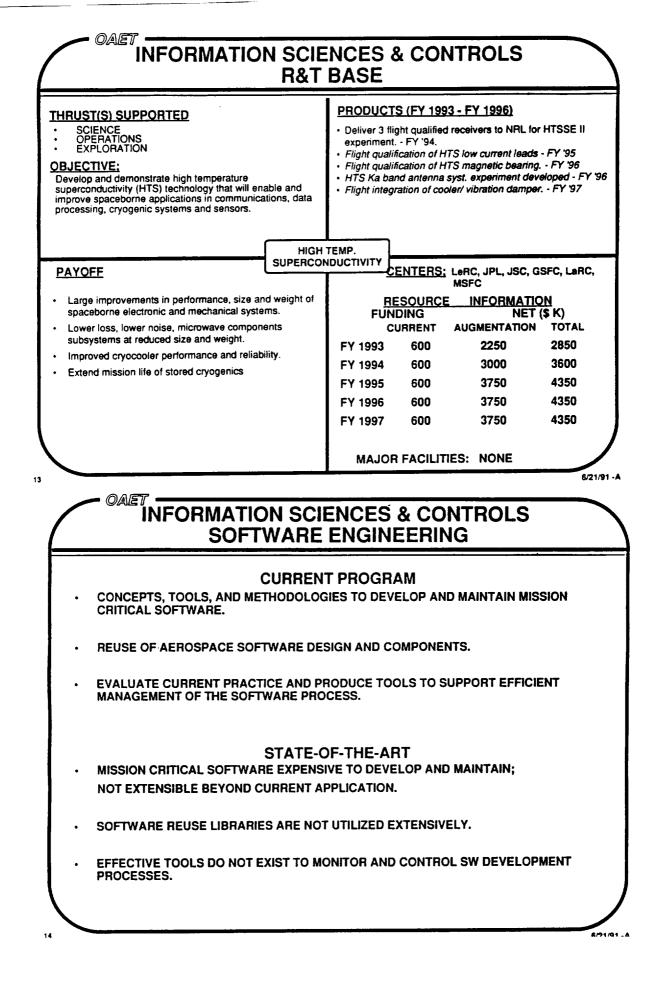
- Flight qualification of HTS low current leads FY '95
- Flight qualification of HTS magnetic bearing. FY '96
- HTS Ka band antenna syst. experiment developed FY '96
- Flight integration of cooler/ vibration damper. FY '97

SOFTWARE ENGINEERING


- Domain analysis of representative NASA SW. FY '94
- Establish methods to qualitatively estimate SW reliable. FY '96
- · Formal method for safe SW systems. FY '96

PHOTONICS

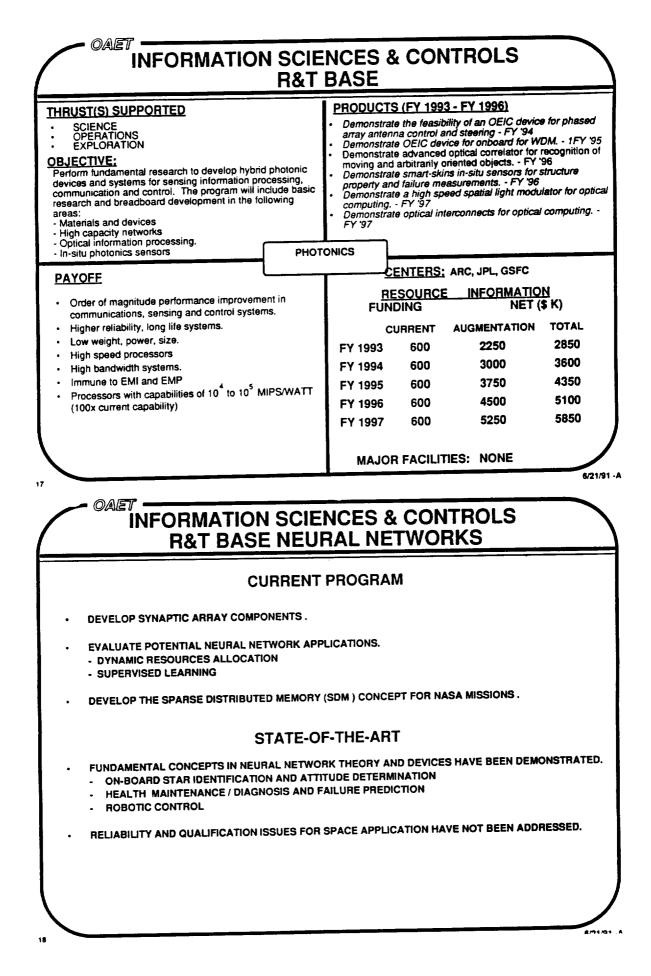
- Demonstrate the feasibility of an OEIC device for phased array antenna control and steering FY '94
- Demonstrate OEIC device for onboard for WDM. 1FY '95
- Demonstrate smart-skins in-situ sensors for structure property and failure measurements. FY '96
- Demonstrate a high speed spatial light modulator for optical computing. FY '97
- Demonstrate optical interconnects for optical computing. FY '97

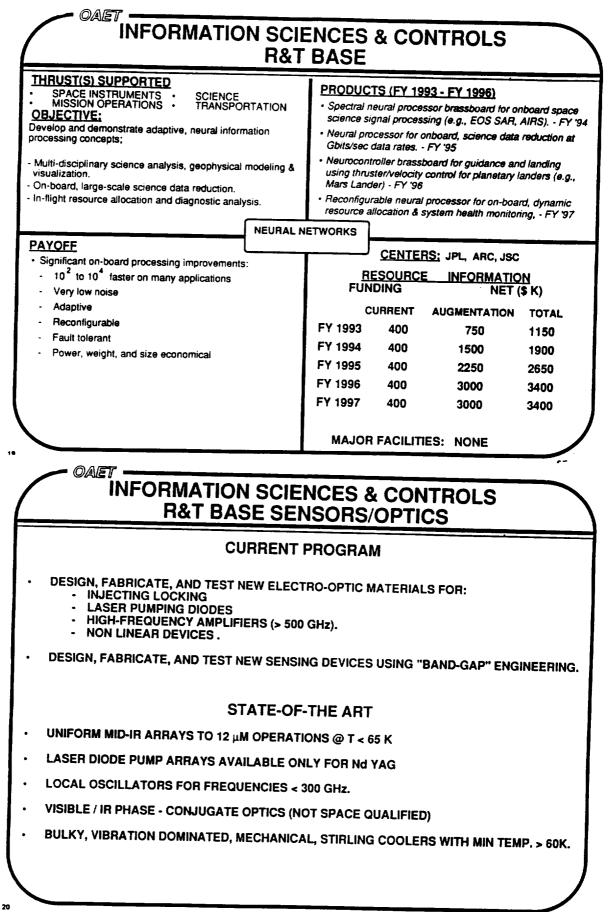

10

C-3

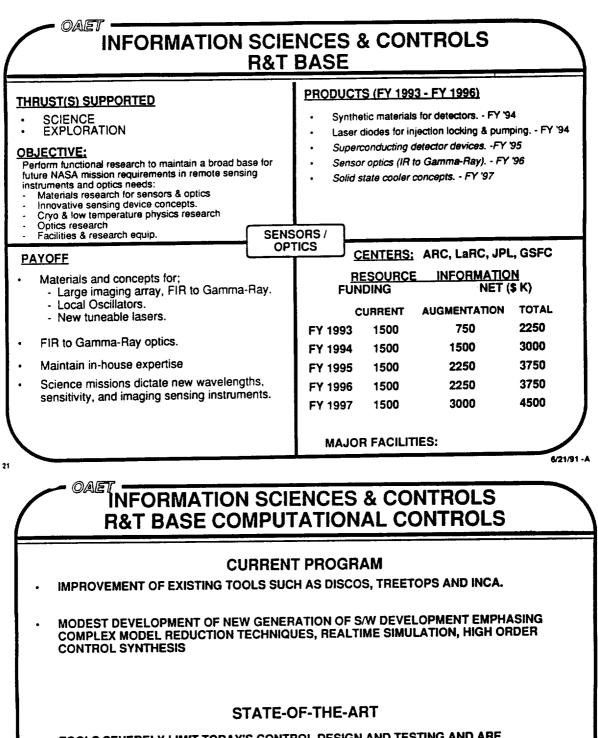
12

6/21/91 -A




OAET INFORMATION SCI	ENCES	& CO	NTROLS			
THRUST(S) SUPPORTED • OPERATIONS • TRANSPORTATION • PLATFORMS • SCIENCE • EXPLORATION • PLATFORMS • OBJECTIVE: • Conduct research programs addressing NASA's critical needs in software technology: very reliable software products and productive software development. • Keep a core of leading edge development in-house tearned with industry/universities to supply NASA objectives. • Generate SW concepts for transition to advanced development.	 Prototype, Domain an Portable, fu Component Establish n FY '96 	safety critic balysis of re- ully function its" and reu nethods to	193 - FY 1996) cal SW O/S kernel F presentative NASA SI nal "Encyclopedia of S se systems - FY '95 qualitatively estimate s fe SW systems FY '9	W FY '94 oftware SW reliable		
 Robust and reliable software products. Automated software processes. Predictable software costs and schedules. Maintain critical in-house expertize in software (currently consumes 20% NASA's annual budget). 	RE FUNI CL FY 1993 FY 1994 FY 1995 FY 1996 FY 1997	ESOURCI DING URRENT 1600 1600 1600 1600	RS: GSFC, JPL, JSC E. INFORMATIO NET (AUGMENTATION 1100 1500 1500 1500 1500	N		
OAET INFORMATION SCI R&T BASE	ENCES & PHOTO	& CO NICS	NTROLS	6/21/91 - A		
CURRENT PROGRAM InP OPTOELECTRONIC INTEGRATED CIRCUIT (OEIC'S) DEVELOPMENT (PROGRAM STARTED IN FY 91) 						
ADVANCED OPTICAL PATTERN RECOGN STATE-OF THREE COMPONENT GaAs OEIC'S HAVE RESEARCH STAGE.	-THE-ART		D; InP TECHNOL(DGY IN		
OPTICAL COMPUTING AT RESEARCH STAGE; INADEQUATE DEVICE BASE						

• NETWORKS DEMONSTRATED AT 100 M BIT/SEC.


16

- LASER, DETECTORS WELL DEVELOPED; NEW WAVELENGTHS AT RESEARCH STAGES.
- SMART SKINS OPTOELECTRONIC SENSORS DEMONSTRATED IN LABORATORY.
- SPECIAL PURPOSE PROCESSORS FOR SPACECRAFT AT 10 100 MIPS/WATT.

R/91/01 .

- TOOLS SEVERELY LIMIT TODAY'S CONTROL DESIGN AND TESTING AND ARE INADEQUATE FOR FUTURE NEEDS.
 - TOOLS BREAKDOWN FOR HIGH ORDER SYSTEMS (> 40 STATES)
 - TOOLS ARE TO SLOW TO BE USED EFFECTIVELY FOR DESIGN AND TESTING
 - USER FRIENDLY INTERFACE NEEDED TO INCREASE PRODUCTIVITY
 - CONTROL TOOLS MUST BUILD ON EMERGING HIGHLY PARALLEL COMPUTING TECHNOLOGIES.

6/21/91 -A

22

0-11

R&I	ENCES & CONTROLS
THRUST(S) SUPPORTED • TRANSPORTATION • SCIENCE • SPACE PLATFORMS • EXPLORATION OBJECTIVE: Develop a new generation of algorithms and prototype software for articulated multibody spacecraft modeling, control design and simulation tools. These tools will reduce mission risk and enhance productivity.	 PRODUCTS (FY 1993 - FY 1996) Intermittent loop closure for DISCOS - FY '93 Thermal and control integration for TREETOPS FY '94 100 states realtime simulation FY '95 200 states multivariable INCA FY '96
PAYOFF COMPUT • New fast algorithmic approaches. • • Fast efficient integrated tools for control system design (image based), analysis, and simulations including hardware-in-loop. • • Controls system designs for complex space systems. • • Increase productivity of a computer literate workforce through simplified interactive interfaces. •	TATIONAL TROLS CENTERS: JPL, LeRC, MSFC, GSFC, JSC METORS: JPL, LeRC, MSFC, GSFC, JSC METORS: JPL, LeRC, MSFC, GSFC, JSC RESOURCE INFORMATION FUNDING NET (\$ K) CURRENT AUGMENTATION TOTAL FY 1993 750 1125 1875 FY 1994 750 1500 2250 FY 1995 750 2625 3375 FY 1996 750 3000 3375 FY 1997 750 3375 4125 MAJOR FACILITIES: NONE
OALET INFORMATION SCIEN R&T BASE ARTIFIC	ACES & CONTROLS

- FUNDAMENTAL WORK ON:
 - PLANNING & SCHEDULING
 - LEARNING
 - KNOWLEDGE BASE DESIGN
 - INTEGRATED COGNITIVE ARCHITECTURES

STATE-OF-THE-ART

- ROBUST OPERATIONAL EXPERT SYSTEMS
- EARLY DEVELOPMENT OF MULTIPLE INTERACTING EXPERT SYSTEMS
- INITIAL APPLICATION OF SCHEDULING TOOLS
- BAYESIAN-BASED AUTOMATIC DATA CLASSIFICATION AND DATA ANALYSIS
- AUTONOMOUS CONTROL OF INTELLIGENT INSTRUMENTS
- RUDIMENTARY MACHINE LEARNING

24

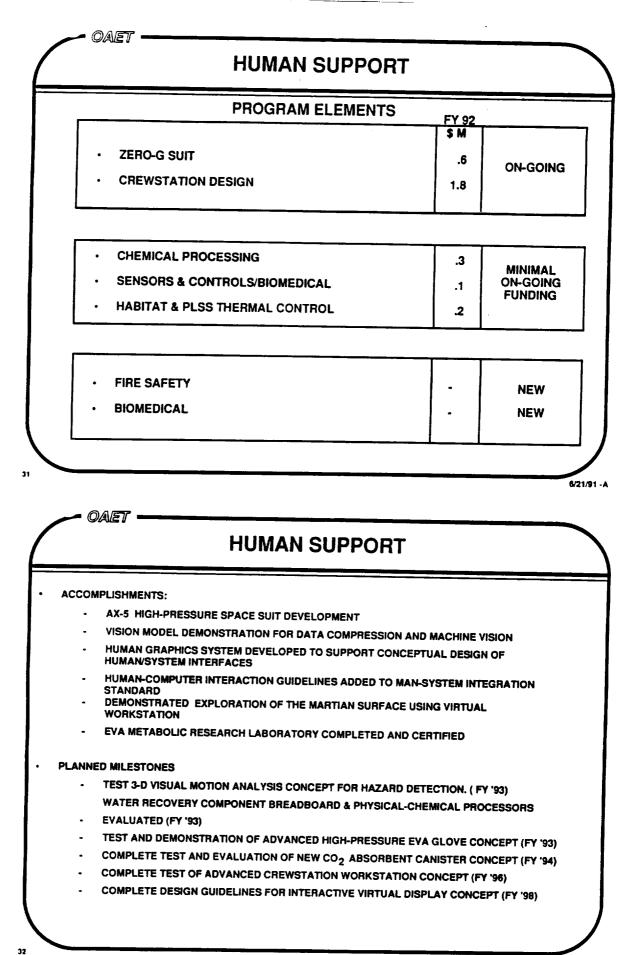
	NCES & CONTROLS BASE
THRUST(S) SUPPORTED • OPERATIONS • SCIENCE • EXPLORATION • TRANSPORTATION OBJECTIVE: • TRANSPORTATION Develop and validate AI technologies which, improve operational capability, efficiency and safety of NASA space projects • AI with massively parallel computing • AI with massively parallel computing • Integrated cognitive architectures (scheduling, planning, learning • Integrated cognitive architectures (scheduling, planning, learning • Intelligent interacting agents • Distributed problem solving • Machine learning. • Machine learning. ARTIF PAYOFF • Greater design options for space operations. • Compensation for system technical limitations • Reduced workload for users and operations of ground-base systems. • Improved operational capability, efficiency, and safety of NASA space projects • Improved operational capability, efficiency, and safety of NASA space projects	
OAET INFORMATION SCIL B&T BASE T	ENCES & CONTROLS

CURRENT PROGRAM

- MULTIPLE INTERACTIVE ROBOTS (STANFORD)
- TELEROBOTIC SPACE OPERATIONS (U.MD.)
- FAULT TOLERANT TELEROBOT MECHANISMS (U.TX.)
- LARC TELEROBOT/COMPONENT RESEARCH

STATE-OF-THE-ART

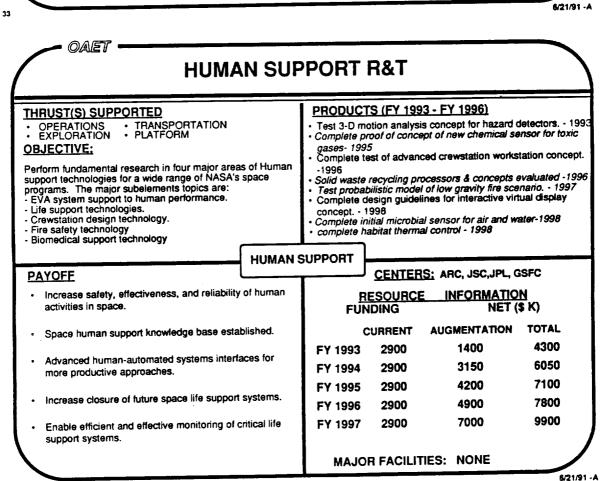
- GROUND-BASED COMPONENT DEVELOPMENTS
- GROUND-BASED DEMONSTRATIONS (SUCH AS ROBOTIC ASSEMBLY OF PLANAR TRUSS STRUCTURE)
- IN-SPACE ROBOTIC SYSTEMS OPERATIONS LIMITED TO RMS EXPERIENCE
- DESIGN AND INITIAL DEVELOPMENT OF FTS/DTF, SPDM, AND JEM ARMS.
- LIMITED EXPERIENCE INTEGRATING TELEROBOTS INTO SPACE SYSTEMS


26

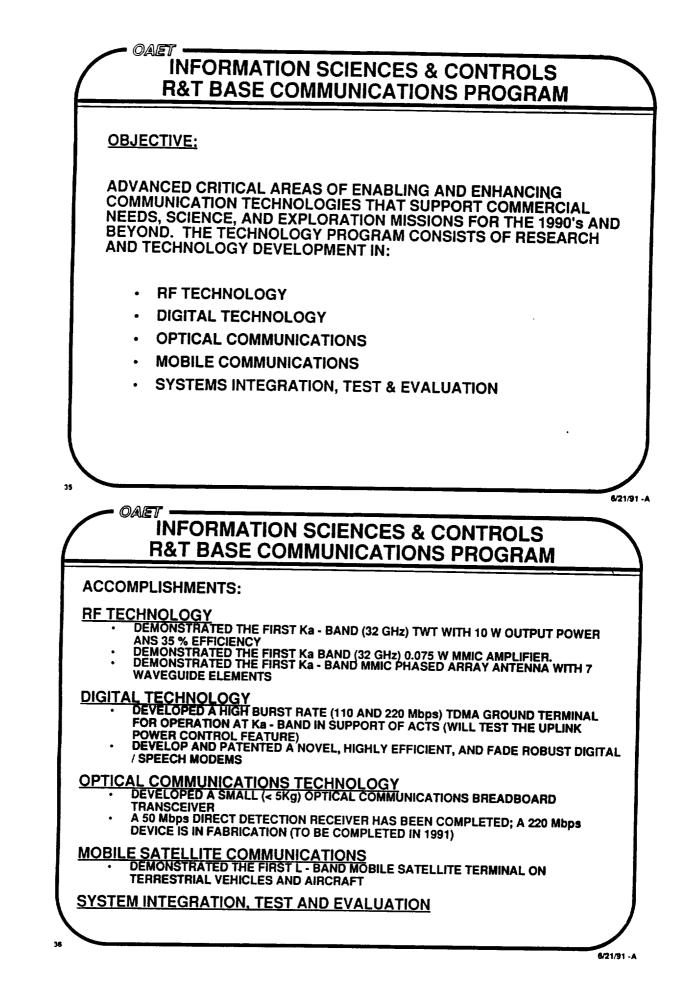
6/21/91 -A

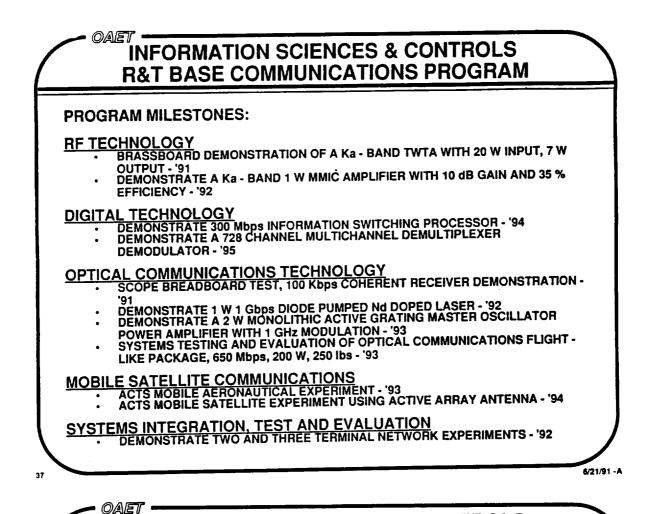
INFORMATION SCIENCES & CONTROLS R&T BASE								
THRUST(S) SUPPORTED • SCIENCE • EXPLORATION OBJECTIVE: Develop and demonstrate a new class of sensors/instruments using state-of-the-art micro machining technologies for in-situ measurements such as: surface characterization, sub surface characterization, planetary atmospheric analysis and far IR-atmospheric science.		PRODUCTS (FY 1993 - FY 1996) Micro gyros - FY '95 Micro seismometers FY '96 Micro gas analyzer FY 97 Vacuum micro electronics FY '97 Micro science instrument systems FY '98						
		ACHINES			, · · · · · · · · · · · · · · · · · · ·			
 Lightweight, small, economical instruments. Custom design. Ease & economy of duplication with VLSI fat. Form critical in-house expertise. Science & exploration mission options are ersmaller instruments. 		FU	RESOURCE NDING CURRENT 100 100 100 100 100		T (\$ K)			
OAET HUMAN SUPPORT R&T BASE APPROACH								
 ACCELERATED DEVELOPMENT OF KEY, HIGH - PAYOFF CAPABILITIES EVA GLOVES VISUALIZATION TECHNOLOGIES ENABLE DEMONSTRATIONS / IN - FLIGHT TESTS OF: THERMAL - CHEMICAL CONTROLS AND SENSORS VIRTUAL ENVIRONMENT WORKSHOP AUGMENT R & T AREAS THAT ARE MINIMALLY FUNDED DESIGN GUIDELINES FOR HUMAN - INTELLIGENT SYSTEMS PLSS COMPONENTS (BATTERIES, CO PROCESSING) EVA DISPLAY AND CONTROL TECHNIQUES HUMAN COGNITIVE AND PHYSICAL MODELING ADVANCED ECLSS & HABITAT THERMAL CONTROL TRANSFER MATURING TECHNOLOGY TO FOCUSED THRUSTS HUMAN - COMPUTER INTERFACE DESIGN GUIDELINES EVA SUIT MOBILITY (JOINT) AND MATERIALS (HARD & SOFT) DISPLAYS FOR PROXIMITY OPERATIONS 								

6/21/91 -A


HUMAN SUPPORT

CURRENT PROGRAM

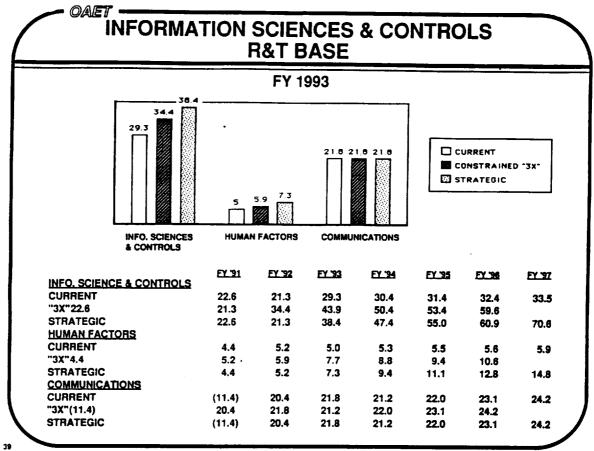

- DEMONSTRATE APPLICATIONS OF VIRTUAL ENVIRONMENT.
- DETERMINE BIOMECHANICAL AND KINEMATIC PARAMETERS IN REDUCED AND ZERO GRAVITY MOTION.
- ADVANCED LIFE SUPPORT SYSTEM ANALYSIS SIMULATION MODELS.
- WATER QUALITY CHARACTERIZATION, CONTAMINANT AND TREATMENT MODELING.
- CHARACTERIZE ADVANCED CLOSED-LOOP WATER SYSTEMS.


STATE-OF-THE-ART

- PRELIMINARY KINEMATIC MODELS OF HUMAN MOTION IN ZERO-G.
- VIRTUAL REALITY LIMITED TO NON-REAL TIME OR LOW RESOLUTION SCENES.
- NON-REGENERATIVE LITHIUM HYDROXIDE CANISTERS USED IN PLSS FOR CO2 REMOVAL.
- RE-SUPPLIED AIR AND WATER AND REGENERATIVE CO2 REMOVAL FOR ECLSS.

34

INFORMATION SCIENCES & CONTROLS R&T BASE COMMUNICATIONS PROGRAM


PROGRAM ELEMENTS

		\$ M		
•	RF COMMUNICATIONS TECHNOLOGY	7.4		
•	DIGITAL COMMUNICATIONS TECHNOLOGY	2.4		
٠	OPTICAL COMMUNICATIONS TECHNOLOGY	4.2	ON-GOING	
•	MOBILE COMMUNICATIONS TECHNOLOGY	3.2		
•	SATELLITE COMM., TEST AND EVALUATION	2.6		

FY 92

6/21/91 -A

38

6/21/91 -A

=9aet

=0ae7-----

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

AEROTHERMODYNAMICS

AN ELEMENT OF THE BASE RESEARCH AND TECHNOLOGY PROGRAM

JUNE 25, 1991

Dr. Kristin A. Hessenius Deputy Director, Aerodynamics Division Office Of Aeronautics, Exploration and Technology National Aeronautics and Space Administration

Washington, D.C.

AEROTHERMODYNAMICS BASE R&T PROGRAM

AEROTHERMODYNAMICS BASE R&T PROGRAM DEVELOPS AND . APPLIES VALIDATED TOOLS FOR THE DESIGN AND OPTIMIZATION OF VEHICLES REQUIRED TO EXIT, ENTER AND MANEUVER IN EARTH/PLANETARY ATMOSPHERES

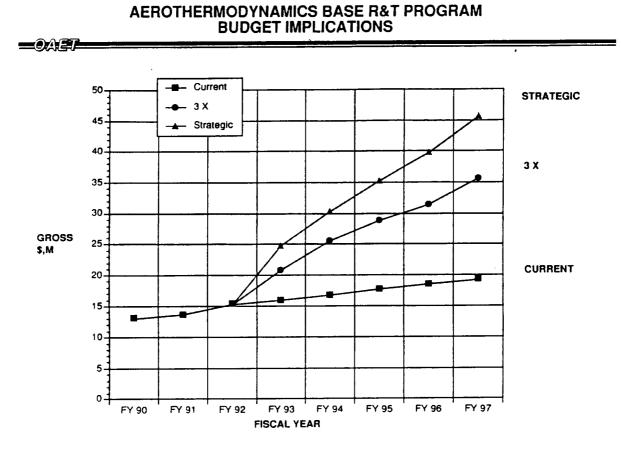
- FOR TRANSPORTATION, AEROTHERMODYNAMICALLY EFFICIENT CONFIGURATION DESIGN RESULTS IN:
 - REDUCED DESIGN MARGINS
 - HIGHER PERFORMANCE
 - REDUCED LIFE CYCLE COSTS
- FOR EXPLORATION, AEROTHERMODYNAMICS TECHNOLOGY CAN ALSO BE MISSION ENABLING

AEROTHERMODYNAMICS BASE R&T PROGRAM

=0AET-

.

- OAET HAS A RECOGNIZED IN-HOUSE CAPABILITY FOR PERFORMING AEROTHERMODYNAMIC ANALYSES:
 - NASA OFFICE OF SPACE FLIGHT REFERENCES THEIR RELIANCE ON THIS CAPABILITY FOR ADVANCED TRANSPORTATION SYSTEM CONCEPT DEVELOPMENT
 - SPACE EXPLORATION INITIATIVE (SEI) OFFICE, HAVING IDENTIFIED AEROBRAKING AS A "CATEGORY 1" TECHNOLOGY, REQUIRES THE PRODUCTS OF BOTH THE BASE PROGRAM AND THE FOCUSED "AEROASSIST (BRAKING)" PROGRAM
- AN AUGMENTED AEROTHERMODYNAMICS R&T BASE WILL DIRECTLY ADDRESS THE INSUFFICIENCIES OF OUR PRESENT PROGRAM TO MEET CUSTOMER NEEDS:
 - PACE OF THE DEVELOPMENT OF COMPUTATIONAL DESIGN AND ANALYSIS TOOLS
 - ADEQUACY OF EXPERIMENTAL CAPABILITY TO VALIDATE SUCH TOOLS AND
 PROVE DESIGN CONCEPTS
 - APPLICATION OF VALIDATED TOOLS AND FACILITIES FOR CONFIGURATION
 DESIGN AND ASSESSMENT


AEROTHERMODYNAMICS BASE R&T PROGRAM

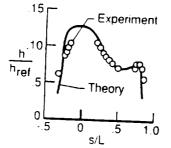
==0aet=

NET FY 93 INVESTMENT STRATEGY

\$ M CURRENT PROGRAM (\$M PROPOSED STRATEGIC PROGRAM)

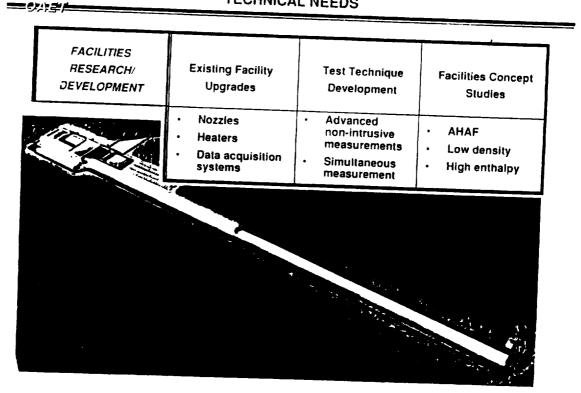
COMPUTATIONAL TOOL DEVELOPMENT	Detailed Flowfield/Fluid Properties Analysis Tools \$1.87 M (\$3.5 M)		Vehicle Synthesis Engineering Tools \$0.29 M (\$0.7 M)		
EXPERIMENTAL RESEARCH/ COMPUTATIONAL VALIDATION	Ground-Based Data Acquisition and Analysis \$0.44 M (\$1.0 M)		Flight Data Analysis \$0.14 M (\$0.8 M)		
FACILITIES RESEARCH/ DEVELOPMENT	Existing Facility Upgrades \$0.07 M (\$1.5 M)		chnique priment (\$1.25 M)	Facilities Concept Studies \$0.07 M (\$1.0 M)	
CONFIGURATION ASSESSMENT	Candidate Vehicles: PLS, ACRV, SDIO-SSTO, HLLV, NLS, Shuttle Evolution, AMLS, NDV's \$0.75 M (\$2.5 M)				

AEROTHERMODYNAMICS BASE R&T PROGRAM TECHNICAL NEEDS

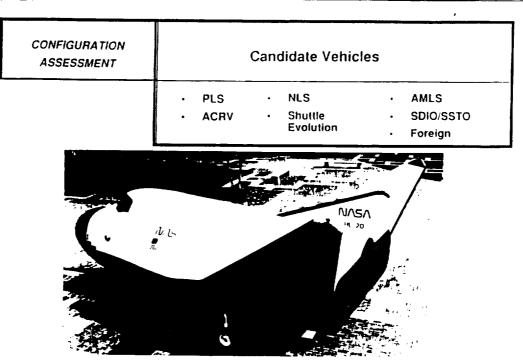

.

COMPUTATIONAL TOOL DEVELOPMENT	Detailed Flowfield/Fluid Properties Analysis Tools	Vehicle Synthesis Engineering Tools
and and and a start of the	 Transition/Turbulence modeling Thermo-chemical, non- equilibrium modeling Radiative transport Complex geometries Computational efficiency 	 Improved CAD interfaces Enhanced solid modeling Expert systems Optimization algorithms

P-3


AEROTHERMODYNAMIUS BASE R&T PROGRAM TECHNICAL NEEDS

EXPERIMENTAL RESEARCH/ COMPUTATIONAL VALIDATION	Ground-Based Data Acquisition and Analysis	Flight Data Analysis
	 Fundamental fluid physics databases Code validation databases 	 OEX (Earth-to-Orbit) AFE (Aerobraking) Galileo (Planetary entry)


=りょうまた

AEROTHERMODYNAMIC BASE R&T PROGRAM TECHNICAL NEEDS

AEROTHERMODYNAMics BASE R&T PROGRAM TECHNICAL NEEDS

== ジッジョン 二

AEROTHERMODYNAMICS BASE R&T PROGRAM

- NASA NOW AT CRITICAL JUNCTURE IN PLANNING FOR OUR FUTURE TRANSPORTATION SYSTEMS
- SYSTEMS DESIGNED FOR PERFORMANCE AT LOWEST LIFE
 CYCLE COST ARE MANDATORY
- AEROTHERMODYNAMICALLY EFFICIENT DESIGNS ARE KEY TO REDUCED DESIGN MARGINS, HIGHER PERFORMANCE AND RESULTING LOWER COST
- THE OAET AEROTHERMODYNAMICS BASE R&T PROGRAM, WITH ADEQUATE INVESTMENT, WILL SERVE AS A UNIQUE AGENCY RESOURCE FOR THE DESIGN AND OPTIMIZATION OF AEROSPACE VEHICLES

Office of Aeronautics, Exploration and Technology

<u>MATERIALS & STRUCTURES</u> <u>INTEGRATED TECHNOLOGY</u> <u>PLAN OVERVIEW</u>

PRESENTED TO

SSTAC/ARTS REVIEW COMMITTEE

Samuel. L Venneri Director Materials & Structures Division June 25, 1991

MATERIALS AND STRUCTURES FY 1993 ITP PROGRAM

BASE R&T

MATERIAL SCIENCE

MATERIAL SYNTHESIS COMPUTATIONAL MATERIALS COMPUTATIONAL CHEMISTRY OPTICS POWER & PROPULSION MAT'LS.

SPACE ENVIRONMENTAL EFFECTS

DEBRIS PROTECTION SPACE ENVIRONMENTAL EFFECTS SPACECRAFT MATERIALS

AEROTHERMAL STRUCTURES & MATERIALS

THERMAL PROTECTION SYSTEMS ARCJET RESEARCH HEAVY LIFT LAUNCH HOT STRUCT./INTEGRATED DESIGN

SPACE STRUCTURES

STRUCTURAL CONCEPTS SPACE MECHANISMS SPACE WELDING & BONDING SPACE CONSTRUCTION NDE/NDI

DYNAMICS OF FLEXIBLE STRUCTURES

ADVANCED TEST TECHNIQUES ADAPTIVE STRUCTURES SPACE DYNAMIC ANALYSIS VIBRATION & ACOUSTIC ISOLATION

FOCUSED PROGRAMS

SCIENCE

SAMPLE ACQUISITION, ANAL. & PRESER. TELESCOPE OPTICAL SYSTEMS MICRO-CSI

TRANSPORTATION

ETO STRUCTURES & CTRYOTANKS TRANSFER VEHICLE STRUCTURES & CRYO.

EXPLORATION

RADIATION PROTECTION IN-SITU RESOURCE UTILIZATION SURFACE HABITATS & CONSTRUCTION ARTIFICIAL GRAVITY (POWER BEAMING)

PLATFORMS

PLATFORM-CSI STRUCTURES NDE/NDI MATERIALS & SPACE ENVIRON. EFFECTS

OPERATIONS

IN-SPACE ASSEMBLY & CONSTRUCTION

GENERIC HYPERSONICS (BASE R&T)

AERONAUTICS AND SPACE ENGINEERING BOARD REPORT ON SPACE TECHNOLOGY TO MEET FUTURE NEEDS (1987) TECHNOLOGY ISSUES - MATERIALS AND STRUCTURES

- "Major structures and materials breakthroughs were neither required nor employed in the transition from Apollo to Shuttle. Convevtional (circa 1970) airframe materials technology coupled with minor improvements ... are still the mainstay of space structure design..."
- "Materials and structures technology needs encompass space durable materials, dimensionally stable materials; advanced thermal protection system (TPS) concepts; advanced coatings; stiff light-weight, highstrength structural composites; advanced space structural concepts; and development of an adequate data base for advanced concepts that will allow for confident design."

Technology Drivers:

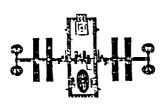
Lightweight Large Size High Temperature High Precision and Dimensional Stability Space Durability Hot/warm Structures versus Insulating TPS Ground Testing and NDE/NDI

Conclusion: 1970's technology is not adequate for the 1990's and beyond

STAFFORD REPORT

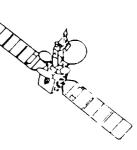
SUPPORTING TECHNOLOGIES

Technology will provide the tools for safe cost effective exploration of the Moon and Mars. Technology development is required in the following areas:

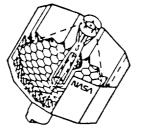

- Heavy lift launch with a minimum capability of 150 metric tons with designed growth to 250 metric tons
- Nuclear thermal propulsion
- Nuclear surface power to megawatt levels
- · Extravehicular activity suit
- Cryogenic transfer and long term storage
- Automated rendezvous and docking of large masses
- Zero gravity countermeasures

- Radiation effects and shielding
- Telerobotics
- Closed loop life support systems
- Human factors for long duration space missions
- Lightweight structural materials and fabrication
- Nuclear electric propulsion for follow-on cargo missions
- In-situ resource evaluation and processing

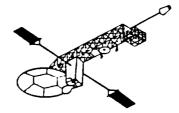
MATERIALS AND STRUCTURES BASE R&T FUNDING

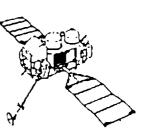

= OAETFY 1	991	FY 1	992
TOTAL: \$19400 K NET: \$11350 K (INCLUDES \$2540 K IN GENERIC HYPERSONICS)	PERCENT OF FY 1991 NET	TOTAL: \$20930 K NET: \$11350 K (INCLUDES \$2640 K IN GENERIC HYPERSONICS)	PERCENT OF FY 1992 NET
MATERIAL SCIENCE \$1940 K	17.1	MATERIAL SCIENCE \$2160 K	19.0
SPACE ENVIRONMENTAL EFFECTS	19.6	SPACE ENVIRONMENTAL EFFECTS \$1330 K	11.7
\$2220 K AEROTHERMAL STRUCTURES AND MATERIALS \$3110 K	27.4	AEROTHERMAL STRUCTURES AND MATERIALS \$3110K	27.4
SPACE STRUCTURES	10.5	SPACE STRUCTURES \$1790 K	15.8
DYNAMICS OF FLEXIBLE STRUCTURES \$350 K	3.1	DYNAMICS OF FLEXIBLE STRUCTURES \$320 K	2.8

MISSIONS PROVIDING SPACE MATERIALS **TECHNOLOGY FOCUS**



Space Station


Communications satellites



Astrophysics missions

transfer vehicles

Lunar and Mars

Mission to planet earth Science missions

TECHNOLOGY PERSPECTIVE SPACE MATERIALS

<u>1980's</u>

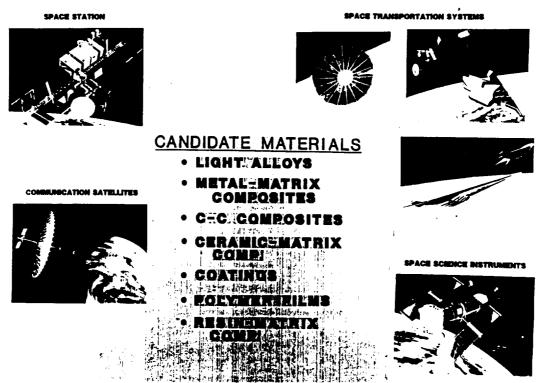
- Composites
 - Application of aircraft composites
 - Microcracking
 - Moisture expansion
 - Thermal hysterisis
 - Residual stresses
- Structures
 - Large erectable/deployable truss structures
 - Low precision reflectors
- Films and coatings
 - Screening for AO resistance
 - · Transparent polyimide films
 - Large area anodizing of AI

1990's And Beyond

Composites

- Development of new space tailored composites
 - New resins (cyanates)
 - Ultra-high modulus fibers
 - Innovative processing (low residual stress)
- Smart materials
- Structures
 - High precision optical benches
 - Large lightweight high precision reflectors
 - Deployable/rigidable materials and structures
- · Films and coatings
 - Space tailored polymers
 - Inorganic composites/coatings

TECHNOLOGY PERSPECTIVE SPACE MATERIALS (CONT.)


<u>1980's</u>

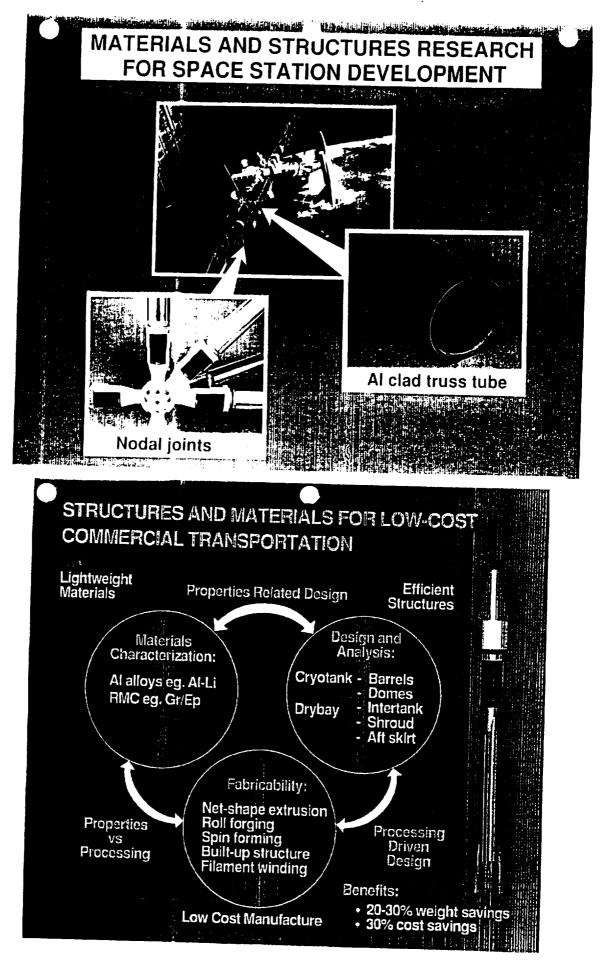
- Space env. exposure/simulation
 - Single parameter simulation or sequential exposure
 - Characterization/fundamental understanding
 - Radiation effects on materials
 - Single parameter environment/ materials modeling
 - 1st generation flight experiments
 - STS-3, 5, 8
 - LDEF

1990's And Beyond

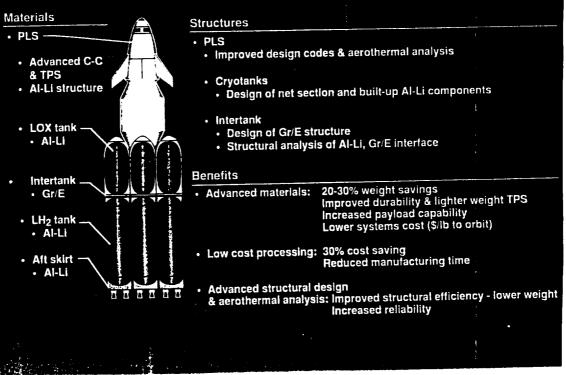
- Space env. exposure/simulation
 - Combined exposures
 - e+, p+, UV, ΔT
 - ΑΟ, UV, ΔΤ
 - AO, micrometeoroids, ΔT
 - Materials certification test methodology
 - Radiation shielding for humans
 - Life prediction modeling
 - Next generation flight experiments
 - EOIM 3
 - TDMX-2011
 - "Benchmark"

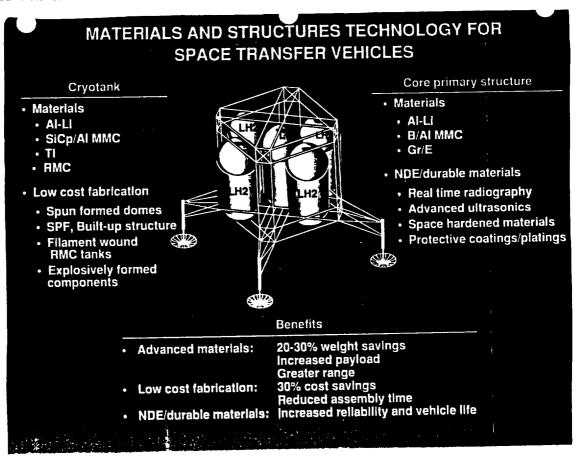
SPACE MATERIALS AND STRUCTURES

RM 500.0


TECHNICAL PERSPECTIVE SPACE STRUCTURES

<u>1980's</u> "ERA OF SPACE STATION"


- Flat Trusses/Equal Length Struts
- Design Methodology for Near-Earth Environment (LEO, GEO)
- Erectable Space Station Truss Structure
- Space Station Pressure Vessel Structures
- Conventional Aluminum Design Concepts - Conventional Manufacturing
- EVA Manual Assembly Low Mass Components and Ease of Construction
- Large Antennae Deployable Concepts, Low Frequency (<30 GHz) and Lightweight Submillimeter Telescopes


<u>1990's And Beyond</u> "ERA OF SPACE SCIENCE AND EXPLORATION"

- Doubly- Curved Trusses/Unequal Strut Lengths, High Precision
- Design Methodology for Deep Space Environment (GEO, Lunar and Mars)
- Complex Modular Structures, Joining/Welding and Precision Erectable/Deployable
- Lightweight Lunar Habitats and Construction Methods
- Advanced Alloys and Composites for Low-Cost Fabrication, e. g., Gr/Ep Shells, Superplastic Forming, etc.
- Robotic Assembly Precision Structures and Large Mass Manipulation, Integrated Utilities
- Large Precision Antennae (30-100GHz) and Telescopes (RF Thru UV/Visible) - Complex Shape Control

VEHICLE STRUCTURES AND CRYOTANKS FOR EARTH TO ORBIT TRANSPORTATION

TECHNOLOGY PERSPECTIVE SPACE STRUCTURAL DYNAMICS

1980's

- Structural Dynamics Uncoupled Rigid Body Dynamics and Linear Control
- Conventional Aerospace Material Systems Used for Tailoring Spacecraft Structural **Dynamics**
 - Metals Design Data Base
 - Uniform Properties
- Ground-Based System ID Methodology for Structural Verification
- Capability for Linear, Small Deflection Dynamics of Space Structures
- Analysis and Ground-Based Testing Methodology for Spacecraft Qualification
 - Component Level Testing
 - Scale Model Tests -
 - Full-Scale Behavior From Sub-Component Analysis and Synthesis

1990's And Beyond

- Integrated Controls/Structures Interaction Nonlinear **Coupled Behavior**
- "Smart" Material Systems Integrated Into Optimized Structural Dynamics and Control - Active Members

 - Embedded Sensors/Actuators
- On-Orbit System ID for Final Verification of Large Flexible Structures
- Capability to Predict Behavior & Performance for Large Motions of Complex Articulating Structures
- New Qualification Methodology for Large Complex Space Structures
 - Reliable Full-Scale Analysis and Design **Optimization Methods**
 - Adaptive Structures
 - Full-Scale On-Orbit Testing

TECHNOLOGY PERSPECTIV E AEROTHERMAL MATERIALS AND STRUCTURES

1980's

- Uncoupled Fluid, Thermal, Structural Vehicle Analysis and Design
- Combined Thermal and Mechanical Load **Testing Capability**
- High Temperature, Flow Test Facilities for Shuttle Re-entry (1000-25,000 BTU/Ib)
- Rigid and Flexible Shuttle TPS Insulation Systems (1000-2500°F)
- Insulated Aluminum Structural Concepts
- Carbon-Carbon Material System with Limited-Use Coatings for Nonstructural Applications
- Applications Using Isotroptic, Monolithic Metallics and Refractory Material Systems (Superalloys, Ti, Intermetallics)

1990's And Beyond

- Integrated Fluid-Thermal-Structural Vehicle Analysis and Design Optimization
- · Integrated Thermal, Mechanical and Cryogenic **Complex Load Environment Simulation Test** Capability
- High Temperature, Flow Facilities for High Enthalpy Earth Re-Entry (Aerobrake -20,000-50,000 BTU/Ib)
- Advanced Composite TPS Material Concepts (3000-5000°F)
- Integrated Insulated and Hot Structures Design Concepts
- Carbon-Carbon Material and Tailored Coating Systems for Primary Load-Carrying Structures
- Applications Using Fiber Reinforced Metal Matrix Composites and Refractory Composites (Gr/MMC, Advanced Intermetallic Composites)

BASE R&T AUGMENTATION PROCESS = Materials & Structures =

RESPONSE TO AUGUSTINE REPORT RECOMMENDATION #8

- CENTER INPUT REVIEWED FOR RELEVANCE, CONTENT AND BUDGET .
- PROPOSED AUGMENTATION FORMULATED BY RM RESPONSIVE TO . CURRENTLY PERCEIVED AGENCY NEEDS AND BUDGET GUIDELINES
- CANDIATE AUGMENTATION PACKAGES FORMULATED AT PROGRAM ELEMENT/SUB-ELEMENT LEVEL INCORPORATING
 - OBJECTIVE
 - RATIONALE
 - PAYOFF

= OAET =

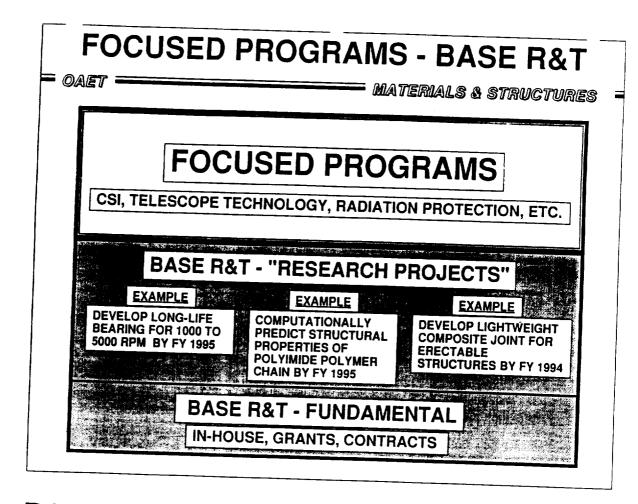
- BUDGET AUGMENTATION RUNOUT
- PRODUCTS
- CENTERS
- CENTER PERSONNEL CONSULTED AT PROGRAM ELEMENT AND SUB-ELEMENT LEVEL
- DRAFT DISTRIBUTED TO CENTERS FOR REVIEW
- FINAL PROGRAM UNDER DEVELOPMENT

BASE R&T AUGMENTATION PROCESS

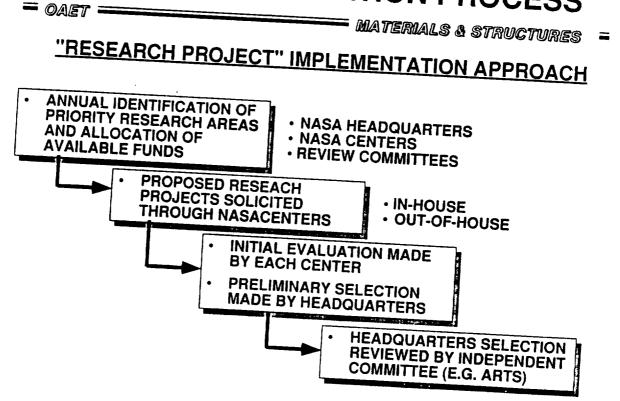
= oaet ====

- Materials & Structures =

PROGRAM IMPLEMENTATION STRATEGY FOR X2 TO X3 BUDGET


COMPOSITION OF TOTAL BASE R&T PROGRAM:

ON-GOING:


- FUNDAMENTAL IN-HOUSE CAPABILITY
- SUPPORTING GRANTS AND CONTRACTS

NEW ACTIVITY:

- "RESEARCH PROJECTS"
 - **GOAL ORIENTED, DIRECTED RESEARCH**
 - DEFINED RESOURCES AND SCHEDULE OF ACCOMPLISHMENTS
 - FUNDED AT MODEST LEVELS (< \$1000 K/YR) FOR 2 TO 4 YEARS
 - TRANSITION TO FOCUSED PROGRAM, CONTINUE AT LOW LEVEL OR TERMINATE
- "RESEARCH PROJECTS" CAN BE IN-HOUSE, GRANTS, **OR CONTRACTS**
- **GRANTS, CONTRACTS AND "RESEARCH PROJECTS" PROVIDE** MECHANISM FOR PROGRAM ROLLOVER FOR NEW INNOVATIVE IDEAS
- X3 BUDGET SUBSTANTIALLY INCREASE INDUSTRY AND UNIVERSITY INVOLVEMENT (>60%)

BASE R&T

- Oaet ----

------ Materials & Structures -

PROGRAM REVIEW

ANNUAL REVIEWS BY OUTSIDE COMMITTEE

- STANDING ARTS COMMITTEE
- INVITED SPECIALISTS
- REVIEWS AT NASA HQ

EMPHASIS ON NEW ACTIVITIES AND "MATURE" ACTIVITIES

- GENERAL REVIEW OF THE ENTIRE PROGRAM
- DETAILED REVIEW OF NEW ACTIVITIES BEFORE INITIATION
- DETAILED BI-ANNUAL REVIEW OF "RESEARCH PROJECTS" AND CRITICAL ON-GOING PROGRAMS
- PURPOSE OF REVIEW
 - INDEPENDENT EVAUATION OF QUALITY AND RELEVANCE OF BASE R&T
 - ASSURE POTENTIAL USERS AWARE OF PROGRAMS AND ACCOMPLISHMENTS

BASE AUGMENTATION PROCESS

= OAET :

MATERIALS & STRUCTURES

FY 1992 NET FUNDING BY AREAS

TOTAL: \$20930 K NET: \$11350 K

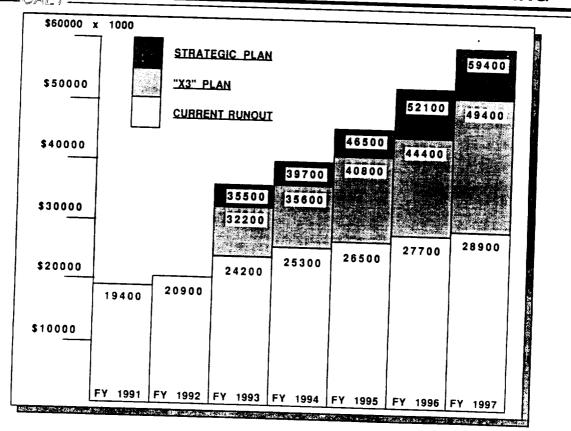
(UNDERLINE IDENTIFIES NEW AREA)

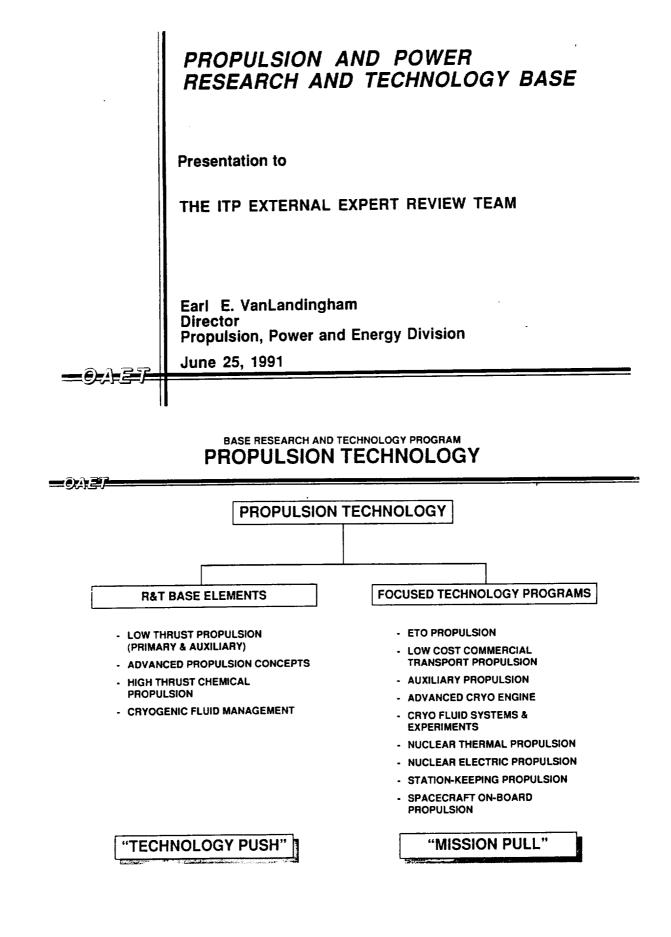
(INCLUDING \$2640 K IN GENERIC HYPERSONICS *EXCLUDS \$1700 K OF "BASE R&T" IN CSI)

MATERIAL SCIENCE	COMPUTATIONAL CHEMISTRY - \$290 K <u>COMPUTATION L</u>	MATERIAL SYNTHESIS	<u>OPTICS</u>	POWER & PROPULSION MATLS \$700 K
\$2160 K	MATERIALS	\$1170 K	-	\$700 K
SPACE ENVIRONMENTAL EFFECTS	DEBRIS PROTECTION	SPACE ENVIRONMENT EFFECTS	SPACECRAFT MATERIALS	
\$1330 K	\$50 K	\$1000 K	\$280 K	
AEROTHERMAL STRUCTURES AND MATERIALS \$3110K	THERMAL PROTECTION SYSTEMS \$310 K	<u>ARCJET</u> RESEARCH \$100 K	<u>HEAVY LIFT LAUNCH SYSTEMS</u>	HOT STRUCTURES/ INTEGRATED DESIGN \$2700 K
SPACE STRUCTURES	STRUCTURAL CONCEPTS & SPACE CONST.	<u>SPACE</u> <u>MECHANISMS</u>	SPACE WELDING AND BONDING	<u>NDE/NDI</u>
\$1790 K	\$1790 K	(\$500 K)	\$100 K	
DYNAMICS OF FLEXIBLE STRUCTURES*	ADVANCED TEST TECHNIQUES	ADAPTIVE STRUCTURES	<u>SPACECRAFT</u> <u>DYNAMIC</u> ANALYSIS	V <u>IBRATION AND</u> <u>ACOUSTIC</u> <u>ISOLATION</u>
\$320 K	\$70 K	\$250 K		•

BASE R&T AUGMENTATION PROCESS

= OAET =


= MATERIALS & STRUCTURES =


AREAS IDENTIFIED FOR FY 1993 AUGMENTATION

(UNDERLINE IIDENTIFIES NEW AREA)

MATERIAL SCIENCE	<u>COMPUTATIONAL</u> <u>MATERIALS</u>		<u>OPTICS</u>	
SPACE ENVIRONMENTAL EFFECTS	DEBRIS PROTECTION	SPACE ENVIRONMENT EFFECTS	SPACECRAFT MATERIALS (INCLUDES MATERIAL SYNTHESIS AND SPACE DURABLE MAT.)	
AEROTHERMAL STRUCTURES AND MATERIALS	THERMAL PROTECTION SYSTEMS	<u>ARCJET</u> RESEARCH		
SPACE STRUCTURES	STRUCTURAL CONCEPTS & SPACE CONSTRUCTION	<u>SPACE</u> MECHANISMS	<u>SPACE WELDING</u> AND BONDING	<u>NDE/NDI</u>
DYNAMICS OF FLEXIBLE STRUCTURES		ADAPTIVE STRUCTURES		<u>VIBRATION AND</u> <u>ACOUSTIC</u> ISOLATION

MATERIALS AND STRUCTURES BASE R&T FUNDING

SPACE R&T BASE PROPULSION

		-		PROPULSION, POWER
PROGF Pro ins in pro fut TECHN 30-4 10 6 x 500 Red Higi Higi	ECTIVES RAMMATIC ovide a technolog titutional capabili the development pulsion systems ure NASA missio iCAL 40 sec. Increase x increase in Sto Throttling of H2 0 sec. Isp, 75% fuced Operations h Energy Density h Energy Density URCES (\$M	Ity for cont of advance to enable ons. In Chemica rable Arcjet Arcjet Efficient lo Cost, Incre /Power Elect Propellant	Inued advances d space thallenging i Rocket Isp t Power n Propulsion pased Life	AND ENERGY DIVISION <u>MILESTONES</u> FY-92: Demonstrate 100 LBF Ir-Re Rocket FY-92: Demonstrate 10kHr ion Engine Life FY-93: Verify 3D CFD Model for Small Rockets. FY-94: Complete 3D Plume Code Development FY-94: Complete 3D Plume Code Development FY-94: 10 KWe ion Engine Life & Perf Demo. FY-94: Complete H/O Stability Model FY-95: Demonstate Flight Weight Ir-Re Rocket FY-96: Complete Atomic Hydrogen Engine/Feed System Fabrication FY-97: Establish MPD Electrode Erosion/life Model FY-99: Demonstate Basic Principles of Microwave Heating and Plasma Containment.
<u>nesu</u>	CURRENT	1 <u>"3x"</u>	STRATEGIC	PARTICIPANTS LEWIS RESEARCH CENTER
FY91	14.8	14.8	14.8	Electric Primary Propulsion
FY92	16.7	16.7	16.7	 Advanced Concepts High Thrust Chemical
FY93	17.2	20.4	23.0	Cryogenic Fluid Management
FY94	18.0	26.2	28.7	• Use of In-situ Propellants
FY95	18.8	30.1	33.7	JET PROPULSION LABORATORY • Advanced Propulsion Concepts
FY96	19.7	32.9	38.0	Electric Propulsion for Planetary Missions
FY97	20.6	36.9	43.9	MARSHALL SPACE FLIGHT CENTER • High Thrust Chemical

BASE RESEARCH AND TECHNOLOGY PROGRAM SPACE PROPULSION R&T

SPACE PROPULSION SYSTEMS

- · MISSION RELATED TECHNOLOGY DRIVERS
 - REDUCED LAUNCH COSTS
 - INCREASED TRANSFER VEHICLE PERFORMANCE AND LIFE
 - PROVIDE REUSE, SPACE BASING FOR SPACE PROPULSION SYSTEMS
 - REDUCED PLANETARY AND CARGO VEHICLE TRIP TIMES
 - REDUCED SATELLITE/VEHICLE MASS INCREASED LIFE
 - REDUCED NUMBER OF VEHICLE PROPELLANT SYSTEMS
 - INCREASED PERFORMANCE & RELIABILITY OF UPPER STAGES
 - INCREASED THROTTLING FOR ASCENT/DESCENT ENGINES
 - ADVANCED PROPULSION SYSTEMS FOR FUTURE HIGH ENERGY MISSIONS

BASE RESEARCH AND TECHNOLOGY PROGRAM

SPACE PROPULSION R&T

SPACE PROPULSION SYSTEMS

MISSION SPECIFIC

HIGH PERFORMANCE ORBIT RAISING PROPULSION INTEGRATED H/O PROPULSION FLUID FILM BEARINGS/SEALS NO VENT FILL CRYOGENIC SYSTEMS PROPULSION SYSTEM HEALTH MANAGEMENT MMW MPD THRUSTERS H2 ARCJETS WATER RESISTOJETS

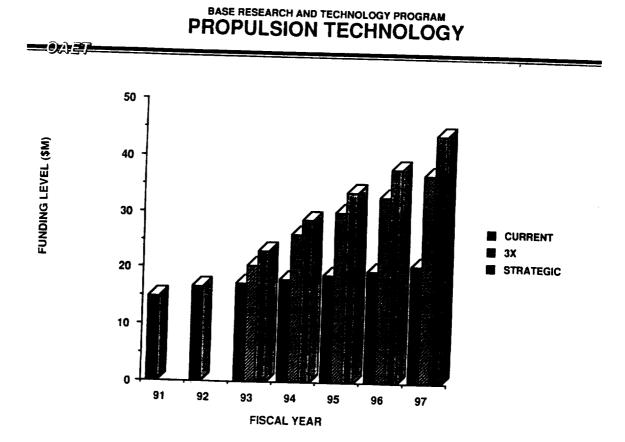
BREAKTHROUGH

ELECTRODELESS THRUSTERS (ECR, MICROWAVE) HIGH-ENERGY DENSITY PROPELLANTS BEAMED ENERGY/LASER ROCKETS FISSION/FUSION PROPULSION SUPER CONDUCTING MAGNETIC BEARINGS

CAPABILITY

INTERNAL PUMP FLOW CFD EXPERT SYSTEM ENGINE ANALYSIS COMBUSTION DIAGNOSTICS COMBUSTION PERFORMANCE/STABILITY MODELS CRYO FLUID MGMT. ANAL. MODELS

BASE RESEARCH AND TECHNOLOGY PROGRAM


SPACE PROPULSION R&T

ELEMENT	CURRENT PROGRAM	STRATEGIC PROGRAM
ADVANCED CONCEPTS	Feasibility studies and limited laboratory experiments in the following areas: - Atomic hydrogen - MMW plasma rockets - Fusion; alternate energy states - Electrodless rockets	In-depth evaluations and experiments of more concepts with broader participation, including universities
ELECTRIC PROPULSION	Proof-of-concept demonstrations of: - 2-5 kW storable arcjet - 5 kW ion - 200 - 1000 kW MPD - 5-30 kW H2 arcjet	More extensive R&T of current program areas plus the following: - Water resistojets - SEP-class ion thrusters - Laser rocket demo - Antimatter, fusion and other advanced concepts
CHEMICAL PROPULSION	 Code development and validation for turbomachinery, combustion, and heat transfer Engine system analyses Advanced materials and fab. techniques Adv. sensors/instrumentation, health monitoring, and diagnostics 	Same content as current program applied to full-scale components and integrated system demonstrations, plus: - Atternate/parallel approaches, subcomp. - System-level code validations - Broadened applications - Alt. comp. nozzles, high mixture ratio

BASE RESEARCH AND TECHNOLOGY PROGRAM PROPULSION TECHNOLOGY

AUGMENTATION STRATEGY

- HIGH-RISK, INNOVATIVE, PROPULSION TECHNOLOGIES THAT HAVE THE POTENTIAL OF <u>HIGH PAYOFF</u> FOR FUTURE MISSIONS
 - LOW THRUST PROPULSION
 - ADVANCED PROPULSION CONCEPTS
- SPECIFIC ACTIVITIES TO <u>COMPLEMENT</u> FOCUSED TECHNOLOGY PROGRAMS
 - HIGH THRUST CHEMICAL PROPULSION (ETO PROPULSION, ADV. CRYO ENGINE)
 - CRYO FLUID MANAGEMENT (FOCUSED CRYO PROGRAM & FLIGHT EXPERIMENTS)
- SPECIFIC ACTIVITIES TO MAINTAIN OR ENHANCE NASA'S <u>CAPABILITY</u> TO RESPOND TO TECHNOLOGY NEEDS
 - CFD
 - PROPULSION SYSTEM ANALYSIS CODES
 - TECHNOLOGY TEST FACILITIES

WBS No. 506-42 (CURRENT BUDGET)

-

TECHNOLOGY ELEMENT:	PRO	PULSI	ON FI&	т	W	BS 506	j-42		C	ODE P	IP	
Sub-Element Resources: (\$M)	<u>1991</u>	1992	1993	1994	<u>1995</u>	<u>1996</u>	<u>1997</u>	<u>1996</u>	<u>1999</u>	2000	2001	2002
-31 Low Thrust (P&A)	5.8	5.2	5.4	5.6	5.8	6.1	6.3					
-41 Advanced Concepts	1.2	1.4	1.5	1.5	1.5	1.6	1.7					
-72 High Thrust Chemical	3.5	3.5	3.6	3.8	3.9	4.1	4.3					
-73 Cryogenic Fluid Management	1.5	2.6	2.0	2.1	2.2	2.2	2.3					
-74 Lunar/Planet Propellant		==	==		==	=	_					
Sub-Element Totals: (\$M)	12.0	12.7	12.5	13.0	13.5	14.0	14.6					
<u>CoF</u> :												
<u>CoF Totais</u> :												
Resources Requirements: (\$M)	12.0	12.7	12.5	13.0	13.5	14.0	14.6			•		
Program Support: (\$M)	2.4	2.5	2.6	2.7	2.8	2.9	3.0					
Special Requirements: (\$M)	_0.4	<u>.1.5</u>	_2.1	_2.3	_2.5	_2.8	_3.0					
TOTAL (\$M):	<u>14.8</u>	<u>16.7</u>	1 7.2	<u>18.0</u>	<u>18.8</u>	<u>19.7</u>	<u>20.6</u>					

Basis for Resource Estimates:

Maintain current funding levels; adjust for initiation.

	000	2111 910	ON R&	T	W	BS 506	-42		С	ODE P	IP	
TECHNOLOGY ELEMENT:			JATHA									2002
Sub-Element Resources: (\$M)	<u>1991</u>	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u>1995</u>	<u>1996</u>	<u>1997</u>	<u>1998</u>	<u>1999</u>	<u>2000</u>	<u>2001</u>	2002
-31 Low Thrust (P&A)	5.8	5.2	7.0	9.8	11.0	12.5	14.5					
.41 Advanced Concepts	1.2	1.4	3.2	4.0	4.7	5.0	6.0					
-72 High Thrust Chemical	3.5	3.5	4.0	5.5	6.6	7.1	7.4					
-73 Cryogenic Fluid Management	1.5	_2.6	_2.1	_2.2	2.3	_2.4	_2.5					
<u>Sub-Element Totais</u> : (\$M)	12.0	1 2.7	<u>16.3</u>	<u>21.5</u>	<u>24.6</u>	<u>27.0</u>	<u>30.4</u>					
<u>CoE</u> :												
CoF Totals:												
Resources Requirements: (\$M)	12.0	12.7	16.3	21.5	24.6	27.0	30.4					
Program Support: (\$M)	2.4	2.5	2.3	2.6	3.0	3.2	3.6					
Special Requirements: (\$M)	_0.4	<u>_1.5</u>	<u>.1.8</u>	_2.1	.2.5	_2.7	_2.9					
TOTAL (SM):	14.8	<u>16.7</u>	<u>20.4</u>	<u>26.2</u>	<u>30.1</u>	<u>32.9</u>	<u>36.9</u>					

Basis for Resource Estimates:

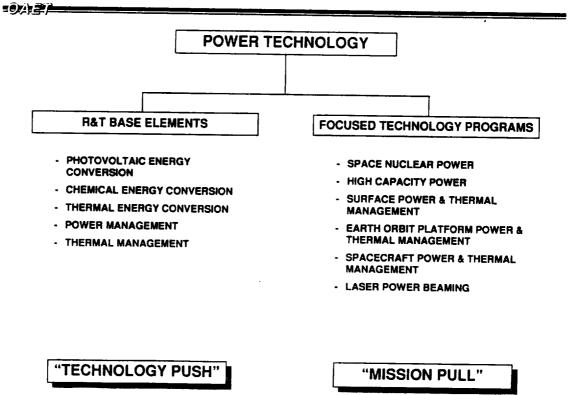
Grow Low Thrust Propulsion to enable revolutionary reductions in spacecraft weight allocated to propulsion and to enable missions
with very high total energy requirements.

Increase Advanced Concepts Program to permit broader participation, study of additional concepts, and an increase transition from study activities to experimental efforts.

Maintain a supporting base activity in High Thrust Chemical Propulsion and Cryogenic Fluid Management.

start activity in Lunar/Planet in-Situ Propellants. Inadequate fund

WBS No. 506-42 (STRATEGIC BUDGET)


TECHNOLOGY ELEMENT:	PHC	PULS											
			ION R	<u> </u>	<u> </u>	/BS 50	6-42		C	ODE	۹F		_
Sub-Element Resources: (\$M)	<u>1991</u>	1 992	1993	1994	<u>1995</u>	<u>1996</u>	1 997	1996	<u>1999</u>	2000	2001	2002	
-31 Low Thrust (P&A)	5.8	5.2	8.0	11.0	11.0	12.5	14.5						
-41 Advanced Concepts	1.2	1.4	3.5	4.0	4.7	5.0	6.0						
-72 High Thrust Chemical	3.5	3.5	4.8	6.1	7.4	8.2	9.2						
+73 Cryogenic Fluid Management	1.5	2.6	2.1	2.2	2.3	2.4	2.5						
-74 Lunar/Planel Propellant			==	_	2.0		4.0						
Sub-Element Totals: (\$M)	12.0	12.7	18.4	23.3	27.4	31.2	36.2						
<u>CoF</u> :													
COF Totals:													
Resources Requirements: (\$M)	12.0	12.7	18.4	23.3	27.4	31.2	36.2						
Program Support: (\$M)	2.4	2.5	2.3	2.9	3.4	3.8	4.4						
<u>Special Requirements:</u> (\$M)	_0.4	_1.5	2.3	_2.5	2.9		3.3		•				
TOTAL (SM):	<u>14.8</u>	1 <u>6.7</u>	23.0	<u>28.7</u>	<u>33.7</u>	38.0	<u>43.9</u>						

Basis for Resource Estimates:

- Grow Low Thrust Propulsion to enable revolutionary reductions in spacecraft weight allocated to propulsion and to enable missions
 with very high total energy requirements.
- Increase Advanced Concepts Program to permit broader participation, study of additional concepts, and an increase transition from study activities to experimental efforts.
- Maintain a supporting have activity in High Thrust Chemical Propulsion and Cryogenic Fluid Management.

Start, when appropri.
 tivity related to the use of in-situ resources.

BASE RESEARCH AND TECHNOLOGY PROGRAM SPACE ENERGY CONVERSION TECHNOLOGY

BASE R&T PROGRAM SPACE ENERGY CONVERSION R&T

				SCHEDULE	
OBJ	ECTIVES			• 1992 12-panel APSA	
	rogrammatic			Complete critical technology experiments for liquid sheet radiator (LSR)	נ
ri g	rovide the technology to equirements for future s rowth Space Station, E inar and planetary basi	space missic arth orbiting	spacecraft,	 1993 5-Ah Li-TiS2 Engineering Model Demo Solar Dynamic Heat Receiver Tech Demo Prototype Smart Pole (PMAD) 	
e	xploration		-	 1994 Demonstrate thin 20% inP Cell Deliver Bipolar Flight Battery 15% Efficient, 3000-Hour AMTEC 	
• т	echnical		1995 Complete 100 Wh/kg Nickel Hydrogen Battery		
1	300 W/kg Planar Array 00 - 200 Wh/kg Batterie 20% System Efficiency	es		 1996 Demo 600 K PMAD Test Bed 1997 Complete integrated thermal and electrical test 	
>	≥20% System Efficiency (Thermal-to Electric) >0.6 W/cm3 and >20 W/kg PMAD 1 - 4 kg/m2 Radiator Specific Mass			of power electronics orbital replacement unit 1998 Demonstrate 2nd generation APSA (>200 W/kg) 1999 Ground test 330 W/m2, 1 kW Concentrator Array	
RESOL	IRCES (\$M)			PARTICIPANTS	
RESOL	IRCES (\$M)			Lewis Research Center	
RESOL	<u>IRCES (\$M)</u> <u>Current</u>	<u>3X</u>	STRATEGIC	Lewis Research Center Responsibility includes advanced solar cells, nickel	
FY91		<u>"3X"</u> 12.5	STRATEGIC 12.5	Lewis Research Center Responsibility includes advanced solar cells, nickel hydrogen & sodium sulfur batteries; dynamic conversion	
	CURRENT	-		Lewis Research Center Responsibility includes advanced solar cells, nickel hydrogen & sodium sulfur batteries; dynamic conversion systems; fault-tolerant/high-temperature PMAD; thermal management	
FY91	<u>CURRENT</u> 12.5	12.5	12.5	 Lewis Research Center Responsibility includes advanced solar cells, nickel hydrogen & sodium sulfur batteries; dynamic conversion systems; fault-tolerant/high-temperature PMAD; thermal management Jet Propulsion Laboratory 	
FY91 FY92	<u>CURRENT</u> 12.5 12.8	12.5 12.8	12.5 12.8	 Lewis Research Center Responsibility includes advanced solar cells, nickel hydrogen & sodium sulfur batteries; dynamic conversion systems; fault-tolerant/high-temperature PMAD; thermal management Jet Propulsion Laboratory Responsibility includes advanced arrays, lithium & advance 	đ
FY91 FY92 FY93	CURRENT 12.5 12.8 13.3	12.5 12.8 15.8	12.5 12.8 17.7	 Lewis Research Center Responsibility includes advanced solar cells, nickel hydrogen & sodium sulfur batteries; dynamic conversion systems; fault-tolerant/high-temperature PMAD; thermal management Jet Propulsion Laboratory 	đ
FY91 FY92 FY93 FY94	CURRENT 12.5 12.8 13.3 13.8	12.5 12.8 15.8 20.1	12.5 12.8 17.7 21.5	 Lewis Research Center Responsibility includes advanced solar cells, nickel hydrogen & sodium sulfur batteries; dynamic conversion systems; fault-tolerant/high-temperature PMAD; thermal management Jet Propulsion Laboratory Responsibility includes advanced arrays, lithium & advance batteries; AMTEC; advanced thermoelectrics; power 	d

BASE RESEARCH AND TECHNOLOGY PROGRAM SPACE ENERGY CONVERSION R&T

SPACE POWER SYSTEMS

- MISSION RELATED TECHNOLOGY DRIVERS
 - REDUCED POWER SYSTEM WEIGHT FOR GEO AND PLANETARY APPLICATIONS
 - LOW-AREA, HIGH ENERGY DENSITY RIGID ARRAYS FOR LEO
 - HIGH CYCLE LIFE BATTERIES FOR LEO
 - HIGH ENERGY DENSITY, LONG-LIVED ENERGY STORAGE SYSTEMS
 - LIGHTWEIGHT, HIGH TEMPERATURE, COMPACT POWER MANAGEMENT FOR ALL APPLICATIONS
 - LONG-LIVED POWER SYSTEMS IN ALL RELEVANT ENVIRONMENTS LEO, GEO, INTER PLANETARY, LUNAR/MARS SURFACE
 - LOW MASS RADIATORS FOR ORBITAL, SURFACE APPLICATIONS

BASE RESEARCH AND TECHNOLOGY PROGRAM SPACE ENERGY CONVERSION R&T

SPACE POWER SYSTEMS

MISSION SPECIFIC

300 W/m2 CONCENTRATORS, 300 W/kg SOLAR ARRAYS 100 W-hr/kg BATTERIES 600K POWER ELECTRONICS AND THERMAL CONTROL HIGH FREQUENCY POWER ATOMIC OXYGEN PROTECTIVE COATINGS/ARC PROOF SOLAR ARRAYS ORBITAL AND PLANETARY SURFACE ENVIRONMENTAL DESIGN GUIDELINES

BREAKTHROUGH

LI/CO2 FUEL CELLS BEAMED POWER SYSTEMS LUNAR REGOLITH STORAGE 1-2 kg/m2 RADIATORS/ADVANCED HEAT PIPES DIAMOND FILM POWER ELECTRONICS

CAPABILITY

PV PERFORMANCE VERIFICATION/FUNDAMENTALS ELECTROCHEMICAL ADVANCED DIAGNOSTICS/MODELLING SOLAR DYNAMIC DESIGN/ANALYSIS HEAT PIPE CODE VALIDATION SPACE ENVIRONMENTAL SIMULATION FACILITIES

RJS91-00

BASE RESEARCH AND TECHNOLOGY PROGRAM

SPACE ENERGY CONVERSION R&T

SUB-ELEMENT	STATE-OF-THE-ART	OBJECTIVE
PHOTOVOLTAICS	Comm: 20 W/kg (rigid) to 66 W/kg (flex.) Demo: 100 W/kg (rigid) to 130 W/kg (flex.) 240 W/m2	> 300 W/kg (flex.) 1000 W/kg (blanket) >300 W/m2 (concentrator)
CHEMICAL ENERGY CONVERSION	Comm: 10 Wh/kg Demo: >20 Wh/kg	150 Wh/kg (75 % DOD)
THERMAL ENERGY CONVERSION	< 7 % efficiency	> 10 % efficiency
POWER MANAGEMENT	< 0.03 W/cm3 <15 W/kg	> 0.6 W/cm3 > 20 W/kg
THERMAL MANAGEMENT	10 kg/m2	1-4 kg/m2

BASE RESEARCH AND TECHNOLOGY PROGRAM SPACE ENERGY CONVERSION TECHNOLOGY

=0azt

AUGMENTATION STRATEGY

- HIGH-RISK, INNOVATIVE POWER TECHNOLOGIES THAT HAVE THE POTENTIAL OF HIGH PAYOFF FOR FUTURE MISSIONS
 - DIAMOND FILM POWER ELECTRONICS
 - Li/CO, FUEL CELLS
- MAINTAIN A <u>BALANCE</u> BETWEEN TECHNOLOGY ELEMENTS TO SUPPORT EVOLUTIONARY SPACECRAFT POWER SYSTEM NEEDS
 - PHOTOVOLTAIC ENERGY CONVERSION
 - CHEMICAL/THERMAL ENERGY CONVERSION
 - POWER/THERMAL MANAGEMENT
- MAINTAIN SPECIFIC ACTIVITIES TO ENHANCE NASA'S <u>CAPABILITY</u> TO RESPOND TO TECHNOLOGY NEEDS
 - ADVANCED DIAGNOSTICS/MODELLING
 - SPACE ENVIRONMENTAL SIMULATION FACILITIES

WBS No. 506-41 (CURRENT BUDGET)

2.3 2.0 1.4 1.8 1.0	3 2. 0 2. 4 1.: 8 1.: 2 _1.:	2.5 2.2 1.6 2.0	<u>1995</u> 2.6 2.3 1.7 2.1 <u>1.1</u> 9.8	1996 2.7 2.4 1.8 2.2 <u>1.2</u> 10.3	1997 2.8 2.5 1.9 2.3 <u>1.2</u> 10.7	1996	1922	2000	2001	2002
2.0 1.4 1.8 1.0	0 2. 4 1.: 8 1.: 2 _1.:	2.2 1.6 2.0 _1.1	2.3 1.7 2.1 _1.1	2.4 1.8 2.2 <u>1.2</u>	2.5 1.9 2.3 <u>1.2</u>					
1.4 1.8 <u>1.0</u>	4 1.: 8 1.: 0 _1.:	1.6 2.0 _1.1	1.7 2.1 1_1	1.8 2.2 _ <u>1.2</u>	1.9 2.3 <u>1.2</u>					
1.8 1.0	6 1.9 Q _1.1	2.0 1_1	2.1 1.1	2.2 _ <u>1.2</u>	1.9 2.3 <u>1.2</u>					
1.0 _	لىك ١	_1.1	_1.1	_1.2	2.3 _1.2					
8.5	58.9	9.4	9.8	10.3	10.7					
8.5	i 8.9	9.4	9.8	10.3	10.7					
1.8	2.0	2.1	2.3	2.4	2.6					
2.5	_2.4	_2.3	_2.5	_2.6	2.7					
2.8 1	13,3	13.6	<u>14.6</u>	<u>15.3</u>	<u>16.0</u>					
	2.5	2.5 _2.4	25 24 23	25 24 23 25	2.5 <u>2.4</u> <u>2.3</u> <u>2.5</u> <u>2.6</u>	25 <u>24</u> <u>23</u> <u>25</u> <u>26</u> <u>27</u>	2.5 <u>2.4</u> <u>2.3</u> <u>2.5</u> <u>2.6</u> <u>2.7</u>	2.5 <u>2.4</u> <u>2.3</u> <u>2.5</u> <u>2.6</u> <u>2.7</u>	25 <u>24</u> <u>23</u> <u>25</u> <u>26</u> <u>27</u>	2.5 <u>2.4</u> <u>2.3</u> <u>2.5</u> <u>2.6</u> <u>2.7</u>

Maintain current funding levels; adjust for inflation.

* Includes \$1M carried over from FY90

TECHNOLOGY ELEMENT:	POW	VER R	LT.		V		0.44	_		ODE F		MEVENED BY 1/01
		V	/BS 50	-41		C						
<u>Sub-Element Resources</u> : (\$M)	1 99 1	1 992	1 993	<u>1994</u>	<u>1995</u>	<u>1996</u>	1 997	<u>1996</u>	<u>1999</u>	2000	2001	2002
-11 Photovoltaic Energy Conversion	2.4*	2.3	3.4	5.8	7.2	7.5	8.3					
21 Chemical Energy Conversion	1.8	2.0	2.9	3.5	3.9	4.4	5.0					
31 Thermal Energy Conversion	1.7	1.4	1.9	2.1	2.4	2.7	3.0					
41 Power Management	2.0	1.8	2.9	3.3	3.7	4.1	4.6					
51 Thermal Management	<u>_0.7</u>	_1.0	_ 1.1	_ 1.4	<u>1.7</u>		2.3					
ub-Element Totals: (\$M)	<u> 8.6</u>	_8.5	<u>12.2</u>	<u>16.1</u>	<u>18.9</u>	2 <u>0.6</u>	23.2					
ae:												
OF Totals:												
esources Requirements: (\$M)	8.6	8.5	12.2	16.1	18.9	20.6	23.2					
rogram Support: (\$M)	1.7	1.8	1.8	2.0	2.3	2.6	2.5					
<u>pecial Requirements</u> : (\$M)	_2.2	2.5	<u>_1.8</u>	_2.0	_2.2		_2.6					
OTAL (SM):	12.5	12.8	<u>15.8</u>	20.1	23.4	25.6	28.6					

WBS No. 506-41 ("3X" BUDGET)

Basis for Resource Estimates:

 Grow photovoltaic and associated chemical energy storage and power management technologies to make dramatic reductions in spacecraft mass allocated to power.

Maintain a supporting base activity in thermal energy conversion and thermal management.

 Insufficient resources to develop an advanced concepts technology program as a separate sub-element program. Advanced concepts will be worked in the existing sub-elements.

Includes \$1M carried over from FY90

TECHNOLOGY ELEMENT:	POV	VER R	&T		V	VBS 50	06-41		C	NEVISED OF1		
Sub-Element Resources: (\$M)	<u>1991</u>	1992	1993	1994	1995	1996	1 997	1996	<u>1999</u>	2000,	2001	2002
-11 Photovoltaic Energy Conversion	2.4*	2.3	3.3	4.6	5.9	7.2	8.5		•			
-21 Chemical Energy Conversion	1.8	2.0	2.8	3.4	3.9	4.4	5.0					
-31 Thermal Energy Conversion	1.7	1.4	1.8	2.1	2.4	2.7	3.0					
-41 Power Management	2.0	1.8	2.8	3.2	3.7	4.1	3.0 4.6					
-51 Thermal Management	0.7	1.0	1.1	1.4	1.7	1.9	4.0 2.3					
-91 Advanced Concepts	0.0	_0.0	2.1	_2.4	3.2	- <u>3.8</u>						
<u>Sub-Element Totais</u> : (\$M)	8.6	8.5	13.9	17.1	20.8	24.1	27.7					
<u>CoF</u> :											-	
COF Totals:												
Resources Requirements: (\$M)	8.6	8.5	13.9	17.1	20.8	24.1	27.7					
Program Support: (\$M)	1.7	1.8	1.8	2.2	2.6	3.0	3.4					
Special Requirements: (\$M)	2.2	2.5	2.0		_2.4	.2.6						
'OTAL (\$M):	<u>12.5</u> °	12.8	17.7	21.5	2 <u>5.8</u>	<u>29.7</u>	33.9					

WBS No. 506-41 (STRATEGIC BUDGET)

Basis for Resource Estimates:

 Grow photovoltaic and associated chemical energy storage and power management technologies to make dramatic reductions in spacecraft mass allocated to power.

 Develop advanced concepts program to permit development of innovative technologies that promise revolutionary improvements in performance.

Maintain a supporting base activity in thermal energy conversion and thermal management.

* Includes \$1M carried over from FY90

.

.

.

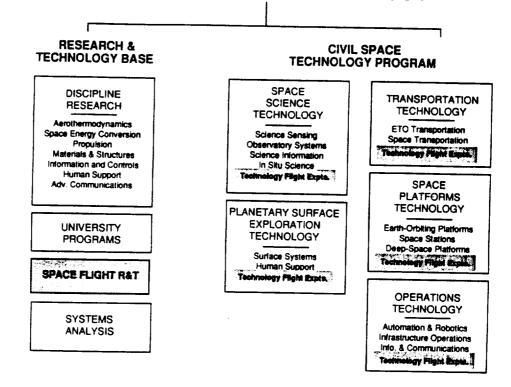
INTEGRATED TECHNOLOGY PLAN REVIEW MEETING

TP REV1

TP REV2

PRESENTATION ON

IN-SPACE TECHNOLOGY EXPERIMENTS PROGRAM


BY JON PYLE ACTING DEPUTY DIRECTOR, FLIGHT PROJECTS DIVISION, OAET JUNE 24, 1991

BRIEFING F JRPOSE

- PROVIDE OVERVIEW OF IN-SPACE TECHNOLOGY EXPERIMENTS PROGRAM (IN-STEP)
 - BACKGROUND
 - IDENTIFICATION AND SELECTION PROCESS
 - IMPLEMENTATION PROCESS
 - CURRENT EXPERIMENTS
 - RESOURCES
- DESCRIBE CURRENT FLIGHT EXPERIMENTS AND FUTURE PLANS

SPACE WORK BREAL JOWN STRUCTURE

SPACE RESEARCH & TECHNOLOGY

IN-STEP PI.JGRAM

TP REV4

TO DEVA

PURPOSE

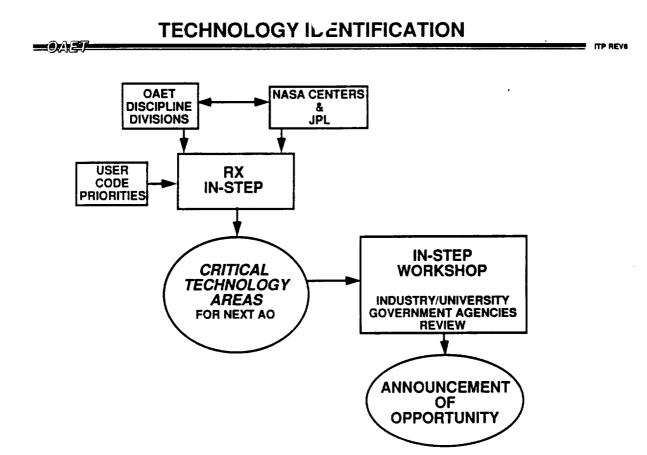
=0AET

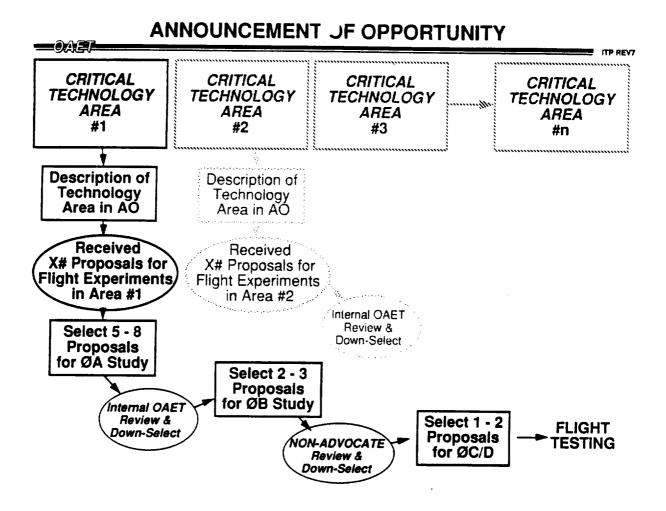
 PROVIDE FLIGHT OPPORTUNITIES FOR THE EVALUATION OF ADVANCED SPACE TECHNOLOGIES IN THE SPACE ENVIRONMENT OR SUBJECTED TO MICRO-GRAVITY CONDITIONS

JUSTIFICATION

• REQUIRES SPACE FLIGHT TO OBTAIN LONG-TERM MICRO-GRAVITY CONDITIONS & EFFECTS OF SPACE ENVIRONMENT

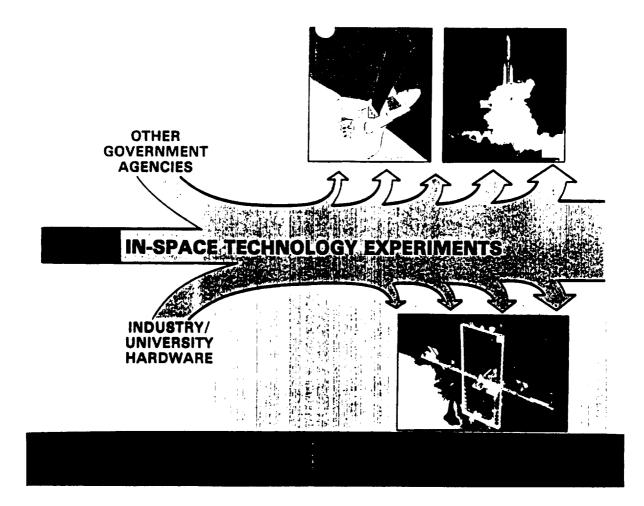
PAYOFF


- FLIGHT DATABASE OF MICRO-GRAVITY & SPACE ENVIRONMENTAL EFFECTS FOR DESIGN OF ADVANCED SPACE SYSTEMS
- ADVANCED PREDICTION TECHNIQUES & ANALYTICAL MODELS
 VALIDATED WITH SPACE MEASUREMENTS
- IMPROVED EFFICIENCY & EFFECTIVENESS OF CURRENT SENSORS & SUBSYSTEMS (REDUCED INTERFERENCE OF OPTICAL SENSORS)


- OAEF

 PROPOSALS OBTAINED THROUGH ANNOUNCEMENT OF OPPORTUNITY (AO) PROCESS ITP REVS

- EXPERIMENT DEVELOPMENT COST LESS THAN \$5M
- 60% OF PROGRAM FUNDING FOR INDUSTRY/UNIVERSITY
- CLASS D MODIFIED EXPERIMENTS
- SELECTION OF FLIGHT EXPERIMENTS FOR DEVELOPMENT
- LAUNCH/CARRIER OPPORTUNITIES IDENTIFIED
- FLIGHT EXPERIMENTS IMPLEMENTATION
 (HARDWARE DEVELOPMENT)
- FLIGHT EVALUATION
- DATA ANALYSIS AND REPORTING (TECHNOLOGY TRANSFER)



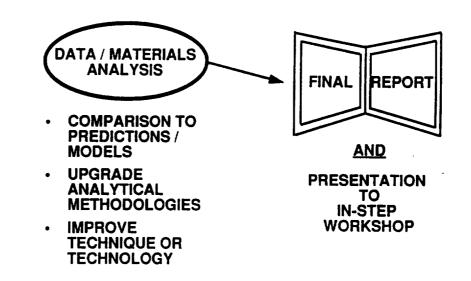
FLIGHT OPPORTUNI'I / IDENTIFICATION

TP REVO

- DETERMINE OPTIMUM APPROACH FOR FLIGHT EVALUATION
 - SPACE SHUTTLE (MIDDECK, GAS, HH-M OR G, SPARTAN, OTHER)
 - EXPENDABLE LAUNCH VEHICLE
 - SPACE STATION FREEDOM
 - OTHER
- SELECTION OF OPPORTUNITY CONSISTENT WITH AVAILABILITY OF PAYLOAD & LAUNCH SYSTEM

IMPLEMENTA ... ON PROCESS

ITP REV10


,

-9AET-

	PROJECT	
PHASE A	DEFINITION	PROJECT
TECHNICAL	PHASE B	IMPLEMENTATION
FEASIBILITY & FLIGHT	PROJECT	PHASE C/D
EXPERIMENT DEFINITION	DEFINITION & PLANNING EXPERIMENT CONCEPTUAL DESIGN	FLIGHT HARDWARE DESIGN, FABRICATION, GROUND TESTING AND FLIGHT OPERATIONS & TESTING

TP REV12

CURRENT FLIGH' EXPERIMENTS

—OAET

-OAET

PRE - IN-STEP EXPERIMENTS (3)

- · LIDAR IN-SPACE TECHNOLOGY EXPERIMENT
- ORBITER EXPERIMENTS
- · LONG DURATION EXPOSURE FACILITY

FY 87 I/U EXPERIMENTS (5)

- TANK PRESSURE CONTROL EXPERIMENT
- · MIDDDECK 0-GRAVITY DYNAMICS EXPERIMENT
- HEAT PIPE PERFORMANCE EXPERIMENT
- · EMULSION CHAMBER TECHNOLOGY EXPERIMENT
- INVESTIGATION OF SPACECRAFT GLOW

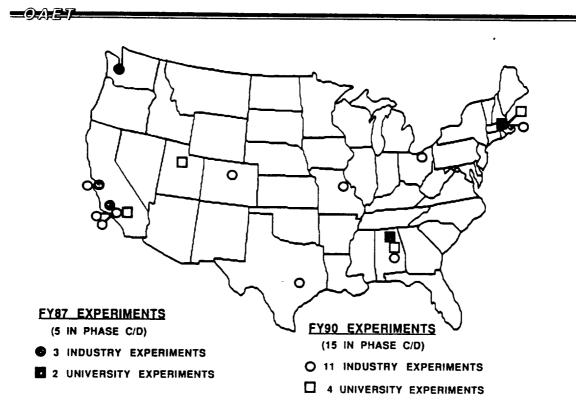
FY 87 NASA EXPERIMENTS (7)

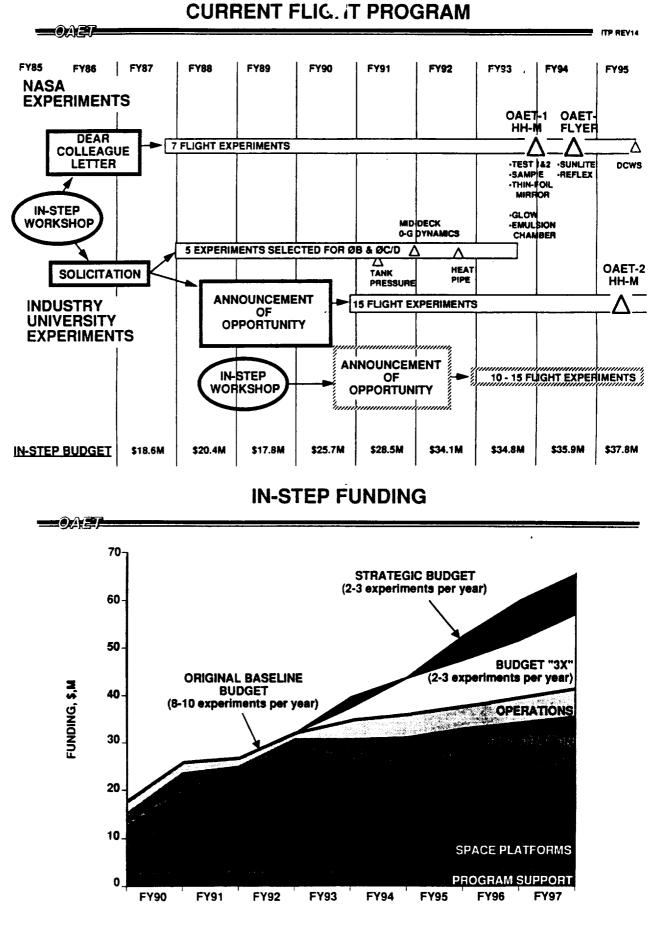
- THERMAL ENERGY STORAGE MATERIALS
- THIN FOIL MIRRORS
- · SOLAR ARRAY MODULE PLASMA INTERACTION
- RETURN FLUX EXPERIMENT
- DEBRIS COLLISION WARNING SENSOR
- LASER OSCILLATOR
- MODAL IDENTIFICATION EXPERIMENT

FY 90 I/U EXPERIMENTS (15)

- ELECTROLYSIS EXPERIMENT
- · LIQUID MOTION IN A ROTATING TANK
- TANK VENTING
- LARGE INFLATABLE PARABOLOID
- HYDROGEN-MASER CLOCK
- TWO-PHASE FLOW
- SPACE CRYOGENIC SYSTEM EXPERIMENT
- JITTER SUPPRESSION

- JOINT DAMPING IN SPACE
- PERMEABLE MEMBRANE EXPERIMENT
- · MIDDECK ACTIVE CONTROL EXPERIMENT
- · SODIUM SULFUR BATTERY
- · OPTICAL PROPERTIES MONITOR
- RISK BASED FIRE SAFETY
- ACCELERATION MEASUREMENT


IN-STEP PAL ICIPANTS


ITP REV13

=0/A/ZT

INDUSTRY LIFE SYSTEMS **MARTIN MARIETTA** ROCKWELL **KMS FUSION** SPECTRON **PAYLOAD SYSTEMS INCORPORATED** LORAL L'GARDE SMITHSONIAN ASTROPHYSICS OBSERVATORY TRW HUGHES **AZ TECHNOLOGY** MCDONNELL DOUGLAS CORPORATION **BOEING AIRCRAFT CO** LOCKHEED MISSILE & SPACE WYLE LABORATORIES **AMERICAN SPACE TECHNOLOGY** SOUTHWEST RESEARCH INSTITUTE UNIVERSITY MASSACHUSETTS INSTITUTE OF TECHNOLOGY **UNIVERSITY OF CALIFORNIA - LOS ANGELES** UNIVERSITY OF ALABAMA, HUNTSVILLE **UTAH STATE UNIVERSITY** NASA AMES RESEARCH CENTER **GODDARD SPACE FLIGHT CENTER** JET PROPULSION LABORATORY JOHNSON SPACE CENTER **KENNEDY SPACE CENTER** LANGLEY RESEARCH CENTER LEWIS RESEARCH CENTER MARSHALL SPACE FLIGHT CENTER

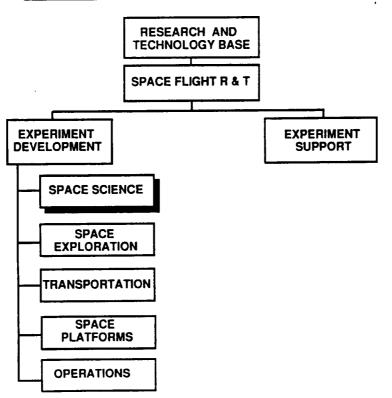
IN-STEP INDUSTRY/UNIVERSITY LOCATIONS

S-8

-OAEF

CONCLUDING REMARKS

IN-STEP FLIGHT EXPERIMENT CAPABILITIES


- IN-STEP WORKSHOP EVERY OTHER YEAR
 - REVIEW COMPLETED EXPERIMENT RESULTS
 - REVIEW ON-GOING EXPERIMENTS
 - IDENTIFY CRITICAL TECHNOLOGY NEEDS
- ANNOUNCEMENT OF OPPORTUNITY EVERY TWO YEARS
 - 8 12 CRITICAL TECHNOLOGY AREAS
 - INITIATE ~ 50 NEW PHASE A STUDIES
 - CREATE STEADY OUTPUT OF 8 10 FLIGHT EXPERIMENTS PER YEAR
- OAET EXPECTS 20-25% ALLOCATION OF SPACE STATION FREEDOM (SSF) EXPERIMENT SPACE WHEN IT BECOMES AVAILABLE
 - IN-STEP WILL UTILIZE SSF AS A FLIGHT EVALUATION OPPORTUNITY FOR THOSE EXPERIMENTS REQUIRING LONG-TERM EXPOSURE OR ASTRONAUT PARTICIPATION
 - EXPERIMENTS BEYOND THE FUNDING SCOPE OF IN-STEP WILL BE IDENTIFIED & FUNDED THROUGH FOCUSSED THRUSTS

TECHNOLOGY FLIGHT EXPERIMENTS

TP REV14

ITP REV22

WORK BREAKDOWN STRUCTURE

SPACE SCIENCE TECHNOLOGY FLIGHT EXPERIMENTS

FLIGHT PROJECTS DIVISION

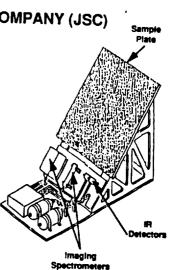
INDUSTRY/UNIVERSITY EXPERIMENTS

- INVESTIGATIONS OF SPACECRAFT GLOW
- SPACE CRYOGENIC SYSTEM EXPERIMENT
- LARGE INFLATABLE PARABOLOID
- HYDROGEN-MASER CLOCK
- SODIUM SULFUR BATTERY
- ACCELERATION MEASUREMENT

NASA/JPL DEVELOPED EXPERIMENTS

- RETURN FLUX EXPERIMENT
- THIN FOIL MIRRORS
- LASER OSCILLATOR EXPERIMENT
- ORBITAL ACCELERATION RESEARCH EXPERIMENT
- LIDAR IN-SPACE TECHNOLOGY EXPERIMENT

EXPERIMENTAL INVESTIGATION OF SPACECRAFT GLOW


(EISG) LOCKHEED MISSILE AND SPACE COMPANY (JSC)

OBJECTIVE:

• DETERMINE THE MECHANISM CAUSING FORMATION OF GLOW PRODUCING MOLECULES & ASSESS THE EFFECTS OF TEMPERATURE ON GLOW EMISSION

APPROACH:

• MEASURE THE INTENSITY OF ENERGY RELEASED IN THE ULTRAVIOLET, INFRARED & VISIBLE SPECTRUM FROM GLOW PRODUCING MATERIALS SUBJECTED TO ATOMIC OXYGEN PARTICLE ABSORPTION AT VARIOUS TEMPERATURES

• EXPERIMENT COST: \$4.2M FLIGHT DATA: 5/93 (STS-62)

APPLICATION:

OAET-1 (HH-M)

• RESULTS WILL ENABLE THE DEVELOPMENT OF NON-GLOWING SURFACE COATINGS FOR REDUCING SPECTRAL INTERFERENCE IN OPTICAL SENSORS

35.12N7-4 9/90

SPACE CRYOGENIC SYSTEMS EXPERIMENT HUGHES AIRCRAFT COMPANY (JPL)

- C)-(-)-

Ovocaoler **OBJECTIVE:** Equipment Mounting Compressor Plate-Radiator DEMONSTRATE MICROGRAVITY **OPERATION OF AN ACTIVE** Phase Change CRYOGENIC (65°K) THERMAL Material Container CONTROL SYSTEM Triple Poi Batteries Energy **Diode Oxygen Heat Pipe** Storage **APPROACH:** Device MEASURE PERFORMANCE PARAMETERS Inforface Unit FOR OXYGEN HEAT PIPES, A CRYOGENIC THERMAL STORAGE DEVICE, AND A LONG-LIFE STIRLING CYCLE CRYOGENIC COOLER IN MICROGRAVITY EXPERIMENT COST: \$7.5M FLIGHT DATA: 6/95, CAP **APPLICATION:** VERIFICATION OF ANALYTICAL MODELS FOR CRYOGENIC SYSTEM DESIGN PROVIDES FLIGHT DATA FOR INFRARED SENSOR COOLERS FOR EARTH **OBSERVING SATELLITES (EOS) AND ORBITING X-RAY OBSERVATORIES** 36.12N.8.7 9/90 -0) (ST INFLATABLE PARABOLOID L'GARDE, INC. (JPL) ملحك Kapt Ca **OBJECTIVE:** VALIDATE ERECTION OF A PACKAGED 1.1Pa **28 METER PARABOLOID** Pressure DETERMINE THE STRUCTURAL DYNAMICS (Water . Vepor) & SURFACE ACCURACY **APPROACH:** INFLATE STRUCTURE & ANTENNA AFTER **INSERTION IN LOW EARTH ORBIT** MEASURE PARABOLOID ACCURACY AT VARIOUS PRESSURES & SUN ANGLES WITH SURFACE IMAGER PERTURB ANTENNA WITH REACTION JETS & GATHER RESPONSE WITH SURFACE IMAGER • EXPERIMENT COST: \$9.0M FLIGHT DATA: TBD, NSTS OR ELV **APPLICATION:** ULTRA LIGHTWEIGHT, LOW COST APPROACH FOR LARGE MODERATE ACCURACY REFLECTORS POSSIBLE BREAKTHROUGH TECHNOLOGY FOR EXPLORATION INITIATIVE OR EVOLUTIONARY SPACE STATION 35,12N.8.4 9/90

HYDROGEN MASER CLOCK SMITHSONIAN ASTROPHYSICAL OBSERVATORY (MSFC)

16,2

DIA

OBJECTIVE:

0.0 FT

 DETERMINE LONG-TERM FREQUENCY STABILITY OF HYDROGEN MASER CLOCK AND ITS SENSITIVITY TO THE SPACE ENVIRONMENT

APPROACH:

- SPACE HYDROGEN-MASER COMPARED WITH GROUND MASER USING S-BAND TRANSPONDER & TRANSMITTER TO DETERMINE RELATIVISTIC FREQUENCY CORRECTIONS
- EXPERIMENT COST: \$9.6M

APPLICATION:

MASER DER & Thermaily Controlled Overs

3 Section Solenoid

FLIGHT DATA: PLANNED FOR FLIGHT ON EUREKA (1996)

NHS R

Dead-Permit of the second states and the second

4 Lawer Magnetic Shields

111

Hydrogen Scavengin

RF Dissociator

Serption Cartridges (4)

- PROVIDES MEASUREMENT TOOLS TO CONDUCT RADIOASTRONOMY, RELATIVITY & GRAVITATIONAL RESEARCH
- INCREASED TIMING PRECISION WILL IMPROVE EARTH & SPACE
 NAVIGATION
- WILL INCREASE ACCURACY OF GLOBAL POSITIONING SYSTEM

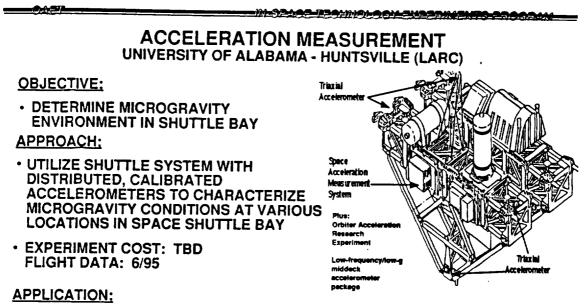
35.12N.8.5 8/90

Hickhiter-M

SODIUM-SULFUR BATTERY FORD AEROSPACE CORPORATION (LERC)

OBJECTIVE;

 DETERMINE PERFORMANCE CHARACTERISTICS OF SODIUM-SULFUR (NaS) BATTERIES IN THE MICROGRAVITY ENVIRONMENT


APPROACH:

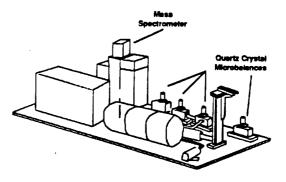
- MEASURE THE CHARGE/DISCHARGE CHARACTERISTICS, FLUID REACTANT DISTRIBUTION, FREEZE-THAW CHARACTERISTICS, DURABILITY & PERFORMANCE OF NaS CELLS UNDER MICROGRAVITY CONDITIONS MOUNTED IN THE BAY OF THE SPACE SHUTTLE
- EXPERIMENT COST: \$6.0M FLIGHT DATA: 10/95

APPLICATION:

• LOWER WEIGHT & HIGHER EFFICIENCY (2 X SPECIFIC ENERGY) OVER CURRENT SPACE BATTERIES WILL PROVIDE LONGER LIFE SPACECRAFT WITH GREATER PAYLOAD CAPACITY

- PROVIDE FLIGHT DATA TO VALIDATE & UPGRADE SPATIAL ACCELERATION DISTRIBUTION MODELS
- ACCURATE KNOWLEDGE OF MICROGRAVITY ENVIRONMENT REQUIRED TO CONDUCT MATERIALS & BIOLOGICAL PROCESSING EXPERIMENTS IN SPACE SHUTTLE & SPACE STATION

RETURN FLUX EXPERIMENT (REFLEX) GODDARD SPACE FLIGHT CENTER


OBJECTIVE:

[تكريز مرد

 DETERMINE SPECIE ACCRETION, VELOCITY, DIRECTION & CHEMISTRY OF SPACECRAFT CONTAMINATION

APPROACH:

• USE QUARTZ CRYSTAL MICROBALANCES & A MASS SPECTROMETER TO MEASURE MOLECULAR CONSTITUTENTS OF ENVIRONMENT AROUND A SPACECRAFT

- RELEASE KNOWN GAS AND CHARACTERIZE RESULTING CONTAMINATION
- EXPERIMENT COST: \$5.1M FLIGHT DATA: 7/94, OAET-FLYER (SPARTAN)

APPLICATION:

• FLIGHT RESULTS WILL BE USED TO IMPROVE CONTAMINATION MODELING TECHNIQUES & PREDICTION CODES (INCREASES EFFECTIVENESS OF OPTICAL SENSORS, THERMAL RADIATORS & SOLAR ARRAYS)

Shutter

Door

chanie

Electronic Boxes

Batters

Box

779.H9L901_EX958HARATE

Conica

THIN FOIL MIRROR (TFM) GODDARD SPACE FLIGHT CENTER

OBJECTIVE:

. • 51

- MEASURE DEGRADATION OF X-RAY REFLECTION EFFICIENCY DUE TO INTERACTION WITH ATOMIC OXYGEN FOR CANDIDATE MIRROR SURFACES DETERMINE FEFFORTIVENESS
- DETERMINE EFFECTIVENESS OF PROTECTIVE COATINGS TO MINIMIZE SURFACE DEGRADATION

APPROACH:

- SERIES OF LACQUER-COATED, HIGH REFLECTIVITY ALUMINUM FOILS WITH 500 ANGSTROM GOLD LAYER AND MIRRORS WITH VARIOUS PROTECTIVE COATINGS SUBJECTED TO INCIDENCE BY ATOMIC OXYGEN PARTICLES
- EXPERIMENT COST: \$2.0M
- FLIGHT DATA: 5/93 (STS-62), OAET-1 (CAP)

APPLICATION:

 PROVIDES FLIGHT DATA TO IMPROVE DESIGN AND REDUCE COST OF ADVANCED X-RAY MIRROR SURFACES (i.e., ASTRO-D, SPECTRUM-X, & SPEKTROSAT)

35.12N7-8 9/90

Plezo-

Electric

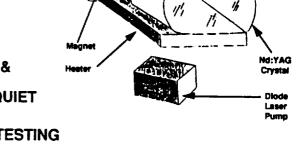
Crystal

(PZT)

GAS Can

(less lid)

LASER OSCILLATOR SENSOR LANGLEY RESEARCH CENTER


OBJECTIVE:

انتكه

- VALIDATE ULTRA-STABLE, SOLID STATE LASER OSCILLATOR
- INVESTIGATE LASER LINEWIDTH AND FREQUENCY STABILITY LIMITS

APPROACH:

- DEVELOP A SELF-CONTAINED, AUTOMATED LASER OSCILLATOR
- MEASURE THE LASER LINEWIDTH & FREQUENCY STABILITY IN A MICROGRAVITY, ACOUSTICALLY QUIET ENVIRONMENT
- COMPARE WITH GROUND BASED TESTING AND ANALYTICAL PREDICTIONS

19474-1912

THE SE

Aslin !

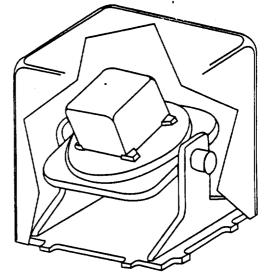
• EXPERIMENT COST: \$6.7M FLIGHT DATE: 7/94, OAET-FLYER (SPARTAN)

APPLICATION:

- IMPROVED FREQUENCY AND TIME STANDARDS FOR GLOBAL POSITIONING SYSTEM, ADVANCED COMMUNICATIONS, & VERY LONG BASE INTERFEROMETRY (VLBI)
- SOURCE OF STABLE, COHERENT LIGHT FOR REMOTE SENSORS

ORBITAL ACCELERATION RESEARCH EXPERIMENT (OARE)

LANGLEY RESEARCH CENTER


OBJECTIVE:

• ACCURATE MEASUREMENT OF AERODYNAMIC ACCELERATION ALONG THE ORBITER'S PRINCIPAL AXES IN THE FREE MOLECULAR FLOW REGIME AND THROUGH THE TRANSITIONAL FLOW REGIME DURING REENTRY

APPROACH:

- MEASURES LINEAR ACCELERATIONS (10-9g) IN THE PRESENCE OF ORBITER STRUCTURAL VIBRATION NOISE
- UTILIZES THREE AXIS ELECTROSTATICALLY SUSPENDED PROFF-MASS WITH ON-ORBIT CALIBRATION CAPABILITY
- INSTALLED ON THE KEEL BRIDGE FITTING IN THE PAYLOAD BAY
- · OPERATIONAL ON OV-102 FLIGHTS

APPLICATION:

ISTESOMOLOGY AND BUDERINGNES DOG.

- DETERMINATION OF ORBITAL DRAG WHICH PROVIDES DESIGN SPECIFICATIONS FOR ORBIT MANAGEMENT AND MAINTENANCE SYSTEM FOR THE SSF
- PROVIDES AERODYNAMIC DESIGN DATA FOR ADVANCED AEROMANEUVERING SPACE TRANSFER VEHICLES
- EXPAND KNOWLEDGE OF MICROGRAVITY ENVIRONMENT NEEDED FOR THE CONDUCT OF MICROGRAVITY EXPERIMENTS

LIDAR IN-SPACE TECHNOLOGY EXPERIMENT (LITE) LANGLEY RESEARCH CENTER

OBJECTIVE:

£₽.

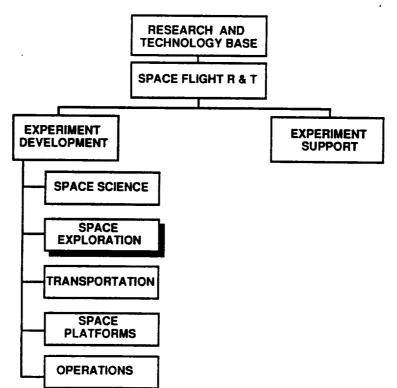

- EVALUATE CRITICAL ATMOSPHERIC PARAMETERS & VALIDATE OPERATION OF A SOLID-STATE LIDAR SYSTEM FROM A SPACEBORNE PLATFORM MEASURING:
 - CLOUD DECK ALTITUDES
 - PLANETARY BOUNDARY-LAYER HEIGHTS
 - STRATOSPHERIC & TROPOSPHERIC AEROSOL
 - ATMOSPHERIC TEMPERATURE & DENSITY (10km to 40km)

APPROACH:

- DESIGNED AS A SHUTTLE-BORNE EXPERIMENT WITH MULTI-MISSION CAPABILITIES
- MEASUREMENTS OVER CHANGING ATMOSPHERIC BACKSCATTER CONDITIONS (DAYTIME AND NIGHTTIME)
- EXPERIMENT COST: \$18.3M FLIGHT DATE: MID 1993

APPLICATION:

- GENERALLY APPLICABLE TO A CLASS OF INSTRUMENTS INCORPORATING HIGH POWER LASERS, OPTICAL SYSTEMS AND LARGE TELESCOPES
- SPECIFICALLY APPLICABLE TO THE EARTH OBSERVING SYSTEM (EOS) AND THE LIDAR ATMOSPHERIC SOUNDER AND ALTIMETER (LASA) FACILITY



SPACE SCIENCE			PROJEC. 3 DIVISION			
EXPERIMENT TITLE	1991	1992	1993	1 (00)		· · · · · · · · · · · ·
	t	1384	1 1003	1994		1996
	1		•	1		•
	<u> </u>			1	1	:
· EVEEP	INTEGRATION		1	:		
			· Λ	i 1	1	1 1
- THIN FOIL MIRROR	PHASE B DES.	FAB/TEST	INTEG	1		1
	PDR CDR			;	•	1
· SPACECRAFT GLOW	<u>A</u> <u>A</u>			k K	• •	•
			<u></u>	1		1
	PDR COR	l .	•	: ^		•
· SUNLITE	A DES. A F	A8./ASSY	TEST CARRI	ER INTEG.	1	
		`	· · · · · · · · · · · · · · · · · · ·			
			1		•	
· RETURN FLUX EXPERIMENT	PH.B. FAB. AND	SSEMBLY	CARR	IER INTEG		
	:	NAR	· · · · · · · · · · · · · · · · · · ·			
· CRYO-COOLER	PHASE B		TESTINTEG	<u> </u> Д		
· CHTO-GOULEN	PRASE B	<u> </u>				
		NAR	PDR	COR	PSR ∧	F I
· SODIUM SULFUR BATTERY	PHASE E		<u> </u>	<u> </u>		
Source Source Barrent	L		<u> </u>	<u> </u>		
			Å	• •	•	
	PHASE B	/	Твр	•		
	1		CDR			Λ
· HYDROGEN MASER	PHASE B	DESIGN			ASSY & TEST	
					<u> </u>	[
ACCELERATION MEASUREMENT	PHASE A	PHASE B	TBD		: :	

TECHNOLOGY FLIGHT EXPERIMENTS

WORK BREAKDOWN STRUCTURE

- QAZI

EXPLORATION TECHNOLOGY FLIGHT EXPERIMENTS

FLIGHT PROJECTS DIVISION

INDUSTRY/UNIVERSITY EXPERIMENTS

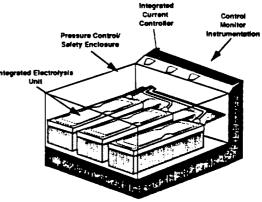
- ELECTROLYSIS EXPERIMENT
- PERMEABLE MEMBRANE EXPERIMENT

NASA/JPL DEVELOPED EXPERIMENTS

(NONE IDENTIFIED)

ELECTROLYSIS EXPERIMENT LIFE SYSTEMS, INC. (LARC)

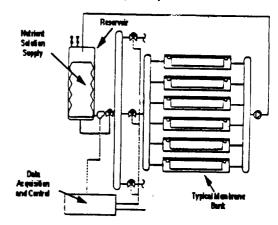
OBJECTIVE:


 DETERMINE EFFECTS OF MICROGRAVITY ON WATER ELECTROLYSIS CELL PERFORMANCE

APPROACH:

- THREE ELECTROLYSIS UNITS
 PACKAGED IN A SINGLE MIDDECK
 LOCKER
- INDIVIDUAL UNITS USE DIFFERENT ELECTRODES EACH WITH VARYING THICKNESS, PORE SIZE AND POROSITY
- EXPERIMENT COST: \$1.9M FLIGHT DATA: 2/94, MIDDECK

APPLICATION:


• EFFICIENT PRODUCTION OF HYDROGEN AND OXYGEN IN SPACE FOR FUTURE MISSIONS REQUIRING LONG-TERM LIFE SUPPORT

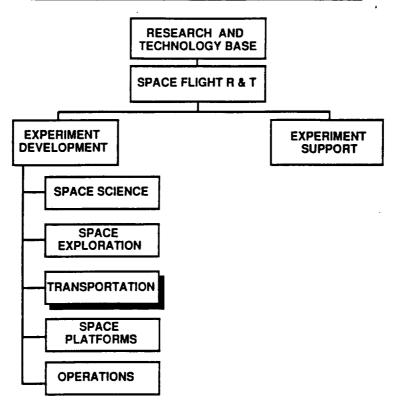
PERMEABLE MEMBRANE TECHNOLOGY EXPERIMENT BOEING AEROSPACE AND ELECTRONICS (ARC)

OBJECTIVE;

- VERIFY MEMBRANE TRANSPORT PERFORMANCE IN LOW GRAVITY APPROACH:
- EXPOSE A VARIETY OF MEMBRANES TO A SUPPLY SOLUTION IN MICROGRAVITY
- PHOTOGRAPH FLUID TRANSPORT BEHAVIOR
- COLLECT FLUID SAMPLES TO DETERMINE TRANSFER RATES

• EXPERIMENT COST: \$4.5M FLIGHT DATE: 1/94, CAP

APPLICATION:


- VALIDATION OF MEMBRANE TECHNOLOGY TO BE USED IN SPACE STATION FREEDOM ENVIRONMENTAL CONTROL LIFE SUPPORT SYSTEM
- SUPPORTS PERMEABLE MEMBRANE-BASED TECHNOLOGIES FOR SPACE-BASED MATERIALS PROCESSING AND LABORATORY TECHNIQUES

SIPLORATION	TECH	FLIGHT # NOLOGY FLI	PROJECTS DI GHT EXPERIM	VISION ENTS PROGRA	M	
	1991					
		1992	1993	1994	1995	1996
	i		•			
	1	NAR POR	COR	À		1
· ELECTROLYSIS EXPERIMENT	PHASE B	$\Delta \Lambda$	FAB/TEST/IN	TEG		
	1		1			• • •
PERMEABLE MEMBRANE	PHASE B		NOR COR			
		/	$\overline{\lambda}$ $\overline{\lambda}$,	_	i
	•		, ,	:		1
			•			
	8			1 1		
					•	
	:	:		:		
	*			1 1		:
		1		•	1	•
				•		1
	•	, , ,		•		•
				•		
	:			•		•
		:		•		•
	i	i		1 1		, 1 1
				1 1		2 1
	• 1 1					1 1 1
	;	:				

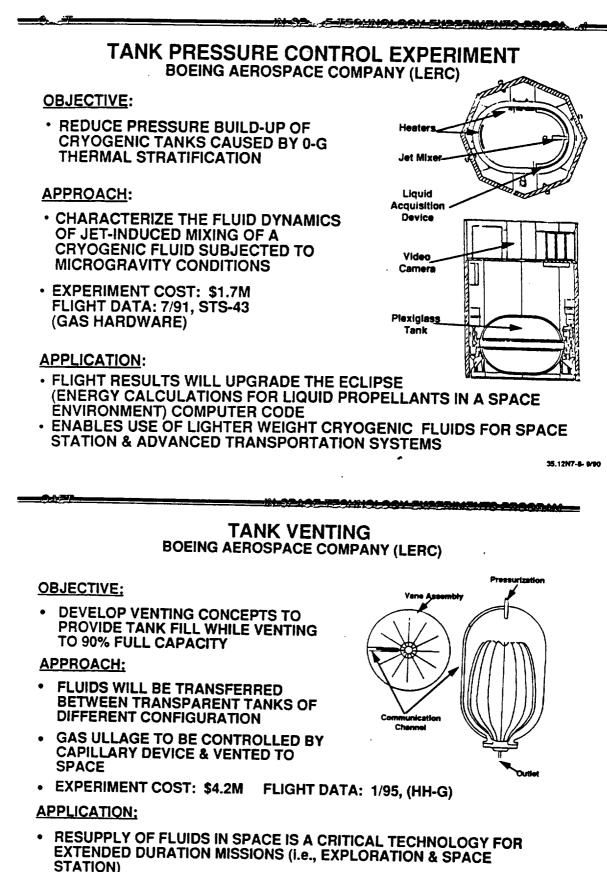
ITP REV16

WORK BREAKDOWN STRUCTURE

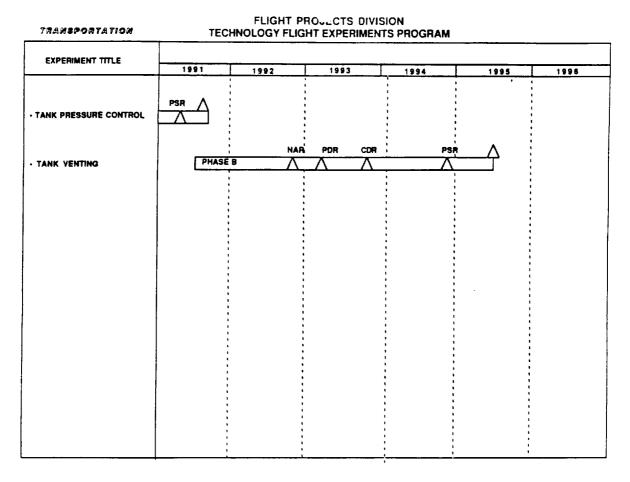
TRANSPORTATION TECHNOLOGY FLIGHT EXPERIMENTS

FLIGHT PROJECTS DIVISION

-OAEI-


TRANSPORTATION TECHNOLOGY FLIGHT EXPERIMENTS

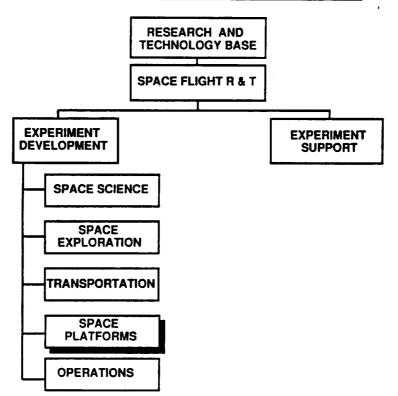
INDUSTRY/UNIVERSITY EXPERIMENTS


- TANK PRESSURE CONTROL EXPERIMENT
- TANK VENTING EXPERIMENT

NASA/JPL DEVELOPED EXPERIMENTS

•NONE IDENTIFIED

VENTING IS ESSENTIAL TO ALLOW MAXIMUM USE OF TANK VOLUME



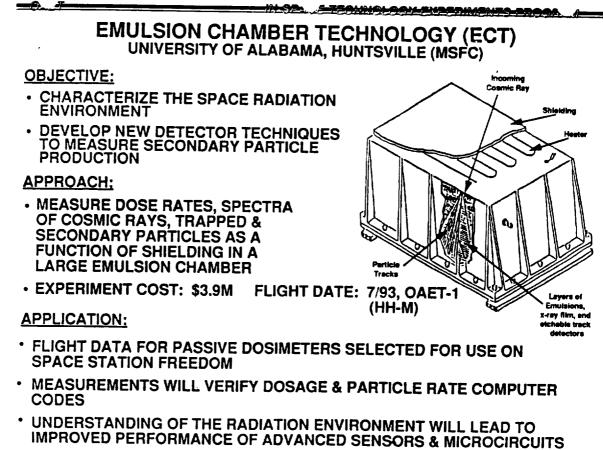
TECHNOLOGY FLIGHT EXPERIMENTS

ITP REV17

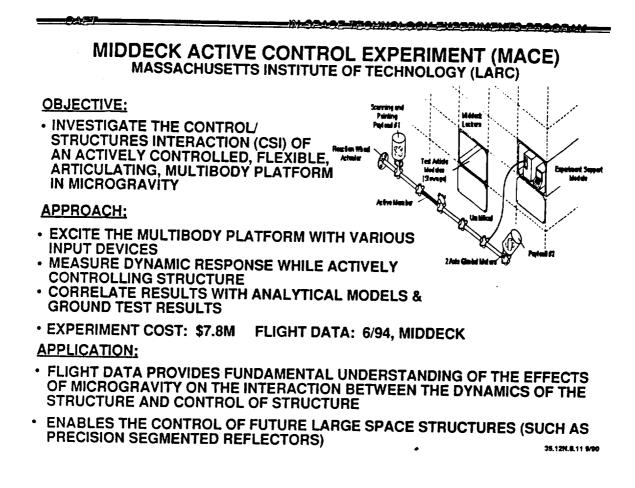
WORK BREAKDOWN STRUCTURE

=0aet-

PLATFORM TECHNOLOGY FLIGHT EXPERIMENTS


FLIGHT PROJECTS DIVISION

INDUSTRY/UNIVERSITY EXPERIMENTS


- EMULSION CHAMBER TECHNOLOGY
- MIDDECK ACTIVE CONTROL EXPERIMENT
- MODELING AND MEASUREMENT OF JOINT DAMPING
- MIDDECK 0-GRAVITY DYNAMICS EXPERIMENT
- JITTER SUPPRESSION
- HEAT PIPE PERFORMANCE
- LIQUID MOTION IN A ROTATING TANK
- OPTICAL PROPERTIES MONITOR
- TWO PHASE FLOW
- FIRE SAFETY

NASA/JPL DEVELOPED EXPERIMENTS

- SOLAR ARRAY MODULE PLASMA INTERACTION EXPERIMENT
- THERMAL ENERGY STORAGE

35.12N7-10- 9/90

MEASUREMENTS & MODELING of JOINT DAMPING in SPACE UTAH STATE UNIVERSITY (LARC)

Magnet Plate

Tip Mass

Lever Arm

Stepper Motor

Controller/ Cata

Trass Strut

Battery Box

Actuistion

OBJECTIVE:

الكريرم

- DETERMINE DAMPING BEHAVIOR OF JOINT DOMINATED TRUSS STRUCTURE IN MICROGRAVITY
- UPGRADE PREDICTION TECHNIQUES TO ELIMINATE GRAVITY EFFECTS ON SPACE STRUCTURES

APPROACH:

- EXCITE TRUSS STRUCTURE IN MICROGRAVITY
- MEASURE DYNAMIC RESPONSE OF STRUCTURE
- CORRELATE RESULTS WITH ANALYTICAL MODELS, GROUND AND KC-135 FLIGHT TEST RESULTS
- EXPERIMENT COST: \$1.5M FLIGHT DATA: 2/94, CAP

APPLICATION:

- IMPROVE CAPABILITY OF PREDICTING DYNAMIC BEHAVIOR OF JOINT DOMINATED, TRUSS STRUCTURES IN SPACE (i.e., SPACE STATION)
- IMPROVED ANALYTICAL PREDICTIONS WILL REDUCE WEIGHT OF ADVANCED SPACE STRUCTURES

14 121 8 8 8/80

Umbilical

elescope

Erch

Control

Alpha-Joint

neducer (s) Typical

ciric

ping (Typical)

Dynamic

Test

Facility

Jointed Truss

Structure

MIDDECK O-GRAVITY DYNAMICS EXPERIMENT (MODE) MASSACHUSETTS INSTITUTE OF TECHNOLOGY (LaRC)

OBJECTIVE:

- MEASURE EFFECTS OF MICROGRAVITY ON THE DYNAMIC CHARACTERISTICS OF JOINTED-TRUSS STRUCTURES (SUCH AS SPACE STATION ALPHA-JOINT)
- INVESTIGATE THE DYNAMICS OF FLUID-SPACECRAFT INTERACTION IN 0-G

APPROACH:

- DEVELOP A MICROGRAVITY, DYNAMIC TEST FACILITY TO INDUCE KNOWN DISTURBANCES IN TEST ARTICLES, MEASURE DYNAMIC RESPONSES & DETERMINE METHODS OF PREDICTING DYNAMICS OF STRUCTURES AND FLUIDS IN THE 0-G ENVIRONMENT
- EXPERIMENT COST: \$1.9M

FLIGHT DATA: 9/91 (STS-48) MIDDECK (2 1/2 LOCKERS)

Passive Constrain

Laver Campin

APPLICATION:

• VALIDATED PREDICTION & ANALYTICAL MODELING TECHNIQUES WILL PROVIDE ABILITY TO DESIGN & CONTROL LARGE SPACE STRUCTURES (i.e., SPACE STATION)

JITTER SUPPRESSION

MCDONNELL DOUGLAS MISSLE SYSTEM COMPANY (LARC)

OBJECTIVE:

0.0

- IN-SPACE EVALUATION OF PASSIVE AND ACTIVE DAMPING
- DEMONSTRATE TECHNIQUES APPLICABLE TO SUPPRESSION OF VIBRATORY JITTER
- ESTABLISH GROUND/FLIGHT EXPERIMENTAL DATABASE ON JITTER SUPPRESSION TECHNIQUES

APPROACH:

- EXPERIMENT BASED ON USE OF EXISTING PRECISION STRUCTURAL ASSEMBLY
- EXCITE STRUCTURE & RECORD STRUCTURAL DYNAMIC RESPONSE
- EXPERIMENT COST: \$3.0M FLIGHT DATA: 6/95, OAET-2 (HH-M)

APPLICATION:

- IMPROVED CONTROL OF OPTICAL SENSORS AND LASER COMMUNICATION DEVICES
- PASSIVE & ACTIVE DAMPING TECHNOLOGIES WILL REDUCE WEIGHT OF LARGE SPACE STRUCTURES

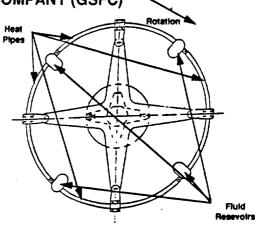
35,12N.8.8 8/90

OBJECTIVE:

اتت.

- EVALUATE EFFECTS OF MICROGRAVITY ON HEAT PIPE PERFORMANCE
- TEST METHODS OF RECOVERY FROM HEAT PIPE DEPRIME CONDITIONS
- INVESTIGATE NUTATION DYNAMICS

APPROACH:


- 4 HEAT PIPES MOUNTED ON ROTATING STRUCTURE
- VARIABLE-G APPLIED TO HEAT PIPES BY CONTROLLED SPINNING
- DEPRIME AND REPRIME IN LOW GRAVITY CONDITIONS
- MEASURE HEAT PROPAGATION THROUGH HEAT PIPES AT VARIOUS G LEVELS
- EXPERIMENT COST: \$2.6M FLIGHT DATA: 9/92, MIDDECK

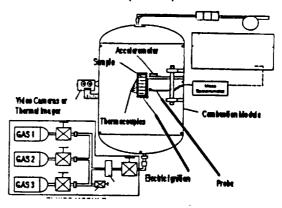
APPLICATION:

- IMPROVE THERMAL EFFICIENCY OF SPACECRAFT POWER SYSTEMS
 ENABLING TECHNOLOGY FOR APPLICATION OF HEAT PIPES TO
- ADVANCED SPACECRAFT

35.12N7-11- 8/90

- DAET LIQUID MOTION in a ROTATING TANK SOUTHWEST RESEARCH INSTITUTE (GSFC) **OBJECTIVE:** Cylindrical Tari MEASURE DYNAMICS OF **Ellipsoidal** Tank LIQUIDS IN TANKS ROTATING **ABOUT A CENTROID IN SPACE** n Motor #7 **APPROACH:** VARY LIQUID FILL LEVELS, LIQUID e Angle (Exapp **PROPERTIES, TANK GEOMETRY,** Linuid D **SPIN RATES & NUTATION ANGLES** 1 TO OBTAIN FLIGHT DATA EXPERIMENT COST: \$3.2M FLIGHT DATA: 2/94, MIDDECK **APPLICATION:**
 - FLIGHT DATA TO BE USED TO VALIDATE & UPGRADE ANALYTICAL MODELS
 - UNDERSTANDING OF FLUID DYNAMICS IN MICROGRAVITY ALLOWS DESIGN OF LONGER LIFE SPACECRAFT THROUGH REDUCED FUEL CONSUMPTION

RISK BASED FIRE SAFETY UNIVERSITY of CALIFORNIA, LOS ANGELES (LERC)


OBJECTIVE:

(A) (A) (A)

• MEASURE EFFECTS OF MICROGRAVITY ON THE COMBUSTION CHARACTERISTICS OF MATERIALS SUBJECT TO VARIOUS OXYGEN CONCENTRATIONS

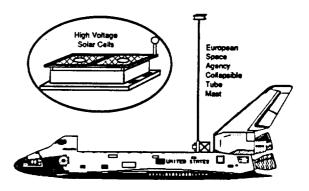
APPROACH:

• SHUTTLE BAY MOUNTED COMBUSTION CHAMBER UTILIZED TO MEASURE FIRE PROPAGATION, CHARACTERISTICS & COMBUSTION PRODUCTS

• EXPERIMENT COST: TBD FLIGHT DATA: TBD

APPLICATION:

- PROVIDES FUNDAMENTAL FLIGHT DATA TO VALIDATE & IMPROVE FIRE
 PROPAGATION PREDICTION & MODELING TECHNIQUES
- ESSENTIAL MEASUREMENTS TO PROVIDE SAFE ENVIRONMENT FOR LONG-TERM, MANNED SPACE SYSTEMS


SOLAR ARRAY MODULE PLASMA INTERACTION EXPERIMENT (SAMPIE) LEWIS RESEARCH CENTER

OBJECTIVE:

• EVALUATE THE EFFECTS OF LOW EARTH ORBIT PLASMA INTERFERENCE ON HIGH VOLTAGE SOLAR CELLS

APPROACH:

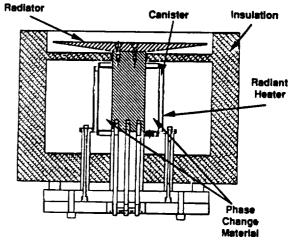
• DETERMINE VOLTAGE THRESHOLD FOR ARCING ACROSS CELLS, ARC RATE, STRENGTH & PLASMA CURRENT COLLECTION CHARACTERISTICS FOR ADVANCED SOLAR CELLS EXTENDED 15 METERS AWAY FROM SHUTTLE BAY

35.12N.8.14 9/90

• EXPERIMENT COST: \$3.5M FLIGHT DATE: 7/93, OAET-1 (HH-M)

APPLICATION:

 IMPROVE EFFECTIVENESS & LIFETIME OF ADVANCED HIGH VOLTAGE SOLAR CELLS TO BE USED ON SPACE STATION UPGRADE & ADVANCED SCIENCE SATELLITES


THERMAL ENERGY STORAGE (TES) MATERIALS LEWIS RESEARCH CENTER

OBJECTIVE:

• DETERMINE THE BEHAVIOR OF THERMAL ENERGY STORAGE MATERIALS SUBJECTED TO MICROGRAVITY CONDITIONS

APPROACH:

• MEASURE THE TRANSIENT TEMPERATURES, STRESSES, VOID SIZE & VOID LOCATIONS OF PHASE CHANGE SALTS DURING MULTIPLE FREEZING & THAWING CYCLES

35.12N7-3- 8/90

• EXPERIMENT COST - \$7M

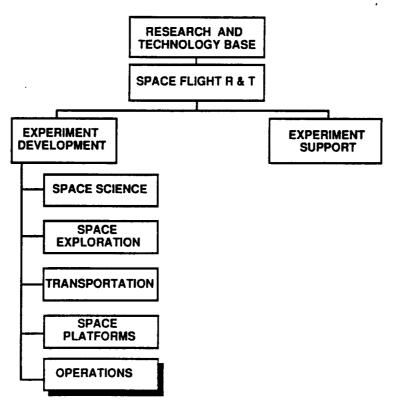
FLIGHT DATA: 7/93 (STS-62) OAET-1(HH-M) & 7/95 OAET-2 (HH-M)

APPLICATION:

• PHASE CHANGE MATERIALS PROVIDE POTENTIAL FOR INCREASED ENERGY STORAGE WITH LOWER WEIGHT & VOLUME PENALTIES (EFFICIENT STORAGE DEVICE FOR ADVANCED SPACE STATION)

	TECI	FLIGHT INOLOGY FL	PROJECTS DIV	ISION	M	
EXPERIMENT TITLE	1991					
		1992	1993	1994	1995	1996
MDDECK O-G DYNAMICS		ODE 2				
HEAT PIPE PERFORMANCE		D ASSEMBLY	3			
SOLAR ARRAY MODULE PLASMA INTERACTION				•		1 1 1
EMULSION CHAMBER TECH.		B. TEST		•		• • •
JITTER SUPPRESSION	PHAS	E 8	FAB/TEST/INT	reă	<u> </u>	\$ 1 1 1
JOINT DAMPING		DESIGN	FAB/TEST/IN			
JOUID MOTION		PHASE B	FAB/TEST	INTEG		9 9 9 9
HERMAL ENERGY SYSTEM	DES., FAB &	TEST 142		., FAB. & TEST	TES 344	
	, PC	R NAR CI	DR	Λ		
NDDECK ACTIVE CONTROL EXPERIMENT	1	ΔΔ Ζ	FAB/ASSY TEST	INTEG.		
NSK-BASED FIRE SAFETY	<u> </u>	PHASE	A	PHASE 9	TIED	
			:	1	· · · · ·	

S-28


	1991	1992	19	93	1994	1995	1996
WO-PHASE FLOW	PHAS	E 9	X (AB/ASSY/TE	ST/INTEG	•	Ϋ́Υ
		NAR	;	PDR	CDR		
EBRIS COLLISION WARNING	PHASE B	IV DES	GN			FAB/ASSY/TEST	I INTEG.
			, PDR	CDR			MID 19
	PHASE B		Δ	Δ	FABRICATION	AND TEST	INTEGRATIO
			1 1	1 1			
	:		•				
			:				
			, ,				
	1		•				
			•	;		-	
	1		• • •	i	1		
			1 1		1	1	
			1	:	1	1	
	•			į	1		
			1 1 1			•	
			•	•	1		

TECHNOLOGY FLIGHT EXPERIMENTS

-OAET-

ITP REV18

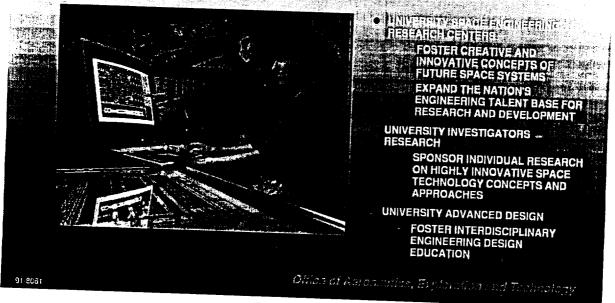
WORK BREAKDOWN STRUCTURE

OPERATIONS TECHNOLOGY FLIGHT EXPERIMENTS

FLIGHT PROJECTS DIVISION

INDUSTRY/UNIVERSITY EXPERIMENTS

(NONE IDENTIFIED)


NASA/JPL DEVELOPED EXPERIMENTS

(NONE IDENTIFIED)

	UNIVERSITY PROGRAMS OVERVIEW
	Presentation to: THE ITP EXTERNAL REVIEW TEAM
971- <u>27</u> -	Gregory M. Reck Director for Space Technology Office of Aeronautics, Exploration and Technology June 25, 1991

UNIVERSITY PROGRAMS

BROADEN THE CAPABILITIES OF THE NATION'S ENGINEERING COMMUNITY TO PARTICIPATE IN THE U.S. CIVIL SPACE PROGRAM THROUGH UNIVERSITY-BASED RESEARCH AND EDUCATION

ORIGINAL PAGE IS OF POOR QUALITY

UNIVERSITY SPACE ENGINEERING RESEARCH PROGRAM

UNIVERSITY-BASED CENTERS

- ATTRACT AND RETAIN STUDENT AND
 INDUSTRY SUPPORT
- SUPPORT AND EXPAND THE NATION'S ENGINEERING TALENT BASE
- FOSTER INNOVATIVE, MULTI-DISCIPLINARY RESEARCH

91-2118

- UNIVERSITY OF ARIZONA
 Planetary Resources
- UNIVERSITY OF CINCINNATI
 Propulsion Monitoring Systems
- UNIVERSITY OF COLORADO, BOULDER
 Space Construction
- UNIVERSITY OF IDAHO
 VLSI hardware
- MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Controlled Structures Technology
- UNIVERSITY OF MICHIGAN
 Space TeraHertz Sensing
 Technologies
- NORTH CAROLINA STATE AT RALEIGH
 & NORTH CAROLINA AGRICULTURAL &
 TECHNICAL STATE UNIVERSITIES
 Mars Mission Technologies
- PENNSYLVANIA STATE UNIVERSITY
 Propulsion
- RENSSELAER POLYTECHNIC INSTITUTE
 Robotics

UNIVERSITY SPACE ENGINEERING RESEARCH CENTERS

- NINE CENTERS SELECTED (4/88) OUT OF 115 PROPOSALS
- PLAN TO INCREASE TO TWENTY CENTERS
- GRANTS OF \$1M TO \$2M PER YEAR FOR A MINIMUM OF FOUR YEARS
- FLEXIBLE SO THAT UNIVERSITIES ARE FREE TO BE INNOVATIVE
- CENTER CONCEPT FOR MULTI-DISCIPLINARY RESEARCH AND EDUCATION
- COLLABORATIVE ACTIVITY INVOLVING NASA CENTERS AND INDUSTRY
- FUNDING SUPPORT TO U.S. STUDENTS ONLY

UNIVERSITY INVESTIGATORS RESEARCH

-0azi

- SPONSORS INDIVIDUAL RESEARCH ON HIGHLY INNOVATIVE SPACE TECHNOLOGY CONCEPTS AND APPROACHES
- GRANTS TO INDIVIDUALS WITH DEMONSTRATED RECORD OF PERFORMANCE
- EFFORT OUTSIDE THE BOUNDS OF RESEARCH TYPICALLY SUPPORTED BY THE OAET TECHNICAL DIVISIONS (i.e. HIGH TECHNICAL RISK / PAY-OFF, MULTI- OR TRANS-DISCIPLINARY, &c.)
- POSITIVE RESEARCH RESULT LIKELY TO LEAD TO FURTHER SUPPORT FROM OTHER NASA SOURCES
- GRANTS ON ORDER OF \$100K PER YEAR FOR UP TO THREE YEARS

UNIVERSITY INVESTIGATORS RESEARCH

- DR. BOCKRIS, TEXAS A&M UNIVERSITY -- THE ELECTROCHEMICAL INCINERATION OF HUMAN WASTES IN CONFINED SPACES
- DR. BYER, STANFORD UNIVERSITY -- SOLID-STATE LASERS FOR COHERENT COMMUNICATION AND REMOTE SENSING
- DR. PETERSON, STANFORD UNIVERSITY -- LOW POWER SIGNAL PROCESSING TECHNOLOGY
- DR. PILKEY, UNIVERSITY OF VIRGINIA -- ADVANCED CONCEPTS FOR METALLIC CRYO-THERMAL SPACE STRUCTURES
- DR. COLDREN, UNIVERSITY OF CALIFORNIA, SANTA BARBARA --INTEGRABLE, FIELD-INDUCED GUIDES FOR MODULATION / SWITCHING OF LIGHTWAVES
- DR. SADEH, COLORADO STATE UNIVERSITY -- INFLATABLE STRUCTURES FOR A LUNAR BASE
- ADDITIONAL PROPOSALS UNDER REVIEW / EVALUATION

UNIVERSITY ADVANCED DESIGN

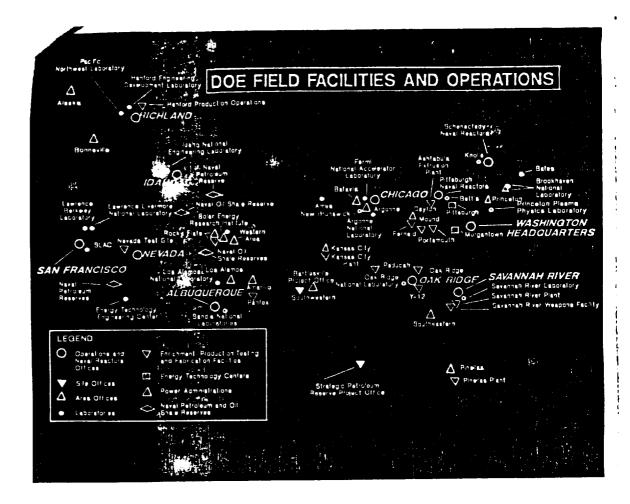
_____0^}*___*

PROGRAM FOSTERS INTERDISCIPLINARY UNIVERSITY ENGINEERING DESIGN EDUCATION
SUPPORTS ADVANCED SYSTEM DESIGN COURSES AND PROJECTS AT THE UNDERGRADUATE SENIOR LEVEL
AWARDS OF APPROXIMATELY \$25K / YEAR FOR 3 YEARS
~1,000 STUDENTS AT 40 UNIVERSITY ENGINEERING DEPARTMENTS INVOLVED, INCLUDING 2 HBCU'S WITH CODE E FUNDING AND 10 AERO DEPARTMENTS
ADMINISTERED BY USRA UNDER CODE XEU CONTRACT
UNIVERSITIES ARE TEAMED WITH NASA CENTER MENTORS
GRADUATE TEACHING ASSISTANT SPENDS SUMMER WORKING WITH MENTOR AT NASA FIELD CENTER
STUDENTS PRESENT RESULTS AT ANNUAL SUMMER CONFERENCE HELD NEAR A NASA CENTER

UNIVERSITY ADVANCED DESIGN

SELECTED EXAMPLES OF CURRENT STUDENT DESIGN
 PROJECTS

- GEORGIA INSTITUTE OF TECHNOLOGY LUNAR SURFACE VEHICLES AND STRUCTURES MODEL
- UNIVERSITY OF ALABAMA -- DESIGN OF HIGH TEMPERATURE FURNACE FOR APPLICATIONS IN MICRO-GRAVITY
- FLORIDA A&M / FLORIDA STATE UNIVERSITY -- LUNAR LANDER GROUND SUPPORT SYSTEM
- UNIVERSITY OF IDAHO -- EXERCISE FACILITY FOR A SPACE HABITAT
- UNIVERSITY OF MARYLAND -- WALKING ROBOT
- OLD DOMINION UNIVERSITY -- MARS / LUNAR RESOURCE UTILIZATION
- PENNSYLVANIA STATE UNIVERSITY -- MARS SAMPLE RETURN PROJECT
- PRAIRIE VIEW A&M UNIVERSITY -- MARS HABITAT
- VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY -- SOLAR ELECTRIC PROPULSION CARGO VEHICLES FOR SPLIT/SPRINT MARS MISSIONS


THE SPACE SYSTEMS AND TECHNOLOGY ADVISORY COMMITTEE (SSTAC)

Dr. Tom Finn U.S. Department of Energy .

.

DEPARTMENT OF ENERGY MISSION

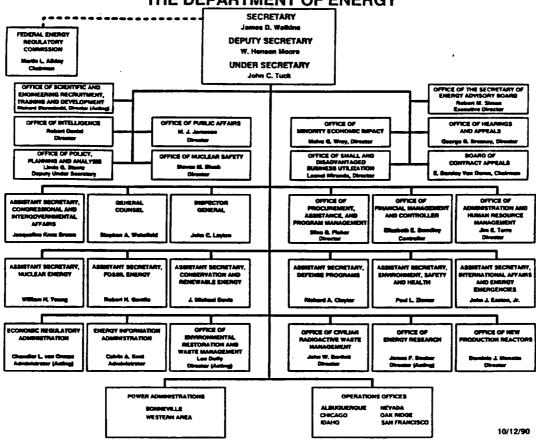
- ENERGY
 - ENERGY R&D OIL, GAS, COAL, CONSERVATION, NUCLEAR, RENEWABLES, FUSION, GLOBAL CLIMATE CHANGE
 - **REGULATION**
 - ENERGY SECURITY STRATEGIC PETROLEUM RESERVE
- **o NATIONAL SECURITY**
 - WEAPONS COMPLEX/CLEANUP
 - NAVAL REACTOR DEVELOPMENT
 - SDI
- **o** SCIENCE AND TECHNOLOGY
 - SUPERCONDUCTING SUPERCOLLIDER (SSC)
 - SYNCHROTRON LIGHT SOURCES, BEVALAC

DEPARTMENT OF ENERGY NATIONAL LABORATORIES

MULTI-PROGRAM

ARGONNE NATIONAL LABORATORY BROOKHAVEN NATIONAL LABORATORY IDAHO NATIONAL ENGINEERING LABORATORY

LAWRENCE BERKELEY LABORATORY LAWRENCE LIVERMORE NATIONAL LABORATORY


LOS ALAMOS NATIONAL LABORATORY OAK RIDGE NATIONAL LABORATORY PACIFIC NORTHWEST LABORATORY SANDIA NATIONAL LABORATORY

SINGLE-PROGRAM

AMES LABORATORY CONTINUOUS ELECTRONIC BEAM ACCELORATOR FACILITY FERMI LABORATORY PRINCETON PLASMA PHYSICS LABORATORY SOLAR ENERGY RESEARCH INSTITUTE STANFORD LINEAR ACCELERATOR CENTER SUPER CONDUCTING SUPER COLLIDER

> ORIGINAL PAGE IS OF POOR QUALITY

- o Power and Propulsion
 - SP-100 (Joint NASA/DoD/DOE Program)
 - Radioisotope Thermal Generators (Joint NASA/DOE Program)
 - Thermionic Conversion (DOE/DoD Program)
 - Nuclear Propulsion (DOE/DoD/NASA Program)
 - Supporting Technologies in Space Power (DOE/DoD Program)
- o National Security
 - Treaty Verification
 - -Kinetic and Directed Energy Weapons
 - State-of-the-art space gualified computers, sensors and materials
 - Rapid prototype development and flight test
 - Extensive modeling and simulation

THE DEPARTMENT OF ENERGY

ORIGINAL PACE IS OF POOR QUALITY

DOE SPACE ORGANIZATIONAL INITIATIVES

- o Special Assistant to the Secretary (Space)
- o Office of Space, by 1 October 1991
 - Policy
 - Long-Range Planning
 - Department-wide Budget Formulation
 - Systems Architecture and Engineering
 - Technical Coordination and Oversight
 - Advanced Technology Development

DEPARTMENT OF ENERGY'S SPACE MISSION

- o Evolving from terrestrial missions
 - Energy
 - National Security
 - Science and Technology
- o Primary focus is to support national objectives:
 - Civil
 - National Security
 - Commercial

DOE FUTURE SPACE ACTIVITIES

- SPACE EXPLORATION INITIATIVE
- U.S. GLOBAL CHANGE RESEARCH AND DEVELOPMENT PROGRAM
- SPACE TECHNOLOGY INITIATIVE

DOE SPACE TECHNOLOGY INITIATIVES

Nuclear Energy Technologies, Concepts and Applications

- o Power
 - o Propulsion

Non-nuclear Energy Technologies, Concepts and Applications

- o Sources, including in situ
- o Transmission
- o Storage and management

Environmental Assessment and Monitoring

- o Remote sensing
 - o Modeling
 - o Optoelectronics

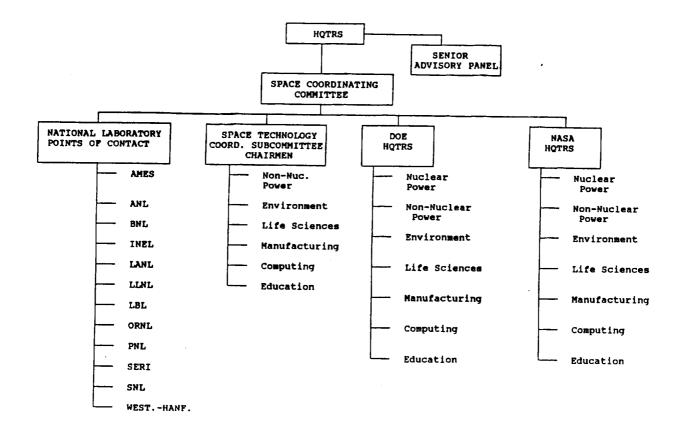
Human Health/Life Sciences

- o Radiation effect
- o Risk management

Manufacturing and Construction

- o Materials
- o Shielding
- o Robotics

High Performance Computing


Science, Mathematics and Engineering Education

DOE SPACE TECHNICAL COORDINATING SUBCOMMITTEES

NUCLEAR ENERGY TECHNOLOGIES, CONCEPTS AND APPLICATIONS	NE-50
- POWER	ME-50
- PROPULSION	
NON-NUCLEAR ENERGY TECHNOLOGIES, CONCEPTS AND APPLICATIONS	PNL
- SOURCES	LANL
- TRANSMISSION	PNL
- STORAGE	SERI
- ENERGY MANAGEMENT	
ENVIRONMENTAL ASSESSMENT AND MONITORING	SNL
- SENSING	SNL
- MODELING	LINL
- ELECTRONICS	SNL
BEALTE/LIFE SCIENCES	LANL
- RADIATION EFFECTS	LBL/BNL
- SHIELDING	
NANUFACTURING AND CONSTRUCTION TECHNIQUES	ORNL
- MATERIALS	AMES
- SHIELDING	SNL/LANI
- ROBOTICS	ORNL
EIGE PERFORMANCE CONPUTING	LLNL
SCIENCE, NATEENATICS AND ENGINEERING Education	PNL

INDICATES PROPOSED COORDINATOR LABORATORY AND CHAIRMAN

DOE SPACE INTER-AGENCY COORDINATION

- O NASA-DOE MOU ON SEI
- o NASA-DOE-DoD MOU'S
 - SP-100
 - THERMIONICS
- **o SPACE COORDINATING COMMITTEE**

DOE-NASA SEI MEMORANDUM OF UNDERSTANDING (9 JULY 1990)

OBJECTIVE

- O COORDINATE ACTIVITIES RELATIVE TO SEI
- DEVELOP PROCESS THAT FOSTERS EXCHANGE OF INFORMATION AND FACILITATES MANAGEMENT OF SEI RESEARCH AND DEVELOPMENT
- ENABLE EACH AGENCY TO FOCUS RESEARCH AND DEVELOPMENT OF RESPECTIVE LABORATORIES AND PROGRAMS

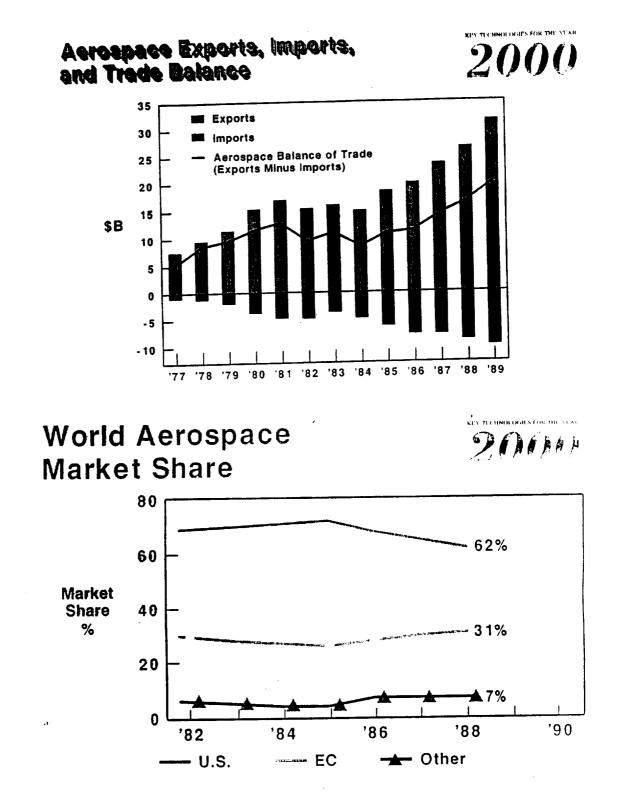
1

Synergy Group Symposium June 24, 1991

The National Center for Advanced Technologies

Aerospace Industries Association

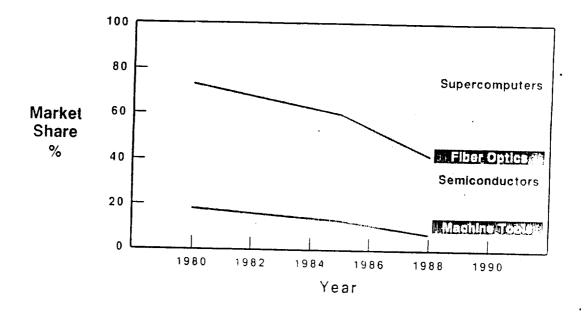
Some Historical Precedents



100000000000

58,94

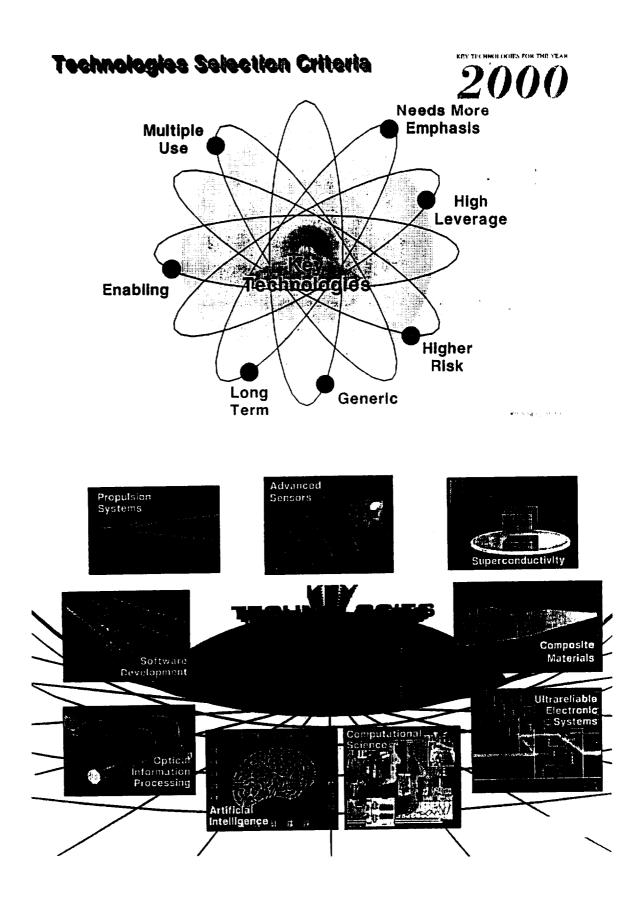
ORIGINAL PAGE IS OF POOR QUALITY



V - 2


Ï

World Market Share

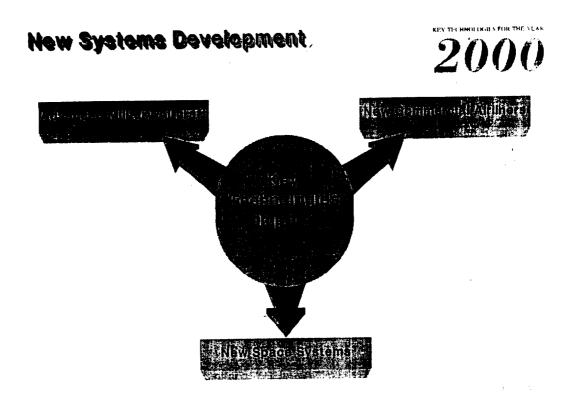


Key Technologies for the Year 2000

To Identify, Nurture and Insure Benefits from a Focused Set of Essential Enabling Technologies

OF POOR QUALITY

Company Invol	pany Involvement	
Technology	Sponsor	Company
Advanced Sensors Alrbreathing Propulsion Artificial Intelligence Advanced Composites Computational Science Optical Information Processing and the sense Rocket Propulsion Software Development Superconductivity Ultra Reliable Electronic Systems Advanced Metallic Structures	R.N. Longuemare F.E. Pickering R.P. Caren F.W. Fenter A.N. Chester R.G. Anderson H.W. Campen J.Ri Burnett R.P. Caren L. Glullano	Westinghouse General Electric Lockheed LTV GM / Hughes Grumman Aerojet TRW Lockheed ITT


0900728-011-0141

Consensus Building for National Strategic Plans

KES TECHNOLOGEN CORTINE STAR ZAXAXA A

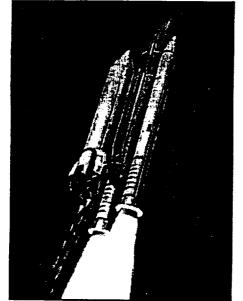
Rocket Propulsion		Advanced Composites
200	Participants	150
+ 500	Reviewers	+ (600)
+ 200	Symposium Attendees	+ (350)
+ 100	Personnel Briefed	+ (200)
1,000	Interested Parties	(1,300)

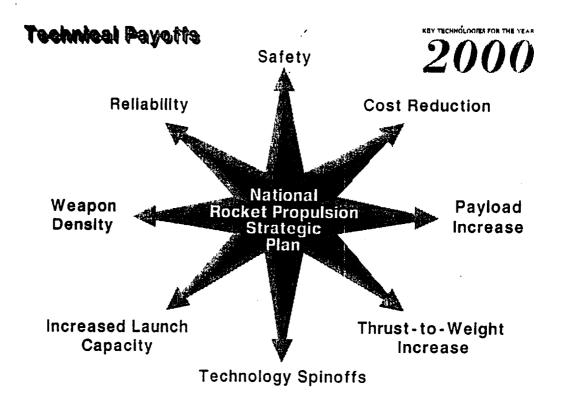
ORIGINAL PACE IS OF POOR QUALITY

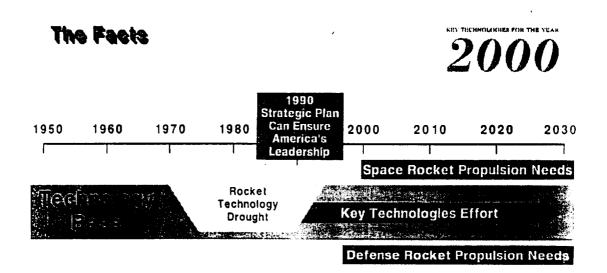
Very Low-Cost Commercial Alleraft

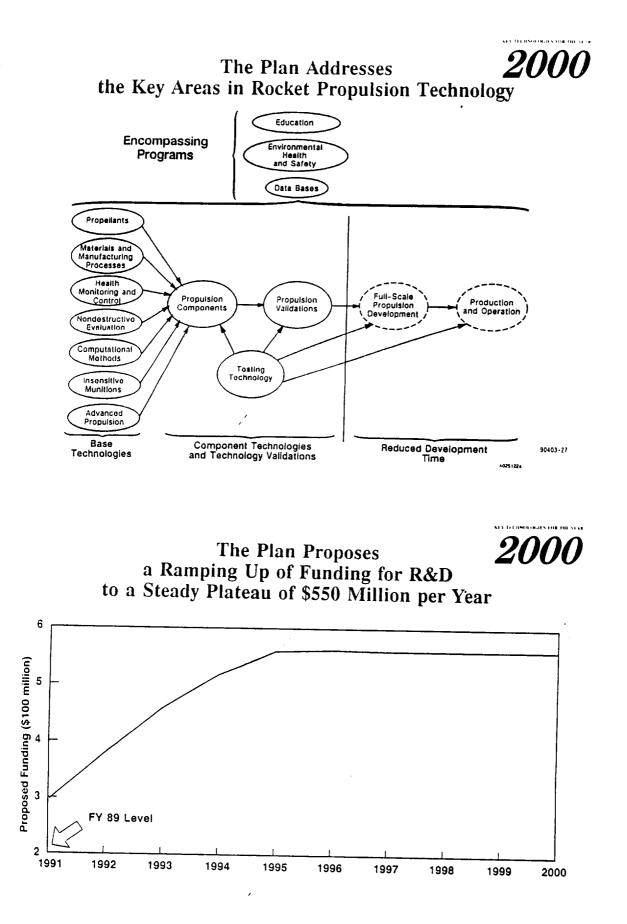
- 33% Lower Cost Than Foreign Competition
- Low Maintenance Long Life
- Mature CAD/CAM and Business Systems
- 10:1 Thrust-to-Weight Ratio Engine
- Electronics and Fiber Optics Replace Cables and Hydraulics
- Turbulence (Microburst) Detection With Radar
- Pliot Associate (AI), Ultrarellable
 Electronics and Advanced Sensors
 Provide increased Safety

Ultrasurvivable Abrcraft


- Smart Skins for Superstealth
- Ultrareliability Never Fail
- Autonomous Operation With Pilot's Associate (AI)
- Improved Fault Tolerance Through Reconfigurability
- Integrated RF and EO Operations -10:1 Improvement
- Multisensor Fusion
- 25% Cost Reduction Through Computer Integrated Business (CIB)


Space Systems





- Advanced Launch and Transportation
- Autonomous Ground Sites
- Multisensor Platforms
- Low-Power and High-Density Electronics
- Design for Manufacturing (DFM) Will Enable 25-Year Lifespans
- Expect Cost Reduction From 3 to 10:1

V - 9

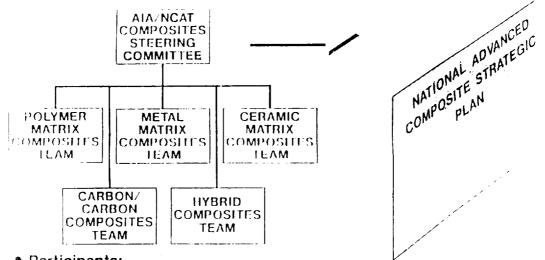
Objectives

Hypersonic Propulsion Technology

- Retain U.S. Leadership
- Demonstrate That Airbreathing Propulsion Operates in the Mach 4 to Mach 25 Flight Speed Range
- Demonstrate Technology in a "Building Block" Manner

.1

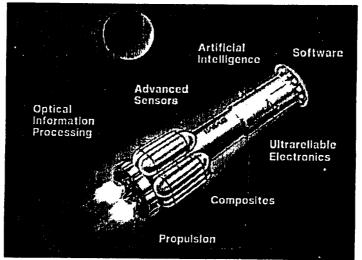
Benetits

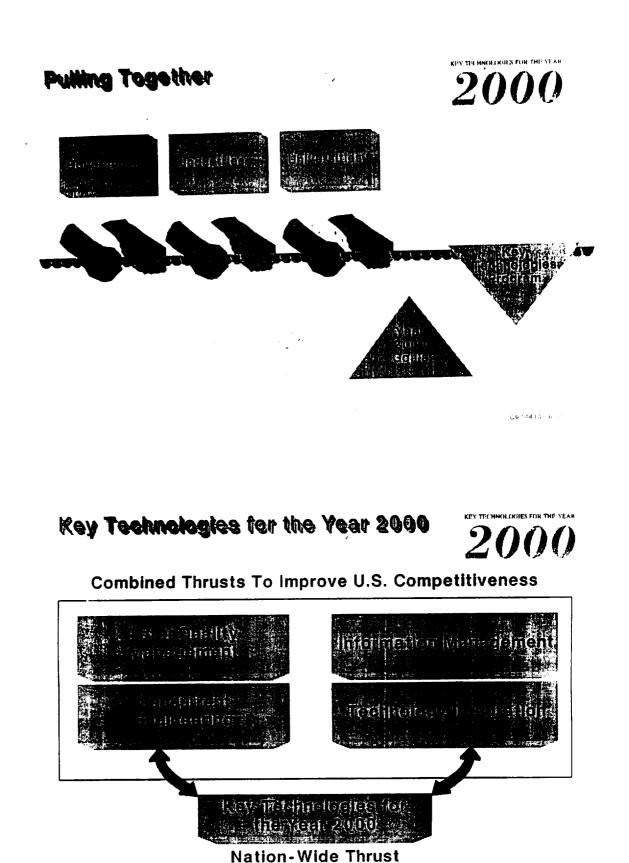

2000

Hypersonic Propulsion Technology

- Reduced Cost of Payload-to-Orbit
- Extended Cruise Range
- Improved Performance
- Increased Military Superiority Against a Growing Hypersonic Threat
- Continued Civil Dominance of U.S. Aircraft Engines

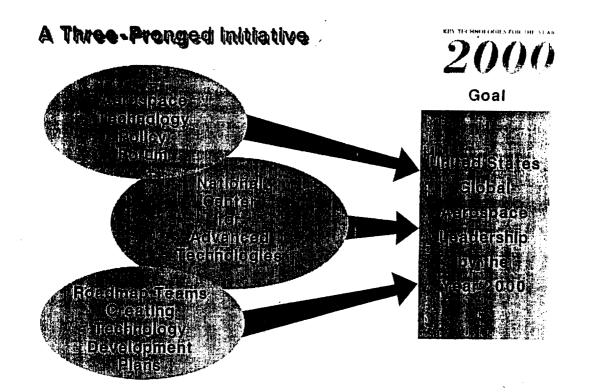
ADVANCED COMPOSITES OVERVIEW


The National Strategic Plan Is Being Developed Under AIA/NCAT Leadership


Participants:

- Aerospace companies, material suppliers, DoD, NASA, universities, etc.

Synergism of Key Technologies


All Lead to Lower Cost for Payload Delivered, Higher Reliability, and Shortened Development Time

ORIGINAL PAOE IS OF POOR QUALITY

A REPORT OF L

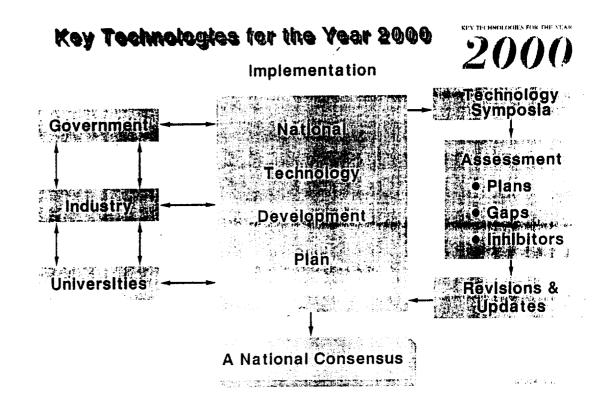
KEY TECHNOLOGIES COMPARISON				
DOD	DOC	<u>OSTP</u>		
~	\checkmark	~		
~	~	~		
~	\checkmark	~		
v	\checkmark	~		
~	~	~		
	DOD ~	DOD DOC		

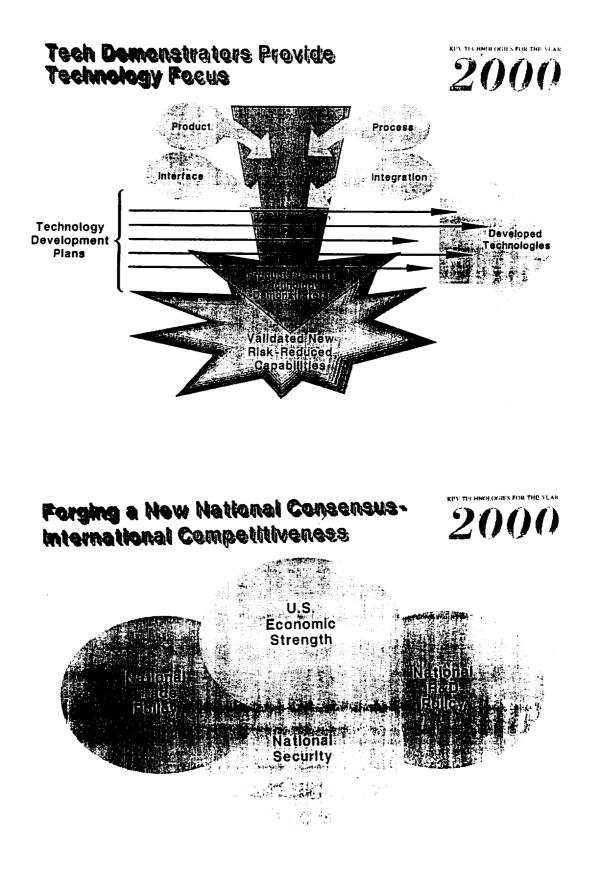
ORREPORT PACE IS

 KEY TECHNOLOGIES COMPARISON (CONTINUED)

 NCAT/AIA
 DOD
 DOC
 OSTP

 ULTRARELIABLE ELECTRONIC


 SOFTWARE DEVELOPMENT


 SUPERCONDUCTIVITY

 Advanced metallic structures

 Airbreathing propulsion

 Rocket propulsion

ORIGINAL PROE IS OF POOR QUALITY

.

Ahlf, Peter Albers, James A. Alcorn, George Aldobordano, Alexander, Joseph K Arnold, Jim Aron, Paul Arron, Kim Atefi, B. Aydelott, John C. Ayotte, Bill Bagwell, J. Baker, Kenneth Bangsund, Edward L. Bankston, C. Perry Barhen, Jacob Bartman, R. Bedard, Roger Behrend, Albert Bennett, Gary L. Benz, H. F.(Harry) Bercav, Robert Berkopec, Frank Berkowitz, Bob Berry, W.E. Bilardo, Vince Bocino, John V. Bogdonoff, Seymour M.

CO/AGENCY/UNIV. NASA Headquarters NASA Ames Research Center NASA Goddard Space Flight Center NASA Johnson Space Center NASA Headquarters NASA Ames Research Center NASA Lewis Research Center Jet Propulsion Laboratory SAIC NASA Lewis Research Center NASA Headquarters NASA Lewis Research Center NASA Johnson Space Center Boeing Aerospace Company Jet Propulsion Laboratory Jet Propulsion Laboratory Jet Propulsion Laboratory Jet Propulsion Laboratory NASA Johnson Space Center NASA Headquarters NASA Langley Research Center NASA Lewis Research Center NASA Lewis Research Center NASA Langley Research Center NASA Ames Research Center NASA Ames Research Center Department of Defense **Princeton University**

Bohse, Jerome Borowski, Stanley Bozek, John Brackey, Ph.D., Thomas A. Brandhorst, Henry W. Breckinridge, James B. Brouillet, Alfred O. Budinger, James Buoni, Corinne Bush, Harold G. Byers, David C. Byung, K. (B.K.) Yi Calogeras, James Campbell, Thomas G. Cannon, Jr., Robert H. Castles, Steve Chase, Richard C. Chevers, E. Collins, D.E. Compton, Dale L. Connolly, Denis Conway, Edmund J. Cooper, Robert A. Corneliu, Charles S. Coulter, Dan Crawford, Ron Cromp, Robert F. Cull, Ronald

CTA Incorporated NASA Lewis Research Center NASA Lewis Research Center Hugh NASA Lewis Research Center Jet Propulsion Laboratory United Technologies Corporation NASA Lewis Research Center SAIC NASA Lewis Research Center NASA Lewis Research Center Fairchild NASA Lewis Research Center NASA Langley Research Center Stanford University NASA Goddard Space Flight Center National Academy of Science NASA Johnson Space Center Space Systems Loral NASA Ames Research Center NASA Lewis Research Center NASA Langley Research Center SAIC

CO/AGENCY/UNIV.

NASA Marshall Space Flight Center Jet Propulsion Laboratory Ford Aerospace and Communications NASA Goddard Space Flight Center NASA Lewis Research Center

Curlander, John Dalton, James David, Leonard W. Davies, Robert J De Paula, Ramon P. DeVall, O.R. Di Battista, John Diehl, Larry A. Dominguez, Hector Dorsey, John Doughman, Pamela Dula, Alex Durrani, Sajjad Escher, William J.D. Evans, Stephen A. Faddoul, James R. Fanson, James L. Fedricks, John P. Fehr, Austin E. Ferguson, Dale C. Finn, Tom Fitzmaurice, Michael Flood, D. Fosque, Hugh S. Fossum, Eric R. Frerking, Margaret A. Friedlan, Peter Friedman, Robert

CO/AGENCY/UNIV. Jet Propulsion Laboratory NASA Goddard Space Flight Center Space Data Resources & Information NASA Headquarters NASA Headquarters NASA Johnson Space Center

NASA Headquarters

NASA Lewis Research Center

NASA Lewis Research Center NASA Langley Research Center NASA Goddard Space Flight Center

NASA Johnson Space Center

NASA Headquarters

NASA Headquarters

Rocketdyne

NASA Lewis Research Center

Jet Propulsion Laboratory

McDonnell Dougles

Martin Marietta Denver Aerospace

NASA Lewis Research Center

Department of Energy

NASA Goddard Space Flight Center

NASA Lewis Research Center

NASA Headquarters

Jet Propulsion Laboratory

Jet Propulsion Laboratory

NASA Ames Research Center

NASA Lewis Research Center

Fuller, Paul Gamota, George Garcia, Roberto Garibotti, Joseph F. Gernand, Joseph J. Giffin, Geoffrey A. Gilland, Jim Glaze, Stuart Glazer, Stu Glover, Dennis C. Golding, Lenard S. Gorland, Sol Granajo, D. Gross, Anthony R. Gualdoni, Richard A. Guenther, Art Hadaegh, Fred Y. Hanby, Walter Harr, S.C Harris, Leonard A. Harrison, Ph.D., Steven D. Hart, Richard Hartke, Dick Hartman, Steve C. Hayduk, Robert J. Hedgepeth, John M. Hemeaway, Paul Henry, Mike

CO/AGENCY/UNIV. **Propulsion Systems** University of Michigan NASA Marshall Space Flight Center Ketema **Rockwell** International **NASA Headquarters** NASA Lewis Research Center NASA Headquarters NASA Headquarters SWL, Inc. Hughs Networking Systems NASA Lewis Research Center **Department of Defense** NASA Ames Research Center NASA Headquarters Sandra National Laboratory Jet Propulsion Laboratory NASA Johnson Space Center Xsirius NASA Headquarters **Department of Defense** National Academy of Science Aerospace Industries Association NASA Headquarters NASA Headquarters Astro Research Corporation University of Texas Jet Propulsion Laboratory

Hertz, Terrence J. Hertzberg, Abraham Hessenius, Kristin A. Hinkley, E. David Hirschbein, Murray S. Hoffman, William F. Hoggatt, John T. Holcomb, Lee B. Holloway, Paul F. Hook, W. Ray Howard, Edward Hubbarth, William F. Huffaker, C.F. Hunter, Paul Huseonica, William Janni, Joseph Jenkins, James P. Johnson, Benjamin Johnston, Allen R. Kaplan, S. Kaplin, Mike Karas, John C. Karim, R Katti, Romney Keckler, Claude R. Kelley, James H. Key, Richard Kraus, Robert J.

CO/AGENCY/UNIV. NASA Headquarters University of Washington NASA Headquarters TRW NASA Headquarters University of Arizona Boeing Aerospace Company NASA Headquarters NASA Langley Research Center NASA Langley Research Center NASA Headquarters IBM NASA Marshall Space Flight Center NASA Headquarters NASA Stennis Space Center Air Force Space Technology Center NASA Headquarters Sandia National Labs Jet Propulsion Laboratory NASA Headquarters NASA Headquarters **General Dynamics Corporation** SAIC Jet Propulsion Laboratory NASA Langley Research Center Jet Propulsion Laboratory Jet Propulsion Laboratory W.J. Shafer Associates

Krehbiel, John LaBotz, Richard Ladwig, Alan Lamkin, Stephen Lancashire, Richard Landgrebe, David A. Laskin, Robert A. Lavell, Jeff Lavery, David B. Lawson, Denise Lesh, James R. Levenn, Lauren Levine, Jack Lordi, John Mahoney, M.J. Malone, Ph.D., Thomas B. Man, G.K. Mar, James W. Masek, Robert V. Masica, William J. Massie, Dave Matthews, Dennis H. Maynard, David P. McCarrol, Chris McCreight, Craig McGovernDennis J. McKay, David McKemie, Robert L.

CO/AGENCY/UNIV. NASA Headquarters Aerojet General SAIC NASA Johnson Space Center NASA Lewis Research Center Purdue University Jet Propulsion Laboratory NASA Headquarters NASA Headquarters NASA Headquarters Jet Propulsion Laboratory Lockheed Engr. & Mgmt Svcs Co, Inc. NASA Headquarters CALSPAN Jet Propulsion Laboratory Carlow Associates, Inc. Jet Propulsion Laboratory

McDonnell Douglas Corporation NASA Lewis Research Center Wright Laboratory NASA Kennedy Space Center Jet Propulsion Laboratory Xsirius NASA Ames Research Center McDonnell Douglas Space Systems Co. NASA Johnson Space Center NASA Marshall Space Flight Center

McKinley, Bruce Meadow, W.E. Messina, Paul Miller, Thomas J. Miller, W.E. Mohler, Stanley Montemerlo, Melvin D. Moore, Franklin K. Moran, Steve Morgan, Jamie Morra, Robert G. Mosier, Stanley A. Moss, James N. Mullick, Shaman Mullin, Jorome P. Musles, James L. Neilson, Jr., A. Edward Newsom, Jerry R. Norwood, Robert L. Null, Cynthia O'Neal, Adrain P. Obal, Michael W. Overmyer, Robert F. Pace, Scott Palermo, C. Parker, James T. Parks, Gary Pattison, W.J.

CO/AGENCY/UNIV. Kreg Life Sciences

NASA Langley Research Center Jet Propulsion Laboratory NASA Lewis Research Center NASA Langley Research Center Wright State University NASA Headquarters **Cornell University** NASA Headquarters TRW Martin Marietta Corporation United Technologies Corporation NASA Langley Research Center Harris Space Systems Corporation Sunstrand NASA Marshall Space Flight Center W.J. Schafer Associates, Inc. NASA Langley Research Center NASA Headquarters NASA Ames Research Center

SDIO/TNK/SL McDonnell Douglas Department of Commerce Harris Corporation USAF/AEDC Jet Propulsion Laboratory NASA Headquarters V

Peach, Jr., Lewis Piland, William Pilcher, Carl Pistole, Carl Plotkin, Henry H. Pogoda, Abe L. Poole, Ed Poucher, Scott J. Price, Doug Pyle, Jon S. Rainen, LewRichard Ramsell, D. Rappaport, Carl Rather, John D.G. Reck, Gregory Rediess, Herman Reese, Terry Richond, Robert J. Riley, A. Lance Roalstad, David A. Robert, William T. Roberts, Bill Rock, William Rose, M. Frank Rubin, Bernard Rummel, John D. Russell, John J. Sackheim, Robert L.

CO/AGENCY/UNIV. NASA Headquarters NASA Langley Research Center NASA Headquarters Martin Marietta NASA Goddard Space Flight Center

IBM AT&T NASA Langley Research Center NASA Headquarters Jet Propulsion Laboratory NASA Johnson Space Center U.S. Department of Transportation NASA Headquarters NASA Headquarters SPARTA, INC. Lockheed Missiles and Space Company, NASA Marshall Space Flight Center Jet Propulsion Laboratory **Ball Aerospace Systems Division** NASA Headquarters NASA Headquarters NASA Kennedy Space Center Auburn University NASA NASA Headquarters

TRW

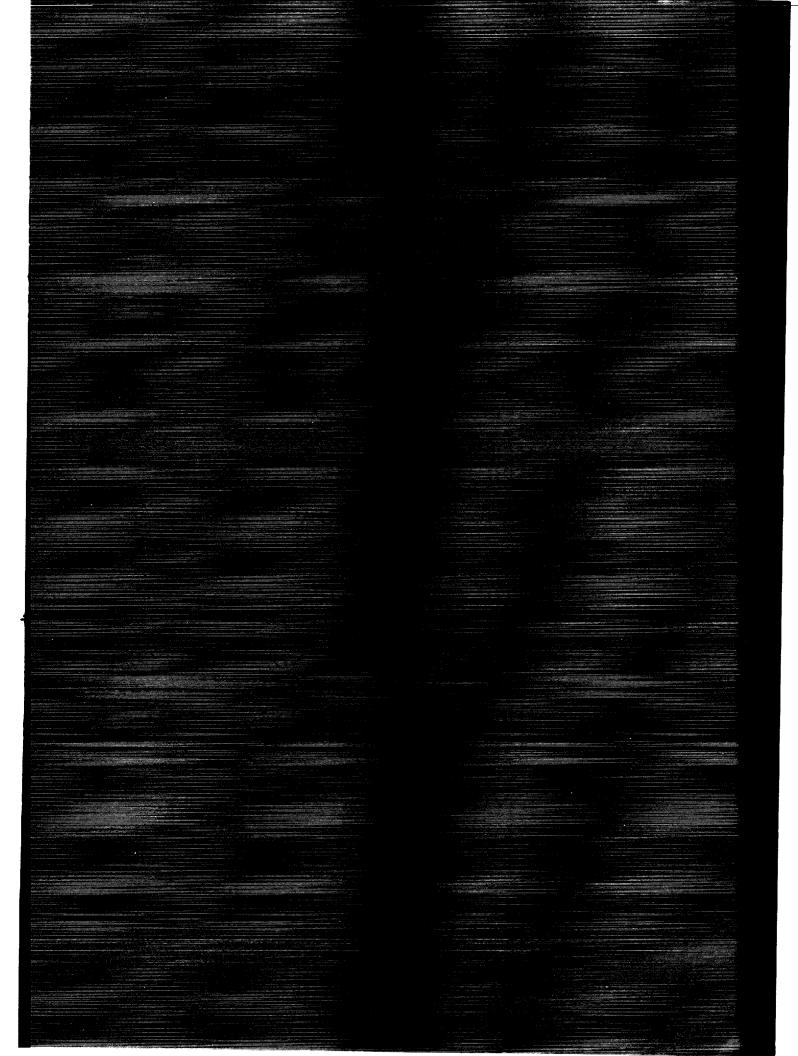
Sadin, Stanley R. Sand, John Scheimberg, H.R. Kelly Schneiten, Stan Schoenfeld, Arthur D. Schor, Matthew Sercel, Joel Sevin, E. Shea, Joseph F. Shirn, Joseph Shortz, Donna Shull, Tom Smith, Paul Smith, William Smith, William Sokoloski, Martin M Sovie, Ronald J. Spaeth, James Spaeth, Lisa Statler, I.C. Stone, Jim Swanson, Ted Swint, M. Shayne Symons, Eugene P. Taylor, Glenn Teeter, Ron Thakoor, Anil Thom, Richard D.

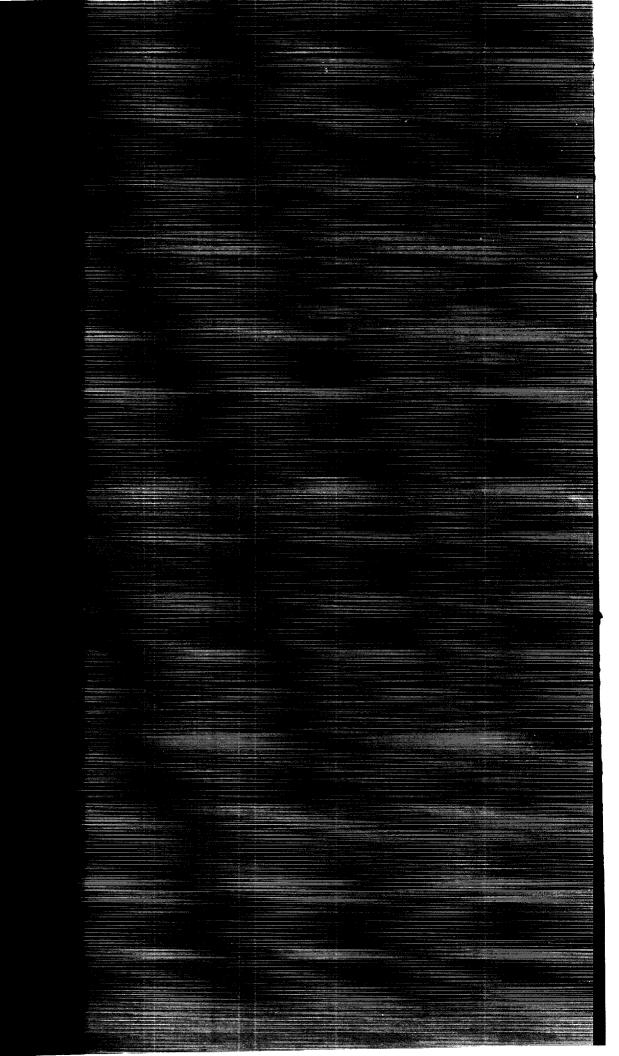
CO/AGENCY/UNIV. NASA Headquarters Ball Aerospace Martin Marietta Aerospace Department of Commerce Hughs Aircraft Company W.J. Schafer Associates, Inc.

Jet Propulsion Laboratory Department of Defense M.I.T. Massachusetts Institute of Technology NASA Headquarters NASA Langley Research Center Lockheed Missiles and Space Company, NASA Headquarters Rocket Research Company **NASA Headquarters** NASA Lewis Research Center McDonnell Douglas Xsirius NASA Ames Research Center NASA Lewis Research Center NASA Goddard Space Flight Center NASA Marshall Space Flight Center NASA Lewis Research Center NASA Langley Research Center Boeing Company Jet Propulsion Laboratory NASA Headquarters

Titland, Martin N. Tyfo, Thomas Van Landingham, Earl Varsi, Jiulio Vidano, Ron Voecks, Gerald Wall, Ray Wallace, G.R. Warshay, Marvin Webbon, Bruce Weber, III, William J. Weingarten, Michael S. Weisbin, Charles Weiss, Richard R. Weiss, Sid Weiss, Stanley I. Weldon, Vincent A. Wheeler, Thomas White, Louise M. Williams, Richard Wilson, Brenda K. Wilson, W. Stanley Winkler, Marty Wintucky, Edwin A. Wise, Stephanie Woodcock, Gordon R. Woods, Arthur A. Woods, G.

CO/AGENCY/UNIV. CTA, Inc.


NASA Headquarters Jet Propulsion Laboratory Ball Aerospace Jet Propulsion Laboratory Jet Propulsion Laboratory NASA Marshall Space Flight Center Jet Propulsion Laboratory NASA Ames Research Center Jet Propulsion Laboratory NASA Headquarters Jet Propulsion Laboratory PL/RK Massachusetts Institute of Technology Lockheed Missiles & Space Co., Inc. Boeing Aerospace Company W.J. Schafer Associates, Inc. Eastman Kodak Company **NASA Headquarters** W.J. Schaffer Associates **NASA Headquarters** General Dynamics Corporation NASA Headquarters NASA Langley Research Center Boeing Aerospace Company Lockheed Missiles and Space Company NASA Stennis Space Center


Woolford, Barbara Young, Leo Zygielbaum, Art

CO/AGENCY/UNIV.

NASA Johnson Space Center Department of Defense Jet Propulsion Laboratory

•

