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1 Stable and Asymptotocally Stable Com-

pact Schemes

Recently, higher-order compact schemes have seen increasing use in the DNS

(Direct Numerical Simulations) of the Navier-Stokes equations. Although

they do not have the spatial resolution of Spectral methods, they offer signif-

icant increases in accuracy over conventional second order methods. They can

be used on any smooth grid, and do not have an overly restrictive CFL depen-

dence as compared with the O(N -2) CFL dependence observed in Chebyshev

Spectral methods on finite domains. In addition, they are generally more ro-

bust and less costly than Spectral methods. The issue of the relative cost

of higher-order schemes (accuracy weighted against physical and numerical

cost) is a far more complex issue, depending ultimately on what features of

the solution are sought and how accurately they must be resolved. In any

event, the further development of the underlying stability theory of these

schemes is important.

It turns out that this schemes are very sensitive to boundary treatments.

In particular all of the boundary conditions , currently used , allow non

physical time growth of the solution. Recently, the stability characteristics

of various compact fourth- and sixth-order spatial operators were assessed in

reference [1], using the theory of Gustafsson, Kreiss and Sundstrom (G-K-S)

for the semi-discrete Initial Boundary Value Problem (IBVP). The results

were then generalized to the fully discrete case with Runge-Kutta time ad-

vancement using a recently developed theory by Kreiss. In all cases, favorable

comparisons were obtained between G-K-S theory, eigenvalue determination,

and numerical simulation. The conventional definition of stability is then

sharpened to include only those spatial discretizations that are asymptoti-

cally stable (bounded, Left Half-Plane eigenvalues). It is shown that many

of the higher-order schemes which are G-K-S stable are not asymptotically

stable. It was concluded that in practical calculations, only those schemes

which satisfied both definitions of stability were of any great usefulness.

It was shown in the above work of Carpenter et al. that conventional (op-

timal) finite difference closures at the boundaries of order greater than four

are not G-K-S (or asymptotically) stable. Since fifth-order boundary clo-

sures possessing both stability properties were needed for sixth-order inner

schemes, an alternate method for closing the boundaries was sought. The so-
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lution was to parametrize the fifth-order difference formula at several points

at each end of the spatial domain, thereby creating adjustable coefficients in

the spatial operator. The asymptotic properties of the operator were estab-

lished by the numerical determination of the eigenvalue spectrum, and the

parameters were then adjusted until the desired spectrum was obtained. The

resulting scheme was then tested for G-K-S stability, and if stable, satisfied
both the desired criteria for a numerical discretization.

Several technical difficulties were encountered in trying to determine sta-

ble formulations in this manner. In general, a large number of free parameters
were needed to find a combination which resulted in a stable formulation•

This results from trying to achieve a high-order discretizations at the in-

flow boundary where the stencils are dramatically downwind, and mostly

unstable. Although a stable closure condition was found for the sixth-order

compact scheme, (52, 52- 6- 52,52) it was apparent that if schemes of higher

accuracy were to be obtained, a systematic procedure was required to con-

strain the parameter space over which the search was performed. Another

difficulty was that the numerical eigenvalue determination did not yield the

exact eigenvalues of the spatial operator, but rather depended on numerical

round off and the condition number of the resulting spatial operator. This

was not found to be a significant problem for the schemes determined in the

study, but it was found that many of the high-order schemes were not well
conditioned.

The fundamental difficulty with determining a spatial operator based

on the results from an eigenvalue analysis, is that it uses as a basis for the

method the the spatial matrix resulting from discretization of the scalar wave

equation Ut + aU_: = 0. While G-K-S stability of a discretization on

the scalar wave equation implies G-K-S stability on a system of

hyperbolic equations, (if the boundary conditions are imposed in

characteristic form)[2], the same is not in general true for asymp-

totic stability. Therefore, there is no guarantee that the numerical scheme

determined in this manner will be stable for an arbitrary hyperbolic problem.

• An obvious remedy for the analysis presented by Carpenter et al.[1] would

to have used the system not the scalar eigenvalue determination as a basis

for devising stable closure formula. This would further constrain an already

difficult search procedure to isolate the parameters at the boundaries which

would produce an strictly asymptotically stable scheme. An altogether dif-

ferent procedure must be used if an arbitrarily high-order scheme is sought.
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The approachof devising suitable boundary closures and then testing

them with various stability techniques (such as finding the norm) is entirely

the wrong approach when dealing with high-order methods. Very seldom

are high-order boundary closures stable, making them difficult to isolate.

An alternative approach is to begin with a norm which satisfies all the sta-

bility criteria for the hyperbolic system, and look for the boundary closure

forms which will match the norm exactly. This method was used recently

by Strand[4] to isolate stable boundary closure schemes for the explicit cen-

tral fourth- and sixth-order schemes. The norm used was an energy norm

mimicking the norm for the differential equations. Further research should

be devoted to BC for high order schemes in order to make sure that the

results obtained are reliable. The compact 4-th order and sixth order finite

difference scheme had been incorporated into the a code to simulate flow past

circular cylinders. This code will serve as a verification of the full spectral

codes. A detailed stability analysis by Carprnter (from the fluid Mechan-

ics Division) and Gottlieb gave analytic conditions for stability as well as

asymptotic stability.This had been incorporated in the code in form of stable

boundary conditions.

Effects of the cylinder rotations has been studied. The results differ from

the known theoretical results. We are in the middle of analyzing the results.

A detailed analysis of the effects of the heating of the cylinder on the

shedding frequency had been studied using the above schemes. It has been

found that the shedding frequency decreases when the wire was heated. Ex-

perimental work is being carried out to affirm this result. This is carried out

by Eric Voth in conjuction with D. Rudy frorri the Fluid Mechanics Division.
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2 Wavelets

A major effort to adapt wavelets to the solution of PDE's is under investiga-

tion. It has been found by L. Jameson ( agraduate student in the program)

that using wavelets as a basis function for differentiation is equivalent to the

use of finite difference schemes. The result is suppose to give a clue of how to

implement boundary conditions. We attach a paper by him on the subject.



0.1 Introduction

The numerical solution of a partial differential equation requires an easily

manipulated spatial approximation to the derivative of the unknown func-

tion as well as some method to march forward in time. In general one starts

from given values of the unknown function, then a finite dimensional ap-

proximation, based on those values, is constructed. This approximation is

differentiated and the result are read at the gridpoints. For example,in the

psuedospectral Chebyshev method for the disretization of the equation

OU(x,t) OF[U(x,t)]

Ot Ox

One assumes that at a given time the values of U(xj, t) are given for some

points xj -- cos(-_), (j -- 0, N). Then one constructs the interpolation

polynomial through those points and differentiate this polynomial to get ap-

proximate values for 0F[g(,,t)l at the point xj. this procedure can be viewed

as a transformation from N given values (of the function) to new N values

(approximating the derivative. This is the Chebyshev Differentiation Matrix.

The numerical algorithm therefore is simple and the boundary conditions can

be easily applied. It is natural to ask whether one gain by using wavelets

instead of Chebyshev polynomials.. Since wavelets are well localized func-

tions it is reasonable to conjecture that they might represent steep gradients

or the development of a shock with a relatively small number of terms, con-

sider a periodic function f(x) given on an equally spaced mesh. Expand it

in wavelet expansion and use the derivative of this expansion as an approxi-

mation to the derivative of f(x). Lee Jameson, a student of D. Gottlieb has

recently proved that approximation of a periodic function f(x) in a wavelet

basis and the differention of this approximation yields nothing more than a

finite difference approximation to a derivative. The following is an outline of

the proof:

i) Given a periodic function f(x)

tion coemcients of this function on

imating the inner product of f(x)

let _'represent the periodic scaling func-

the finest scale. This requires approx-

with the scaling function on the finest

scale. The matrix representation of this approximation is circulent in form:

C: f _ _', where frepresents f(x) sampled on an evenly spaced grid.

it) Let D be the mapping from the scaling function coefficients of f(x) to

the set of scaling function coefficients that represents the derivative of f(x):



D : g' _ _. Since f(x) is periodic then the matrix form of D is circulent in

form.

iii) All circulent martrices of the same size commute, therefore we can

apply the operator D directly to J_ The operator D has the effect of a finite

difference operator, and the proof will be complete.

Therefore, the effect of first approximating in a wavelet basis, then differ-

entiating in this basis and finally converting back from the wavelet basis to

the original function is equal to applying the appropriate finite difference op-

erator directly to the equally spaced sampled values of the original function

f(x). The proof provides an insight into the possibility of using wavelets for
solutions of PDE's.

Wavelets while not more than known finite difference schemes

can provide a mechnism for automatic adaptation of the mesh.

Since the proof is unpublished we will bring it here in some detail. This

proof contains five sections: i) The first is the introduction outlining the pre-

sentation, ii) The second introduces scaling functions and wavelets, iii) The

third discusses the approximation of a periodic function by scaling functions

on the finest scale, iv) The fourth is concerned with the derivative of the scal-

ing function and wavelet approximation of a function, v) The fifth concludes

with a statement of the thesis that spatial wavelet approximations provide

nothing more than finite difference methods do for the numerical solution of

partial differential equations.

0.2 Definition of Wavelets

Wavelets have been precisely defined in many places [Daubechie], [Strang],

[Beylkin], and others. The following outlines the most prominent properties
of wavelets.

Begin with two sets of coefficients of length L, [Daubechie] H = {h,}k=0,L-1

G {gk L-1= }k=0 called quadrature mirror filters, i.e., H and G are related by

gk = (--1)khL-k for k = 0, ..., L - 1, which completely determine, along with

the additional restriction of normalization,

f,o ¢(x)dx = 1,
oo

the mother scaling function ¢(x) and the mother wavelet ¢(x), respectively,
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by the following relations:

and

L-1

¢(x) = _ hk¢(2x- k),
k=O

L-1

¢(_) = _ gk¢(2_- k).
k=0

For the remainder of this paper the following notation will adopted: ¢i,(x)

and ¢_.(z) will denote the mother scaling function and mother wavelet, re-

spectively, at scale j and location k, i.e.,

¢_(x)=¢(2-sx-k),

and

¢_(x) = ¢(2-Jx - k).

A few of the ramifications of the above definitions are, first of all, that

the wavelet ¢(x) has M vanishing moments

[_ ¢(x)x"d_ = 0

for m = 0, ..., M - 1, where the number of coefficients in H and G is equal to

twice the number of vanishing moments, L = 2M (this is true for the usual

Daubechie wavelets only). Second, define V/and Wj as linear span of ¢_ and

¢], over all location parameters k with the scale j fixed, i.e.,

yj - _pank¢_(x),

and

These definitions lead to,

ws - _pank¢/,(_).

... c V_ c Vo c V__c ...,

N _ = {01,
jEz
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and finally,

U us = L_(R),
jEz

L2(R) = (_ Wj.
j6.z

These are the essential definitions and properties of scaling functions and

wavelets. For more discussion and details see [Daubechie], [Mallat], and

[Strang].

0.3 Approximating in Wavelet Bases

Scaling functions and wavelets were introduced in the previous section. As

noted, Vj is the space spanned by _b_(x) over all k. Without loss of generality,

let scale j = 0 be the finest scale. Then, for example, V0 = V1 (_ W1. The

approximation of an arbitrary periodic function f(x) begins by projecting

f(x) onto each basis function ff_(x) at the finest scale:

Fs_ = f(z)¢°k(z)dx.

The approximation properties of scaling functions are determined by the

number of vanishing moments of the associated wavelet: if the mother wavelet

has M vanishing moments then the polynomials 1, x, ..., x M-1 are lin-

ear combinations of the translates of the mother scaling function _b(x - k)

[Strang]. Furthermore, smooth functions can be approximated with error

O(h M) [Strang], where h represents the grid size.
Once the function f(z) has been approximated on the finest scale, j = O,

then the coefficients s_ can be decomposed into coefficients at scales that are

twice as course at each decomposition using the following equations [Mallat]:

n=2M

"SJk E j-1= hnSn+2k_2

n=2M

E J-'= gnsn+2k_2,

n----1
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where M is the number of vanishing moments of the wavelet and {h} and

{g} are the quadrature mirror filters defined in the previous section.

To restate, first the function f(x) is approximated at the finest scale j = 0

with an error of order M to the coefficients s_ then the coefficients at more

coarse scales are found by the above pyramid-like decomposition.

A second method suggested by Beylkin et. al. [Beylkin] is to approximate

the integral of each scaling function coefficient and each wavelet coefficient

directly from the integral, i.e., by an appropriate quadrature formula approx-

imating the following integrals:

FSJk = f(z)dz_(x)dx,
oo

Fd_ = f(x)_bJk(xldx.
co

In this paper the first method will be used so that all approximations

will be made at the finest scale. Furthermore, all work will be done with the

usual Daubechie wavelets. For wavelets supported on [0, 3M] see appendix
1.

0.4 Quadrature Formula for Scaling Function

The scaling function coefficients of a function f(x) on the finest scale are

calculated exactly by,

Fs°= f(x)dp(z-k)dz.
oo

For a numerical calculation, however, one must work with an estimate of the

above coefficients, s_, i.e., a suitable quadrature formula is needed.

Recall from the previously stated approximation properties of scaling

functions that if the associated wavelet has M vanishing moments then one

can represent polynomials up to order M - 1 exactly by translations of the

scaling function _b(x). Therefore, for f(x) equal to a polynomial up to order

M - 1 the scaling function coefficients, s_, can be found exactly. Conse-

quently, there exist a set of coefficients m-1{cl}t=0 such that

oo M-1

]_ f(y + k)c_(y)dy = _ ctf(l + k),
oo 1=0
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where f(x) can be a polynomial up to degree M - 1, and the above integral

is a shifted version of s°k = ff-_oof(x)C(x- k)dz. More simply, the coefficients
M-1

{ct}t=0 can be found [Beylkin] by solving the following linear system:

M-1

Fzinc,= xm¢(x)ex,
l=O co

for m = O, 1, ..., M - 1.

Note that the above quadrature formula will yield an estimate of s_ with

error of order M. Also, note that the derivation of the coefficients of the

quadrature formula depend only on the moments of the scaling function

0.5 Example with D6

The ideas in this paper are quite simple and are probably best illustrated by

an example. The example will be for the Daubechie [Daubechie] wavelet D6.

The objective is to derive the matrix form of the mapping from evenly-spaced

samples of a periodic function f(x) to the scaling function coefficients on the

0 Comparable results for the wavelets D4 and Ds are presentedfinest scale s k.

in appendix 2.

Recall, first of all, that in the previous subsection the coefficients {el}l= OM-1

were determined from the moments of the scaling function. Therefore, the

scaling function moments must first be calculated.

Let Mt be the l - th moment of the scaling function ¢(x):

M, = f

and let #l be the I - th moment of the filter hk:

ttt = y]_ kthk.
k

Recall that it is required that ¢(x) be normalized:

Mo = / dp(x)dx = 1.

Also, by integrating the definition of ¢(x) the following results:

/ ¢(x)dx = _ hk / ¢(2x - k)dx.
k
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Let y=2x-ktoget,

which implies,

1 = 1 E hkf ¢(y)dy,
2 k

/_0 = _hk = 2.
k

The #t for l > 0 can be found by straight-forward calculation. The Mt for

I > 0 can be found from [see appendix 2]

Mm=( )m+, _ l ttm-tMl"
I

For the examples presented here moments up through the third moment are

needed: M1 1= _1, M2= _((_1)2+ _), and M3= ½((.,)3 + 4,,,_ + 2_3).
{cI}t= o can beAfter the appropriate moments are found, the coefficients M-1

found from
M-I

P

Z lr'% = / :¢(x)_x
/=0

.2

for rn = 0, 1, ..., M - 1. Specifically, for the D6 wavelet the linear system in

matrix form appears as,

012 Cl = M1

0 14 c2 3/2

which has the solution co = .1080, Cl --" .9667, and c2 = -.0746. In tabular
i

0
form, the complete results for D6 are, 1

2

that the quadrature formula has the form,

Mi pl c4

1 2 .1080

.8174 1.6348 .9667

.6681 1.3363 -.0746

Recall

M-1 1 M
•so = Y_ ctf(l+ k) + 0(-_) ,

1=0

where A T is the number of points in the grid. If the function f(x) is periodic

then in matrix notation the above operation is _' = Cf where C for Do and



a grid of 6 points appearsas,

.108 .967 -.075 0 0 0
0 .108 .967 -.075 0 0
0 0 .108 .967 --.075 0
0 0 0 .108 .967 -.075

-.075 0 0 0 .108 .967
.967 -.075 0 0 0 .108

The important point here is that the above matrix is circulent [Strange's
book] in form. This is the most important observation in this paper, be-
causeall circulent matrices canbe diagonalizedby the Fourier matrix, i.e.,
all circulent matrices of the samedimensionshave the same eigenvectors
and therefore they commute. The importanceof this property will become
apparentafter the waveletderivative is discussedin the next section.

0.6 Derivative based on Wavelets

In the previous section the mapping from evenly-spaced samples of a periodic

function, f(x), to the scaling function coefficients on the finest scale, s °, was

discussed. The mapping is nothing more than a quadrature formula which

is exact for f(x) equal to a polynomial up to order M - 1, where M is the

number of vanishing moments of the wavelet. The question now is what is

the mapping from s o to the coefficients of the derivative of f(x), i.e., the

scaling function coeffiecients, $_, of f'(z). The answer is provided by Beylkin

[Beylkin], and is presented in the following subsection. This section of the

paper is organized as follows: i) Beylkin's results on derivative projections

will be presented, ii) It will be argued that one need only consider the

derivative mapping acting on the scaling function coefficients at the finest

scale, iii) The similarity between the coefficients derived by Beylkin to finite

difference approximations to the derivative will be presented.

0.7 Wavelet Coefficients of the Derivative

An arbitrary wavelet expansion of a function might contain wavelet coeffi-

cients and scaling coefficients at many scales. Beylkin derives the projection

coefficients that map from scaling function coefficients and wavelet function

8



coeffÉcientsat a given scaleto the derivativescalingfunction coefficientsand
wavelet function coefficientsat the samescale.The matrix elementsof these
projections are computedfrom,

ff "J = 2-_j ¢(2-J_- i)¢(2-,_ oe_,
all oo

_, = 2-2J f_°°oo¢(2-Jx- i)q_(2-Jx l)dz,

_, = 2-_jf__ ¢(2-J_ - i)4;(2-J_ l)dx,

/5J = 2-_j ¢(2-J_ - i)_(2-J_- Od_.
r il co

It is important to note that these projections are all at the same scale j, and

that projections across different scales appear to be too complicated to yield

closed-form solutions. The above projections, however, yield equations that

are simple to work with [Beylkin].

It will be argued in the next section that in order to understand the

numerical properties of the above projections it is only necessary to consider

ff )de(rt = ¢(z - l x)dx,
O0

for / C Z.

0.8 Derivative of Scaling Function Only

Before beginning the main argument of this subsection some new notation

will be introduced. The vectors h and ff contain the coefficients of the

quadrature mirror filters which define the mother scaling function and mother

wavelet, respectively. Define the unitary projection matrix P as,

PNxN _-

f, 0

o

0 0

i o
o i
0 0

0

0

°°°

0 '

0

".



where the matrix subscripts denote the size of the matrix. Of course, P is

nothing more than a matrix with the vectors h and _ placed in its rows with

the vector shifted two places to the right with each subsequent row. Also,

let s_ contain the scaling function coefficients at scale j. P is, therefore, the

matrix that maps s_ onto s_+1 and d_+1. Note that the vectors at scale j + 1

are half as long as the vectors as scale j:

P:[s_] --* dJ+l -

Let the four matrices R, A, B, C be the derivative projections defined

in the previous subsection, i.e., Beylkin's coefficients, are R _ rij , A _ aij,

B _/3ij, and C _ ")'ij. Explicitly, the mappings are

R : s_ --+ s ,

A:d3 _d "/'

-../
B:_--,d,

C:d_ _s.

That is, if s_ and _ denote the scaling and wavelet coefficients of a function
-../

at scale j then _J and d denote the scaling and wavelet coefficients of the

derivative of the function at the same scale.

For further illustration, suppose that a periodic function has been approx-

imated on a grid with 16 scaling function coefficients. One application of the

above defined matrix Plsxa6 on the vector s-° followed by the application of

10



the matrix Ps×s on the vector _ would appear as,

s o " s_ "

s o s_

s o s_

s o s_

s o s_

s_ s_
S O S 1

. 8 .

so _ ._-
s°0 d_
s°l d_

s°_ d_
s°3 d'_
s°4 d_'
sos d'_
s°6 . d_.

----!.

s_
s_
s_
s_

In the above decomposition there are three ways to represent exactly the same
0

information: i) All information is at scale 0, i.e., use only the coefficients s i

for i = 1, ..., 16. In this case the derivative coefficients would be found by

applying the above defined matrix [Beylkin] R_6x16. ii) All information is

at scale 1, i.e., use the coefficients s_ and d_ for i = 1,...,8. In this case

all four of the above defined matrices Rsxs, Asxs, Bsxs, and Csxs, but the

application of these four matrices is exactly the same as applying R16×16 at

scale 0 as is scenario (i). iii) This third scneario is the most unwieldy. The

information is contained in two scales: the eight coefficients at scale 1, s_ for

2 and _ for i = 1,...,4. Thei = 1,...,8, and eight coefficients at scale 2, s i

diffÉculty here is the projection across scales. That is, how does one project

the derivative of the wavelet at scale 2 onto the scaling function coefficients

at scale 1. An attempt to calculate this projection has been made by this

author but without success. One can, of course, approximate this projection

but this is not very accurate and not elegant.

Recall that the main argument of this subsection is to illustrate that it is

only necessary to take the derivative of a wavelet expansion on the finest scale,

j = 0. First note that regardless of how the the information is represented in

each of the above three scenarios there are always 16 degrees-of-freedom, i.e.,

11



it doesnot matter which 16parametersareusedto representthe function and
its derivative. Moreexplicitly, in the first scenariothe derivativecoefficients
,-o
s are calculated by applying R16x16 to s-°:

S : /{16x16"

In the second scenario, however, one must first apply P16x16 to _0 to get the

scaling and wavelet coefficients at scale 1. The derivative coefficients at scale

1 are then calculated by applying D16x16, where

[ RN/2×N]2 CN/2xN/2 ]DNxN = BN/2×N]2 AN/2xN/2 "

To clarify, in scenario 2 the following operations are performed:

However, scenarios 1 and 2 are exactly the same since

RN×_V = 1/2(P_r×N " DN×N" PN×N).

In summary, an attempt has been made to illustrate that the derivative

coefficients of a scaling and wavelet expansion can be calculated at any scale.

The goal for this author is to understand exactly what wavelets are and what

they are doing, therefore, scale 0 provides the clearest scenario in which to

work without sacrificing essential properties of wavelets.

Given, now, that it is sufficient to work on scale 0 to understand exactly

what the wavelet derivative does, one must understand the ramifications of

applying the matrix RNxN to the vector ft. In the next subsection the

similarity between the above defined matrix R and finite difference formulas

for taking the derivative will be explored.

0.9 Wavelet Derivatives and Finite Difference

As the previous subsection attempted to illustrate, the essential properties

of the wavelet derivative are contained in the matrix R. It was suprising,

at least to this author, that the elements of the matrix R could differentiate

12



not only the vector _'but alsothe equally spacedsamplesof a function f(x),

i.e., the matrix R displays finite difference properties. First of all, it is useful

to simply note the similarity between finite difference coefficients and the

elements of the matrix R. The following is a table of centered finite difference

coefficients and the order of accuracy of the approximation to the derivative:

Order of Accuracy Coefficients

1012 -7
4 [ 202 1

12 3 3 12

6 i z z03 3 i
4 4 20 60

8 1 ,_)0 p 404 1 4
280 105 5 5 5 5 105 28O

Recall that the elements of the matrix R calculated by Beylkin provide the

transformation from scaling function coefficients of a function to the scaling
function coefficients of the derivative of the same function. The coefficients

for the D2 and D4 wavelet expansions are exactly the same as the coefficients
for the 2-nd and 4-th order centered finite difference formulas. The coeffi-

cients for the D6 and Ds wavelets are not exactly the same but are essentially

the same (in a finite difference sense). The similarity can be seen clearly by

plotting the finite difference coefficients and the wavelet coefficients on the

same plot. The wavelet coefficients are,
Wavelet Convolution Coefficients

___0 _
D2 -2 2

D4 1 0ilD6 1 16 _ _7 27212
2920 1095 365 365 365

D8 39296 76113 1664 2645

53 16 1
365 1095 2920

128 1
49553 396424 49553 1189272 743295 1189272

If the above coefficients are treated as finite-difference coefficients then

it would be nice to know the accuracy. To establish the finite-difference

accuracy of the coefficients calculated by Beylkin note that a centered-finite-

difference derivative approximation with 2K coefficients, (Otk)g=_g, can be
written

K

/(xj) ,._ _ ak(fj+k -- fj-k).
k=l

If the above equation is exact for f(x) = x r for r = 0,...,N but not for

r -- N + 1 then the equation is said to be N-th order accurate. Therefore,

13



onemust checkto seeif

K

r:E;-'= Z.k(:E;+k-
k=l

when f(:E) = :E". To simplify, one can let :Ej = j and check the following:

K

rj r-' = __, ak((j + k) _ - (j - k)_).
k=l

Now, treating the coefficients derived by Beylkin as nothing more than finite-

difference coefficients one can check the accuracy. The following table con-

tains the results of applying the Beylkin coefficients to various polynomials:
Wavelet Exact for But not for

02 x 2 X 3

04 x 4 :E5

96 x 6 x 7

Ds :Es :E9
Dlo x 1° :Ell

The pattern in the above table is obvious and leads to the following

conjecture: the cofficients derived by Beylkin which map scaling function

coefficients of a function to the scaling function coefficients of the derivative

of the function for the Daubechie wavelet D2M can differentiate, exactly, a

polynomial of degree 2M when applied to the samples of the polynomial in

a finite-difference sense.

This concludes the second important observation of this paper (the first

concerned approximating a function by scaling-function coefficients). The

previously defined matrix R has as its elements the coefficients which display

this finite-difference quality, and if the original function f(x) is periodic then

the matrix R is circulent in form. The following concluding section of this

paper should unify the presentation.

0.10 Conclusion

The two important sections of this paper are sections 3.4.3 and 3.4.44. In

section 3.4.3 it was established that if given a periodic function f(x) then

the scaling function coefficients g"of the fimction at the finest scale can be

14



approximated by a quadrature formula which in matrix form,

yields a circulent matrix C. In section 4 it was noted that the coefficients

derived by Beylkin which map the scaling function coefficients of a periodic

fuction to the scaling function coefficients of the derivative of the function is

also circulent in form when written in matrix notation,

s; = Dg.

Furthermore, the matrix D can differentiate (in a finite-difference sense)

polynomials exactly up to the order of the wavelet. Now, combine the results

of sections 3 and 4 to get the following relation:

f' = C-1DCf

Throughout the paper it has been noted that G and D are circulent in form

when f(x) is periodic. Circulent matrices of the same dimensions can, how-

ever, be diagonalized by the same matrix, the Fourier matrix of appropriate

dimensions, and this implies that all circulent matrices of the same dimen-

sions commute. Therefore, the previous relation simply becomes,

/' = D/,

but when D is applied to the samples of a function it acts as a finite-difference

operator. In conclusion, when wavelets are used to solve partial differen-

tial equations numerically they appear to provide nothing more than finite-

difference methods provide.
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0.12 Appendix 1

0.13 Wavelets Supported on (0,3M)

In this appendix our wavelets are supported on [0, 3M] where M is the num-

ber of vanishing moments of the wavelet. These are not the usual Daubechie

wavelets, but for these wavelets the scaling function coefficients of a periodic

function f(x) can be approximated with error of order M simply by sampling

f(x) at the correct location.

To begin, assume that there exist a unique TM, fixed for a fixed number

of vanishing moments, M, of the wavelet, such that

f ¢(x + rM)xmdx= 0

for m = 1,2,...,M - 1. Furthermore, recall the definition of the scaling

function coefficient and expand the integrand f(x) in a Taylor series about

Xo (f_ = f'(x0)):

S_ J f(x)¢(x - k)dx =

/ _l_-_1_+_/_- _o_l_-_ +_0'/_-_ol_,l_-_ +....fo

Now, shift the variable of integration by y = x - _"- k, and choose the point

of expansion, x0, to be T + k to get,

0
8 k =

f(r + k)
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Now, rename r as rM and the above integrals are of the form,

f ¢(x + TM)xmdx : O,

and therefore vanish for m = 1, ..., M - 1 leading to,

s_ = f(TM + k) + f(M)(T M + k) f vm$(y + TM)dy +

i.e., the approximation of the scaling function coefficient s_ up to order M is

made by sampling f(x) at the position Vm + k.

Note that all of the above calculations could have been carried out for

the first derivative of f(x) giving an approximation to the scaling function
"0

coefficients, sk, of if(x):

_ = f(z + k) + f(m+l)(r + k)fvM¢(y + T)dy + ....

It was assumed above that there exist one rM such that

f ¢(x + rM)z"d = O,

for m = 1, ...,M - 1. For m = 1 this 7"M is easy to find:

£ /.

J ¢(x + "rM)xdx = J ¢(x)(x- TM)dX

= f f

But fphi(x)dx = 1, therefore,

rM = f x¢(x)dx.

That is, 7"M is simply the first moment of ¢(x). To find rM for ra > 1

the calculations are simple but a bit longer and require the result from the

following theorem to show that there is one "rM which is the same for all

rn= 1,...,M- 1.

If f ¢(x)dx = 1 and there exists r such that f ¢(x + r)xmdx = 0 for

m = 1,...,M- 1 then f¢(x)xmdx = (f¢(x)xdx) m for m = 1,...,M - 1.

17



Proof: Start with

and lety=x+rtoget,

_ + r)xmdx = O,

f

J ¢(Y)(Y - r) m = 0.

Using the binomial theorem this becomes,

Let the moments of ¢(x) be denoted by Ml = f ¢(x)xldx to get

r=O ?"

A simple calculation yields r = M1. Using this value of r and summing only

up to rn - 1 the previous expression becomes,

=°.
Or,

._1()M_ =- _ m (_l),__r(M1),n_rMr.
r=O r

From the hypotheses it is known that Mo = f ¢(x)dx = 1. Therefore, Mp =

M_' for p = 0, 1, and with this knowledge it is easy to show that Mp = M_
for p = 2:

-- -- m--r rMm- _2 m (_l)m__(M1) M,,
r=0 r

which holds for m = 1,2. Combine the powers of Ml to get,

._1()Mm =-M_ __, m (_l)m_ L
r=O r

But, this is nothing more than,

Mm = -M7[(1- 1) m - 11,
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or simply,

M,,,=M_ n,

where m = 1,2. The proof is complete, since higher powers of m can be

found by induction.

0.14 Appendix 2

In this appendix the moments of ¢(x) will be calculated in closed form. Begin

with the definition of the scaling function,

k

Next, calculating the m-th moment of _)(x) yields,

f ¢(x)xm = _-" hk f ¢(2x -- k)xmdx.
k

Change the variable of integration such that y = 2x - k to get,

i 4(_): = Z hkJ 4(y)(1/2)m@+ kp1/2_y,
k

= (1/2) m+' _, hk f ¢(y)(y + k)mdy.
k

Now, recall the binomial theorem to get,

S ¢(x)z_ = (1/2)_+1 _--_hk f ¢(y) _ mk t=o l Ylkm-tdY

Rewrite the moments of ¢(x) as Mt = f xi¢(x)dx to get,

t=o l _k hkk'-l Mt"

Now let Pt = _k hk kt to get

M_ = (1/2) m+ly]_ m gm-tMl.
/=0 l
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