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Abstract

The objective of this research was to analytically

and experimentally study the capabilities of piezo-

electric plate actuators for suppressing flutter. Piezo-

electric materials are characterized by their ability

to produce voltage when subjected to a mechanical
strain. The converse piezoelectric effect can be uti-

lized to actuate a structure by applying a voltage.

For this investigation, a two-degree-of-freedom wind

tunnel model was designed, analyzed, and tested.

The model consisted of a rigid wing and a flexible

mount system that permitted a translational and a
rotational degree of freedom. The model was de-

signed such that flutter was encountered within the

testing envelope of the wind tunnel. Actuators made

of piezoelectric material were affixed to leaf springs

of the mount system. Command signals, applied
to the piezoelectric actuators, exerted control over

the damping and stiffness properties. A mathemati-

cal aeroservoelastic model was constructed by using

finite element methods, laminated plate theory, and

aeroelastic analysis tools. Plant characteristics were
determined from this model and verified by open loop

experimental tests. A flutter suppression control law

was designed and implemented on a digital control

computer. Closed loop flutter testing was conducted.

The experimental results represent the first time that
adaptive materials have been used to actively sup-

press flutter. They demonstrate that small, care-

fully placed actuating plates can be used effectively

to control aeroelastic response.

Introduction

Flutter, an interaction between the structural dy-
namics and the aerodynamics that results in diver-

gent and destructive oscillations of motion, has been
observed and documented on aircraft since the era of

controlled flight began (ref. 1). Historically, passive
solutions such as increasing structural stiffness, mass

balancing, or modifying geometry have been used

to prevent this hazardous phenomenon. These ap-

proaches result in increased weight and cost, and de-

creased performance. During the past 20 years, there
has been considerable research to develop active flut-

ter suppression concepts that use conventional lead-

ing and trailing edge aerodynamic control surfaces

(refs. 1 5). An active control approach eliminates
most of the weight and performance penalties associ-

ated with the passive approach and additionally pro-

vides a flexibility so that the control law can vary

with configuration or flight condition. Active flut-

ter suppression is not a common practice in today's
commercial or military aircraft because of several

concerns. Flutter is generally of a catastrophic na-

ture; therefore a failure of the system could affect

flight safety. As a result, system redundancy, reli-

ability, and maintainability are critical issues to be
addressed. To a lesser extent, the control surface au-

thority available to maneuver the aircraft with the
simultaneous implenmntation of active flutter sup-

pression is also a concern. To alleviate these con-

cerns, alternatives to utilizing the aerodynamic con-

trol surfaces for active flutter suppression are being
studied.

The use of secondary controllers made of adap-

tive material is one such concept. There are several
classifications of adaptive materials, including piezo-

electrics, electrostrictors, shape memory alloys, and

magnetostrictors. A detailed account of the prop-

erties, benefits, and drawbacks of each type can be

found in reference 6. The present study focused ex-
clusively on the use of piezoelectric materials, which

were chosen based on their wide control bandwidth,

material properties, and availability of results from

previous tests. Piezoelectricity is the ability of a

material to develop an electrical charge when sub-
jected to a mechanical strain. The converse piezo-

electric effect, the development of mechanical strain

when subjected to an electrical field, Call be utilized

to actuate a structure. A local strain is produced

in the structure, which induces forces and inoments.

By judicious arrangement of piezoelectric plates, the

correct reaction of the structure required to inhibit
flutter can be produced. Many research efforts have

utilized adaptive plate actuators for various applica-

tions (refs. 6 17), and they have been recently used

in an analytical flutter suppression study (ref. 8). Re-

sults available from aeroelastic applications of piezo-
ceramics are very limited. Static aeroelasticity has

been the subject of investigations by Ehlcrs and

Weisshaar (refs. 6, 15, and 16). They conducted an-

alytical studies on laminated composite wings with
embedded actuators, looking at pure torsional and

bending deformations. They reported that through

feedback to embedded adaptive material layers, the

divergence speed is altered, implying also that lift
effectiveness is influenced. The augmentation or re-

placement of conventional aerodynamic control sur-
faces with strain actuation for aeroelastic control has

been the focus of an analytical investigation of a typ-

ical section by Lazarus, Crawley, and Lin (ref. 17).
They found that strain actuation by means of piezo-

electric elements may provide a viable and effective
alternative to articulated control surfaces for control-

ling aeroelastic response. Investigation of flutter sup-
pression for lifting surfaces and panels has been done

by Scott (ref. 8). That analytical study considered



controllingflutter at supersonicspeedsby usingfull
statefi_edback.

Thepurposeof thepresentstudywasto investi-
gateflutter suppressionby usingpiezoelectricplates
asactuators.Resultsfromanalysesandexperiments
demonstratingthis technologywill bepresented.A
discussionof piezoelectricmaterialsandsomeappli-
cationswill bepresentedfirst. Followingthis,details
of the experimentalconfigurationandtestingfacil-
ities aregiven. Developmentand implementation
of the aeroservoelasticequationsof motionarepre-
sented.Resultsof analyticalstudiesbasedon these
openloop aeroservoelasticequations,the designof
thecontrollaw,andresultsfromclosedloopstudies
arenextpresented.Experimentalresultsandcom-
parisonwith analyticalpredictionsfollow. System
identificationtestresultsarediscussedaswellasthe
openandclosedloopfuttcr results.

Symbols

A

C

d15, d24

d31, d32

d33

E3

area

chord

electromechanical coupling
coefficient, shearing response to

voltage applied perpendicular to

the poling axis

electromechanical coupling
coefficient, in-plane response to

voltage in poled direction

electromechanical coupling

coefficient, response in the
direction of applied voltage

corresponding to the poling axis

applied voltage per thickness, in
the 3-direction

E

f

G.F.

G12

g

k

Young's modulus

natural frequency in cycles per

second (hertz)

gauge factor

shear modulus

structural damping

inertia about the pitch axis

stiffness of a single degree of
freedom

m

7n 0

mass

mass per unit area

n

P

qxi, qyi, qzi

S

T

t

t

U

U

U, V_ W

V

Vrllax

V

X, y, Z

XTt

X0_ YO, Z0

Xl

5

7

7xy

6

C

Cxx

Eyy

A

l]

P

O"

number of elapsed cycles

transfer function

dynamic pressure

generalized coordinates corre-

sponding to mode shape displace-

ment vectors in the x-, y-, and

z-directions, respectively

Laplace variable

kinetic energy

thickness of the piezoelectric

plate

time

potential energy

control command in the state

space equations

component displacements in
the x-, y-, and z-directions,

respectively

applied voltage

maximum voltage that may be

applied to the actuator

velocity

component directions

amplitude of the nth cycle

location of the 0th point within

the x, y, z frame

amplitude of the first cycle

distance from the midptane of the

phmge spring tine to the bonded

face of the piezoelectric plate

piezoelectric actuation constant

shear strain in the x-y plane

logarithmic decrement

strain

normal strain in the x-direction

normal strain in the y-direction

damping ratio

curvature

eigenvalue

Poisson's ratio

density

stress
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(7" x

_y

7-xy

CO

normal stress in the x-direction

normal stress in the y-direction

shear stress in the x-y plane

natural frequency

Matrices and vectors:

A state matrix

A extensional stiffness matrix

-_0 constant terms of the rational

function approximation to the

generalized aerodynamic forces

A1 coefficients of the first derivative

terms of the rational function

approximation to the generalized
aerodynamic forces

coefficients of the second deriva-

tive terms of the rational func-

tion approximation to the gener-

alized aerodynamic forces

state space control matrix

coupling stiffness matrix

state space output matrix

generalized damping matrix

physical damping matrix (not

generalized)

generalized damping matrix
that includes the structural and

aerodynamic first order terms

bending stiffness matrix

electromechanical coupling
matrix

applied voltage per thickness

potential energy term

strain actuator term

kinetic energy term

stiffness matrix

generalized stiffness matrix

physical stiffness matrix (not

generalized)

generalized stiffness matrix
that includes the structural and

aerodynamic zeroth order terms

B

B

C

D

D
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D

d

E

F1

F2

F3

G

K

K

M

M

M

MA

NA

Q

Q

q

R

S

U

U

X

Xfl, X_f2

Y

r

E

E

A

_r

_uu

_uy

Subscripts:

a

/

generalized mass matrix

physical mass matrix (not

generalized)

generalized mass matrix that
includes the structural and

aerodynamic second order terms

moment due to strain actuation

force due to strain actuation

generalized forces due to the

aerodynamics

rational function approximations

to the aerodynamic generalized
forces

vector of generalized coordinates

electric flux density

compliance matrix

control vector

displacement vector with compo-
nents u, v, and w

state vector

states associated with the flexible
modes and their derivatives

output vector

permittivity matrix

actuating matrix

strain vector

impermittivity matrix

curvature vector

actuation strain vector

stress vector

autospectrum of input

cross-spectrum of input with

output

mode shape displacement matrix

mode shape displacement vectors

for node point i in the x-, y-,

and z-directions, respectively

associated with the aerodynamics

associated with the flexible

modes
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i,J ith and jth node point, mode, or
element

L, M, and N

P

pl

limits in the x-, y- and

z-directions, respectively

associated with the controls or

piezoelectrics

associated with the phmge degree
of freedom

8

X_ y, Z

A

associated with the structure

quantities in the x-, y-, and

z-directions, respectively

associated with the pitching

degree of freedom

associated with the strain

actuation

0

Operators:

D

dA

associated with the midplane

derivative operator matrix

dummy variable of integration
over the area

dV

{}

[J

()

dummy variable of integration
over the volume

vector

matrix

transpose

derivative with respect to time

Piezoelectric Materials

A material which, when subjected to a mechan-

ical load, accumulates an electric charge is said to

have piezoelectric properties. Many naturally occur-

ring crystals have piezoelectric capabilities, but their

nonuniform properties encouraged research into man-
ufacturing materials that would produce electrome-

chanical coupling (ref. 18). Certain polymers and

ceramics consist of crystalline subdomains that are
bipolar in nature. Piezoelectric properties can be

induced in these materials by applying a large elec-
trical field across them. This induces an orienta-

tion of crystalline subdomains such that the posi-
tive and negative poles of the individual domains arc

aligned with the applied voltage field, denoted the

3-direction. Materials that require this poling belong
to a subcategory termed ferroelectrics.

4

The poling process of ferroelectric materials re-

orients the dipoles such that there is a net polariza-

tion along the axis of applied voltage. Tile orien-
tation remains after the inducing field is removed.

Using these materials requires a voltage to be subse-

quently applied through electrodes on opposite faces

of the nmterial. The most common configuration

(fig. 1) is to place the electrodes on the faces par-
allel to the poled axis and to apply the voltage in the

same direction as the original inducing field. The ma-

terial deforms both through the thickness, denoted

the da3 effect (fig. 2), and in the in-plane directions,

denoted the dal or da2 effect (fig. 3). Applying a
field oriented in one direction induces in-plane ex-

pansion; applying it in the other direction induces
in-plane contraction. To define the electromechani-

cal effects, the first subscript denotes the direction

of the applied voltage and the second subscript de-
notes the direction of the deformation. For trans-

versely isotropic materials, there is no distinction be-

tween vectors lying in any plane perpendicular to the
poling axis. To complete the description of the de-

formations achievable with these materials, figure 4

shows the electrodes placed on faces parallel to tile

poling axis (i.e., in the 1-direction). This induces a
shearing strain within the piezoelectric, as the posi-

tively poled side of the piezoeeramic strains toward

the negatively charged electrode and the negatively
poled side strains oppositely.

Nickel

electrodes

__

Applied

voltage

l

Figure 1. Electrode placement on piezoelectric plate.

Choosing the proper piezoelectric material to use

for a given application is based on stiffness prop-
erties, flexibility, electromeehanical coupling coeffi-

cients, and limits on applied voltage. The ability of a
piezoelectric material to actuate a structure is a func-

tion of its stiffness, the limit on the voltage that can
be applied across it, and the electromechanical cou-

pling coefficients. Polymers have high voltage limits,
yet they have low stiffness and low electromechanical

coupling coefficients. Ceramics, on the other hand,

are much stiffer and have large coupling coefficients
and are thus better suited for actuator applications.

Lead zirconate titanate (PZT), a piezoeeramic, was



Figure 2. Thickening effect (d33 effect ).

/

Figure 3. I,engthening effect (d31,d32 effect).
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Undeformed

+V

+V

Figure 4. Shearing efl'ect (dis, d24 effect).

chosen for this investigation. The material properties

(Product hfformation Catalog, PiezoSystems Solid

State Motion Technologies) of tile most concern in

this study are listed in table I.

Table I. Material Properties for Lead

Zirconate Titanate (PZT)

Property Vahle

166 x 10 12 m/V

360 x 10 -12 m/V

0.7 × 106 V/m

63 × 10 'j N/m 2

0.33

7.65 x 10 a kg/m 3

d31

d33

Maximum voltage

Young's modulus

Poisson's ratio

Density

Piezoelectric plates can be configured in different

ways to accentuate the displacements or forces being

generated. The in-plane expansion and contraction

of adaptive materials may be utilized by bonding

actuating plates to either side of a center shim (fig. 5).

One plate is expanded and one is contracted; the

net result is a bending displacement much greater

than the length deformation of either of the two

layers. This configuration, which takes advantage of

the Poisson-like d31 effect, is referred to as a bimorph

Figure 5. Bimorph bender configuration of piezoch,etric plate

elements. For the voltage polarity shown, the top layer

expands in the in-plane direction alld lhe bottom btyer

contracts in the in-plane direction.

bender element. It will serw_ a.s tile primary actuator

mechanism for the investigation described herein.

The material properties of the piezoelectric ma-

terials have been treated in this work with lin-

ear relationships. This assumption is valid for low

applied voltages and small deformations. Nonlinear-

ities and nonidealities of these materials have been

well-documented in references 6, 7, and 9. Several

nonideal properties that have been found to have sig-

nificance are the amplitude dependence of the field-

strain relationship, creep, variations with mechani-

cal strain, and depoling. These issues will not be

addressed in detail here; however, efforts have been

exerted during this investigation to a_oid these non-

linear regions. The amplitude of the control signal

voltage was low', thus depoling was avoided and the

linear field-strain relation was maintained. The fre-

quency of concern was approximately 10 Hz, thus

creep, a low-frequency phenomenon, was avoided.

The plates were also placed on a region where the me-

chanical strain at rest was very small, avoiding non-

linearities associated with applied mechanical strain.

Piezoelectric materials can be used in sensing and

actuating applications. Piezoelectric devices used as

sensors emit voltages when subjected to a mechani-

cal load. Because this study utilized the piezoelectric

plates only as actuators, sensor applications will not

be discussed flarther. In an actuating application,

the converse piezoelectric effect is utilized as the ac-

tuators defornl in response to a control signal or ap-

plied voltage. The mention of actuators suggests the

use of hydraulics, pistons, motors, etc. An actuator,

5



however, is a device that moves or causes action of

something else. The use of adaptive materials in this

manner has lassoed engineering interest from various

areas. The following section provides an overview of

several investigations that have been conducted.

In the area of rotorcraft_ two distinctly differ-
eat actuator configurations have been examined for

higher harmonic control (refs. 9 and 10). The first

used directionally attached plates to torsionally acti-

vate blade sections and actuate a trailing edge flap.

The magnitude of flapping vibrations was signifi-
cantly reduced with active controls. The second uti-

lized a push-pull configuration of bender elements.
Another actuating application, also detailed in refer-

ence 10, is the active damping of truss members for

large space structure applications. This study used
commercially available actuators that utilize the d33

effect (the expansion direction coincides with the di-

rection of polarization) to limit the vibration ampli-

tude and settling time of transients induced by dy-
namic perturbations to the structure, such as crew

motion. In the acoustics field, recent work (ref. 12)

has focused on reducing cabin noise through de-

structiw_ interference produced by distributed piezo-
electric plates. Separate finite impulse response
filters were constructed to control an acoustic res-

onance and a structural mode occurring 25 percent
above the acoustic resonance. Reference 13 describes

the use of piezoelectric plates in a bimorph configu-

ration on an aluminum beam in conjunction with an
adaptive controller to attenuate vibrations with fre-

quencies above 300 Hz. Reference 14 details exper-
iments and analyses of a composite beam with dis-

tributed embedded actuators controlling structural
modes fi'om 11 to 150 Hz. Through feedback of ve-

locity, structural damping was increased by an order

of magnitude.

Experimental Apparatus

The hardware involved in this wind tunnel test

is described in four sections: the wind tunnel, the

test article, the digital controller, and additional
instrumentation.

Wind Tunnel

The :piezoelectric flutter suppression model was

tested in the Flutter Research and Experiment De-
vice (FRED) at Langley Research Center, shown in

figure 6. The FRED is an open circuit tabletop

wind tunnel with a maximum operating velocity of

85 mi/hr (approximately 1500 in/see). The test sec-

tion is 6 in. by 6 in. and is constructed of acrylic
glass for model viewing. The air is pulled through

the tunnel by a 2-hp motor and smoothed by a single
honeycomb screen at the beginning of the contraction
duct. Models are mounted from the removable ceil-

ing of the test section. Figure 7 shows the test article

suspended from the test section ceiling.

Wind

Screen Test section

Test section: 6 in. by 6 in.
Models suspended from ceiling
Limits: Velocity-1500 in/see (85 mi/hr)

Dynamic pressure-0.13 lb/in 2

Figure 6. Schematic of Flutter Research and Experiment
Device (FRED) wind tunnel.

Test Article

The piezoelectric flutter suppression wind tunnel

model (fig. 7) consists of four integral components:

a flexible mount system, a rigid wing, piezoelectric

plate actuators, and a st[ain gauge bridge. The test

article was designed through an iterative procedure
involving parametric studies, the details of which are

presented in appendix A. There were three driving
factors in the design: the model had to flutter within

the wind tunnel envelope, had to fit inside the wind

tunnel with certain margins of safety, and had to

have flat surfaces on which piezoelectric actuating

plates could be mounted. It was decided a priori
that a flexible mount system would reside outside the

wind tunnel and provide the degrees of freedom for

a rigid wing. The physical system has two distinct

structural modes. When no mass coupling is present,

the lower frequency mode is a phlnge mode (out-of-
plane translation of the wing). The higher frequency

mode is a rotation about the wing pitch axis. The

wing was designed such that the modes would be

coupled by virtue of the wing mass distribution.

The mount system, shown in figures 8 and 9,
suspended the wing by two pins through slots in the

test section ceiling and provided the plunging and

pitching freedoms by virtue of separate spring tine
mechanisms. The plunge mechanism consists of two

spring steel plates or tines separated by 0.75 in. and
clamped at both ends to maintain this distance. This

provides the pure plunging motion of a beam with

guided boundary conditions instead of the flapping
motion associated with a cantilevered beam. The

pitch mechanism is a single spring tine connected to
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Figure 7. Photograph of wind tunnel test soction with test article suspended from coiling.
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thewingat theleadingedgeandat the0.2353-chord
location,wherethereis a bearing-likemechanisnl
that allowsfor freerotation. This configuration
providesthe wingwith pitch stiffnessand a pitch
axis. The two mechanismsarejoinedtogetheras
shownin figure10. The forwardendof /he pitch
mechanism is fixed relative to tile plunge springs by

mounting the pitch pivot pin to the lower clamping

block of the plunge mechanism.

Trailing

edge

Plunge

spring tines _.lp

Clamping
block

Wing

Pitch

Leadmgedgc1

Figure 9. Mount systenl close-up: interconnection mechanism

for tile phage and pitch degrees of freedom.

Adjusts up and Piezoelectric

down to change aCltlalor

effective lenglh

plunge spring

balsa wood extension, and an aluminum mass bal-

last. The primary wing structure is formed from
l/_-in-thick isotropic aluminum with a diamond cross

section aim blunted leading and trailing edges and
midchord section. It has a chord of 2 in., with tile

pitch pivot at tile midchord. The balsa wood exten-

sion overlays the aft. half of the primary structure
and extends the chord length to 4.25 in. The trail-

ing edge of this section was coated with alumimm) to

provide a mass ballast. The mass of the entire wing

is 0.090 Ibm and has an inertia about the pitch axis
of 0.134 lbm-in 2. All three sections extend the full

span of the wing, which is 4 in. Table II gives the
measured mass and location of the center of grav-

ity for each portion of the wing. Based on measured

dimensions, mass, and distance to the pitch point,

inertias for the component parts were calculated; the

results are given in table III, where

1 (Ma.ss)(Width) 2
Icg= (1)

/pivot = (Mass)(Distance) 2 +/ca (2)

Table II. Measured Ma.ss and Center-of-Gravity I_ocations

for Wing Components

Primary wing strut'turc

(iIlcludes pivot

meeha,fism)

Balsa extension

(iIlchldcs adhesives}

Aluminum mass ballast

Total

lbnl

0.072

Center-of-gravity

distance aft of

pivot 1)oint, in.

0.0

.01 t 1.875

.007

O.090

3.0

Wind

tunnel

ceiling

Wit Vekx:ity

Figure 10. Wind tunnel mount system (not to scale).

The wing, depicted in figures 11 and 12, consists

of three sections: an alunfinum primary structure, a

TM)le Ill. Inertia Calculations for Wing Components

Primary

wing

Wing

(_xtetlsiOll

Ma.ss

ballast

Mass, \Vidth, Distance, Ica, lt)ivo_,

Ibm in. ill. Ibm-in 9 Ibm-in 2

0.072 2.0 0.0 0.022 0.022

.011 3.25 1.875 .0097 .(),187

.007 .5 3.0 .0001.1 .06314
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Figure 1l. Photograph of wing.

L-91-10982

Aluminum

primary

structure

Leading

edge

Leading

cdge

Aluminum

primary

structure

l Pilch axis Balsa woodextension
i il,ll ...... ,,

Aluminum

mass ballast

Trailing

edge

(a) Cross-sectional view.

Figure 12. Schematic of wing.

i Pitch axis Balsa wood
extension

(b) Planfi)rm view.

Trailing

edge

Aluminum

mass

ballast
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Piezoelectric ceramic plates were installed near

the root of one of the plunge spring tines to actuate
the test article. Two plates, 1.5 in. long and 1 in.

wide, were bonded to opposing sides of the plunge

spring tine, with their positive poles both oriented
toward the steel, to form a bimorph-type actuator.

The 0.0075-in-thick plates were electrically isolated

from the steel by the bonding layers. Small copper

tabs affixed beneath the plates during the bonding

process served ms the means of applying voltages to

the bonded-side electrodes (fig. 13).

Steel plunge

Piezoelectric -,__ spring tine

plates _ _" _"_'_¢

-V

Figure 13. Piezoelectric actuator attachment to phmge spring
tine.

A strain gauge bridge was mounted near the base
of one of the spring tines, with two gauges on either

side of the tine. The gauges can be seen in the

photograph of figure 7. The gauges, which had

an overall gauge factor of 2.075, were configured to
measure the cantilever bending strain. The bridge

was powered by a 4-5-V power supply. The strain was
computed by taking the ratio of the output voltage

to the input voltage and dividing by the gauge factor.

gout

- (3)
Vin G.F.

The output voltage from the strain gauge was ampli-

fied by 100 before being sent to the digital computer.

Digital Controller

The control law is implemented by using a

personal computer, with an 80386 processor and
an 80387 coprocessor running a real-time Unix op-

erating system. The control laws are programmed

in the C-language and use floating point arithmetic
for all control law calculations. The data acquisi-

tion system uses 12-bit analog-to-digital converters

(ref. 19).

Additional Instrumentation

The wind tunnel and model had three sensor sys-

tems: a strain gauge bridge, a linear accelerometer,
and a hot wire anemometer. The strain gauge bridge

utilized to generate the feedback measurement signal

has been discussed previously.

An Endevco piezoelectric accelerometcr was used

in system identification experiments. It was powered

by an external 4-mA current source. The output was

calibrated at 9.98 mV/g. The accelerometer served
as a roving sensor, being placed where applicable for

diffe.rent experiments. During zero-airspeed testing,

it was located on the wing; however, during flutter

testing, it was installed on the clamping block.

Both the strain and the acceleration were ampli-

fied by 100 before being sent to the analog-to-digital
converters. The output voltage of the controller was

sent to an operational amplifier having a gain of 25

and a limit on the output voltage of 80 V. This lim-

ited the usable range of output values from the con-
troller to +3.2 V. The amplified voltage was then

applied across each of the piezoelectric elements. An

Apex Mierotechnology P83A operational amplifier
was used to boost the input voltage to tile piezo-

electric actuators. The signal source or input voltage

applied to the piezoelectric plates was amplified by

a factor of 25, with a limit on the output voltage

equal to the power supply voltage, which in this ex-

periment was 4-80 V. A block diagram of the closed
loop system with active feedback is presented in fig-

ure 14. Only the signals employed in the feedback
scheme are shown.

A Kurz 443M air velocity meter provided visual

readouts of the test section airspeed. This is a hot

film anemometer with an analog display" in meters

per second. The probe was inserted into the flow
just behind tile model in the test. section. Thus, in

order to accurately measure the velocity, the model
must be moved to the stops to eliminate blockage and

the influence of wing oscillations on the reading.

Analytical Modeling

The analytical model was developed incorporat-

ing the aeroservoelastic equations of motion, a model
of the control computer dynamics, and experimen-

tally determined correction factors. The following

discussion of the analytical modeling first addresses
the theoretical development of the equations of

motion for an electromeehanically actuated aero-

elastic structure. Following this, the procedures used

in generating and assembling each of the pieces of

the open loop plant are presented. Details of com-

puter software utilized for implementing the analyti-
cal model are discussed. Modeling of the control com-

puter dynamics follows, while the final section details

scaling the model for units and amplifiers along
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Figure 14. Block diagram of closed loop system with active feedback.

with incorporating the experimentally determined
correction factors.

Theoretical Development of the
Aeroservoelastic Equations of Motion

The acroelastic equations of motion were de-

veloped with classical techniques available to the
aeroelastic community; the control forces from the

piezoelectric elements were developed with laminated

plate theory in conjunction with Lagrange's energy
method.

Aeroservoelastic equations of motion based on La-

grange's energy equations represent a summation of

forces that include the inertial, dissipation, and in-

ternal restoring forces, the reduced-frequency depen-
dent aerodynamic forces due to the structural mo-
tions, and the control forces. Generalized coordi-

nates were defined as the modal contributions to the

displacements. An in-depth development of the gen-

eral aeroservoelastic equations of motion is presented
in appendix B. To highlight the difference between

an electromechanically actuated system and an aero-

dynamically actuated system, a brief discussion of
the development follows.

Solution of Lagrange's equations requires expres-

sions for kinetic and potential energy. The kinetic en-
ergy is defined by a volume integral, which when in-
tegrated over a uniform thickness laminate becomes

an area integral, premultiplied and postmultiplied by
the derivative of the generalized coordinates. The

area integral is the structural mass tnatrix. The

potential energy is defined by a volume integral of

the strain and stress vectors multiplied. The con-

stitutive relationship that defines the dependence
of strain on stress for piezoclectric materials is de-

rived in appendix C. The modeling of piezoelectric
systems requires consideration of both mechanical

and electrical behavior. Coupling between mechani-

cal stresses and electrical fields is analytically repre-
sented by constitutive relationships that contain both

the clectrical quantities and the mechanical quanti-

ties. This rclationship is utilized in cxpressing the

potential energy; a portion of the potential energy
expression is the structural stiffness. The presence of

the strain due to electrical energy generates a term
that is not traditionally observed in the mechanical

potential energy expression. This is the piezoelectric

actuation matrix, the development of which is pre-
sented in appendix D. The calculation of this matrix

is easily performed utilizing the discretizcd structural
model. Derivatives of the expressions for kinetic and

potential energy are taken as appropriate and imple-
mented in the Lagrange equations of motion. The

state vector is defined as the generalized coordinate

vector and its derivative; the second order equations
are thus transformed into first order state space form.

Aeroservoelastic Model Construction

A variety of techniques and software packages
were employed to develop the various elements of
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the equationsof motion. The structural charac-
teristicswerecalculatedby utilizing a finite ele-
ment methodand normalmodesanalysisfor de-
terminingthenaturalfrequenciesandmodeshapes.
Generalizedaerodynamicforceswerecalculatedfrom
doublet-latticelifting surfacetheoryappliedto the
discretizedwing. To implementthe aerodynanfie
forcesin statespaceequations,rationalfunctionap-
proximationsweremadeto thetabularoutputof the
doublet-latticecode. Thecontroldistributionma-
trix B andtheoutputormeasurenmntmatrixC were
computedwith finitedifferencetechniques.

Finite element model. A finite element model

of tile wind tunnel wing and the two-degree-of-
freedom mount system (fig. 15) was constructed and

analyzed with MSC NASTRAN (ref. 20). The model

developed represented the primary wing with solid
elements; the wing extension and mass ballast were

represented with concentrated mass elements. The

spring tines were modeled with plate elements. A
torsional spring was added at. the pivot point to bet-

ter represent the experimentally determined pitch
frequency.

Wing
Clamping (solid elements,

block
concentrated

(solid elements}

l masses)Plunge spring tines _,,,,,,,e_. _._._
,, (plate elements) . __.._..._.1---_.---_- _ _._ . .

I .- " " _." __ Pitch axis

.... ".[.--. " " .-[."%%_:_ (rigid elements

' . • " Pitch spring tines
"__ Elements where (plate elements)

piezoelectric
ceramics are

located

Figure 15. Finite element inodel.

Observation of the physical system in motion in-

dicated that the boundary condition for the phmge

spring tines was clamped or guided. The finite el-

ement model closely predicted the phmge frequency
when this boundary condition was enforced. F_lrther

observation of the motion indicated that tile pitch

spring boundary condition at the pitch pivot point
was stiffer than a cantilever, while the other end of

the tine looked cantilevered (ref. 21). The exagger-

ated sketch of figure 16 depicts this phenomenon.

From experimental frequencies and calculated iner-

tias, spring stiffness constants were computed for

three wing configurations: the primary wing struc-

ture alone, one with the balsa wood wing extension,

and one also containing a 0.007-Ibm mass ballast.

From the average stiffness value, the cantilevered

stiffness of the existing finite element model was

subtracted. The resulting stiffness was included in

the finite element model by means of an explicitly
modeled spring at the pitch pivot point.

U ndefonned

Guided at
both ends

Guided at

base only

Cantilevered

Figure 16. Sketch of boundary condition influences on

dcformal ioll.

The locations on the spring tines where piezo-

electric plates were bonded were defined as compos-
ite plates, where the layers of piezoelectric ceramic

were modeled as temperaturc-dependent materials.

The parallel constitutive relations of thermonmchan-

ical and electromechanical systems allowed the volt-

age applied to the ceramics to be represented by an

applied temperature field.

Aerodynamic model. Unsteady aerodynam-
ics were calculated with the doulflet-lattice method

(ref. 22) as imtflemented in the Aeroelastic ¥2,hi-

cle Analysis (AVA) syst.em of computer codes. The

doublet-lattice method is a panel method for solving
the integral equation relating the normal wash and

the aerodynamic loading for lifting surfaces in sub-

sonic flow. Discrete lifting elements, consisting of an

oscillatory doublet line and a horseshoe vortex, ap-
proximate the loading. The steady-flow effects are

represented by the vortex; the doublet represents the

inerenmntal effects of oscillatory, unsteady motion.
AVA uses the modal displacement vectors to cal-

culate the gcneralized aerodynanfic forces (GAF's)
at discrete reduced frequencies. The program out-

put is a table for each reduced frequency, where tile

cohmms of the table correspond to Inodal and con-

trol deflections, while tile rows correspond to modal
pressures or forces. Because the wing is rigid over the

airspeed range of interest, the modal displacements

are input at six points along tile leading and trailing

edges of the primary wing section. The aerodynamic

model, shown in figure 17, has 5 chordwise boxes and
10 spanwise boxes for a total of 50. The GAF's were

calculated at Mach 0.05 for eight, values of reduced

frequency ranging from 0.001 to 2.0.
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Figure 17. Doublet-bttticc _terodynamic box layout.

Rational function approximations for the

aerodynamics. The aerodynamics produced by the
doublet-lattice code are transcendental functions of

reduced frequency. In order to incorporate them into

the state space equations of motion, they must be

approximated by rational functions of the Laplace

variable s (ref. 23). Equation (B59) illustrates the

second order approximations made. The Integration

of Structures, Aerodynamics, and Controls (ISAC)
system of codes (ref. 24) was used to perform these

approximations and generate the resultant s-plane
GAF's. The objective of the fit is to determine the

coefficients such that the approximation best fits the

tabular data in a least-squares sense subject to a

set of linear equality constraints imposed upon the

coefficients. The constraints imposed for this model

are that the approximations will exactly match the
tabular values at zero reduced frequency for each of

tile modes. Figure 18 shows the GAF's plotted as a

function of reduced frequency and the results of the
approximat ion.

Finite difference program for generating

the actuating matrix. The actuating matrix F is

calculated by a finite difference program. This code
calculates the second derivative at the center of each

of the structural elements by using the displacements

two node points from both sides of the element.
The only elements included in this calculation are

those laminated with the piezoelectric plates. The

actuating plates near the root of a plunge spring

consist of six elements, each 0.25 in. long and 1 in.
wide. The displacements are assumed to be constant

14

across the width of the spring tine, so only one
row of displacements along the length is used in the
calculations.

Finite difference program for modeling the

strain gauge. Strain gauges configured to measure
cantilever bending are also governed by the behavior

of the second derivative of the motion, taken with

respect to the lengthwise coordinate (ref. 25). The

same basic program used in calculating the actuator
influence matrix was modified to calculate the strain

gauge coefficients. The second derivative was calcu-

lated at locations near tile root of the phmge spring
and multiplied by the spring tine thickness to predict
the strain on the surface.

Generating the state space equations of
motion. The equations of motion were assembled

with MATRIXx, a commercially available software

package from Integrated Systems, Inc. (ref. 26). The
continuous, open loop model was generated in first

order form. The procedure, given in table IV, shows
the details of the A and B matrix calculations and

the C matrix for strain gauge measurements. These

matrices are then discretized with the appropriate
sample rate.

Modeling the Control Computer
Dynamics

The influences of the zero order hold and one

time step delay on the closed loop system were ex-

anfined using Matlab, a commercially available soft-

ware package from MathWorks, Inc. (ref. 27). The
influence of the sample rate was also determined.

MATRIX x implicitly models both the zero order

hold and a one-sample delay automatically when the
discretization command is used.

Illustrated in figure 19 for a gain feedback control

law, the control computer introduces its own dynam-

ics into the feedback path. The digital controller im-

plementation scheme shifts the output data by one

sample and applies a zero order hold. The frequency
response of the digital controller is different for differ-

ent sample rates. Using a sample rate that emulates

analog derivative feedback near the frequency of con-
trol interest allows the system to simulate derivative

feedback, despite having only displacement measure-

ments (ref. 28). The current control law utilizes the

dynamics of the implementation scheme, requiring
only gain feedback. The frequencies of concern lie

between 7.9 and 11.1 Hz. Figure 19 shows that for

a 20-Hz sample rate, the phase is -270 °, or +90 °
at 10 Hz. Thus, the phase characteristics simu-

late a derivative in the frequency range of interest,
near 10 Hz.
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Table IV. MATRIX x Command File for Assembling
the Equations of Motion

//
//eom.mat
//

// Procedure file used to generate open

loop equations of motion
//

// Gamma is the finite difference program

output matrix which

// calculates the piezoelectric
structural influence

//

// Cstrain is the second derivative of

each of the mode shapes

// with respect to lengthwise coordinate
//

// Physical parameters
chord=4.0

rho=.l1468e--6
d31=-6.35e-9

qbar=.5*rho*v**2
//

// Structural stiffness, damping, and mass
//

omega=[7.8;lO.89]

freq=2*pi*omega

dsi=[.OI7 .055]

ms=[eye(2)]

ks=diag(freq.**2)*ms

ds=diag(dsi)*diag(freq)
//

// Aerodynamic stiffness, damping, and mass
//

ma=qbar*(chord/2/v)**2*a2

da=qbar*chord/2/v*al

ka=qbar*aO
//

// Combining aerodynamic and structural
matrices

//
m=ms+ma

minv=inv(m)

d=ds+da

k=ks+ka

//

// Assembling the state space matrices
//

a=[O*ones(2,2)eye(2,2); -l*minv*k-l*minv*d]
//

bs=-l*d31*minv*gamma

b=l.2*[O;O;bs]
zbar=.O08

c=-l.3*zbar*cstrain

s=[a b;c O*ones(2,1)]

_=
e-

1.0
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Figure 19. Erequency response of implicit controller dynamics
for 20-Hz sample rate (tinle delay and zero order hold).

Scaling and Correction Factors

The experimental setup contains amplifiers, dis-
cretizations, etc., which must be included in the an-

alytical model if a controller design is to be applied
to the physical system. The strain produced on the

model is measured by gauges that produce voltages.

These voltage levels are insufficient for the digital

controller to discern. Thus, an amplifier with a gain
of 100 is introduced into the strain path. It must

also be kept in mind that the strain is not actually
fed back, but a voltage proportional to strain. Any

control law generated must account for this factor.

The feedforward path, from the control computer to

the piezoelectrics, also contains an amplifier, which
multiplies the input by 25. This gain is included in

the computation of control matrix B.

The equations generated contain errors due to

inability of theory to predict physical phenomena,
shortcomings in methods used, neglected terms, and

nonidealities of the physical model. The computa-
tion of the strain gauge values by a finite difference

technique had an error of 30 percent at zero fre-

quency. Because the differencing was performed on

plate elements very near the clamped boundary con-
dition, it was deternlined that the values yielded were
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inaccurate.Thestraingaugeequationswerescaled
by 1.3to accountfor this. Zerofrequencygainswere
alsocomputedexperimentallyfor tile transferfunc-
tion fromthepiezoelectricvoltagetothestraingauge
output.Theywereoffby20percent.Thiswasantic-
ipatedbecauseoftheunmodeledbondinglayer.The
controlmatrixwasmultipliedby 1.2in anattempt
to correctfor thisdifference.

Analyses

Analyseswereperformedwith theaeroservoelas-
tic equationsof motionderivedandimplementedas
detailedin the previoussection.Resultsfromthese
analysesarediscussedin threesections:(1) finiteel-
ementmodelstudies,(2)aeroelasticanalysesof the
openloopsystem,and (3) controllaw designand
closedloopanalysis.

Resultsfrom systemidentificationtests,which
will bedetailedin the experimentalsectionof this
paper,wereincorporatedinto the aeroservoelastic
equationsof motionprior to theopenloopanalysis.
Theseexperimentalresultsincludenaturalfrequen-
cies,structuraldampings,andscalefactorsfor the
actuatorandthesensors.

Finite Element Analysis

Thefiniteelementmodelservedseveralpurposes:
(1) thestructuralmatricesweregenerated,(2)nat-
ural frequenciesand modeshapeswerecalculated
by performinga normalmodesanalysis,(3)a para.
metricstudywasperformedto designthemassbal-
last, and (4) parametervariationswereperformed
to determinethe placementof tile actuatingplates
necessaryto obtainthemaximumcontroleffect.

Aftertireconstructionof thestructuralmassand
stiffnessmatrices,normalmodeanalysiswasper-
formedto generatenatural frequenciesand mode
shapes:

- = 0 (4)

The natural frequencies were calculated from

The resulting undamped mode shapes {_i} are or-

thogonal and, like any eigenvectors, can be arbitrar-

ily scaled. It is a common practice in aeroelastic

modeling to scale them such that a unit generalized
structural mass matrix is generated:

Ms = [_]-1 _.s [_] = [i] (6)

Predictions of the natural frequencies are pre-

sented in table V for various pitch boundary con-

ditions with and without piezoelectric plates incor-

porated. The pitch spring boundary con(tition was
eifforced first as a cantilever and secon(t as a com-

bination of cantilevered and guided t)oundary condi-

tions. Tire combination of t)oundary conditions was

enforced to increase tire pitch spring stiffness to the

value indicated by experimental results. The finite

element model was augmented with the piezoelectric

actuators and reanalyzed. The presence of the piezo-

electric plates increased the open loop stiffness; the

phmge frequency increased by 15 percent.

Bernoulli-Euler beam theory calculations pro-
vided valuable benchmarks for the frequency results.

Reasonableness checks were performed by compar-

ing idealized beam theory for cantilevered and guided
boundaries with the finite element results. The in-

fluence of the piezoelectric elements on tire mass

and stiffness properties is neglected in these calcula,

tions. The two degrees of freedom arc considere(t as

completely decoupled. The phmge st)ring was mod-
eled with a cantilevered boundary condition, while

tile pitch spring stiffness was computed for canti-

levered and then guided boundary conditions. The

frequency pre(tictions are presente(t in table V.

The most accurate system model was (teemed to

be the finite element representation that included the

comt)ined guided and cantilevered pitch st)ring model

with the piezoelectric plates in place. The vibration

mode shapes arc shown in figure 20. The first

mode, designated phmge because of the dominance
of translational motion, was predicted at. a frequency
of 7.8 Hz. Tile second mode, which is chara(:terized

by the pitching of the wing relative to the m(umt

system, has a natural frequency of 10.9 Hz.

7.8 Hz

Figure 20. Finite clement analysis vibration mode shapes.
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Table V. Analytical Predictions of Natural Frequencies

With and Without Piezoelectric Actuators

Without piezoelectric plates:

Beam theory

Beam theory

Fhfite element model

Finite dement model

Pitch

spring

boundary

condition

Cantilevered

Guided

Cantilevered

Combined

Phmge

lnode

frequellcy_

Hz

7.2

7.2

6.6

6.8

Pitch

mode

frequency,

Hz

6.7

13.,1

9.2

10.6

With piezoelectric plates:

Finite element model Combined 7.8 10.9

Prior to the analysis presented above, the mass
and inertia properties of the physical configuratkm
had to be settled. A study to determine the amount
of mass ballast desired was performed with the fi-
nite element model. The natural frequencies of the
system are dependent upon the mass distribution:

apt _x _/kplm (7)

_ ko
_0 oc (8)

I_;:¢

The total mass of all components supported by the
plunge spring tines, m, is used in the calculation of
the plunge frequency. The inertia used in the cal-
culation of the pitch frequency is the inertia of the
entire wing about the pitch axis. The mass ballast,
located at the trailing edge, contributes significantly
to the inertia. The flutter speed is shown in appen-
dix A to be sensitive to frequency separation. Thus,
the flutter characteristics can be adjusted by slight
modifications to the mass ballast. Table VI compares
the analytical predictions of the natural frequencies
for ma,ss ballasts from 0.005 lbm to 0.011 lbm. It

also shows the natural frequencies of the primary alu-
minum wing with no extension or ballast and of the
wing with only the balsa wood wing extension.

Another study was performed to determine the
optimal placement of the actuating plates. By us-
ing 1-in-long piezoelectric segments, a pair of actua-
tors was analytically placed at different locations on
the plunge spring tines. Table VII shows the dis-
placement generated at the "free" end for different
actuator locations and identical applied voltages. In

Table VI. Influence of Mass Ballast on Analytical

Predictions of Natural Frequencies

Pitch Phmge

frequency, frequency,

Hz Hz

Primary wing 25.78 8.96

With wing 13.29 8.38

extension only

Ma.ss ballast, Ibm:

0.005

.007

.(}09

.011

11.3!1

10,86

10.65

10.,11

7.99

7.79

7.61

7.4O

Table VII. Results of Study To Deternfine

Actuator Placement

Distance from root

to edge of piezo,

iIl.

No piezo present

0.25

1.25

2.25

3.25

4.25

5.25

Phmge mode

frequency,,

Hz

Pitch mode I

frequency,

Hz
7.02

7.77

7.26

7.02

7.02

7.30

7.75

12.6

12.7

12.6

12.5

12.5

12.6

12.6

Model

deflection,

in.

0

-9.21 x 10 -5

-5.69 x 10 5

-1.54 x 10 -5

2.59 x 10 -5

6.77 x 10 5

9A7 x 10 -5

reference 7 it was found that the actuators should be

placed in regions of high strain for the mode that is
of control interest. By virtue of both maximum de-
flection and maximum strain, this investigation indi-
cated that the actuating plates should be placed near
either end of the clamped spring tine.
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Open Loop Aeroelastic Analysis

Flutter analysis of tile model was conducted by

analyzing the open loop acroelastic equations of mo-

tion at a given density for various velocities (ref. 29).

As the velocity changes, the relative influence of the
aerodynamic and structural contributions to the in-

ertial, damping, and stiffness characteristics of the

system changes. The velocity root locus plot of fig-

ure 21 shows the open loop flutter characteristics.

The plot traces the roots of the system as the air-

speed is increased. The horizontal axis is tile real

part, while the vertical axis is tile imaginary part.
The imaginary axis represents the point of neutral

stability or zero damping, where, theoretically, re-

sponses will neither converge nor diverge. Flutter,

defined as an oscillatory divergence, is represented

on a root locus plot by an eigenvalue crossing this
axis into the right half plane.

Pitch mode /_

Plunge mode

I f I i
-20 - 10 0

Real part, l/see

- 1O0

Imaginary
part,

rad/sec

75

Flutter

condition
(560 in/see)

5O

25

Figure 21. Root locus (eigenvalue locations as velocity is
varied).

Figure 21 predicts the behavior of the plunge and

pitch modes for sea level density. The frequencies
of the two modes migrate toward one another as

the aerodynamics couple the two modes. When the

frequencies are close together, the modes interact

with one another and the system is driven unstable,

shown by the plunge mode eigenvalue crossing into
the right half plane. The predicted flutter mechanism

involves the coalescence of the plunge and pitch

modes at a velocity of 560 in/see and at a frequency
of 9.1 Hz.

An alternate method of expressing the same data

is to plot the frequencies and the damping ratio as

functions of velocity. This method will be discussed

later in the comparison of analysis and experiment.

Control Law Design and Closed Loop

Analysis

The control law design requirement for the cur-

rent study was to suppress flutter over a veh)city

range. There was no performance requirement be-

sides stability. Because of the simplicity of both the

design objective and the test article, the aeroelastic

phenomenon was controllable through a single-input
single-output control law. Gain feedt)aek (ref. 30)

utilizing the dynmnics of the discretization process

was employed. The strain-proportional voltage was

the input to the control law.

Saturation places limits on the implementable

feedback gain. In a traditional aircraft control
scheme, the gains are restricted hy aerodynamic sat-

uration of the control surfaces as they stall or by, the

limits of hydrmflic actuators. In this experiment, the

piezoelectric actuators were capable of handling more

voltage than the operational atnplifier was capable of
producing. Thus, the maximmn voltage of tim am-

plifier, not the linfiting voltage of the piezoelectric

plates, became the limiting va.lue. The amplifier had

an output, limit of 80 V; input voltages were anaplified

by 25. Thus, the maximmn input voltage was 3.2 V.

Maximum gain x Maximum strain r(,sponse _< ;I.2 V (9)

The open loop strain response had a maximum

measured voltage of 0.097 V for wind tumlel comti-
tions just below flutter. Thus, the usabh, gain was
limited to 33.

In the implementation of the control law, the sig-

nal was discretized by a 20-Hz sampler and multiplied
by the feedback gain. Digital-to-analog converters

held the output data until the end of the sample pe-

riod. The output signal was then updated. This

value was held until the end of the next sample pe-

riod, when new output data were available. Refer-
ences 31 and 32 provide more detailed explanations

of this digital-to-analog conversion, called a zero or-

der hold. Detailed characterization of the dynamics

of the control law computer was discussed under the

analytical modeling section; their influence has been

included in the following analyses.

Control law design is traditionally performed in
the continuous domain. Because the control law coin-

purer dynamics were an integral part of this design,
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Figure 22. Gain root locus of tile discrete system at, open loop flutter; 580 in/see with gains from 0 to 120.

however, the discrete domain model was utilized in
this investigation. On a diagram of discrete system

eigcnvalues, the stability condition corresponds to
the location of the roots relative to the unit circle.

Roots outside the unit circle correspond to instabil-

ities. That is, the imaginary axis of tile continuous

complex plane maps to the unit circle of the discrete

complex plane.

Design models were constructed from the aero-

servoelastic equations of motion developed in the

previous section. Because these equations contain
velocity-dependent terms, models were created at

several distinct velocities. The equations represent-

ing the system at the predicted open loop flutter

condition, determined to be 580 in/see, were the ini-

tial design model. The continuous model was dis-
cretized with a 20-Hz sample rate. A gain root lo-

cus, constructed by varying the gain from 0 to 120,

is shown in figure 22. Each eigenvalue trace be-

gins at the open loop system values that corre-
spond to a feedback gain of zero. One pair of roots

shown in figure 22 is unstable for the open loop

case, as this velocity corresponds to the open loop
flutter condition. The flutter mode eigenvalues sta-

bilize for :small feedback gains, since they migrate

inside the unit circle almost immediately. As the

gain increased, the eigenvahms continued to migrate

within the unit circle for feedback gains up to 108,

where one destabilized again.

The stability criterion can be expressed as a limit

on the magnitude of the eigenvalues. The magni-
tude of the largest, eigenvalue must be less than 1.0

for the system to be stable. Figure 23 shows the

value of the maximum magnitude of the eigenvalues

plotted against feedback gain. The design model,

linearized at 580 in/see, stabilized for gains higher
than 14 but less than 108. As the gain increased

from 0 to approximately 45, the system became

more stable; additional gain did not decrease the

eigenvalue magnitude. This model, however, repre-
sented the system at only one airspeed. The same

figure shows the variation with gain for several air-

speeds. For 1 in/sec airflow, the model was open loop

stable. As the gain increased, there was very little

change in the eigenvalue magnitude until the gain
reached 102. The magnitude increased and the sys-

tem was driven unstable for gains of 104 and above.

The maximum airspeed for which gain feedback sta-
bilized the system was found to be 1300 in/sec. As

indicated in the figure, gains between 103 and 108

stabilized the system at this airspeed. If physi-

cally attainable and no stability margins are required,
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103 is the optimal gain. Practical limitations on the

gain, however, did not allow a gain of this magnitude

to be implemented.
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feedback gain for various airspeeds.

A velocity root locus was constructed with the

largest allowable feedback gain, 33. Figure 24 shows

the traces of the eigenvahles as the velocity is in-

creased from 0 to 700. As with the gain root. locus,

a stable system has eigenvahles all lying within the

unit circle. The flutter mode initially stabilized and

then slowly began to migrate back toward the unit

circle. The root crossed the stability boundary, pre-

dicting closed loop flutter at 648 in/see. The pre-

vious graph (fig. 23) showed the variation of maxi-

inure eigenvahle magnitude as a function of gain for

this velocity. The influence of increasing velocity can

also be seen on this graph by examining the dashed

vertical line representing a feedback gain of 33. At

1 in/see, the eigenvalue is just below the stability

point, 1.0. The next. higher velocity plotted is the

open loop flutter speed, 580 in/see. The eigenvahm

magnitude has decreased, indicating the stabilizing

effect of the feedback. For a velocity of 648 in/see,

the trace intersects the stability boundary. Recall

that this is the closed loop flutter speed. For veloci-

ties greater than the closed loop flutter speed, there

is a substantially increased magnitude of instability.

This is illustrated by the data corresponding to a

velocity of 1300 in/see.

Initial parametric studies, presented in appen-

dix A, indicated that separation of tile zero-airspeed

Closed loop Imaginary part

futter at 648_ 1.0

in/see

Real pan

.IX '.s 1]0
-0.5 {Stability boundary ]

Stable //Unstable

- 1.0 _

Figure 2.1. Discrete system root locus for varying velocity of

the closed loop system with feedback gain of 33.

natural frequencies, or mldamped natural frequen-

cies, would have the effect of delaying the onset of

flutter. A comparison between the open and closed

loop eigenvahm magnitudes for increasing velocities

is presented in figure 25. The effect, of the gain feed-

back is shown t.o separate the natural frequencies as

the aerodynamic influence grows (i.e., the velocity

gets larger, increasing the nlagnitude of tile aero-

dynamic contritmtions to the mass, (tanlping, and

stiffness matrices).

Closed loop flutter

(648 in/see)
Open loop flutter ( /

(560 in/sec)_ Nx..-"" .

i i i i ,

0 100 200 300 4(t0 5IX) 600 7(10

Velocity, in/see

Figure 25. Open and closed loop conq)lex al)solute value of

maxinmm system cigenvalue versus veh)eity with 20-Hz

sample rate and feedback gain of 33.

Analytical Results Summary

The finite element results indicated that the

piezoelectric plates should be placed near the ends
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of the spring tines. The natural frequencies pre-
dicted were 7.8 and 10.9 Hz. The results of the open

loop aeroelastic analysis indicate the onset of flutter

at 560 in/sec. With gain feedback at a gain of 33, and

control law computer dynamics imparted by a 20-Hz

sample rate, the closed loop flutter speed is predicted
to improve by 15.7 percent.

Experiments

Experimental results from bench tests and wind

tunnel tests are presented in this section. Bench tests

yielded scaling factors for the feedback sensor and ac-

tuator and provided zero-airspeed system identifica-
tion results. The wind tunnel results to be discussed

include system identification and flutter testing.

Experiments were performed at various points

during this project. Static testing was performed on

the model to check and determine gains within the

open loop system. This was a very useful test because
of the many component parts that were necessary to

conduct the sensing and actuating. Open and closed
loop flutter tests were conducted and the results

compared with one another as well as with analytical

predictions.

Static Testing

Static testing was performed on the model to

determine open loop system gains. To validate and
correct the mathematical model, an experiment was

devised to check the strain gauge coefficients. A

known displacement was applied to the clamping

block (fig. 9); the strain was measured. Applying the
same amount of displacement to the mathematical

model yielded a strain 30 percent smaller. The

sensor equations associated with the strain gauge

were increased to give the correct dc value. With

the strain equation yielding the experimental value,
a constant voltage was applied to the piezoelectrics
and a strain was measured. The mathematical model

predicted 20 percent less strain than the measured

value. The control matrix was then scaled to yield
the correct value.

System Identification Testing

System identification testing was performed us-

ing several techniques to extract modal frequencies,

dampings, transfer functions, and general system be-
havior. There were several experimental and ana-

lytical techniques used to extract these system pa-

rameters (fig. 26). Impulse response functions of the

accelerometer generated by hammer tests proved to

be the most reliable means of extracting the natu-

ral frequencies of the system, but could be used only
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at zero airspeed because the wing could not be di-
rectly accessed while in the tunnel. Additionally, the

amount of disturbance introduced to the flow by the
presence of the accelerometer and its lead wire dras-

tically altered the aerodynamic behavior. A second

technique, employed to obtain a more dramatic re-

sponse from the pitch mode, was to pluck the spring

tine and record the free-decay data. This free-decay

technique was effective at low airspeeds, where the

plucking did not perturb the model enough to induce
large oscillations. The third technique was to excite

the model by applying random voltage to the piezo-

electric actuators. There were several advantages to
this method--most importantly, the actuator influ-

ence was included in the results. Also, because the

amplitude of the input could be carefully controlled,



this techniquecouldbeusedthroughoutthetesten-
velopewithoutinducingflutter. By examiningthe
recordedinput andrecordedsensoroutput,transfer
flmctionscouldbecalculated.

Twoofthethreemethodsinvolvethecalculation
of transferfunctions.This is accomplishedbyread-
ingthe timehistoriesinto Matlabandtransforming
them,byfastFouriertransforms(FFT),into thefre-
quencydomain.Theautospectrumof theinput Ouu
andthecross-spectrumof theoutputwith theinput
Ouyarecalculated:

'I'uu = FFT (u) × FFT (u) (10)

(11)(I)uy = FFT (u) x FFT (y)

The transfer function is the ratio of the cross-

spectrum over the autospectrum:

(I)uy (12)
P (s) - q_uu

Details of the specific tests are now presented.

Impulse tests. Hammer taps to produce impulse

inputs were used at zero airspeed to extract the

system natural frequencies for various configurations
of the model prior to its being mounted in the wind
tunnel.

The first set of impulse tests was designed to

extract the uncoupled pitch mode frequency; thus,

the plunge degree of freedom was constrained. The

model was configured with and without the balsa
wood extension and with various amounts of mass

ballast during these tests. Data were taken for 16 scc
at 64 samples/sec. Overlap averaging of several runs

was performed to obtain cleaner data. The results
of these experiments are given in table VIII and

compared with the analytical predictions based on
the finite element model. These results were utilized

to verify the mass and stiffness predictions obtained
from the finite clement model.

Table VIII. Influence of Mass Ballast on the Pitch Frequency

Experiment

Analysis (uncoupled)

Primary wing 25.78

With wing 13.29 12.8

extension only

Mass ballast, Ibm:
0.005

.007

.009

.011

11.39
10.86

10.65

10.41

10.4

9.4

No data
8.25

A second set of experiments was performed uti-

lizing the impulsive input, which allowed motion

in both the phage and pitch degrees of freedom.

Figure 27 shows time histories of hanmmr input, ac-
celerometer response, and strain gauge output. The

power spectral density of the acceleration response

(fig. 28(a)) indicates that the natural frequencies of

the final configuration are 7.9 and 11.1 Hz. Table IX

compares the natural frequencies before and after
the actuator elements were added to the finite ele-

ment model with the experimentally determined val-

ues. The structural damping of the plunge mode was

also determined from these data by taking the ratio

of the frequency width of the peak at the half ampli-

tude and the natural frequency. The damping ratio
is half of this value, 0.017. The power spectrum of

the strain response (fig. 28(b)) does not define the

modes as well; however, the natural frequencies can
still be observed from these data.

Free-decay tests. Free-decay tests were used to

extract the open loop damping of the pitch mode and

to compare the open and closed loop dampings of the

plunge mode.

The first set of tests was conducted by constrain-

ing the model in plunge and then plucking the pitch

spring tine. This method was utilized because the

impulse response testing failed to extract data suit-
able for determining the pitch mode damping. Ran-

dom input tests could not be used, as there was no

actuator for this degree of freedom. The usefulness
of this test was limited to determination of the pitch

mode damping and frequency because the input sig-
nal cannot be recorded. Thus no transfer functions

between the input and output can be derived with
this method. A resultant time history from the free-

decay testing is presented in figure 29. Accelera-

tion response of the open loop system was generated

by applying seven impulses during 18 sec. Each re-

sponse was fully decayed before the next was applied.
These data were analyzed with the logarithmic decre-

ment technique, which is detailed in appendix E.

The damping ratio (, which is half of the structural

damping g, was determined to be 0.055.

A similar test was performed on the open and

closed loop systems at zero airspeed without the

plunge mode being constrained. Although the pitch
mode was not constrained either, the model was

perturbed by plucking the model at the clamping

block, thus primarily exciting the phmge mode. The

free-decay results showed damping improvements due
to the controller. The strain responses to pluck tests

of the open and closed loop systems were compared in

figure 30. Both responses were normalized such that
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Figure 28. Frequency domain analysis of hammer test transfer

functions.

Table IX. Natural Frequencies With and Without

Piezoelectric Actuators Analytical

and Experimental Results

Plunge mode Pitch mode

frequency, frequency,

Hz Hz

Without piezoelectric plates:

Finite element model 6.8 10.6

Ground vibration test 6.9 12.3

With piezoelectric plates:

Finite element model 7.8 10.9

System identification 7.9 11.1
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Figure 30. Open and closed loop strain response to free-decay
test at zero airspeed.

the magnitude of the first peak was 1.0; the data
were obtained by using 20-Hz sample rates. From

this plot, the structural damping is shown to have

been increased by the presence of the controller.

Random input tests. The open loop system

cannot be identified fully with either of the tech-

niques described above because they do not include
the influence of the piezoelectric actuator. To obtain

system transfer functions, the actuators to be used

for control must also be used in the system identifica-
tion. This criterion was satisfied by tests that input a

random signal to the piezoelectric plates. The input
signal was random white noise with a Gaussian dis-

tribution and a zero mean value. The amplitude of

the signal, limited to 3.2 by the operational amplifier,

was adjusted to be as large as possible at the differ-

ent velocities tested. The larger the signal was, the
better the data that were obtained, in terms of co-

herence. Large excitations near the flutter velocity,

however, drove the model unstable.

Random excitations were used to examine open

loop behavior as the wind tunnel velocity was in-

creased. Figure 31 shows the magnitude of the strain

versus frequency at eight subcritical airspeeds. The

plots are dominated by the plunge mode. The se-

quence of pictures shows that as airspeed is initially
increased, the peak magnitude decreases and the

width remains fairly constant. Thus, the half magni-

tude point falls lower on the curve, that is, at. a wider

point on the peak. Qualitatively this indicates that
the damping in this mode increases. At 394 in/see,

the plot shows that the damping is decreasing. Tile

response gets progressively less damped as the flut-

ter speed is approached. This corresponds to trends
in the analytical model as shown by the root locus

(fig. 21).

Open Loop Flutter Testing

The risks associated with flutter testing are mini-

mized in this experiment by the unique design of the
test article. Because the mount system is outside the

tunnel and the model is small, it is possible to stop

flutter by manually taking hold of the flexible springs

or the clamping block.

The flutter tests were conducted by placing the
model in the wind tunnel at zero airspeed and then

increasing the velocity. Data were taken for several
minutes at various airspeeds. During this tinm inter-
val the model sat at the tunnel condition. Flutter

points were defined as the lowest airspeed at which

the magnitude of the oscillations diverged within the
data-taking interval. The turbulence within the tun-

nel was relied upon to be sufficient to perturb the
model. The increments in velocity were made smaller

and data taken more frequently as tile speed got near

the predicted flutter value. Flutter was encountered

experimentally at 580 in/sec; the frequency of the
oscillation was 9.4 Hz. A time history of the strain

gauge during a run in which flutter was encountered

(fig. 32) shows the divergent oscillations that begin
growing at 4.5 see and continue to grow until the

maximum possible amplitude is reached at 9.0 see.

At this amplitude, safety stops of the tunnel inhib-
ited the motion of the model so that it would not

be destroyed. Frequency domain analysis, performed

by taking fast Fourier transforms of the strain time

history data, indicates a flutter frequency of 9.4 Hz

(fig. a3).
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Table X. Control Effort Expended To Suppress

Flutter for hlcrea.sing Velocity

Velocity, Control effort,

in/see V 2

580

590

630

670

710

122.8

172.1

196.9

228.0

*,1888.3

*Flutter encountered.

Figure 32. Open loop flutter point; 580 in/see.

6O

.E _ 40
=-

_ 20

o
,_ -2(i

_- -4(

-6(

Flutter frequency

y 9.4 Hz

d
10 15 20

Frequency, Hz

Figure 33. Frequency domain analysis at open loop flutter

point; 580 in/see.

Closed Loop Flutter Testing

The majority of the closed loop flutter testing

was initiated by activating the control law at zero

airspeed. Proceeding in the same manner as the

open loop flutter testing, the speed was increased

until flutter was encountered. The closed loop flutter

velocity was 697 in/see at 9.7 Hz.

Increasing airspeed required more control energy

to be exerted. As a quantitative indicator of this, the

control effort was defined as the sum of the discrete

control command signals squared. The control effort

expended at several airspeeds is presented in table X.

The control effort for this study has been defined

as the sum of the absolute values squared of the

control computer output. As the velocity increases,

the system responses and the control effort increase.

Tim data analyzed at 710 in/see are actually above

tile closed loop flutter speed. This is the cause of

the dramatic increase in control effort observed. At

this velocity, there is not enough control authority to

suppress flutter.

The closed loop data were compared with open

loop data. Figure 34 shows time histories of the

strain response for the two cases. These data were

obtained just below the open loop flutter speed, at

approximately 575 in/see. The magnitude of tile

peaks for the closed loop ease is decreased below

the magnitude of the open loop peaks. Because

of limitations in tile controller programming, the

controller update rate and data sampling must be

consistent. The closed loop data were therefore

obtained at a 20-Hz sample rate. The open loop data

appear smoother due to a higher sampling rate.

The results of tile flutter experiments and analy-

ses arc summarized in figure 35. The top graph of fig-

ure 35 shows the natural frequency variation as veloc-

ity is increa.scd. Examining the zero-airspeed data,

the measured open loop values (7.9 and 11.1 Hz)

are slightly higher than the analytical predictions of

these frequencies (7.8 and 10.9 Hz). The higher fre-

quency mode is the pitch mode; tile lower frequency

mode is the phmge mode. The analytical vahms for

the two frequencies approach each other as the veloc-

ity increases. When frequencies coalesce, flutter gen-

erally onsets soon thereafter. The experimental open

loop flutter frequency, 9.4 Hz, is slightly larger than

the frequency that the analysis predicted for flut-

ter. The final point on this graph is the experimental

closed loop flutter frequency, 9.7 Hz.

The lower graph of figure 35 shows tile damping

ratio variation with velocity. Flutter is indicated on

this graph by the damping ratio of one of the modes

going to zero. The measured vahles of damping ratio

(0.017 and 0.055) from the zero-airspeed data were

utilized in the analytical model. The analysis results

are plotted over the velocity, range until flutter occurs

(i.e., the lower mode crosses the zero-damping axis)

at 560 in/sec. This vahte is 3.5 percent conservative.

as the experimental flutter speed was 580 in/see. The

closed loop data at zero airspeed indicate that the

control law provided an increase in the (tamping.

Only the data for the phmge mode are presented.

Analytical predictions of the damping behavior are
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Figure 35. Analytical and experimental flutter results.

presented over the entire velocity range, until closed

loop flutte, r is predicted to occur at 648 in/see. The

experimental value was 697 in/see. The predicted

value is 7.6 percent conservative. With single-input

single-output gain feedback, the flutter speed was

predicted to improve by 15.7 percent. The controller

actually achieved an improvement of 20 percent in

the flutter velocity.

Conclusions and Recommendations

This research effort has resulted in the first ex-

perimental demonstration of flutter suppression em-

ploying piezoelectric actuators. A wind tunnel model

was conceived, designed, fabricated, installed, and

tested. Structural and aerodynamic models were cre-

ated; the aeroservoelastic equations of motion were

derived and analyses performed. A digital control

law was designed based on a discretized model and

was implemented. Open and closed loop flutter tests

were conducted, with excellent correlation achieved

by analytical predictions.

A two-degree-of-freedom wind tunnel model con-

sisting of a rigid wing attached to a flexible mount

system was designed based on prelinfinary flutter

analyses. The rigid wing, with a primary section

made of aluminum, was connected to a cantilevered

spring tine to control the pitching degree of freedom,

and the entire assembly was then connected to a set

of spring tines to control the plunging motion. The

configuration and dimensions of the model were de-

signed such that it would flutter well within the op-

erating envelope of the tunnel, could be safely tested

within the available test section, and would have sur-

faces suitable for mounting the piezoelectric plates in

a bimorph configuration.

Analytical modeling of tile wind tunnel model

resulted in aeroservoelastic equations of motion.

The equations were derived from Lagrange's energy

method and utilized modal analysis of a discretized

structural model. The natural frequencies were pre-

dicted to be 7.8 Hz for the plunge mode and 10.9 Hz

for the pitch mode. Generalized aerodynamic forces

were generated by tile doublet-lattice method and

approximated with rational fimctions. Expressions

for the generalized forces associated with the control

inputs were derived based on classic laminated plate

theory and calculated with finite differencing tech-

niques applied to the discretized structural model

results.

Acroelastic analysis of the open loop system gave

a flutter prediction of 560 in/see. Utilizing the

implicit dynamics of the control law computer, a gain

feedback control system was designed with strain as

the feedback signal. After the gain was optimized for

the largest stable velocity range and saturation of the
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electronic hardware was accounted for, a gain of 33

was employed. The flutter speed for the closed loop

system was predicted to be 648 in/see, a 15.7-percent
increase.

Experimental results from several system identifi-

cation tests determined the natural frequency of the

phmge mode to be 7.9 Hz and that of the pitch mode

to be 11.1 Hz. The structural dampings associated

with these modes were also determined. Tile open

loop flutter speed was measured at 580 in/see. Tile

analytical prediction was conservative by' 3.5 percent.
Closed loop flutter testing was performed and a flut-

ter speed of 697 in/see was obtained. This represents

a 20-percent improvement from the open loop case.
The analytical prediction of closed loop flutter speed

was conservative by 7.6 percent.

It is recommended that further research he per-

formed in tile area of controlling the aeroelastic re-

sponses of a vehicle by utilizing piezoelectric actua-

tors. A more realistic and complex model needs to
be designed that incorporates strain-actuating ele-

ments within the wing design. The concept has been

proven to work, however, it has not yet been shown

to be viable in terms of real aircraft. Experiments on

a larger scale are now called for.

Flutter suppression is not the only aeroelas-
tic application that may call for secondary aetna,

tors made of adaptive materials. Load alleviation

currently performed by aerodynamic control surfaces
may prove to be an ideal application for localized

strain actuation. By actuating adaptive material ele-

ments, local strains could be produced to counter the

loads induced within the structure during maneuver-

ing. This has the potential to extend the service life
of aircraft that traditionally undergo high g-loading

and to expand operational limits.

The concept of an adaptive material mission-

adaptive wing is worthy of investigation. It. would

eliminate the hydraulic problems encountered on pre-

vious attempts to create a wing that can he shape

optimized for various flight conditions.

The applications for which adaptive material will

be suitable in the flmlre depend heavily on the re-
search in the materials area. Ceramics, which were

used in this investigation, are very, fragile. Polymers

are currently not capable of generating the force lev-

els required for actuating realistic structures. For

piezoelectrics to be utilized in aeroelastic applica,
tions in an arena beyond research, a more resilient

suhstance than ceramics, or a means to protect the

ceramics, needs to be developed.

NASA Langley Research Center
Hampton, VA 23681-0001

October 21, 1992
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Appendix A

Parametric Studies for Model Design

During the early stages of model design, sensi-

tivity studies were performed to determine the in-

fluences of several key parameters on the flutter
characteristics. The baseline structural model was

formulated in terms of natural frequencies and a mass
matrix. The mode shapes were assumed to be uncou-

pled rigid body plunge and pitch modes. The mass

properties of the wing were specified as those of an

isotropic steel plate with the pitch pivot point at the

midchord. The mount system stiffnesses for plunging
and pitching degrees of freedom were initially chosen

such that the natural frequencies were at 9 and 18 Hz,

respectively. The baseline aerodynamic model was a

rectangular planform with a chord length of 2 in. and
a span of 4 in.

The parametric studies were performed on the
baseline model by changing the design variables inde-

pendently and noting the changes in flutter velocity
and frequency. Figures A1 through A4 show the re-

sulting trends for variations of the static unbalance,

frequency ratio, pitch pivot location, and structural
damping. The values on the plots for variation with

static unbalance, pitch pivot location, and structural

damping have been normalized independently of the

others. The flutter velocities on a given plot are

divided by the flutter velocity corresponding to the
lowest value of the parameter being varied. The flut-

ter frequencies were normalized in the same manner.

Thus, on each plot, the value of the left-most point

will be 1.0 and apply to both the flutter velocity and
the flutter frequency.

Static unbalance is defined by the off-diagonal
terms of the symmetric mass matrix. As the static

unbalance was increased, the flutter velocity de-

creased, as shown in figure A1. This is indicative of

the additional mass coupling increasing the tendency
for modal coalescence. The frequency trend for the

same variation showed an increasing frequency. This

indicates that the higher frequency mode played a
more significant role in the flutter mechanism as tile

static unbalance term of the mass matrix grew.

The flutter velocity trend with respect to the ra-

tio of frequencies is shown in figure A2. The ratio

of frequencies is defined by the plunge frequency di-

vided by the pitch frequency. Note that the increas-
ing ratio represents the distance between the natural

frequencies decreasing. Two sets of data are plotted

in figure A2. The first set (1) is for various plung-
ing frequencies divided by the baseline value of the

pitching frequency, 18 Hz. The graph shows that as

3O

_9

O

z

1.04

1.02
D

1.00

.98

.96

.94 _Velocity [Frequency I

.92
7.72 11.58

Static unbalance

i

15.44 x 103

Figure A 1. Influence of static unbalance on the flutter velocity
and frequency.
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Frequency ratio (plunge/pitch)

Figure A2. Influence of frequency ratio on the flutter velocity.

the ratio of the frequencies gets larger, the flutter

speed decreases. The second set (2) of data is for

the baseline value of the plunging frequency, 9 Hz,

divided by various values of pitching frequency. The
trend is also for the flutter velocity to decrease as this

ratio increases. The relative slopes of the two lines
indicate that over the range considered, the flutter

velocity is more sensitive to reductions in the pitch

frequency than to increases in the plunge frequency.

The plot of the pitch pivot location (fig. A3)

indicates that as the pivot point is moved toward

the trailing edge of the wing, the flutter velocity
is lowered. Recalling that for these variations the
center of gravity was located at the midchord, or 1.0,

locations aft of 1.0 are for statically unstable wings.
Long before flutter, divergence will have occurred.
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Figure A3. Influence of pitch pivot location on the flutter

velocity" and frequency.

Figure A4 shows the change in flutter velocity

and frequency as the structural damping is increased

simultaneously in both the plunge and the pitch

modes. The trends show that the velocity increases,

as expected, since the eigenvalues at zero airspeed

will be farther from the instability point (i.e., the

modes are more stable). The trend is not linear, but

for low values, each percent of additional structural

damping raises the velocity by roughly a percent. The

frequency of flutter is shown to decrease as structural

damping is added. The addition of structural damp-

ing lowers values of damped frequencies and brings

them closer together, predictably lowering the flutter

frequency.

1.1

Normalized

flutter 1.0

velocity and

frequency

°Velocity [
o Frequency ]

o

"90 .01 .62 .63 .()4

Structural damping

Figure A4. Influence of structural damping on the flutter

velocity and frequency.

Changes to the design based on the trends seen

in these parametric variations greatly reduced the

number of iterations required in arriving at a final

configuration.
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Appendix B

Equations of Motion for Aeroelastic Systems Utilizing Laminated Plate Theory

This appendix describes the derivation of Lagrange's equations of motion for an aeroelastic system controlled

by piezoelectric actuators. The equations derived in appendix D are utilized for the calculation of the actuator

components of the equations. The constitutive relations developed in appendix C are also incorporated into

the potential energy equation.

Lagrange's equations of motion require the derivation of expressions for potential and kinetic energy as

functions of generalized coordinates. The aeroelastic modeling was performed with the orthogonal or undamped

modes of' vibration as the generalized coordinates.

Plate displacements may be expressed in terms of these coordinates:

L

(s, y, z, t) = _ q'x_(x_,y_,z_)qx_(t)
i=l

(B1)

M

v (x, y, z, t) = _ _yi (xi, Yi, zi) qyi (t) (B2)
i=1

N

w(s, y, z, t) = _ _'z_ (s_,yi, z_)qzi(t) (B3)
i=l

where _{x,y,z)i are the mode shape vectors in the x-, y-, and z-directions, respectively, and q(x,y,z)i(t) are time-
dependent generalized coordinates. The x-translation, u, of the system at the (so, Y0, zo) location is expressed
as

u (so, Yo, zo) = _llxl (so, Yo, zo) qxl -t- _l_x2 (so, Yo, zo) qx2 +... (B4)

In matrix notation, the translational degrees of freedom are written

{u}v = _q
w

(B5)

where

and

_I ]

_"_I/xl, _]x2, • - • , _xL 0

0 _Ilyl, _y2,-", _yM

0 0
o0

_IJzl, _12z2, . . . , _zN

qT= {qxl qx2"-'qxLiqyl qy2""qyMiqzl qz2...qzN}

The potential energy of the system is defined as

(B6)

(B7)

U = _ {¢}T {o'} dV (B8)

Volume

The constitutive equations, detailed in appendix C, provide the relationship between the stress and the strain:

_r = G (e - A) (B9)

32



Thetotalstrainecanbecalculatedbasedonmidplanestraine0andcurvature_;.Thelongitudinalandlateral
strainsandtheshearstrainaredefinedas

Ou

Exx -- Ox

Ov

Cyy- Oy

Ou Ov

7xy = Oy + Ox

For a plate, the displacements are related to quantities at

(B10)

(Bll)

(B12)

the midplane (midplane denoted by the subscript 0):

Owo
?.t =uo-- z--

Ox
(B13)

OwO

v = vo - z Oy

W=W 0

which allows the plate strains to be expressed as

(B14)

Ou 0 02w0

exx= o_- Z Ox2 (B16)

or

where the following definitions are made:

Strain, expressed as

Ov 0 02 w 0

cyy= 0_- z 02_

Ou 0 Ov 0 _ 02w0

Cxx = Exxo -t'- Zt_x

Cyy = Cyy 0 + Zt_y

"/xy = _xyo + Z_xy

Ouo

Cxxo -- Ox

Ovo

gYYO- Oy

Ouo Ovo

%:Y= o---y-+ 0---2

02w0

t_y -- Oy 2

02w0

_xy = -- 2 0x Oy

C = C 0 "4- ZN

(B17)

(B18)

(B19)

(B20)

(B21)

(B22)

(B23)

(B24)

(B25)

(B26)

(B27)

(B28)
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issubstitutedinto theconstitutiveequationsto provide

Thepotentialenergynowbecomes

1
g=_

a = G (¢0 + z_- A)

ff (eo + z_) r c; (_o + z,_ - A) dV
Volume

1

U=-_

Note that the midplane strain and the curvature are independent of z. Thus,

(¢0 q- z_¢) T G (¢0 4- z_) dV - -2 (¢o q- z_) T G {A} dV
Volume Volume

Volume Area Thickness

The potential energy can then be calculated:

U = _ eOT G dz eO + eOT Gz dz

Area hickness hickness

dz dA

"7 k','Till km s( S

[4]  l,k ] k ]+ _:T Gz 2 dz _ dA - ¢0 T GA dz + _T GzA dz

hickness Area hickness hickness

The integrals through the thickness are defined as:

A--/
Thickness

G dz

f
B = [ Gz dz

@

Thickness

D = / Gz 2 dz

Thickness

N A = / GA dz

Thickness

f
MA = [ GzA dz

Thickness

The A, B, and D matrices are called extensional, coupling, and bending stiffnesses, respectively.
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(B29)

(B30)

(B31)

(B32)

(B33)

(B34)

(B35)

(B36)

(B37)

(B38)



Thepotentialenergy,expressedin termsof theseintegrals,is written

1// 1//U = _ ¢oTAeo + eoTB_ + _TB¢ 0 + _TD_dA - _ eoTNA + _TM AdA

Area Area

(B39)

or

1 // _T [A B] {co} dA_ 1 // _T {NA } d A (B40)V = -_ { coT } D _ 2 { cOT } M A
Area Area

Referring back to the strain and curvature functions in terms of displacements, an operator D is defined such

that

_0 = [D] v0 (B41)

where

0 _ 0 0 0

o O 0 0 0 (B42)

02 02 02
0 0 0 -_ -b_y -2_0_

The general relation from midplane displacements to displacements at a distance z from the midplane is

easily derived. However, if the displacements are given for the midplane, as is the case for plate element results
of a finite element model there is a one-to-one correspondence. The subscripts oil the displacement vector are

thus dropped.

Recalling the expression for the displacements in terms of generalized coordinates allows the midplane strain

and curvature to be expressed:

{¢: } = [D] [_]q(t) (B43)

Substituting this expression into the potential energy expression,

1 //qT_TDT[A ;] 1 // {NA}
T)_dq dA - qT _dT DT dA

U = _ B 2 MA
Area Area

(B44)

or moving the generalized coordinate outside the integrals

U= _qTFlq-- _qTF2 (B45)

where

Area

dA (B46)

F2= ff [D'_]T { NA } dAMA
Area

(B47)

F1 is the generalized structural stiffness matrix K.s.
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Thekineticenergydevelopmentfollowsa similarpath.By definition kineticenergyT is

1NT = _ p{h} r {_/} dV (B48)

Vohune

where

{,4 = (B49)
//3

From equation (B5), the displacement vector is expressed by the mode shapes multiplied by the generalized

coordinates. The mode shapes are independent of time, so that the expression for the time derivative of
displacement is

{u} = [_] {q} (B50)

where (') represents the derivative with respect to time. The kinetic energy is then written

1 fJ/ pdtTq2Tq2(:ldV

"v_hune

(B51)

Moving the generalized coordinates outside the integral, the expression becomes

1 .T ]/JT = _q p@T@ dV q (B52)

Volume

or

where

r = _itTFaq (B53)

Fa = [// p_T_ dV ( 54)
Volume

The triple integral over the volume can be expressed as the double integral over the area of the integral over

the thickness. Assuming that the mode shapes are constant through the thickness, the mass per unit area,

m0, is defined as the integral of the density through the thickness. The expression for F3 is recognized as the
generalized structural mass matrix:

Ms =F3 = //m0_T'_dA (B55)
Are&

In formulating the Lagrangian equations of motion, the conservative forces of the system are contained in the

potential and kinetic energy expressions (ref. 33). The nonconservative forces, nainely the aerodynanfics, are
represented by generalized forces Qi:

d(OT) OT OU ODd5 _q/ -Oq/+Oq/+_ =Qi (B56)

From the previously derived energy expressions, the Lagrange equations become

OD

Fati + _i + Flq = Qi + F2 (B57)

which can be transformed to the Laplace domain and rewritten as

(Mss 2 + Dss + Ks) {qf} + _[Qf] {qf} = F2 (B58)
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Thisis theclassicalsecondorderaeroelasticequationformulationwith theexceptionof tile tern:oil theright-
handside;F2 is the forcegeneratedbythe actuatingstrain,whicharosefromtheadditionto tile potential
energyexpression.It appearedbecausea mechanicalstresswasbeingproducedby a nonmechanicalstrain.
In the aeroelasticproblem,Lagrange'sequationsarewritten as a balanceof mechanicalenergy. Further
developmentof tile strainactuationmatrix ispresentedin appendixD.

Ill orderto transformtheaerodynamicsinto theLaplacedomain,it.wasnecessaryto applyasecondorder
rationalfunctionapproxilnationto theaerodynamics(ref.34):

[*] [*]= s + 2 (B59)
Qf f 0 f + 1 f f

Equation (B58) is then expressed

v¢tlero

Defining the vectors

(_,,_ + Ds+ K) {q<}= F_ (BG0)

I( = Ks + _ [Aojf

CD-- Ix,I,

M=Ms+0 A2 f

xf: = {qf}

X f2 = ,,_{qf}

these equations can be readily converted to first order h)rm (ref. 35):

(B61)

(B62)

(B63)

(B64)

(B65)

{}[ ]{}{0}X fl 0 I Xfl + (B66)
S

Xf2 -_-'[-1K -_/I I_) Xf2 -l_- 1F2

From tile development of tile strain actuation matrix in apt)endix D, the aeroservoelastic equations of motion

are expressed as:

{}I ]{}{ 0 }Xfl 0 I Xf_ + V3

xf, 2 -_I-1K M if:) xf., -M-lrdal

In traditional controls notation (ref. 30),

(B67)

:_ = Ax + Bu (B68)
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Appendix C

Development of the Constitutive

Relations for a Piezoelectric Material

This appendix develops the constitutive equations

for a piezoelectric material, taking them from the

generalized Hooke's law to a subset utilized in lami-
nated plate theory and expressed in a form useful in

the derivation of the potential energy equation.

Mechanical stresses and strains are related

through a 6 by 6 compliance matrix in the gener-
alized Hooke's law. The constitutive relations for a

linear elastic material with three mutually perpen-

dicular planes of elastic symmetry have nine indepen-
dent entries in the compliance matrix. Classic lami-

nated plate theory (ref. 35) is used in developing the

equations, so only the in-plane stresses and strains

are considered, reducing the independent elements

to four, as shown in the following equation:

, Cyy -- -_ _ ay (C1)

( 3'xy 0 0 _ Try

which can be expressed as

= S a (C2)

The strain vector s and the stress vector (_ are related

by the compliance matrix S. An alternate method

of expressing this relationship is through a stiffness
matrix G:

a = G_ (C3)

The electrical quantities (flux density R and voltage

per thickness E) are related by the dielectric equa-
tions through permittivity /3 and impermittivity E

matrices (ref. 7):
n = _R (C4)

R = eE (C5)

where
V

E -- -- (C6)
t

For piezoelectric systems, the coupling of the two

fields is accomplished by the introduction of the

strain-charge matrix:

s = Ser + dTE (C7)

The nonzero terms for a PZT plate with poling in
the 3-direction are

I O 0 0 0 d15 !]
[d]= 0 0 0 d24 0

d31 d32 d33 0 0

(C8)

Once again, by using classic laminated plate theory,

this matrix reduces to a 3 by 3:

0d --- 0 0 (C9)

d31 d32

When the electrodes are on the faces of the plate per-

pendicular to the poling direction, the only voltage

that can be applied is in the 3-direction. Therefore,

{0}E = 0 (C10)

E3

Defining A as the actuation strain vector leads to

A = A2 =dTE = d32 E3 (Cll)

A3 0

Solving equation (D6) for the stress vector, and

defining G as the inverse of the compliance matrix,

= G - A) (C12)

where

E1 v21E2 00 ]

1 - p12//21 1 -- v12/)21

u12E2 E2 (C13)
G = I -- v12v21 i -- VI2V21

0 0 G12

Note that use of the laminar plate model neglects

any influence of the d33 coefficient and that applying

the voltage parallel to the polarization negates the
influence of the d15 coefficient.

38



Appendix D

Analytical Modeling of the Piezoelectric
Actuator

Theequationsderivedin appendixB consistof
componentsthat arecalculatedby standardmeth-
ods,with theexceptionof theforcedueto thepiezo-
electricactuatorsF2. Thisappendixpresentsamore
detailedlook at the calculationof this matrix, as
well asthe approximationsusedto implementthe
calculations.

Fromequation(B47),theforceisgivenas

F2= /f [D_]T { MA } dA
Area NA

(D1)

The rows of the force and moment due to strain

actuation may be specified

(D2)
NA1 }

N A = NA2

NA a

Al& }
M A = MA2 (D3)

AIA a

The definitions of the operator and modal matrices

are recalled from equations (B6) and (B42):

o o]o ,,

o o [q%]

(D4)

[z)q,] =

.q

- _ 0 0

0 00

0 0 0
N a7

0'2
o o -

02
0 0

02
o o - 2 ,_W._

Consider only the out-of-plane displacements (i.e.,

_x_ and _I'u, are zero); the matrix dimension shrinks
to

[Dq']r : [0 0 0 -°_0,, -_0_f-v°_q'" -2_] (D5)

In the design of the flexible mount system, special
consideration was given to preventing the phmge

spring tines from deforming in torsion. The piezo-

electric plates are oriented along the spring tines,
which deform primarily in the y-direction (i.e., cre-

ating moments about the x-axis). Therefore any

derivative taken with respect, to z will be considered

negligible, leaving

02q'" 0] (D6)o o o

Thus,

F2=f (02_z)AIA2dA092 (D7)
Area

The piezoelectrically induced moment was derived in

equation (B38):

MA = S GzA dz (D8)

Thickness

The second row, corresponding to 21IA2, is

{ A1 }MA2 = 1 --_t.'12_'--_l1 t/12t_21J
Thickness 0

Recall from the discussion of constitutive relations

that

A 2 = 1 d31 -- (D10)
t

0 0

Then

A/A2 =i ( r'12 + 1\ 1- Ul2tJ2,)E2d31} vazdz

Thickness

(Dll)

Defining

3` = 1 -- u'12_'21
(D12)

provides

MA2 = S 7Vaz dz (D13)
Thickness

The scalar 3' consists of geometric and material

properties. For any isotropie lamina, 3" is indepen-

dent of the location z, so it may be taken outside

the integral. The structure is considered to consist
of several layers composed of different materials. The
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Figure D1. Actuator attachment.

integral over the thickness is decomposed into several

parts:

MA2= ('Yli zdz+72 i zdz
Layer 1 Layer 2

+ "yaf z dz + "74 i z dz

Layer 3 Layer 4

z z)
Layer 5

(D14)

where the layer geometry is defined in figure D1.

The constant 7 is a function of the electro-

mechanical coupling coefficient d31. Neither the steel

nor the bonding compound exhibits any coupling be-
havior, so for layers 2, 3, and 4, the coupling coef-

ficients are all zero. As long as oppositely oriented

voltages are applied to the top and bottom plates,

the plates are geometrically and electrically similar
such that; the integrals through the layers are equal.

Therefore,

_+tMA 2 = 2"ylV3 z dz
aN

(D15)

After solving the integral,

MA 2 =71V3( 2_t+t 2) (D16)

and

F 2 = _ 02_zOy 2
Area

--'ylV3 (2gt + t 2) dA (D17)

To implement the actuator equation, numerical inte-
gration must be performed. The integral equation is

approximated as a summation over the node points

of a discretized structural model (ref. 32):

n nodes

ff []dA = _ [ ]j Aj (D18)
Area j 1

where Aj is the surface area associated with each
node. Therefore

02_zn nodes (2_t -4-t 2) _y2 } jAjV3 (D19)
F2 = E _/1

j=l

There are two modes used in the analysis, so

{ n _d_'_ f--02_._'_ Aj }

F2 = 71 (2_t + t 2) y=l \ Oy ]j

,, des( A,
j=l \-- Oyz ]J

Va (D20)

{F,}F2 = dalV3
F2

where Fi is associated with the ith mode:

(D21)

noae_ ( 02_ i ._
F/:(2z+t)(lV12+l _E2 E \-_) Aj

-- v12v21 / j=l J

(D22)
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Appendix E

Logarithmic Decrement Method for
Determining Damping

Thelogarithmicdecrementisdefinedfor adecay-
ingcyclic system by the ratio of peak magnitudes for
two cycles, which are n cycles apart:

(El)

The relationship of the logarithmic decrement to the

damping ratio is

(E2)
vff- d

which for small values of damping can be approxi-
mated

= 2_ (E3)

giving the formula for damping ratio

_ = 2_ln (z_) (E4)

Note that the structural damping g is twice the
damping ratio 4.
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