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NONLINEAR PROBABILISTIC FINITE ELEMENT MODELS OF

LAMINATED COMPOSITE SHELLS

S. P. Engelstad and J. N. Reddy

Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

SUMMARY

A probabilistic finite element analysis procedure for laminated composite

shells has been developed. A total Lagrangian finite element formulation,

employing a degenerated 3—D laminated composite shell element with the full

Green—Lagrange strains and first—order shear deformable kinematics, forms the

modeling foundation. The first—order second—moment technique for

probabilistic finite element analysis of random fields is employed and results are

presented in the form of mean and variance of the structural response. The

effects of material nonlinearity are included through the use of a

rate—independent anisotropic plasticity formulation with the macroscopic point

of view. Both ply—level and micromechanics—level random variables can be

selected, the latter by means of the Aboudi micromechanics model. A number

of sample problems are solved to verify the accuracy of the procedures

developed and to quantify the variability of certain material type/structure

combinations. Experimental data is compared in many cases, and the Monte

Carlo simulation method is used to check the probabilistic results. In general,

the procedure is quite effective in modeling the mean and variance response of

the linear and nonlinear behavior of laminated composite shells.
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1. INTRODUCTION

1.1 Motivation

The use of fiber reinforced composite materials in modern engineering

structural design has become a common practice. Organic matrix composite

materials such as graphite—epoxy have been used extensively with substantial

weight savings along with additional benefits such as dimensional stability.

More advanced materials such as metal matrix composites are being developed

for use in aerospace structures where temperature requirements exceed the

limits of typical organic matrix composites. Analytical methods for metal

matrix composites are a "hot" item in current research, and in order to use

these materials, methods for determining design limitations are necessary.

In the area of structural analysis, the finite element method (FEM) has

become the most widely used analysis tool. Developments and improvements

have progressed over the last two decades to the point where many families of

reliable finite element codes are in place. For a typical FEM analysis, it is a

fair statement to say that uncertainties caused by modeling inaccuracies are far

outweighed by uncertainties in the material properties, geometry, and loading of

the problem. This is the primary reason for the development of probabilistic

finite element methods, so that these uncertainties can be modeled within the

framework of statistical methods.

The benefits from the use of statistical methods in design are numerous.

They include: 1) a reduction in design conservatism, so that materials can be

used to their true capacity; 2) the ability to quantify the amount of variability

itself, and 3) the estimation of the risk of exceeding design variables. As

opposed to a deterministic yes—no failure analysis, risk of failure or "reliability"
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of a structure can be much more meaningful to the designer. This reliability

can only be determined if the uncertainties of the problem are included in the

model.

As composite materials are incorporated into modern structural

components, lack of an experience base induces a trend towards conservatism in

the design. Thus much of the available savings in weight and long term costs

are lost. Since more design variables exist when composites are involved, and

the manufacturing processes for producing composite materials themselves are

more complex, then more variability can exist in a design produced with

composites versus conventional materials. Thus the motivation of this research

is to develop methods for probabilistic structural analysis of composite

materials. Laminated shell type structures are selected as the focus, and both

geometric and material nonlinearities are included.

In the following section, a summary of the selected methods used in the

present study, along with some discussions involving orginality are presented.

1.2 Present Study

The main objective of this study is to develop a probabilistic finite

element procedure to be used for reliability analysis of laminated composite

shells. Since these structures often exhibit both geometric and material

nonlinear behavior, these nonlinearities have been included in the development.

The discussion to follow describes the deterministic and probabilistic methods

incorporated into the computational procedure.
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A degenerated 3—D shell element formulation, incorporating the

first—order shear deformable kinematics, has been chosen to model laminated

composite shell structures. For organic matrix composites, the importance of

shear deformation has been covered in the literature quite extensively. An

example has been given in this work which illustrates this importance in the

postbuckling range, both for determining postbuckling response and failure.

The second—moment technique for probabilistic finite element analysis

has been employed. The random variables built into the model include the ply

stiffnesses, orientation angles, and ply thicknesses. Using a micromechanics

theory, micromechanics level random variables such as fiber and matrix

stiffnesses and volume ratios can be selected.

Geometric nonlinearity is based on the total Lagrangian approach with

the full Green—Lagrange strains. Material nonlinearity is incorporated using

classical rate—independent plasticity and a general orthotropic yield function.

The radial return algorithm for plane stress has been extended to calculate the

elastic—plastic stresses with the orthotropic yield function.

The probabilistic responses in the computer program, developed during

this study, are the first and second probabilistic moments of the structural

responses, which include deflection, strain, and stress. It was decided that

verification of the second—moment methods using Monte Carlo procedures

would be made easier if these moments (mean and variance) were calculated.

Also, the variability of the response due to individual random variables can be

quantified (sensitivity analysis) by estimating the variance. In order to become

familiar with all the computational subtleties in the probabilistic finite element
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method, the mean and variance calculations are the natural first step.

Obviously, future work involves incorporation of the reliability estimation

techniques.

The originality in this study lies in the application of the

second—moment method for probabilistic finite element analysis to geometric

and material nonlinear composite shells. Previous work in the literature for

composites only involved linear analysis of plates, in which classical lamination

theory was used. Other works involved geometric or material nonlinearities in a

probabilistic finite element format, but only for isotropic materials and usually

only for plates. It is of interest here to analyze more realistic laminated

composite structures, so the shell element with shear deformation theory has

been employed. The computational difficulties in analyzing actual laminated

composite panels, involving models with large numbers of layers and degrees of

freedom, and also that proceed deep into the postbuckling range, have been

investigated. Several comparisons have been made with experimental results as

well.

A review of the literature involving several areas of research of

importance to this study is presented in Sec. 2. Section 3 contains the

theoretical development of the degenerated 3—D shell. element for laminated

composite shells and the finite element formulation of the incremental equations

of motion including geometric nonlinearity. The Aboudi micromecharics theory

is developed in	 Sec.	 4, and the anisotropic plasticity formulation is

presented in Sec. 5. Section 6 contains the development of the

second—moment probabilistic finite element method, including discussions on

computational saving techniques. A number of illustrative problems are solved
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in	 Sec. 7, which demonstrate various aspects and capabilities of the overall

procedure. Section 8 provides a summary, conclusions, and recommendations

for future work.

Throughout this study it has been assumed that the reader has a

basic understanding of probability concepts and terms. However, to aid in this

area, a review of reliability estimation theory, along with a brief explanation of

basic terms is presented in Appendix A. Appendix B describes the Monte Carlo

simulation technique.
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2. LITERATURE REVIEW

The purpose of this review is to assess the current state of probabilistic

finite element methods in general, and in particular to include any work in

relation to composite materials. A brief discussion of various micromechanics

models, macroscopic anisotropic plasticity theories, and reliability estimation

methods will be given as well.

2.1 Probabilistic Finite Element Methods

Probabilistic finite element methods have generally evolved along two

major paths [33]. The first one uses standard statistical methods in conjunction

with the finite element code. The second method involves non—statistical

techniques and differs little from deterministic methods. These two categories

will be discussed, with emphasis on the second one since it contains the primary

concentration of effort in current research.

2.1.1 Statistical Approach

Typically these methods involve statistical sampling procedures known

as Monte Carlo simulation. Sampling from a known multivariate distribution

function is conducted and due to the 'weak law of large numbers' [1], large

sample sizes must be used in order to converge to the approximately correct

statistical parameters of the response. These methods therefore become very

expensive, as finite element solutions must be produced for each sample. When

correlation of the random variables exist, transformations must be performed

prior to simulation since simulation involves independent sampling. In order to

cut down on the number of samples required for the direct Monte Carlo
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simulation technique, other methods of sampling such as stratified sampling and

Latin hypercube sampling are often used [1-3]. Since the literature in this

category is quite extensive, a few of the most important and widely used

statistical methods are reviewed.

An example of the use of Monte Carlo techniques to study a spatial

stochastic process is given by Ma and Wei [4]. They considered homogeneous

and inhomogeneous processes, and a Choleski decomposition of the covariance

matrix was used to correlate the Monte Carlo sampling. The direct sampling

method, coupled with the finite element procedure were used to study porous

random fields for groundwater flow.

The Neumann expansion technique proposed by Shinozuka et al. [5,6]

used sampling techniques that successfully reduced the computational effort in

solving the finite element equations independently for each sample. The

Neumann expansion method effectively employs a perturbation expansion in

conjunction with the Monte Carlo simulation so that only a single stiffness

matrix factorization is required. The method allows for large variability of the

random variables to be modeled without loss of accuracy. It can be easily

adapted to an existing finite element code with little change.

Contreras [7] proposed a different method in which stochastic differential

and difference theory is applied to structures discretized using the finite element

method. A semi—discretized formulation is employed in which a finite

difference method is used for the time domain and the finite element method is

used for the spatial domain. This technique involves a complete reformulation

of an existing finite element program in order to model the stochastic

differential equations.
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A method known as stochastic linearization [8,9] has been used to solve

nonlinear stochastic differential equations of random vibration in which the

loading is the only random process. Recently, Mohammadi and Amin [10] and

Casciati and Faravelli [11-15] employed it for dynamic analysis of material

nonlinear continua. The stochastic linearization technique is used to linearize

the nonlinear hysteresis behavior in the model. In addition, Chen and Yang [16]

used a finite element formulation combined with stochastic linearization and

normal mode methods to study geometrically nonlinear random vibration of

plate and shell structures. In general, this method has only been applied to

random loading problems, and not to problems in which uncertainties exist in

the properties.

Faravelli [17] has demonstrated another statistical approach in which a

planned set of experiments around the space of the central values of the

different random vectors is performed using a standard finite element code to

determine the response to the different inputs. A regression analysis is then

used to fit the response to an appropriate polynomial of the input variables.

A level-2 reliability approach is introduced to obtain approximations of the

cumulative distribution functions of the response variables. Nonlinear problems

can be solved as well as linear. In order to minimize the number of numerical

experiments necessary, experimental design theory is used. It seems that this

method would be computationally costly when a large number of random

variables is involved. In reference [18], the method was applied to an

automotive impact problem. A similar method was used by Chryssanthopoulos

et al. [19] to perform a reliability—based design of stringer stiffened cylinders

under axial compression.
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Larder [20] developed a method for studying failure in parallel fiber

composites. A deterministic finite element formulation was used to model the

fiber and matrix of a representative cell, and then Monte Carlo simulation

methods were used to simulate randomly occurring damage. The program

however, could not model general structural level problems.

Deodatis and Shinozuka [21] developed a probabilistic model for the

spatial strength variation in laminated orthotropic composites. Monte Carlo

simulation techniques were coupled with Tsai—Hill and Tsai—Wu failure criteria

and assumed failure mechanisms.

Finally, Ditlevsen et al. [22] have conducted research in improving the

efficiency of the Monte Carlo method. An off—mean centered directional

importance sampling procedure is compared to other uniform directional

sampling methods. The aim was to further reduce the number of samples

required as compared to other improved Monte Carlo procedures.

2.1.2 Non—Statistical Approaches

Non—statistical finite element approaches seem to be getting the most

attention in current research. These approaches include second—moment

analysis, numerical integration, and the new iterative perturbation methods,

which use multiple regression as a post—processor. These techniques will be

discussed and compared in detail in the following review.

Ang and Tang [23], discussed a method of using the Taylor series

expansion of a general function g(X) about the mean of the random variable X

and truncating the series after the second order terms. They showed that the

mean of g(X) can be estimated using a second—order approximation which uses

9



the first and second statistical moments of X, and that the variance of g(X) can

be estimated using a first—order approximation which requires only the second

moment of X. Since higher statistical moments of the original variate X would

be required for a higher—order approximation to the variance of g(X), the

variance was left at first—order. Higher moments of the original variates are

generally not known. A major advantage of this method is that the

multivariate distribution function does not need to be known, but only the first

two moments. Since a first-order Taylor series approximation is used for the

variance, then uncertainties in the original variates cannot be too large. This

means that deviations from the mean of the random variables of the function

cannot be large, typically not greater than 10 percent. However, they showed

that acceptable results can still be obtained for coefficients of variation as high

as 20 percent. An important point is that these approximations have proven to

be adequate even when the function g(X) is nonlinear, as long as the variance of

X is small relative to g(X). This leads directly to the works by Liu et al.

[33-40] to be discussed later.

Handa and Andersson [24] used the above ideas combined with the finite

element method to study linear truss structures and the effects of correlation.

At about the same time Hisada and Nakagiri [25] used the same "perturbation"

(second—moment) method to analyze structures with uncertain shapes. In this

work the geometrical coordinates were allowed to be random variables.

Nakagiri et al. [26-29] were the first, and to the author's knowledge, the only

researchers to apply this method to the analysis of composites. In [26],

probabilistic eigenvalue analysis of linear vibration of fiber reinforced laminated

plates was studied, in which the fiber orientation angle and the layer thickness
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were random variables. The effects of these random variables on the

eigenvalues of the plate with and without correlation was investigated. In [27],

reliability indices of a fiber reinforced laminated plate were calculated as the

end result of the stochastic finite element technique. Here elastic constants of

the layers were treated as the random variables, but no spatial correlation was

considered. The strengths used in the failure criterion to determine reliability,

were also variates. Cases in which flat plates under uniaxial tension, with and

without holes, were analyzed to investigate the effect of the distributed stress

on the reliability index. In [28], Tani and Nakagiri extended the method to

perform design optimization of the reliability index of fiber reinforced plastic

(FRP) laminated plates with probabilistic elastic constants and lamina

strengths. The fiber orientation angle was the design parameter in the

optimization, and failure of each lamina was determined by the Tsai—Hill

criterion. Sato, Watanabe, and Nakagiri [29] used the second—moment method

to perform a reliability analysis of a FRP pressure vessel with probabilistically

distributed stacking parameters. Linear elastic material and geometrically

linear behavior was studied in their work.

A different approach to the second—moment method was used by

Lawrence [30]. Here expansions of random variables in terms of orthogonal

Galerkin type functions became the core of his "basis random variable"

technique. A Rayleigh—Ritz finite element model was derived, and the first and

second moment statistics were obtained from a series of linear solutions.

Lawrence [30] achieved the same accuracy as other second—moment

FEM techniques; however, he stated that the greatest advantage of his method

over others is the ease of application. 	 Using the basis random variable

11



representation, the random character of the problem is treated "merely as an

extra set of dimensions". Later, Lawrence [31] applied the method to

probability based design, in which sensitivities of reliability indices to design

variables are calculated to enhance the design process. Additionally, Ghanem

and Spanos [32] developed an independent but similar Galerkin—based response

surface approach. In these works only linear problems were studied.

Liu, Belytschko, and Mani [33-40] have carried out the most

developmental work using the second—moment finite element method. They

have applied the method to nonlinear structural dynamics for correlated or

uncorrelated discrete random variables [34,35], and later to nonlinear structural

dynamics problems with both homogeneous or inhomogeneous random fields

[33]. They termed the method the Probabilistic Finite Element Method

(PFEM), and applied it to geometric as well as material nonlinear problems.

Good results were achieved since the coefficients of variations were kept around

10 percent. It is noted that the probabilistic density functions must also be

considered to have decaying tails to maintain good results. Only isotropic

materials were studied. Two methods for improving computational efficiency

were developed: 1) transforming the correlated random variables to independent

uncorrelated random variables thereby reducing the order of the tensor

multiplications required, and 2) an adjoint method was introduced to reduce

computations by allowing the statistics of the response to be calculated only in

a reduced domain from the original problem.

Liu, Besterfield, and Belytschko [36] developed a probabilistic

Hu—Washizu variational principle (PHWVP) for the PFEM. They applied it to

both linear and nonlinear elasticity. Using this principle, the probabilistic
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distributions for the constitutive law, compatibility condition, equilibrium,

domain and boundary conditions can be incorporated into the PFEM. Thus all

aspects of the problem were treated as random variables or fields.

The latest work by these authors involves an optimum fusion of

PFEM and reliability analysis. Liu, et al. [41] applied the method to

probabilistic fracture mechanics. Uncertainties in loads, material parameters,

geometry, crack length, orientation and location can be incorporated into the

problem to determine the probability of brittle fracture. The reliability analysis

is performed using a Kuhn—Tucker optimization procedure. An enriched finite

element with the embedded crack—tip singularity is employed in this overall

reliability package. In [42], they extended the method to fatigue crack growth

problems. Liu, Chen, and Lu [43] have also applied the reliability and

PFEM fusion method to the fluid—structure interaction problem in which the

influences of random parameters on the energy transfer between the structural

system and the acoustic system were studied.

Several other authors have fused the first and second—order reliability

methods with finite element methods. Here the differentiation of the finite

element equations with respect to the random variables is performed as in the

second—moment formulation, except that these are then blended directly into

the first—order reliability equations. In this way the small probabilities of

failure required in structural reliability calculations can be accurately predicted.

These small probabilities at the tails of the distributions are poorly defined by

first and second moments. Arnb jerg—Nielson and B jerager [44] applied a form

of the method to linear and nonlinear truss structures. Der Kiureghian et al.

[45,46] applied it to linear and nonlinear beam and plate problems. The key
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point is that while the PFEM methods evaluated statistical moments, this step

is avoided altogether here in the process of estimating reliability.

Other non—statistical techniques have been developed and are discussed

next. Liu et al. [34] developed a numerical integration procedure in which

Hermite--Gauss quadrature is used for numerically evaluating the integrals

involved in the definition of expectation and variance. The method assumes

uncorrelated fields and has limited use, especially for problems involving large

numbers of random variables (also see Gorman [47]). Takada and Shinozuka

[48] have developed a new method in which local integrations of the continuous

stochastic field are made on an element by element basis to form element

stiffness matrices so that the random field is transformed into only a few

random variables. This new method has been proven to allow much coarser

meshes than the first—order second—moment methods, but requires more

computational time for equivalent mesh sizes. It has only been applied to linear

elastic problems. A similar idea is used by Weiqiu and Weiqiang [49], in which

local averages of the random field are used to improve the accuracy of the

second—order perturbation method. They applied it to random eigenvalue

problems.

The best alternative to the first—order second—moment methods is one

developed by Dias and Nagtegaal [50]. They introduced stochastic finite

element techniques based on the Fast Probability Integration (FPI) algorithms

developed by Wu and others [81-85]. Using FPI, and given a closed—form

expression of the response variable as a function of the uncorrelated random

variables (normalized to zero mean and unit standard deviation), an

optimization algorithm is then used to determine the minimum distance from
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the origin to a given limit state. This minimum distance is commonly referred

to as the safety index, from which the probability of exceedance of the limit

state can easily be computed. Thus what is needed is a method to relate the

response of the structure to the uncorrelated random variables. By performing

a spectral decomposition of the covariance matrix, the correlated random

variables can be related to a set of uncorrelated random variables. In order to

determine the response of the structure, the deterministic finite element model

is used in conjunction with a prescribed set of perturbations of the input

random variables. To obtain a closed—form expression of the response, a

multiple regression procedure that fits the stored perturbations to a polynomial

expression is used.

Obviously the method requires a multiple set of solutions of the finite

element model which can become computationally expensive. In order to

overcome this problem, an approach based on a modified Newton iteration

method was developed. Basically it uses an iterative perturbation procedure

about the known mean deterministic solution, so that multiple perturbation

solutions can be obtained using only one factorization of the stiffness matrix. A

notable advantage of this method is the lack of modifications required to

incorporate it into an existing finite element program. In addition, the method

is not limited to any specific probability distributions for the input random

variables. What is needed is an efficient data storage structure to keep track of

the multitude of perturbation solutions. Many other authors have worked with

Dias in this arena (see [50-55]). It is of importance to mention that the

Probabilistic Structural Analysis Methods (PSAM) being developed at

NASA—Lewis Research Center use this technique, due to its ease of
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incorporation into any finite element formulation by simply coupling it with

existing modules for reliability computations.

Various examples exist in the literature of application of the previously

discussed methods to specific problems. A recent book edited by Liu and

Belytschko [56], contains a wealth of interesting examples. Recent works using

the first-order second—moment stochastic FEM method for analysis of soil

structures are given in references [57,58]. Various stochastic FEM methods for

solving material nonlinear problems are reviewed in references [59-62].

2.1.3 Comparison of Approaches

From the literature review, it was quickly determined that the

non—statistical techniques would prove to be the most promising for application

to linear and nonlinear composite structures. It was also noticed immediately

that little work has been done (only Nakagiri [26-29]) in the area of stochastic

finite element procedures for composite structures. Out of all the works

reviewed, the second—moment techniques have received the most attention for

nonlinear applications, but only for isotropic behavior (see Liu et al. [33-40]

and Liu and Der Kiureghian 1461). The iterative perturbation techniques also

seem very promising. The following discussion is an attempt to compare the

pros and cons of these two procedures.

The first—order second—moment approach is basically a mean—centered

perturbation method since the Taylor series expansion is performed about the

mean point. Since it is only a first—order approximation for the covariance,

then the method does not allow for large variations of the input random

variables from the mean. Typically coefficients of variation of 10 percent give
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good results, however, and for most material property variations this range is

well within the expected level of uncertainty.

In order to apply the second—moment technique to an existing finite

element code, significant changes must be made in order to calculate partial

derivatives of the stiffness matrices and loads with respect to the random

variables. These derivatives can be obtained either using analytical

differentiation of the formulation under consideration or finite difference

techniques. The latter method should allow more generic programming

techniques to be employed, making it more formulation independent. As the

number of random variables in the problems increase, it becomes apparent that

a significant amount of storage becomes necessary to retain all the partial

derivatives.

An advantage of the second—moment method is that it has been

previously demonstrated for nonlinear problems by Liu et al. [33--40], with good

success. The authors also developed techniques for efficiency improvements to

reduce the computational costs considerably.

Once the statistical moments of the response are determined using the

second—moment formulation, any of the reliability estimation techniques can be

employed. Recent work however, has shown that this is not necessary; in fact,

it is more accurate not to calculate the moments but to evaluate the sensitivity

derivatives in the finite element program and use them directly to estimate

reliability. In any case, unlike the iterative perturbation methods, no regression

curve fitting is required in this step.

The iterative perturbation methods involve a higher order perturbation

than the strict first—order second—moment methods. 	 Using the iterative
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procedure, higher order terms are effectively captured. The stability of the

algorithm is conditional however, and convergence is not assured for large

stiffness perturbations. The method can be generalized so that any finite

element formulation can be incorporated into the algorithm without any

element level program changes. Like the previous second—moment methods, it

requires significant storage in order to retain all the response solutions to the

various perturbations of the random variables. This storage coordination must

be very well organized and self contained as well.

The iterative methods have just recently been demonstrated for material

nonlinear problems in the current literature. Convergence stability problems

have been reported when constraint equations exist such as those for thin plates

and shells allowing transverse shear deformation, deviatoric rate—independent

plasticity, and incompressible or near—incompressible elastic materials.

Currently, stability limits are being developed to alleviate these problems.

The results of the iterative perturbation finite element program are data

files of response for various perturbed inputs. In order to make reliability

calculations, the FPI reliability algorithms require a closed form equation

involving the response variables as a function of the input random variables.

Thus multiple regression techniques are employed at this step to obtain a

polynomial equation from the response data files.

After reviewing all of the above facets of the two methods, it was decided

to use the second—moment methods for the present application. Since an

experience base exists for the nonlinear applications, and since large

non—normal variations are not anticipated for the uncertainties, the methods

should be acceptably accurate. As for the storage problems, it appears that
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both methods will require considerable storage, so this really is not a factor.

Since Liu et al. [33-40] has developed techniques for reducing computational

costs, it was anticipated that the effort spent making significant programming

changes would be rewarded by a reduction in CPU charges. This is very

important since a rather large number of random variables are needed to model

the uncertainties in a composite laminate.

2.2 Micromechanics Models

One of the goals of this research is to model from a micromechanics level

the uncertainties in laminated composites, involving both linear and nonlinear

behavior. It was discovered, however that certain algorithmic difficulties

existed in coupling a micromechanics—based plasticity theory with the

second—moment stochastic finite element methods. Thus the micromechanics

model was limited to linear and geometric nonlinear elastic behavior for this

study with the possibility of adding the material nonlinear case at a later date.

In any case, it was desired to select a micromechanics theory that has proven to

be effective in the literature. Arenburg [63] has given a very thorough review of

this area of research, and has recommended the model by Aboudi [64]. This

model is based on a higher—order continuum theory that can account for

particulate or continuous fiber reinforcement, general mechanical and thermal

load histories, and damage in the form of fiber—matrix debonding. Arenburg

used this model to develop a finite element program for the analysis of

metal—matrix composite plates. In his work, the unified theory of Bodner [65]

was used to model the nonlinear viscoplastic behavior of the matrix. In the
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present work, Aboudi's model will again be used, but in this case will be limited

to elastic behavior.

2.3 Macroscopic Anisotropic Plasticity

In order to model the nonlinear material behavior existing in metal

matrix composites, it was decided to use the macroscopic or smeared approach.

This method proved to be more compatible with the probabilistic finite element

method both from an algorithmic and a computational expense point of view.

Many authors have made contributions in this area. Griffin [66] and Arenburg

[63] have presented surveys of the theories of plasticity in anisotropic materials.

It is not of interest here to review all of these, but to touch on the most notable

and then explain the reasons for selecting the theory used in the present work.

Hill's anisotropic theory of plasticity [67,68] has received much

attention. This theory was based on a generalization of the von Mises yield

criterion which assumed yielding was independent of hydrostatic stress and that

plastic flow was incompressible. Whereas these assumptions are standard and

experimentally validated for metals, they have been shown to be incorrect for

some materials by Lin et al. [69]. Griffin [66] and Chandrashekhara [70] have

applied the theory in finite element formulations. While Griffin showed

generally good agreement with off—axis test data, Chandrashekhara did not

make any experimental comparisons.

An endochronic theory of plasticity of Valanis [71] was extended to

transversely isotropic media by Pindera and Herakovich [72]. Various effects
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such as cyclic loading and unloading and stress interaction were successfully

demonstrated.

Recently, Sun et al. (74-77), presented a plasticity formulation based on

the anisotropic plastic flow rule proposed by Kachanov [73]. The yield function

they selected was quadratic in stresses and, in general, excludes the

assumptions of incompressibility of plastic strains and that no yielding is caused

by hydrostatic stresses. The formulation was installed in a finite element

program, and much experimental validation work was performed for

Boron/Aluminum composites [74-77]. Examples of off—axis uniaxial test

specimens with holes, edge cracked panels, and cyclic loading and unloading

under constrained plasticity conditions were demonstrated with good

analytical/ experimental comparisons. Due to the generality and amount of

experimental work done by Sun and his coworkers, this plasticity formulation

was selected for the present work. Algorithmic modifications were made for

computational efficiency and compatibility with the second—moment

probabilistic method.

2.4 Reliability Estimation

Orginally it was planned to estimate reliability as a post—processing

function using the first and second moments of the stress or displacement

response output from the probabilistic finite element analysis. However recent

work [41-42,45-46], which fused the second—moment probabilistic finite

element methods with the first and second-order reliability methods, have

shown that direct use of the response derivatives with respect to the random

variables (obtained from the finite element program) in the reliability
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algorithms is much more accurate for small probabilities of failure. These small

probabilities at the tails of the distributions are poorly defined by the first and

second moments. For this reason, the reliability estimations in the present

work are limited to approximations based on the first and second moments

(these moments are still quite useful for sensitivity analysis). Future work will

use the response derivatives already evaluated in the finite element program

directly for reliability estimation. Appendix A gives a brief explanation of the

reliability procedures.

In reviewing the vast literature in reliability computation, the first and

second—order reliability methods are prominant. References [23,45,46,56] give a

good description of these methods. The family of Fast Probability Integration

(FPI) algorithms has also been found to be important in recent work. The

origin of the FPI methods can be traced to the definition of a safety index

proposed by Hasofer and Lind [78]. Rackwitz and Fiessler [79] later extended

the algorithm to accommodate non—Gaussian distributions. Recent work by

Wu et al. [81-85] contains further improvements in terms of accuracy and

computational efficiency.



3. FINITE ELEMENT FORMULATION

In this chapter a review of the finite element formulation of the

incremental equations of motion of a continuous medium including geometric

nonlinearity will be presented. The degenerated 3—D shell element for

composite laminates will then be reviewed. The formulation is based on the

work by Liao and Reddy [86]. Summation convention on repeated indices is

assumed throughout this study.

3.1 Principle of Virtual Displacements

The principle of virtual displacements requires that

f Tij6eijdv = R	 (3.1)
v

where b is the variational symbol,

Tij =

	

	 the Cartesian components of the Cauchy stress tensor at

time t + At (i.e., configuration 2).

eij = the Cartesian components of the infinitesimal strain

associated with the incremental displacements Dui in

going from the configuration at time t to the configuration

	

aAu	 aDu.
at time t + At, i.e. eii = (-07 x + d) which are also

	

J	 1

referred to this unknown configuration at time t + At.

xi =

	

	 Cartesian components of a point in the configuration at

time t + At,

and

R= Ja  t
k bukda + fv  pfk bu k dv	 (3.2)
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In equation (3.2), t  and fk are the components of the externally applied surface

and body force vectors respectively, and Su k is a virtual variation in the current

displacement components u k , where

u  = X  -- Xk,

x  being the Cartesian coordinates of a point in the configuration at time t = 0.

3.2 Total Lagrangian Formulation

Equation (3.1) cannot be solved directly since the configuration at time

t + At is unknown. An approximate solution of equation (3.1) can be obtained

by referring all variables to a previously calculated known equilibrium

configuration and linearizing the resulting equation. The total Lagrangian

(T.L.) formulation, in which all static and kinematic variables are referred to

the initial configuration at time 0 of the body, is used here. The applied forces

in equation (3.1) are evaluated using

TkdA = tkda

poFkdV = pfkdv	 (3.3)

where Tk , Fk , dA, dV, p  refer to time t = 0 and tk , fk , da, dv, p refer to time

t+At.

The volume integral of Cauchy stresses times variations in infinitesimal

strains in equation (3.1) is transformed to an integral over a known volume (the

initial volume) using the 2nd Piola—Kirchhoff stress tensor and the energetically

conjugate Green—Lagrange strain tensor to give

Jv 7ijkijdv =	 S ij bEijdV	 (3.4)

where
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Sij =	 Cartesian components of the 2nd Piola—Kirchhoff stress

tensor corresponding to configuration at time t + At but

measured in the configuration at time t = 0.

Ei j = Cartesian components of the Green—Lagrange strain tensor

in the configuration at time t + At, referred to the

configuration at time 0:

au.

Eij	
7 (ul J + uj,i 

+ uk,iuk,j) 
and 

u.

The 2nd Piola—Kirchhoff stress tensor referred to the configuration at time

t = 0 is defined as

P

S1 J	 Po X. TSrX.	
(3.5)

Substituting equations (3.3) and (3.4) into (3.1) and (3.2), we obtain

JV S
ij 6EijdV = R	 (3.6)

which involves the equilibrium for the body in the configuration at time t + At

but referred to the configuration at time t = 0. In equation (3.6), R is

calculated using

R= JA  T k bukdA + JV  poFk bukdV	 (3.7)

25



The stresses 
SiJ 

and strains E i,
, which are unknown at time t + At, are

decomposed as

SiJ	
S i J 

+ Sij
	 (3.8)

E.- = E1 + E0	(3.9)

where S . and E . are the known 2nd Piola—Kirchhoff stresses and
ij	 ij

Green—Lagrange strains in the configuration at time t, and S°ij and E°ij are the

incremental components of the same quantities at time t + At. It follows from

equation (3.9) that

E0.=e°i+77
	

(3.10)

where

e0 	(Dui J + Au^^ i + Uk iAuk^J +Auk iUk,J)	
(3.11)

ii

= linear part of strain increment E iii (linear in u  j)

^ iij = 2 (Auk iAuk,J)
	

(3.12)

= nonlinear part of strain increment E?.

and
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aUi	 ao uk

Ui,1
	 Au i 

—	 —

In the above formulation, the definition of the Green—Lagrange strain tensor

was employed along with the following definition

ui=Ui+Dui

where Dui is the incremental displacement and U  is the displacement at time t.

The constitutive relationship for the incremental 2nd Piola—Kirchhoff

stresses and incremental Green—Lagrange strains is assumed to be governed by

the generalized Hooke's law,

S 0 . = C ijrs E°s	 (3.13)

where Cijrs are components of the constitutive tensor. Substituting equations

(3.8)—(3.13) into equation ( 3.6) it follows that

IV CijrsE°s 6E. jdV + IV  S1 .6^0.dV = R — 
J 

V S1 j be°jdV	 (3.14)

which represents a nonlinear equilibrium equation for the incremental

displacements Dui.

3.3 Linearization of Incremental Equations of Motion

Since equation (3.14) is nonlinear in the incremental displacements and

cannot be solved directly, approximate solutions are obtained by assuming
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E°j = e°. and bEo.  = be°j . The constitutive equation becomes

Soj = Cijrse°s	 (3.15)

Making the above substitutions the approximate equation is now

I
C.V jrsersbe°jdV + JV S1 j b^ jdV = R — JV  Si -bey dV

(3.16)

Using Hamilton's principle, the effects of the inertial forces can be included.

Employing similar procedures as before, we obtain the equations of motion of

the moving body at time t + At in the variational form as

J
podi bu i dV + f C ijrseosbe°j	

JV
dV +	 S1 j b77°jdV = R — f Si jbe°jdV

V V JV

(3.17)

Equation (3.17) forms the theoretical basis for the finite element model.

3.4 Finite Element Model

Using standard isoparametric interpolation, the final incremental

equations of motion for an element are given by

[ Me]{,^ e } + ([K e]+ [ K e ) f De } = { Re } — {Fe }	 (3.18)

where JA e l is the vector of nodal incremental displacements from time t to
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time t + At in an element, and [M]{,^}, [K L] f A), [K NL]{0}, and f F} are

obtained, respectively, from the following integrals

JpV 
oii.6ui dV , JV  Ci ^rseo 6e'-dV

fV
 Sl^677—

ii
	 and fV  S1^be1jdV

These integrals can be written in the standard matrix form as [86]

[K L)= fV  [B L ] T [C][B L ]dV	 (3.19)

[K NL] = fV [B NLJ [S][B NL ]dV 	 (3.20)

[M] = fV  po [H] T [H]dV	 (3.21)

{F} = f 
V 

[B L ] T {S}dV	 (3.22)

In	 equations	 ( 3.19)—(3 . 22),	 [B L ] and	 [BNL ] are linear and non—linear

strain—displacement	 transformation matrices, [ C] is the incremental

stress--strain material property matrix, [S] is a matrix of 2nd Piola—Kirchhoff

stress components, { S} is a vector of these stresses and [H] is the incremental

displacement interpolation matrix. All matrix elements correspond to the
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configuration at time t and are defined with respect to the configuration at

time 0.

The finite element equations in (3.18) are second—order differential

equations in time. Equation (3.18) must be further discretized in time to obtain

algebraic equations, which can be assembled and solved after imposing initial

and boundary conditions. Here the Newmark integration scheme is used to

approximate the time derivatives. The resulting algebraic equations are given

by (see Reddy [871)

[K] {01 = {R1	 (3.23)

where {01 is the vector of nodal incremental displacements at time t, and

[ K ] = ao[M ] + [K L)+ [KNL]

	

{R1 = { R1 — {F1 + [ M](a l { 01 + a2 {01)	 (3.24)

ao = 1 , a 1 =aoAt , a2= .7
O(At)	

—1

where a = 1/2, Q = 1/4 for the constant average acceleration method and At is

the time step. Once equation (3.23) is solved for {ni1 at time t + At, the

acceleration and velocity vectors can be computed from

{ 2 01 = ao { 2 01 — a l { 1 01 —a 21 1A  1

{ 2 A1 = { 1 A1 + a3 { l ot + a4 { 2 01	 (3.25)
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where the superscript 2 refers to time t + At and 1 refers to time t, and

a3 = (1 — a)At , a4 = cAt.

Equations (3.23) and (3.24) are only a linearized version of the actual

governing equations of motion. Hence equation (3.23) should be solved

iteratively for each time step until the actual equations of motion are satisfied

to a required tolerance. Here the Newton—Raphson iteration technique is

employed. In the Newton—Raphson method, the equation to be solved at the

ith iteration for time step t + At has the form

(ao [M] + [K LI + [KNL])(i-1)({0}(1) — {A}(i-1))

= {R} — [M](ao{O}(1-1) — a l {0} — a2 { '^}) — { F } (1-1)	 (3.26)

where

{F}(i-1) _ f [BL1-1)]T{S}(i-1)dV

V

After the ith iteration, the nodal displacement at time t + At is updated by

{ 2 0} (1) = {20}(1-1) + ({A} (1) — {0}(i-1))

in which

{O}(0) = {0}.

3.5 Degenerated Laminated 3—D Shell Element

The degenerated shell element developed by Chao and Reddy [88] for

composite laminates will be utilized here. The shell element is degenerated
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from the three—dimensional solid element by imposing two constraints: (1)

straight lines normal to the midsurface before deformation remain straight but

not normal after deformation; (2) the transverse normal components of strain

and hence stress are ignored in the development. The resulting non—linear

formulation allows arbitrarily large displacements and rotations of the shell

element but small strains, since the thickness does not change and the normal

does not distort.

As in [86,88], the 3—D solid element in Figure 3.1 is the starting point.

The curvilinear coordinates in the middle surface of the shell are given by ^, 77,

^, which are normalized such that they vary between —1 and 1. Here ^ denotes

the thickness coordinate. The coordinates of a point are given by

X i 
= k=1

	where

Ok(^,rl)[l+ (Xk ) top +	 (Xk)bottom]	 (3.27)

where n denotes the number of nodes per element, and Ok (^,r7) are the

Lagrangian finite element interpolation functions. The normal vectors V3

connecting the upper and lower surfaces of the shell at node k are defined by

their components as

Vii — (Xk ) top — (Xk)bottom	 (3.28a)

	

e3i = V3I I V3I	 (3.28b)

Substituting these expressions into (3.27), we obtain
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Figure 3.1	 General 3—D solid geometry and resultant shell element.
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n

X i = E Ok(^"7)[(Xk)mid + hke3i^	 (3.29)
k=1

where h  = V3 1 is the thickness of the shell at node k. The displacement

components become

n

U  = 
txi 

—X i  = k E 1 Ok(^1 rl)[Uk + ^ hk(te31 oe3d]	 (3.30)

n
Au  = ui — U  = k 1E Ok(^1 rl)[ Duk + Ij hk(t+Ate3i te3i),

(3.31)

where t x i are the Cartesian coordinates at time t and te3i and Oe3
k
i 

are the unit

vectors at time t and 0, respectively. In order to update the vectors in (3.28)

for small rotations, the rotation do is expressed as

do = flk 
t e k + OI 

t ek + Bk tek
3 3

The increment of tea can be written as

	

O t ek = do x tek = ok t ek — Ok t ek	 (3.32)3	 3— 1 1	 2 2

The equation (3.31) becomes finally
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n	 __kk	 __^k

	

Du i = k E 1 Ok(^,^)[^ui + hk(O1 teli	 O2 te2i)]	 (3.33a)

where tel and te2 are determined from

tk
t e

1 
= E 2 X 

e3

I E2 x tea

te2 = te3 x teI	 (3.33b)

E  are the unit vectors of the stationary global coordinate system. Equation

(3.33a) can be expressed in matrix form as

{Au{ = {Du 1 dug Au31 T = [H]{De{

where

{De} _ {DuI Dug Dui BI 021 T (k = 1 to n)

and [H] is the incremental displacement interpolation matrix, which can be

found in [86].

Next, the linear strain increments {e o { = {ell e22 e33 2e12 2e13 2e231T

are written in matrix form

{eo{ = [A]{Au{

where

{Au{ = {Du Au Au Au Au Au ^u ^u Au 1T
1,1	 1,2	 1,3	 2,1	 2,2	 2,3	 3,1	 3,2	 3,3
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and

au.
ui^=

The matrix [A] can be found in [86]. Denoting f Dul by

l0ul = [N]lAul = [N][H]l0el

with [N] being a matrix of differential operators, then le o l becomes

leo l = [A]loul = [A][ N][H]l0ej = [BL] loel

The usual Jacobian transformations are used to express u  in terms of the
,

derivatives with respect to the global coordinates. Also in this work the

integration is done in terms of the local curvilinear coordinate system (x I , x2,

x3), as appropriate transformations are made.

The constitutive matrix [C ] for a lamina in the local coordinate system

is given by

C11 C 12 C13	 0	 0

C 12 C 22 C23	 0	 0

[C ] = C13 C 23 C33	 0	 0

0 0 0	 C44	 C45

0 0 0	 C45	 C55

where

C11 = m4 Q 11 + 2m2n2(Q12 + 2Q 33 ) + n4Q22

C12 =
I

 m2n2(Q11 + Q22 —4 Q 33 )  + (m4 + n4)Q12

(3.34)
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2	 2	 2	 2C13 = mn[m Q 11 — n Q22 -- (m — n )(Q12 + 2Q33)]

C ' = n4 Q 11 + 2m2n2(Q 12 + 2Q 33 ) + m4Q22

C23 = mn[n 2 Q 11 — m 2 Q 22 + (m2 — n2)(Q 12 + 2Q33)]

C 33 — m2n (Q 11 + Q 22 — ZQ 12 ) + (m2 — n2)2Q33

C44 = m2 Q44 + n2Q55 , C45 = mn(Q 44 — Q55)

C'	55= m2Q 55 + n2Q 44	m = cos B	 n = sin B

and	 Q ij	 are the plane	 stress—reduced elastic coefficients	 in the	 material

coordinates. By neglecting the normal stress in the thickness direction, the

stiffnesses Qij for an orthotropic lamina are determined from the

three—dimensional orthotropic stiffnesses, which can be expressed in terms of

engineering constants as,

_	 E11	 v12E22	 _	 E22
Q 11 — — v12v21 ' Q12 _— 1 — v12v21	 Q 22 — 1 — 1/ 12v21

(3.35)

37



Q44 = (G 13 )K ' Q 55 = (G23 )K ' Q33 = G12

where K is the shear correction coefficient taken to be 5/6.

In general, Gauss quadrature is used to integrate the element matrices.

For laminated composite structures, the thickness direction integration could be

done using Gauss quadrature, or the problem could be reduced to a 2—D one

and hence explicit integration performed. In order to do this, the Jacobian

matrix dependency on the thickness coordinate ( is neglected. This is a valid

assumption if the thickness to radius of the shell ratios are small. In this study

we use the explicit integration for elastic behavior and numerical integration

(quadrature) when elastic—plastic behavior is assumed.

From [86], the following symbolic representations of desired quantities

are expressed explicitly in terms of (:

{Du ) = ([DH1] + ^[DH2]) {oej

[A ] _ [SD] + ([TD]

[B L] = ([SD] + ([TD])([DH1] + ([DH2])

(3.36)
= [SD1] + ([SD2] + (2[SD3]

{E iJ1 = {S 1 1 + ({S21 + (2 IS31
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[BNL] = [DH1] + ([DH2]

These representations can be used to perform explicit integration through the

thickness.

In order to avoid locking behavior for thin shell structures, selective

reduced or fully reduced integration is employed. Deformation dependent

loading is also used and is described in [86].

39



4. MICROMECHANICS

4.1 Introduction

The Aboudi theory has been included in order to study the effect of using

micromechanics constituent properties as random variables. In this section a

review of Aboudi's theory is discussed, which is modeled after the development

in [64].

4.2 The Aboudi Micromechanics Model

This theory involves the solution of a suitable boundary value problem

whose domain is a typical representative volume V. The composite is modeled

as an isotropic viscoplastic matrix reinforced by an elastic transversely isotropic

fiber of rectangular cross section. The fibers extend in the x  direction and are

arranged in a doubly periodic array in the x2 and x3 directions as shown in

Figure 4.1a. The rectangular fiber has cross sectional dimensions hl, 11 with

h2 , f.2 denoting the matrix spacing. Figure 4.1b shows the representative cell

necessary for analysis due to the periodic arrangement. The cell is further

divided into four subcells a, Q = 1,2 each with a local coordinate system (XI,

X2 a) , X3Q)).

The displacement field considered by Aboudi is a first—order expansion

in each subcell, since only average behavior of the composite is sought. This

displacement field of Aboudi is given by

u(aO) = w( aO) +X2 a) ^(aQ) + i(0), ( aQ) , i = 1,2,3	 (4.1)

where w^ ao) are the displacement components of the center of the subcell and
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x3

(a) Doubly periodic array of rectangular fibers extending in
the x 1 direction,
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Y(21)^	
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X2
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= 1	 Q = 2

x3

(b) The representative cell.

Figure 4.1
	

Micromechanics subcell geometry

hl

h2

x1
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^W) and ^W) characterize the linear variations of the displacements within

the subcell in the x2 a) and zap) directions, respectively. In this section,

repeated a and p do not imply summation.

Displacement continuity at the interfaces between the subcells are given

by

w(ll) = w (12) = w(21) = w(22) = w i	(4.2)

aw.
h l o^ lp) + h2 0(20)= (h 1 + h2 )	 (4.3)

2

raw •
I1  

(al) + e2,0(a2) = 
(el 
+  	 (4.4)

3

The average strain in the representative cell is given by

2
E.. = 1 E	 v E^ap) 	(4.5)
i J 

V a, p=1 
ap 1 J

where v ap = h a1p and V = (h 1 + h2 )(11 + ^) is the area of the representative

cell. The infinitesimal strain tensor is

Eiap) _ [ai u(ap) + a u^ ap) ] i,j = 1,2,3
1	 J	 J

where

a	 a	 a
a1 =
	 a2 =a)a3 = ^

2	 3

(4.6)
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Combining equations (4.3), (4.4), (4.6) then the following result is obtained

	

8w	 8w .

EiJ 
= ( X + 7X-1)(4.7)

	

1	 1

The average stress in the composite cell is

^7iJ = 1 E	 v Cos ^ o)	 (4.8)

V a, p=1

where S^ p) is the average stress in the subcell. S^ 
J 

p)i s determined by

( ao) — 1 ha/2f'012(aO) -(a) (Q)
SJ 	

Qi 	 dx2 dx3 	(4.9)

—h a/ 
2 —10/2

Aboudi's theory is designed to allow both fiber and matrix constituents

to be elasto—plastic materials. Thus the strain rate in the subcells are

decomposed into elastic and plastic parts as

,^O) = E E(af) + E P ^ ao)	 (4.10)

The constitutive equation for transversely isotropic constituents in the

elastic range, with x l in the direction of anisotropy is

(4.11)

where

{Q(aQ)} — {,11Q) ^ (aO) ^(ao)'^(ao) ^( aO)	 ^ (aO)}T1 22
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and

[C(aO)] =

C( CO)	 C (aQ)
11	 12

C (ao)
13

0	 0	 0

C ( CO)
22

C ( 0)
23

0	 0	 0

C33Q) 0	 0	 0

C ( ao)	 0	 0
44

sym. C5ao)	 0

C (( ao)

{ EE(aO) } — {EE(aO)'E22ao) E33aO),2EE2aO),2EE3aO),2E23aO)}T11

(4.12)

Appropriate elastic constants are substituted in (4.12) to represent either fiber

or matrix subcells.

Combining (4.8), (4.9) and (4.10) the following relations for the average

subcell stresses S^ JQ ) are obtained

S( l a) — C( l a) E 11 + C12a)(O2aO) 
+ O3 ao) — 

2µa ( O)

S(22 O) — C 12a ) E11 + C2 2 W CO) + C23Q),)3 aO) _ 2µaaL(0)

S(33 a) = C(a04 1 + C2 3 Q) O (UO) + C(40 ( ao) _ 24a^'33Q)
12

S12Q) = C 4 aO) [^ + O (ao) ] — 2C44a)L(aO)	 (4.13)
1
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S13p) — C44a)[^ + 1a^)] 	 — 2C44a)L13a)1

S (
2 aO) = (_(aO)[,(3aO) + ^G2 ap) ] — 2C(aO)L(23a)

In (4.13) above, L( J Q) represents the average total subcell plastic strains, and

µao is the isotropic constituents' elastic shear modulus.

If classical rate—independent plasticity theory is selected to describe the

nonlinear material behavior, then the plastic strain rates are given by

E P ( C O) = 11aa^(ao)	 (4.14)

which is the flow rule associated within the von Mises yield criterion, with &i j =

L7i j — bi j0-kk/3 representing the deviatoric stresses (6 i
i

is the Kronecker delta)

and 
Aao 

the flow rule function. The above leads to

L^^0) = A
	

S^^Q)	 (4.15)

where S^ . p) are the deviators of S^ 
J 

Q) . Thus the plastic average strains L^ . p)

are determined by integrating the above flow rules.

The conditions of traction continuity along the interfaces of the subcells

in the first order theory result in

S(10) = S(?Q)
2i	 2i
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S(3a1) = S(3a2) 	 (4.16)

By imposing the continuity conditions previously stated, the variables

OiaQ) and 7i^ ap) can be eliminated. This leads to closed form solutions for the

average subcell stress SW) in (4.13), and the average stress in the cell 
^iJ 

in

(4.8). Without listing the details (see [64]), the results are given here:

X11 — b 11 E 11 + b 12 E22 + b 13 E33 — H11

X22 = b22 E 11 + b22 22 + b23 E 33 — H22

or33 _ b 13 E 11 + b23 E 22 + b33 E 33	 H33
(4.17)

°12 — 
2b

44 E 12 — H12

L7 13 = 2b55 E 13 — H13

X23 — 2b 66 E 23 — H23

where the b id are the effective elastic constants of the composite. The constants

bid and Hid are given in functional form as
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biJ = f(C 1 1 1 
a,Q' ha' ep)

H.J = 
g ( L^^

O) , v aa) h a, to)	 (4.18)

The resultant constitutive relations in (4.17) involve an overall elastic

modulus matrix [B] consisting of 9 independent elastic constants b il l b l2' b13,

b22 1 b23' b 33 , b44 , b55' b66 (thus orthotropic). For square fibers and equal

spacing the number of independent elastic constants reduce to six since b 12 —

b 13 , b22 — b33, and b44 — b55* If a transversely isotropic material

representation is desired, in which only five independent effective elastic

constants are needed, then a transversely isotropic averaging technique

described in [64] can be implemented. The overall constitutive relationship is

summarized by

{&} = [B](f j — {E P })	 (4.19a)

where

{EP} = [B] -1 {H}	 (4.19b)

Equations (4.19) contain the average ply properties B id and the effects of

applying plasticity at the subcell level, which are included in the term f EP}.

This is the full development presented by Aboudi. For the present work, only

the transversely isotropic version of the B id constants are of interest, as the

plasticity is not implemented into the micromechanics theory. It is anticipated

that this will be done in the future, and a systematic method for this

implementation was developed by Arenburg [63]. In this study a macroscopic

orthotropic plasticity development is included.
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5. ORTHOTROPIC PLASTICITY FORMULATION

5.1 Introduction

In order to develop the capability of modeling orthotropic elastoplastic

behavior from a macroscopic viewpoint, a yield function introduced by Sun et

al. [74-77], which is quadratic in the stresses and employs the associative flow

rule and isotropic hardening, was adopted. The plane stress radial return

algorithm by Simo et al. [89,90] was modified to include this new yield function.

This algorithm was chosen due to its accuracy, improved global convergence

rates, and compatibility with the probabilistic finite element routines. In this

chapter the basic governing plasticity equations will be stated, the radial return

algorithm for their solution at each gauss point will be developed, and the

solution of the finite element equilibrium equations along with the layerwise

integration procedures will be discussed.

5.2 Governing Equations

According to Sun [76], the orthotropic yield function is given by

f = 7 (a11 11 + a22^22 + a33^33 + 2a 12^11 922 + 2a 13^11^33 + 2a23U22^33

+ 2a44^23 + 2a55^13 + 2a66^12 ) 7- Y	 (5.1)

where Y is a state variable and ori
J 

are the stresses in principal material

coordinates. The coefficients a id are constants, which are determined from

experimental data and control the amount of anisotropy in the plasticity. This

yield criterion does not include the assumption of incompressibility of plastic
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strains or that hydrostatic stresses result in no yielding or plastic deformation.

The function also reduces to the von Mises criterion or the Hill yield function

for orthotropic materials [67,68] with appropriate selection of the 
aiJ 

values.

For example, for the von Mises function the 
ai.l 

values are

all = a22 = a33 = 2/3
	

a12 = a 13 = a23 = — 1/3

a44 = a55 = a66 = 1

The associative flow rule is employed, which allows the incremental

plastic strains to be stated as

dEP.j = dy	
1j

	 (5.2)

where dry is an incremental plastic load parameter, and index notation has been

used. It is the practice in plasticity to define the effective stress in such a way

that it is related to the yield function and in a manner that it reduces to the

stress in a uniaxial tension test. With this in mind, and following the

development of Sun [76], the effective stress is defined as

a- = 4T	 (5.3)

The effective plastic strain E p must be related to the effective stress in such a

way that plastic work considerations are consistent. Thus the quantity cd P

must represent the increment of specific plastic work of deformation
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dWp = a. jdEP^. Equating the two quantities of plastic work, we have

ad Ep = Qijd EPa	 (5.4)

Substitution of (5.1) into (5.2) and the result into (5.4) gives

gi -dEPi = 2fd7

so that

dEp = 
2f d7 

= 2 ad -y(5.5)

It is also noted that Y becomes

Y = ^ Q2
	

(5.6)

The shell element used here is degenerated from 3—D elasticity using the

kinematics of the first order shear deformation theory. In other words,

transverse normals remain straight and inextensible, i.e., 
E33 7-- 0.

Consequently, o-33 does not enter the strain energy of the shell.

Introducing vector notation, the stress and strain tensors become

{ ,7} = {
°11 U22 

(7
12

 or
13 C23} 

T

and
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{61 = {E 11 E22 2f 122613 2f 231T, {6 p 1 = {6P1 6 22 2Ep12 2f 1p 2623 1T

The components of the back stress qij (included to model kinematic hardening),

and the relative stress ^ij = c7ij — qii, are expressed in the vector form as

{q{ =:{ql1 q22 q 12 q13 q 231 , { 771 = 177 11 7722 77 12 7713 77231T

Thus the governing elastoplastic equations in the nonincremental (time domain)

vector form can be expressed as

{ E1 = { E e { + {(p,

{ g1= [c] { 6 e
{ E p{ = 7 ^ (associative flow rule) 	 (5.7)

{q{ = 2 H { Ep{

1	 2	 2	 2	 2	 2 _1_2f = (all^ll + a22 722 + 2a 12'7 11 22 + 2a44^23 + 2a5013 + 2a6012 ) —
2a=7ryQ

Q=^19

where ry is the time derivative of the plastic load parameter, H is the kinematic

hardening modulus, and the symbol a denotes the equivalent plastic strain.

The matrix [C] is the elastic constitutive matrix, adjusted for the constraint

GI33=0.

When the flow rule in Equation (5.7) 3 is evaluated, the following result

is obtained
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where the matrix [P] is given by

{ i p } = ry[P]{o
	

(5.8)

[ P ] =

a ll a12 0	 0	 0

a12 a22 0	
0	 0

0	 0	 2a66 0	 0

0	 0	 0	 2a55 0

0	 0	 0	 0	
2a44

The effective stress 6- can be expressed as

P^ {77} [P] {77}

Using the matrix [P], the governing equations (5.7) can be recast as

{E} _ {E e } + {Ep}

{ 0,1 _ [C] { Ee}

IE p } _ ry [P]{77}

{q} = ry 2 
H [P]{^}
	

(5.9)

f = {r^}T [P]{77} — Y2 (a) < 0

a = 7 [2{r^}T [P]{^}]1/2

where the parameter Y represents the hardening law in terms of the equivalent

plastic strain a.
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Loading and unloading conditions are stated in simple Kuhn—Tucker

form [89] by requiring that

f<0,7>0 1 ^f.0	 (5.10)

For an elastic process, f < 0 and 7 = 0. For a plastic process f = 0 and ry > 0.

These two conditions are generally valid, whether in the loading or unloading

state.

5.3 Incremental Formulation

Employing a backward Euler difference scheme to integrate equations

(5.9) over time {t n ,tn+1 }, and letting 7n+1 — 7n+lAt (the plastic load

parameter) and f =	 {^} [p]{^}, the strain at to+1 can be written in terms

of the strain at t o and the gradient of the incremental displacements,

{En+l} = {En } + V {ou}	 (5.11)

where "0" stands for the differential operator used in the definition of strains.

A trial stress state is assumed by freezing plastic flow so that the entire step is

purely elastic. The trial stress then becomes

{0,n+1al} = 1C]( {En +11 — {En})

I ^ t r 
i all = {Ern+lalI — {qn}
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1 6 P 1 _ {En} + 7n+1[P]{77n+1}	 (5.12)

{qn+1 } — {qn } + 7n+1 ^ H [P]{i7n+1}

an+1 = an + "3 7n+l f n+l

Restating equation (5.12) 1 as

	

fa n+1 1 = {Ut r call — [C]JACP +1}, 	 (5.13)

substituting {DE n+11 
= 7n +1[P]{77n +1} and {77n+1 } = {Un+l I — {qn+01

and rearranging the terms, the following relations are obtained:

{fin+l} = 1 + 1 H 7	 [y][C ]- 1
{fin

+lal1	 (5.14)

n+1

where

7n+	 1
[[CI-1
	 l	 7n+1J

	 J

In order to perform the incremental updates required in equations (5.12)

the plastic load parameter (Lagrange multiplier) 7 must be determined. It is

found by enforcing the consistency condition at time to+11 
i.e.,

54



f2(7n+1 ) - 2 
t 2	 1
 -3[Y(an +	 3 'rn+1'n+l )]2 — 0	 (5.15)

The actual hardening functions used in the program are those recommended by

Simo and Hughes [89]

	

Y(a) = QHa + O's, + ( K m — Uy)[1 — exp(—A a)] 	 (5.16)

and by Sun [76],

Q	 a 1/.1

Y(a) = H(a + I 
Y- J	

(5.17)

where H is the hardening modulus, a  the uniaxial yield stress, K
(U 

and A are

other input parameters, and

H(a) = (1 — Q)Ha

Here 0 denotes the fraction of kinematic and isotropic hardening desired, i.e.

Q = 1 denotes purely isotropic hardening, and 0 = 0 denotes purely kinematic

hardening. Equation (5.15) is solved at each gauss point in the structure for ry

by a local Newton iteration procedure, as it is generally a nonlinear scalar

equation.

The global equilibrium is obtained by using Newton—Raphson iteration.

This requires that the tangent moduli be known in the form

[CeP] n+1 — --ida 
1 n+1	

(5.18)

Simo and Hughes developed tangent moduli, which are consistent with the

integration algorithm previously discussed. For finite values of load step size,
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they showed that the consistent elastoplastic tangent moduli preserved the

quadratic rate of asymptotic convergence that is characteristic of Newton's

method. Use of the continuum tangent moduli derived independent of the

algorithm loses this convergence rate. Differentiating the following incremental

equations

{GI
n+1 1 = [C]({En+11 — {En +11)

an+1 = an + `' 3 7n+1fn+1	 (5.19)

{qn+l} — {q n 1 + 7n+1 ^ H [ P]{fin+11

and substituting equation ( 5.12) 3 and {77n + l1 = 
{Qn+1 1 — { qn+l1, we obtain

{do-n+1 1 = [C][{d En+1 1 — d7n+1[P]{^n+11 7n+1[P]( {don +11 — {dqn+11)]

dan+1 — 4(f. +l d-yn+l + 7n+ldf n+l)	 (5.20)

2 H'
{dqn+1 1 — 	(d7n+,{ran+l1 + 7n+ lid cn +11]

1 + a H 7n+ 1

By regrouping equations (5.19), and (5.19) 3 it can be shown that

56



{dan+1} ` [7] {dcn+1} —	 d 
7n+ 1 

'	 [P] { fin+1}	 (5.21)
1 + 'a 7n+ 1

{din+1} 1 -} l g' 7	
[{dQn+1} — H d7n+1{fin+1}

n+l

Differentiation of the consistency condition (5.15) and use of the definition of

fn+1 results in the expression

	

(1 7 Y 7n+Of{ n+11T(PJ {d in+1 } 7 Y f n+ld7n+1 — 0	
(5.22)

Substituting equations (5.20) 3 and (5.21) into equation (5.22) and solving it for

d7n+1 
we obtain

d7	 _	 01f ^ n+ 1 } T [ P] [-] {dcn+1}	
(5.23)

n+1	 (1+0n+1 ) fin+l} [ P ] [-] [ PIf'n+l}

where

_	 2 '4 1	 1 + 'a	 7n+1

_	 2 '©2 — 1 3 Y 7n+ 1
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2 0  -2	 [Y 0  + H 02]
pn+1 — 72 fn+1 

177n+1} [ P ] [ E ] [P]177n +1}

Substituting (5.23) into ( 5.20) 1 and using the definition of [-7 ], the consistent

elastoplastic tangent moduli can be expressed as

I C 	
_ {do-n+l } _	 — ([ -7 ] [ P ]1 71n+ 1}) ([-][P]1^ n +1} )T

	
( 5 .24)[	 ] — E{a n+l} — [u] (1 + pn+I X1 n+1} [P][7][P] 1?7n+1}

5.4 Computer Implementation

For the general case of orthotropic plasticity, the constitutive matrix [C]

is given by

E 11	 v12 E22	 0	 0	 0

	

D	 D

U12 E 22	 E 22	 0	 0	 0
D	 D

	

[C] = I 0	 0	 G12	 0	 0	 I	 (5.25)

	

0	 0	 0	 KG 130

	

0	 0	 0	 0	 KG23
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where D = 1 — v12v21 and K is the shear correction factor taken to be 5/6. If

yielding occurs, it becomes necessary to solve the scalar consistency condition of

equation (5.15) for the load parameter ^fn+l. A Newton iteration is used here

due to the general nonlinearity of (5.15). Thus, if the variable F is used to

represent the consistency condition, then the Newton iteration is performed by

employing

F(ryi)

7i+1 — 7i

	

	 (5.26)
F (7i )

at each yielded gauss point. Using the chain rule of differentiation, the

necessary derivatives of (5.15) can be obtained in a straightforward manner for

the general case of orthotropic plasticity.

For the special case of isotropic (von Mises) plasticity, Simo and Hughes

[89] have developed a simplified form of the consistency condition that is a

direct function of the load parameter 
ryn+1. 

This extra work results in an

effective reduction of the number of computations required in the Newton

iteration. Recall that for isotropic elasticity, the matrix [C] is modified by E11

=E22=E,v12=v21=v, and G 12 = G 13 = G 23 = G, and the matrix [P] is

modified due to the von Mises values for the coefficients a id previously

mentioned. Thus the isotropic matrices [C] and [P] can be simultaneously

diagonalized using the following spectral decomposition

[ P ] = [Q][Ap][Q]T and [C] = [Q][Ac][Q]T	 (5.27)
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where

1 -1 0 0 0
1 1 0 0 0

[Q]
^/°^ 0 0 0 vs 0

0 0 0 0 vs

1/3 0 0 0 0
0 1 0 0 0

[A p]= 0 0200
0 0 0 2 0
0 0 0 0 2

E 0 0 0 0
1—v

0 2G 0 0 0
[A c] = 0 0 G 0 0

0 0 0 GK 0
0 0 0 0 GK

Using the matrix [Q], the following transformation is introduced

M = [Q] T{ 0

(^11 + 9722)/4
(—n11 + 7722)14

'712
7713
X23

The mapped trial state in terms of the elastic trial state defined in equations

(5.12) 1 2 can also be transformed as
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{fin+lal} = IQ]T{^n+lal}	 (5.28)

Substituting relations (5.27) in (5.14) the diagonalized update equations can be

expressed as

{fin+1} =

1 E	 0	 0	 0	 0^
©l+ 1—v

0	 1+2 0	 0	 0

0	 0	 l^ ry 0	 0

0	 0	 0	
1+̂= 0

trial{qn+1 }

0	 0	 0	 0	 1

(5.29)

Transforming the consistency equation into {} variables, and utilizing equation

(5.29), we have
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t r ial	 trial 2	 tri al	 trial 2	 t r i al 2
2	 _ 1 1 ( ^11	 +7722 	 )	 1 (7722 	— '7 11	 )	 ('712	 )

f

	

n+ 1 ) — 6 (
01+ 1—v )	 +	 +2 (0 1 +2Gry) 	 (01 +2G-y) 2

trial 2	 trial 2

+ (7713	 ) 
+('723	

)	 1 Y2(an+1) = 0	 (5.30)
(©1 +2GK7)	 (01+2GK7)

This is the form of the consistency equation that is used in the scalar Newton

iteration at each gauss point to solve for 7n+1 for the case of isotropic von

Mises plasticity.

The radial return algorithm for the constrained c33 = 0 state of stress

can be summarized as follows:

I.	 Update the total strain using ( 5.11) and compute the trial elastic

stresses from ( 5.12)1 2'

2. Compute fn+1al from ( 5.15) or ( 5.30).	 Exit if fn+lal < 0;

otherwise solve consistency equation (5.15 or 5 . 30) for 7n+1 using

Newton iteration.

3. Compute the algorithmic moduli matrix [-7 ] from equation

(5.14)2.

4. Update relative stress, back stress, actual stress, plastic strain,

and equivalent strain from (5.14) 1 , (5-12 ) 4 1 {G n+1 } = {77n+1} +

{qn+11, (5.12) 3 , and (5.12) 5 , respectively.

5. Compute consistent elastoplastic tangent moduli from (5.24).
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6.	 Update 6 3 using, if desired,

_ 	 V23ll
	
PP

33n+1 

[ '13

^11 ^lln+1 +	 ^22n+1J— 1611n+1 + 622n+11

5.5 Layerwise Integration Procedure

Recall equations (3.19), (3.20) and (3.22):

[ K L] = JV  [B L] T [ C ][ B L] dV	(3.19)

[KNL] — JV  [B NL][ S ][ B NL] dV	(3.20)

{F} = JV  [B L ] T {S}dV	 (3.22)

From equations (3.19) and (3.36) [K L ] can be written explicitly in terms of the

thickness coordinate ( as

[K L)= 
J 

V ([SD1] + ([SD2] + (2 [SD3]) T[C ]([SD1] + ([SD2] + (2[SD3])dV

(5.31)

Gauss quadrature is used to perform the numerical integration. In Gauss

quadrature an integral over the interval [-1,1] is replaced by the weighted sum

of function values at selected points and weights:

63



1	 N

J 
f(^) d "_ . E w i f(^i)	 (5.32)

where w  are weights and ^i are the base points. Equation (5.31) is evaluated

using gauss quadrature:

(K L] = E E E E [ B L ] T IC ] k) [ B L ]w w^w^ J
k=1 ^=l ^-1 (-1

(5.33)

where [B L] denotes the expression in the parenthesis of equation (5.31), and

P = total number of layers in the laminate

hk = the thickness of the kth layer

h = total thickness of the shell

J I = determinant of the Jacobian matrix

For elastic structures, the problem is reduced to a 2—D one by performing

explicit integration through the thickness. The Jacobian matrix, in general, is a

function of ^, 77, and (; the ( terms in the Jacobian matrix may be neglected if

the thickness to radius of the shell ratio is small. If the Jacobian o 111 is

independent of ^, explicit integration can be used. In addition, we neglect the

^2 terms in [B L]. With these assumptions, [K L] in equation (5.31) can be

written as
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[K L] = E	 E [[SD 1] T [A1][SD1] + [SD2]T[A2][SD1]
r=1 s-1

+ [SD1] T [A2][SD2] + [SD2] T [A3][SD2]
J 

o j J j w^rw
77S
	 (5.34)

where

P (k+1
[Al] = Ef	 [C ]d(

k —1 J (k

P (k +1
[A2]= E	 ([C ]d(	 (5.35)

k-1 (k

[A3]= Ik +l ^2[C ]d(

Jk-1  (k

It is important to note that the upper limit on the number of quadrature points

is set to the value 3, which implies full integration. Reduced integration implies

a value of 2. For elastic structures, [C ] is constant within each layer and thus

(5.35) can be integrated explicitly. For elastic—plastic structures, some

locations through the thickness become plastic, so that [C ] must be replaced by

[Cep], the elastoplastic tangent moduli. Thus, when plasticity is included,

numerical integration must be used through the thickness as well. Gauss

quadrature will also be used in the thickness direction with the thickness
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coordinate given as

h
(k + - (1 + z i )	 (5.36)

Here z  is the base point, and —1 < z < 1 for each layer. Substituting equation

(5.36) into (5.35), then [A1], [A2], and [A3] take the form

[A1] = E E [C]- wi
k=1 i=1

[A2] = E E ((k + ^ (1 + zi))[C] 7- w i	 (5.37)
k=1 i=1

[A3] = E E ( (k + ^ 
(1 + zi)) 2 [ C] H- 

wi
k=1 i=1

where

[C] _ [C ' ] for an elastic gauss point, or [CeP ] for a plastic gauss point

N = number of gauss points per layer

Next we consider the matrix [K NL] from equations (3.20) and (3.36),

which can be rewritten as

[K NL ] = E E [DH1]T 
E f 

k+1 [S ]d( [DH1]
r=1 s=1	 k- 1 ^J ^k
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+ [DH1] T E r 
k+l 

([S ]d( [DH2]
k- 1 J (k

+ [DH2] T E f 
k+l 

([S ]d( [DH1]

1k_ (k

+ [DH2]T E J k+1 (2 [S ]d^ [DH2] o 1 J w^ w ^
k=1  (k	r s

(5.38)

The stresses [S ] are calculated from either the elastic constitutive relations or

the radial return algorithm when the gauss point yields. The integrals

P (k+1	 Pf(k+1
[N] = E 

J	
[S ]d( , [M] = E 

J	
([S ]d(, and

k=1 (k	 k=1 (k

[M2] _ E
r	 k+l ^2[S ]d(	 (5.39)

k-1 J (k

must be evaluated using gauss quadrature as in (5.37) when plasticity occurs.

The load vector {F} from equations (3.22) and (3.36) can be written as

{F} = 1, J(SD IT  + ([SD2] T + (2 [SD3] T ^,S }dV	 (5.40)

67



Regrouping the terms and neglecting ^ , we can write

{F} = E E [SD1]T 
E f 

k+1 [S ]d^
r=1 s=1	 k=1 J (k

+ [SD2]T E f k+l^{S }d^ o J j w^ w^	 (5.41)
k-1 J (k	r s

The thickness direction integrals are evaluated numerically when plasticity

occurs:

P (k+l
{N} = E 

J(k
{S }d(

k=l

P (k +1
{M} = E	 ({S }d^	 (5.42)

k-1 J 
f 

(k

This numerical integration through the thickness for plasticity greatly increases

the computational expense.

5.6 Solution of Equilibrium Equations with Plasticity

At each load step, the plastic strain {EP}  and the back stress {q n } are

"frozen" for the next (n+1) load step and are not updated until convergence is

achieved. This is important so that inaccurate iterative plastic strain and back

stress increments are not used.
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The Newton Raphson method described for the geometric nonlinear case

is also used here to solve for global equilibrium. When a gauss point yields, the

elastoplastic tangent moduli are substituted. Two convergence criteria have

been installed: 1) a displacement norm, and 2) a force residual norm.

Convergence is achieved if the specified norm is within a preassigned tolerance

E, usually selected to be .001 or less. The displacement norm is defined as

N E Q (0^' ) — 0 (i-1) ) 2 / N E Q (0 (i) ) 2 1/2 < E

j = 1	 J	 i	 j=1	 J

where NEQ is the total number of equations (or degrees of freedom) in the

model. The force residual norm is given by

NEQ r	 1 NEQ	 1/2
E	 R^ 1) — 

0)J 
2 / E (Rj ) 2	 < E

j= 

1 

l	 j=1

where R  is the jth component of the external load vector {R1, F  is the jth

component of the internal force vector {F1, and the superscript (i) denotes the

iteration number.
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6. SECOND—MOMENT PROBABILISTIC FINITE ELEMENT METHOD

6.1 Introduction

In this chapter, the second—moment probabilistic theory for linear,

geometrical nonlinear, and material nonlinear analysis are developed for time

independent behavior. The selection of random variables are discussed, along

with methods for computing the necessary derivatives. Computational savings

techniques are presented, and various correlation assumptions discussed. The

theoretical developments given are as applied to the degenerated 3—D shell

element discussed in Chapter 3.

6.2 Second—Moment Probabilistic Method

In Chapter 3, the finite element incremental equations were cast as

[K]{0} = {R}	 (6.1)

which is applicable to both linear and nonlinear analysis. 	 Following the

development of Liu et al. [33-40], equation (6.1) can be rewritten as

{F({0},{b})} = {R({b})} (6.2)

where {F} is the internal force vector, {0} is the displacement vector, {R} is

the external force, and {b} is a discretized vector of the random function b(x),

where x is a spatial coordinate {x}. As in typical finite element analysis, the

random function b(x) is expanded using shape functions Vii(x)

n
b(x) = E Oi (x)bi	( 6.3)

1=1
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where b  are the nodal values of b(x). Generally the random quantity b can be

a material property, geometric dimension, or a load.

The second—moment probabilistic method can be mathematically viewed

as a perturbation method, in which only up to second—order terms are retained.

Following the typical perturbation procedure, the matrices in equation (6.2) are

expanded in Taylor series about the mean value of the random quantity of

interest b. After substituting the Taylor series into (6.2) and equating similar

order terms, one obtains equations involving various order derivatives of the

displacements with respect to b. These displacement derivatives can be used to

determine the statistical mean and covariances of both the displacement and

element stress.

In order to describe the probabilistic distribution of the input random

function b(x), two statistical moments are required as input. In addition, if

spatial correlation is used, this functional dependence must be described as well.

Using the notation in [33], the expectation b(x), denoted by E[b(x)], coefficient

of variation a, and autocorrelation coefficient function A(b(xi ), b(x^)) must be

defined. These quantities are known inputs to the model. Typical

representations for the autocorrelation coefficient function are of the form,

A(b(xi), b(x i)) = exp ( — I xi — x  I / A )	 (6.4)

where A is the known correlation length of the random field. The covariance

cov(bi ,b^) is given by

cov(bi ,b, ) = [var(b(x i ))var(b(x
j
))] 1/2A(b(xi ),b(x

i
))	 (6.5a)

where
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var(b(xi )) = a2 E[b(x i )] 2 (6.5b)

The definitions of autocorrelation and the actual functions used are discussed in

more detail in the sequel.

The vectors {A}, {R}, and {F} are expanded about the mean of the

random function b using the Taylor series:

{o} = {o} + E {0}b db i +	 E— {d} b b dbi db^	 (6.6)
i=1	 i	 1,J-1	 z J

{R} = {R.} + 1 E 1	 l	 1{R.} b db i + ^ E-1 {R} b.b dbi dbj	(6.7)
jJ —	 J

{F} = {F} + E I {F} b + [KT]
1 1	

{0}b 
1J 

dbi
= l	 i 

n

	

+ 1 E-1 ['12 {F} b-bJ + ^ [I{T]{A} blb + [I{T ] bl {0} b1J dbi dbj	(6.8)
J

In the above equations the following notation is used:

b(x) = E[b(x)] — for mean value or expected value of b

dbi = E(bi — b i ) — first order variation of b  about bi

g b = 8	 partial derivative of a function g with respect to b  and

evaluated at b.
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Also [KT] is defined to be the tangent stiffness matrix,

[K T] = 8F	 (6.9)

Use of the above approximations in equation (6.2) results in the

following perturbation equations:

Zeroth-order equation

{F} = {R}
	

(6.10)

First—order equations

	

[K T]{0} b = {R,} b — {F} b 	i = 1, ... ,n	 (6.11)

Second—order equations

[KT]{o 2 } = {R2 }	 (6.12a)

where

n
{ 0 2 } 	 E	 {0} b b cov(b i ,b^)	 (6.12b)

and

n
{ R2 } _ E— [-2 { R}b b — 7 {F} b b — [K TJ b { 0 } b Jcov(b i ,b^)	 (6.12c)

1 J	 1 J	 1	 J
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Once 1d}, 1Alb. , and 10 2 } are obtained by solving equations
1

(6.10)—(6.12), the mean and autocovariance matrices for the nodal

displacements can be determined. These are formally defined as

fm
E[1 O}] = J	 {0({b})}f({b})d{b}	 (6.13)

and

cov(Or A s ) =	 (Or _ O r )( ,, _ L s )fQb})d{b}	 (6.14)
,J

respectively. Here f denotes the joint probability density function, O 1 is the ith

degree of freedom of 10}, and 1b} is the random variable vector. By

substituting the Taylor series expansion of 10} from equation (6.6) into (6.13),

the second—order estimate of the mean value of {A} is obtained (see [23]),

n
E[1O}] = 10} + 2 { E	 10 } b b cov(b i ,bj )}	 (6.15)

Similarly, the first—order cov(O',A J ), which is consistent with a second—order

analysis, is given by

n
cov(O r ,A s) = E 	 A' cov(bi ,bj )	 (6.16)b.

74



Recall that the stress vector in an element is given by

{ul = [C]{ El = [C][B]{Ol 	 (6.17)

The functional dependence of Jul on {bl is through the constitutive matrix,

[C] = [C(x,b)]

and [B] is the linear or nonlinear strain—displacement matrix. The Taylor series

expansion of [C] is

n	 1 n
[C] = [C] + Y' 	 db i + '^ E	 {Ci b b dbidbj	(6.18)

1=1	 i	 i,J=1	 1 J

Substituting (6.18) and (6.6) into the definition of E[o-] (similar to equation

(6.13)), the second—order mean stress can be written as

n
E[{Ql] = [C]E[{El] + 	 E	 [C]b.([B]{Al)b

+ 2[C]b b [B]{0} cov(b i ,bj )	 (6.19a)

where

n
E[{ E1] = [B]{Ll +	 E	 ([B] f "b b cov(bi ,b^)	 (6.19b)

i,1 =1 	i J

The autocovariance of stress can be expressed as
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n

cov(f C"MO'fl) = E	 f O-e}b Iuf} b cov(b i ,b^)	 (6.20)
i,j = 1	 i

where Iue} represents the stress vector for element e. The vector lue}b is
i

obtained from (6.17) as

{ Qe}b = [ C e] b [ Be]{ De} + [Ce]([Be]{Ae})b	 (6.21)
1	 1

Thus (6.20) can be evaluated using (6.21).

6.3 Composite Random Variables

Sources of randomness can be material properties, geometric dimensions,

or loads. For the present study, the only geometric dimensions selected as

random variables are the ply thickness and ply angle. The loading is considered

to be deterministic throughout this study. All material properties are treated

as random variables, either from the point of view of the ply level or the micro

level (when a micromechanics constitutive theory is incorporated). At the ply

level, material variables could be any of the engineering material properties

E 11' E22 , v12' G 12 , G 13 , G23. Recall that these properties along with the ply

angle 9 define the coefficients of the constitutive matrix [C ] in equations (3.34)

and (3.35). At the micromechanics level, the material variables could be the

fiber and matrix properties: Efil l Ef22' Gfl2' Ufl2' 'f23' Em , vm , FVR, where

'T' denotes fiber property, "m" denotes matrix property, and FVR is the fiber

volume ratio. These micro—variables are used in the Aboudi micromechanics

equations to determine the engineering (ply level) material properties. In this
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section, detailed discussions of the technical assumptions and subtleties of

incorporating these random variables are presented.

6.3.1 Ply Thickness

The total thickness of a laminate is determined by summing the

individual ply thicknesses, which for a composite made of one material type, are

assumed to be a constant for every ply. Here it is assumed that the thickness of

all layers fluctuate, but that the total thickness of the laminate ( shell) remains

unchanged. This is the assumption made by Nakagiri et al. [26] for eigenvalue

analysis of composite plates. In [26] only ply thickness and orientation angle

were selected as random variables. Since the total thickness is assumed to be

constant, the ( coordinates of the upper and lower surfaces of the shell are

deterministic. The through —the—thickness integration, as described in

equations ( 5.35), involves the ply thickness coordinates as follows:

P (k +1
[Al] = E 

J	
[C ]d^

k-1 (k

P ^k+l
[A2] = Ef	 ^[C ]d^

k-1J(k

[A3] = E J k+l ^2 [ C ]d(
k-1 ^k

For elastic structures, these integrations are carried out explicitly,
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P
[Al] = k E l [C ] k ( ^k+l — (k)

P
[A2] _	 E [C ^k ( ^k+1 — (k)	 (6.22)

k=1

P	 ,^
[A3] _	 E

k=1 
[C ] k (S k +1 — (k)

where (k is the lower coordinate of the kth layer. For elastic—plastic structures,

the integrals must be numerically evaluated. For a two—layer composite, for

example, the previous assumption results in only the upper coordinate (2 of

layer 1 being random. In general, (k+1 is the random variable for the kth

layer, unless k is equal to P, the last layer.

The random variable (k+1 is also interpolated using the finite element

interpolation functions Oi(x):

n

^k+l — i E l ' i(x)((k+1)i	 (6.23)

Substituting (6.23) into (6.22), the perturbation derivatives M b required in
i

equations (6.11) can be evaluated for the thickness random variable. For the

kth layer, assuming again an elastic constitutive law, the results are
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a A 1 =

k+1 i	
([C ]k — [C ]k+l)Oi

8[A21  = (IC '] k — [C ] k+d) k+l''i	 (6.24)
k+1 i

a A 31
= ([ C ] k — [C ] k+O) k+leik+1 i

Since the matrices [A1], [A2], and [A3] contain the only dependence on the

random variable (k+1, equations (6.24) are used directly to assemble the

resulting Mb
1

6.3.2 Ply Angle

The only dependence on the ply angle B exists in the constitutive matrix

[C ] (see equation (3.54)). Therefore, in order to evaluate {F} b , where b is the
i

ply angle, it is necessary only to determine the derivative matrix 8 C' for each
i

layer. This differentiation is done explicitly and is straight—forward, so the

details are not presented here.

6.3.3 Ply—Level Material Properties

The only dependence on the ply—level engineering constants E11' E22,

V12 , G 12' G13' G23 is in equations (3.34) and (3.35). The derivatives 8 C
i
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where b is any of these properties for a particular layer, are explicitly

differentiated here as well.

6.3.4 Micro—Level Material Properties

The micro—level random variables Efll' Ef22' Gfl2' vfl2' vf23' Em' Um

and FVR are specified inputs to the Aboudi micromechanics equations with the

output being the ply—level engineering constants. These engineering constants

are used to calculate the (Al], [A2], and [A3] matrix stiffnesses in equation

(5.35). It should be noted that when the micromechanics model is used, only

linear or geometrical nonlinear behavior is allowed. Thus, in order to evaluate

the {F} b matrices needed in equations (6.11), equations (6.22) must be
i

differentiated in terms of the micro—level random variables. Referring to

equation (6.22) 1 , the chain rule of differentiation is performed

d A 1 _ d[All ddFVf1 + d Al 
d̂ 2 

+ d vAl d1=2

11	 22	 12

+ d LA11 ddG 12 + d Al dG 13 + d Al dG 2 3 (6.25)
12	 13	 23 3=

where the selected micro random variable is FVR. Note that the terms d Al
11

d[Aq etc. are already known explicitly from the discussion in section 6.3.3, so
dE 

22

dthat only the terms dFVR, a=, etc. must be computed.
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The relationship between E11 and FVR is given in terms of the

micromechanics equations. Hence, these equations must be differentiated in

order to determine 
d

am. Since the Aboudi model is rather complex, the finite

difference technique is used. The derivatives are calculated as follows:

FVR+ _ (1 + Delta)FVR

FVR = (1 — Delta)FVR	 (6.26)

dE ll_ Ell-E11
eta

where E+ 1 is evaluated using FVR+ and E11 is evaluated using FVR and

Delta is a small number, usually set to .05 or less. In this way the perturbation

derivatives {F}b for micro random variables are successfully calculated for
1

linear elastic or geometrical nonlinear elastic structures.

6.4 Linear and Geometric Nonlinear Elastic Problems

In this problem group, all of the necessary perturbation derivatives at

the ply level are determined by exact differentiation of the stiffness matrices in

equations (6.22), due to the elastic behavior. Finite difference derivatives in

(6.26) are still used for micro—level random variables. For linear elastic

problems, the vector {F} in equation (6.10) is represented by [K]{0} (as in

(3.23)) and the derivative matrix {F} b by [x] b {A). For geometric nonlinear

elastic problems, {F} is given by:
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M = f, [BL]T{S}dV

Therefore{P} b becomes
i

{P}bi 
= fV 

 
[B L ] T {S} bi dV	 (6.27)

The solution procedure involves a consecutive solution of equations

(6.10) through (6.12). After the deterministic zeroth—order equation (6.10) is

solved, either once for the linear case or iteratively at each load step in the

nonlinear case, the generalized displacement vector {A} is used to perform the

perturbation solutions in equations (6.11)—(6.12). In (6.11), there are as many

solutions for{O} b as there are number of nodes in the model, and in (6.12) one

solution for {0 2 }. In addition, the computations in equations (6.11) and (6.12)

must be performed for each layer in the model, as a particular random function

is assumed to be independent from layer to layer. If there are n nodes and P

layers in the model, (n + 1)P more matrix solutions are required at each load

step for each random variable. This is not as expensive as it seems, because the

stiffness matrix [K T] is inverted once and used in equations (6.11)—(6.12).

The next step is to determine the mean and variance of the response.

This is done using equations (6.15)—(6.16) for displacement and (6.19)—(6.20)

for stress. Note that the derivatives of the term [B]{0} are required in

equation (6.19) and for the stress derivatives in equation (6.21). For linear
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structures this becomes

([B LJ{ 0 })b = [BL]b {0} + [B L ]{A} b 	(6.28)

and for geometric nonlinear elastic problems it is

([B NLI{ A })b — [BNL]b	 } + [B NL]{Al b	(6.29)

which implies that the left hand side of the equations are functions of both {^}

and { D }b .

6.5 Material Nonlinear Problems

As in the geometric nonlinear problem, the residual vector is given by

{F}. Therefore, the derivatives are the same as in equation (6.27). Recalling

equation (6.2), {F} is functionally represented in the form

{F} = {F({0},{b})} 	 (6.30)

Temporarily dropping the vector braces, and differentiating F with respect to b

dF _ N + 8F aA	 (6.31)
JF — -07 -Z -JB-

The first term on the right hand side involves the explicit derivative of F with

respect to b. This is the result required in equation (6.27), in which the

derivative of F is expressed in terms of explicit derivatives of the stress vector

S. As stated in the last section, all these derivatives can be expressed exactly

when elastic behavior exists. However, when material nonlinear behavior is
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present, finite difference derivatives are used once again due to the complex

nonlinear relationship between stress and strain. Since orthotropic plasticity is

present in certain layers, the radial return algorithm discussed previously is

considered to be very good for this purpose [38,40]. This is true since at a

particular load step, the plastic strain and effective plastic strain are "frozen"

and only updated after equilibrium conversion is achieved. This update can be

done after the finite difference calculations are made, so that the true effect of

perturbing the random variable about its mean is measured. Other advantages

of the radial return method are the increased accuracy involved in the stress

recovery routine and the algorithmic compatible tangent moduli which results

in a more accurate tangent stiffness matrix. This accuracy is important in

computing the perturbation derivatives (e.g., {0} b in equations (6.9)--(6.12)).
i

The evaluation of Mb. involves the explicit differentiation of {S},
1

which is achieved using the finite difference formulas in (6.26), as recommended

in [38,40]. Define

b+ _ (1 + Delta)b

bi = (1 — Delta)b

S + = S(b+) and S = S(b i )	 (6.32)

so that

CAS "	 S+ - S	 1 — 1 .... nTF = e ta i

It should be noticed in equations (6.32) that the perturbations on b are made at
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a particular nodal location i to evaluate, while for all other locations the
i

derivative is zero. In this manner the applicable random variable derivatives

can be evaluated. These include the ply level stiffnesses (E 11 , E22 , 1/ 12 , GA,

G23 , G12), ply thickness, and any plastic parameters desired. The plastic

random variables selected are the uniaxial yield stress v1, and the hardening

modulus H.

In order to evaluate the autocovariance of stress, equation (6.20) is used

as usual in conjunction with the total derivatives of S:

dS_ as as ao
dy--07-+-07N -ay1	 1	 1

or

dS _ as + 
as aE	 (6.33)

The first term on the right hand side of (6.33) 2 is the explicit derivative already

evaluated using finite differences. The second term 0 is simply the tangent

moduli matrix given by equation (5.18), and (bringing back the vector braces

notation) {E} is represented from (6.17) as

{E} = [B]{0} (6.34)

These derivatives are the same as expressed in equations (6.28) and (6.29) for

geometrically linear and nonlinear structures, respectively. Substituting the

results into (6.33), we obtain
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{S} b = 8 S + [ CeP ]([B ] IAN	 (6.35)

which is used to evaluate the autocovariance in equation (6.20).

When combined geometric and material nonlinear behavior exists, the

previously mentioned methods of differentiation are used for the appropriate

plies. That is, exact differentiation is used for general elastic layers, and finite

difference for elastic—plastic layers. The finite difference method is also used for

the micro—level random variables, which are not applicable to the

elastic—plastic layers.

Up to this point the second—order equations have been developed. It

turns out that for layered composite materials, independent random fields have

been modeled for each layer. This greatly increases the cost of both assembly of

the perturbation derivatives and of the solution of the first and second—order

equations. Due to the immense assembly and storage requirements as well as

computational effort required for the second—order equations when multiple

layers exist, the analysis has been limited to the first—order equations. It can

be observed that the second—order term results only in a small correction to the

mean displacement and stress response, and it is assumed negligible when

weighed against the cost of obtaining it.
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6.6 Spatial Correlation

The probabilistic finite element procedure developed herein has the

ability to model the correlation involved in spatial fields. Consider the random

variable vector {b(x)j, which can be a general random field, e.g., a family of

related random variables such as Young's modulus which can vary in the spatial

coordinate x. The autocorrelation coefficient function of the discrete random

field {b(x)} is thus defined similar to equation (6.14) as

A(b(x	
(bi —b i )(b. — b )f({b})d{b}

i ),b(x j )) _
[ var (b(xi )) var(b(xj))]

(6.36)

The term "auto" here refers to the fact that we are dealing with the same

random field {b}, and are concerned with its correlation in space. In order to

determine the autocovariance of the response such as displacement and stress,

A(bi ,b j ) must be a known input characteristic of the input random field b. A

typical representation for the autocorrelation was given in equation (6.3), but

this case was for isotropic spatial correlation. Extending this to an orthotropic

ply and referring to Figures 6.1 and 6.2, we assume an orthotropic

autocorrelation coefficient function in the following form

2	 ^. — rl . 2
A(bi ,b j) = exp —	 A	 exp 	 i, j = 1...,n

(6.37)

In Figure 6.1, 6 and ^ are the curvilinear coordinates of the shell which are

aligned with the body coordinates, 	 and	 are the curvilinear coordinates in
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aterial)

^ (body)

Figure 6.1	 Local coordinate systems for body and material coordinates.
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Y

Figure 6.2	 Body and material coordinates in the shell curvilinear plane.
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the principal material coordinate system, aligned with the fibers, and A^„ A77,

are input correlation lengths. Transforming ^ and 77 to the principal material

coordinates	 and 7 we obtain

cos B	 sin (^i — ^^)
(6.38)

—sin B	 cos B ( 77i — 77-)

The formulation for the autocorrelation allows ply random variables to be

correlated in the plane of the shell aligned with the material coordinates. For

the case of material properties, we assume that they will have correlation trends

which are parallel and perpendicular to the fiber directions.

An underlying assumption in equation (6.37) is that A(b i ,b
i
) is not a

function of the shell thickness coordinate C. This leads to independent random

fields from ply to ply (uncorrelated). This assumption is not a requirement,

and correlation could be assumed in the ( direction, but for all of the examples

given in this work all layers have been chosen to be independent.

If the form of equation (6.37) is studied in relation to the correlation

lengths AC and A „ ', one discovers that for small AC and A77, (say 1% of the

length of the shell) that very little correlation A(b i ,b^) exists from node i to i

and corresponds to almost independent random variables. On the other hand,

for large A^ and A^, (say greater than four times the length of the shell) the

correlation becomes almost constant from node to node. As will be shown in

the next chapter, this is equivalent to assuming a "uniform variance” field in

which the fluctuation due to each random field is uniform over the entire shell

layer. Basically this random field is fully correlated, and is equivalent to
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assuming a single random variable for that ply. This is the same assumption

made by Nakagiri [26], and it considerably simplifies the computations.

Whereas previously the first—order equations (6.11) must be solved for all n

nodes and for each of the P independent layers, the uniform variance

assumption requires (6.11) to only be solved for each layer. This greatly

reduces the number of computations required in (6.11), (6.16) and (6.20) as the

loops extend only to P layers as opposed to P layers times n nodes. Thus if the

random field is highly correlated so that the variance is essentially the same

from node to node, then the random field can be dropped and a uniform

variance field assumed to reduce the cost of the analysis.

6.7 Computational Saving Techniques

Three methods are utilized in this work to reduce the computational

effort involved when a nonuniform correlated field is assumed. Liu et al.

[33-40] discussed a method for diagonalizing the covariance matrix, and a

technique for computing only the kth component of the displacement

derivatives, which they called the adjoint method. Both of these are

incorporated here, as well as a way to reduce the assembly time for stiffness and

residual force derivatives by using the chain rule of differentiation. All three of

these techniques will be discussed in this section.

6.7.1 Diagonalization of Covariance Matrix

In order to compute the covariance of the displacement and stress

response, the multiplications involved in the double summations on i and j in

equations (6.16) and (6.20) must be performed. As mentioned in [33], the
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number of multiplications is proportional to n(n + 1)/2, and is expensive.

However, if the double loops on i and j could be reduced to a single loop, then

substantial savings would result (the number of multiplications is reduced to n).

This is accomplished by transforming the covariance matrix cov(b i ,bj) to a

diagonal variance matrix var(c i ,c j ) so that the following conditions hold

var(c i ,cj ) = 0	 for i # j

and

var(ci,cj) = var(ci ) for i = j	 (6.39)

The transformation is performed by solving the following eigenproblem

[ G ][0] = [0][A] (6.40)

where [G] and [A] represent cov(b i ,bj) and var(ci ,cj ), respectively, [0] is the

matrix of eigenvectors normalized according to

[0][O ] T = [I]

	

[ A ] = [0] T [ G][0]	 (6.41)

and [I] is the identity matrix. The random variable vector f b} is transformed

to the new random variable vector {c} according to

{c} = [0]T{b}

or

{b} = [O]{c} (6.42)

The perturbation equations (6.10) and (6.11) to be solved take the form (only

dealing with first—order)

Zeroth--order

{F} = {R.}
	

(6.43)
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First—order

[I{TJ{0} c = {R} c — {p } c , i = 1,...n	 (6.44)

and the covariance solutions in equations (6.16) and (6.20) become

n
cov(O r ,A s) = E 0^ L s var(c )̂ 	(6.45)

J=1	 J	 J

n
cov({Ur},{QS}) = E {0r } c {O-S }c var(c^)	 (6.46)

J=1	 J	 J

Here var(cj) is obtained from the diagonal terms of [A].

In order to solve equation ( 6.44), the derivatives { R.} c and {p } c must
i	 i

be found. Considering {p } c , for example, the transformation is achieved by
i

using the chain rule of differentiation,

n	 abk

{p}c ikE {p}bk

Since the random variable vector {b} is given by

{b} = [O] {c}

we have

ok
skii

Hence, equation (6.47) becomes

(6.47)
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n

{F}ci	 kE {F)bkOki	 (6.48)

Thus, prior to computing 
{F)ci 

from equation (6.48), all n vectors {F)bk must

be assembled and stored.

It has been found that this diagonalization technique is highly beneficial

when nonlinear computations are performed, since the eigenproblem in (6.40)

can be solved once at the beginning and the result can be used for each load

step. Thus, the double summations are reduced to single summations for each

load step, without having to resolve the eigenproblem each time.

6.7.2 Adjoint Method

A distinct advantage in this first—order probabilistic finite element

method is its ability to preselect certain displacement and stress responses of

interest and thereby save computational effort by not calculating covariance

response of others. Since the assumption has been made here that the random

variables are independent from layer to layer, then the perturbation equations

(6.43)—{6.46) must be solved for each layer as well. This could become

expensive as the number of layers become large, therefore it would be nice to

separate the computations from a dependency on the number of layers as much

as possible.

Liu et al. [34,40] introduced an adjoint method which, when used

properly, partially achieves this goal. The method is used to calculate the

displacement derivatives of the kth component of the generalized displacements

94



{A}. Using the chain rule of differentiation on {o}, we obtain

k_ dA k as k ao k a o	 k
lei - ^ _ -j—C-+ ^F 	= 0 + {D }{^} C. 	(6.49)

where

IDk} = aok/a{o}
We can calculate {0 } c from Eq. ( 6.44)

1

{0} c = [KT]_1( {R}c — f F} c ) = [KT]-1{f}c	 (6.50)
1	 1	 1

k
Substituting ( 6.50) into ( 6.49) (note that the explicit derivative term a

	

	 is
i

zero), we obtain

Ak = {Dk}[KT]-1{f}c 	 (6.51)

The adjoint problem is defined by

	

[ K T ]JA k } = { Dk } 	 (6.52)

Substituting ( 6.52) into ( 6.51), we arrive at the result

A 
C.  = [KT]{Ak}[KT]-1 {flc.

1	 1

or, finally, we obtain
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A  = {a k } T {f} c	 (6.53)
1

The result in equation (6.53) expresses the desired displacement derivative

component A  in terms of the known force derivatives {f}c and the solution to
i	 i

the adjoint problem {A k } T . In solving the adjoint problem in equation (6.52),

we note that the right hand side {D k } simply becomes a Boolean vector, with

unit value at the kth component. With this method, we simply select in

displacement degrees of freedom (k = 1,...m) of interest (usually only those

necessary to calculate the stresses of interest), and solve equation (6.52) m

times. Once m solutions are available, then equation (6.53) can be used to

determine all ply level derivatives of random variables. Since the number of

random variables is a function of the number of layers, equation (6.53) gives the

derivatives for each ply without having to solve a structural level problem as in

(6.44) for each set of random variables in each ply. Thus, we have succeeded in

separating the solution of equation (6.44) from dependency on the number of

layers in the model. Moreover, if the need to solve for a preselected m degrees

of freedom exists, and m is much smaller than the number of nodal random

variables times the number of layers, then substantial savings can result. One

can easily see that for a large number of layers in the composite the adjoint

method is very beneficial.
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6.7.3 Assembly Savings Technique

After gaining experience with the probabilistic methods in the shell

program, it was discovered that considerable computational time is used in

assembling the necessary residual force derivatives IF} b in equation (6.11).
i

This expense is due to the fact that { F } b must be assembled independently for

each "i" node in the model and for each of the P layers, or i*P assemblies for

the solutions of equation (6.11). Recalling equation (5.41) for the residual force

vector {F}, and substituting (5.42) we can express the integration of {F} b asi

{F} b = E E [SD1]T {N} b + [SD2]T {M} b o J w^ w^
1	 r=1 s=1	 i	 i	 r s

(6.54)

For the example of elastic materials, { N } b and {M} b become

{ N } b = [A1] b {S1} + [A2] b {S2}
1	 1	 1

{M} b = [A2]0S1} + [A3] b {S2}	 (6.55)
1	 1	 1

where the general Green—Lagrange strains have been expressed as

{E} = {S1} + ({S21 + ^2 {S3}	 (6.56)

and terms with higher degrees than C2 have been ignored. Equations (6.24)

contain the derivatives [A1] b , [A2] b , [A3] b for the case in which the ply
1	 1	 1

thickness is a random variable. Each of these equations are in the form
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[ A lb, = [D (()]V)i	 (6.57)
1

where [D(()] is some general function of ( and ^i is the interpolation function

n
used in the expansion b(x) = E O i (x)b i . In symbolic form the integration of

i=1

IF 1 b. involves terms of the form
1

{F}b = E	 E J[SDl] T(D(^)J(ii ){S1} ° J w^ w^	 (6.58)
i	 r=1 s-1	 r s

for each random variable bi at the ith node. Applying the chain rule of

differentiation to {F }b , we obtaini

{ F } b = {F}b ^ = { F)A	 (6.59)
1

The result in (6.59) allows us to express (6.58) as

{ F } b = E	 E [SD1]T[D(()]{S1}° j J w w 	 {F} b pi (6.60)
i	 1r=1 s=1 	 I	 r s

In summary, the new approach is to assemble IF 1b once for each layer,

independent of the nodal random variable quantities b i , and then determine

{ F } b after assembly for each node i by the use of equation (6.60). Even though

IF 1b must still be assembled for each layer, the separate assemblies for each

node are now successfully eliminated with considerable savings.
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7. APPLICATIONS

7.1 Introduction

A number of problems have been solved to demonstrate various aspects

and capabilities of the formulation developed in the present study. Verification

of the accuracy of the first—order second—moment probabilistic finite element

method (FOSM—PFEM) for all linear and nonlinear problems is carried out by

comparison with Monte Carlo simulation results (for a description of the Monte

Carlo method see Appendix B). Examples of linear problems are presented first

to demonstrate modeling refinement requirements, sensitivities of the solution

to various random variables, and effects of different levels of spatial correlation

and input variance. Graphite--epoxy and metal matrix composite properties are

compared as well. Geometric nonlinear examples involving postbuckling of

plates and shells are presented next, with sensitivity to individual random

variables demonstrated throughout the load range. Finally, combined

elastoplastic and geometric nonlinear examples are given for a tension specimen

with a hole for both ARALL and Boron/Aluminum composites. Experimental

comparisons are given whenever possible.

7.2 Linear Analyses

The problem chosen as a comparison base for all examples in this section

is a shallow spherical shell with simply supported boundary conditions and

uniform external pressure. The problem description is given in Figure 7.1, and

all input material properties, variances and levels of spatial correlation are

given in Table 7.1. The coefficient of variation (COV) is defined as the ratio of

the standard deviation to the mean for a given random variable. All examples
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Two layer (0/90)

R = 1000 in a = 50 in h = 1 in

BC's (Simply Supported)

u = w = 02=0atx=a/2

v=w=91=0aty=a/2

v=02 =0aty=0 u=01=0atx=0

Figure 7.1	 Spherical shell under external pressure; out—of—plane
displacement w measured at the center; orxx stress measured at

gauss point nearest center in 0 degree ply.
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Table 7.1

Material Properties and Statistics for Graphite-Epoxy
Spherical Shell Problem

Random	 Standard	 Coefficient of
Variable	 Mean	 Deviation	 Variation	 A

E 11 15.75x106 7.8750x105 0.05 25 15

E22 0.9091x106 4.5454x104 0.05 15 25

G 12 0.4475x106 2.2376x104 0.05 20 20

v12 0.2223 1.1116x10-2 0.05 20 20

G 13 0.4475x106 2.2376x104 0.05 20 20

G 23 0.3497x106 1.7487x104 0.05 20 20

Efl l 31.0x106 1.55x106 0.05 25 15

Ef22 2.0x106 1.0x105 0.05 15 25

Gf12 2.0x106 1.0x105 0.05 20 20

vf12 0.2 1.0x10-2 0.05 20 20

vf23 0.25 1.25x10-2 0.05 20 20

E 0.5x106 2.5x104 0.05 25 25
M

V 0.25 1.25x10-2 0.05 25 25M

FVR 0.5 2.5x10-2 0.05 20 20

0 0°,90° 2° - 25 25
*

6 0.5 .025 0.05 25 25

* 0 indicates fiber orientation angle and 6 indicates ply thickness.

The subscripts f and m stand for fiber and matrix; absence of a letter
subscript indicates a ply-level property. The units are psi and inches
where appropriate.
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in this study used a COV of .05 except for the case of ply orientation angle,

where the standard deviation was chosen to be 2 degrees. When spatial

correlation was used, typical correlation lengths were around one half of the

domain of the problem for each principal material direction. Only one quadrant

of the shell was modeled in the interest of computational savings, even though

the spatial correlation assumptions may not be symmetric across the shell. Of

course, this is not a limitation of the procedures or computational model

developed herein.

7.2.1 Graphite--Epoxy Composite Shell

The first example in this section involved the base line shell problem

modeled with graphite—epoxy ply—level properties. The intent here is to

illustrate both the agreement of the first—order second—moment probabilistic

finite element method results with the Monte Carlo results, and to show the

mesh refinement requirements in relation to the random field. Figures 7.2

through 7.5 contain plots of out—of—plane displacement and stress for both

mean and variance along the x—axis. A 2x2 mesh of nine—node Lagrange

elements was used here with fully reduced (2x2) integration. The Monte Carlo

solution is one that fully converged at 1500 simulations. While the agreement

for the mean plots is good, the variance results are less satisfactory. Refining

the mesh to a 4x4 nine—node element mesh, quite good results for the variances

as well as the mean values were obtained (see Figures 7.6 through 7.9). This

can be attributed to the fact that even though the 2x2 mesh was a reasonable

one to discretize the deterministic equilibrium field equations, it was not refined

enough to discretize the chosen random field. Thus the analyst must be
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Figure 7.2 Mean center diplacement w along x—axis of spherical shell
using all ply—level random variables and a 2x2 nine—node
element mesh.
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Figure 7.3 Variance of center displacement w along x—axis of spherical
shell using all ply—level random variables and a 2x2 nine—node
element mesh.
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Mean oxx stress along x—axis of spherical shell using all

ply—level random variables and a 2x2 nine—node element mesh.
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Variance of Qxx stress along x—axis of spherical shell using all

ply—level random variables and a 2x2 nine—node element mesh.
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Figure 7.7 Variance of center displacement w along x—axis of spherical
shell using all ply—level random variables and a 4x4 nine—node
element mesh.

108



2000

C

w

V)

-2000

w0

-4000

-6000

0	 10	 20	 30	 40	 50

DISTANCE ALONG X—AXIS

Figure 7.8	 Mean axx stress along x—axis of spherical shell using all

ply—level random variables and a 4x4 nine—node element mesh.
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Figure 7.9	 Variance of Q^ stress along x—axis of spherical shell using all

ply—level random variables and a 4x4 nine—node element mesh.
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sensitive to both of these requirements when deciding whether a mesh is

sufficiently refined. Generally, as the correlation lengths are increased, the

effect on mesh requirements is that a coarser mesh can be used. For the rest of

the spherical shell examples, this 4x4 nine—node mesh was selected.

In Chapter 6 it was indicated that as the correlation lengths become

larger, eventually the random field becomes fully correlated and equivalent to

assuming a single random variable for that layer. This was called the "uniform

variance" assumption, and the solution technique that results from this

assumption involves considerably less computational expense. It is desirable to

know when this method can be used versus the random field approach. Figures

7.10 and 7.11 contain plots of displacement and stress variance versus the A^

correlation length normalized by the x--direction dimension of the shell. The

A  correlation length was selected to be five times the y--dimension of the shell

and was held constant. The horizontal line in each figure is the uniform

variance solution. From these results it is apparent that once both correlation

lengths A A^ are greater than four times their respective domain

dimensions, the uniform variance solution can be used with equivalent results

and considerably less expense.

In all examples presented so far, a COV of .05 was used. A legitimate

question remains as to how large the input variance (COV) can become before

this first--order probabilistic method becomes inaccurate. Figures 7.12 and 7.13

contain plots of the percentage difference of the first—order second—moment and

Monte Carlo solutions versus the standard deviation for the ply angle and ply

modulus E 11 random variables, respectively. From these results it can be

concluded that for this problem if the ply angle standard deviation is less than 5
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shell problem; comparison of uniform variance and random
field results.

113



Mean
disp

8
Variance
disp

Mean
stress

Variance
stress

2

0
0	 2	 4	 6	 8	 10	 12	 14

PLY ANGLE STANDARD DEVIATION (DEGREES)

Figure 7.12 Percent difference between first—order second—moment method
and Monte Carlo method for various standard deviations of the
fiber orientation angle random variable.

12

10

w
U
zw
x

6

A
R

4

114



20
Variance
disp

15

W
U
z
W
a
X10

A
Variance
stress

Mean
disp

Mean
styes.

0.00	 0.05	 0.10	 0.15	 0.20	 0.25	 0.30	 0.35

COEFFICIENT OF VARIATION OF E 11

Figure 7.13 Percent difference between first—order second—moment method
and Monte Carlo method for various COV levels of E11
random variable.

R

5

0

115



degrees, and the E 11 COV is less than .15, the percentage difference in the

first—order second—moment and Monte Carlo solutions is less than 5%. This is

reasonable, considering the fact that a 5 degree standard deviation for ply angle

or a COV of .15 for E 1l is quite large for most composite (or isotropic for that

matter) material variations. This is in agreement with Ang [23] and Liu et al.

[33-40], who stated that accuracy is maintained for a COV of .10 or less. Note

that the first—order mean values here are nothing but the deterministic values,

and that the agreement here is good without including the second-order

perturbation effect.

One very important benefit of the probabilistic finite element method is

the ability to quantify the variations in the structural response caused by

individual random variables. In the present study these random variables can

include ply—level material stiffnesses or micro—level material stiffnesses, the

latter evaluated with the aid of the Aboudi micromechanics model [64]. Figures

7.14 and 7.15 illustrate both the combined and individual variances for

displacement and stress response. It is interesting to note that for this

particular shell problem, the w--displacement response is most affected by the

ply thickness, ply angle, and E 11 variables, while the stress (axx in the 0 degree

layer) is primarily influenced by the ply angle, with E 11 and ply thickness

variables much less significant. In Figures 7.16 and 7.17, micromechanics—level

random variables were chosen. For the w--displacement variance, once again

ply thickness and ply angle were important, along with FVR and Efll

micro—variables. As for the stress, ply angle is still very dominant with Efill

FVR, and ply thickness secondary. It has been found that for these shell

problems with graphite—epoxy materials, generally the dominant random
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Figure 7.14 Variance of center displacement w along x —axis of spherical
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Figure 7.15 Variance of axx stress along x—axis of spherical shell showing
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variable is the ply angle, as would be expected due to the low stiffness of the

matrix in comparison with the fibers.

7.2.2 Metal Matrix Composite Shell

To illustrate the differences in response when using metal matrix

composite properties, the same shell was modeled using Silicon Carbide fibers in

a Titanium Aluminide matrix. The input properties and statistical parameters

used are listed in Table 7.2. Figures 7.18 and 7.19 illustrate the combined and

individual variances for displacement and stress response with micro—level

random variables. Now with the metal matrix properties, the w--displacement

response is most affected by the matrix modulus E m and fiber volume ratio

(FVR). This may be due to the fact that the mean FVR was selected to be .35,

so if a higher mean FVR is input, fiber properties may dominate. As for the

Qxx stress, the longitudinal fiber modulus Efl1 and FVR were the most

important. Figures 7.20 and 7.21 contain the corresponding results but using

ply—level random variables. Similar to the previous results, the E22 and E11

moduli dominate the variance for the w—dis placement response, and for the Qxx

stress E 11 is by far the most influential.

7.3 Geometric Nonlinear Analyses

Two problem types are discussed in this section. First, the

graphite—epoxy spherical shell used in the previous section is analyzed deep into

the postbuckling range, and second, the postbuckling of a flat non—stiffened

graphite—epoxy panel with uruaxial compression is investigated. Experimental

comparisons are made for the second example.

121



Table 7.2

Material Properties and Statistics for Silicon Carbide
Titanium Aluminide Spherical Shell Problem

Random	 Standard	 Coefficient of
Variable	 Mean	 Deviation	 Variation	 A^	 A^

E 11 25.783x106 1.2892x106 0.05 25 15

E22 18.683x106 9.3415x105 0.05 15 25

G 12 7.028x106 3.5140x105 0.05 25 25

1/12 0.2706 1.3528x10-2 0.05 25 25

G 13 7.028x106 3.5140x105 0.05 25 25

G23 6.955x106 3.4774x105 0.05 25 25

Efll
50.7x106 2.535x106 0.05 25 15

Ef22 50.7x106 2.535x106 0.05 15 25

Gf12 21.3x106 1.065x106 0.05 25 25

1/fl2 0.19 9.5x10-3 0.05 25 25

1/f23 0.19 9.5x10-3 0.05 25 25

E 12.3x106 6.15x105 0.05 25 25m

V 0.32 1.6x10-2 0.05 25 25m

FVR 0.35 1.75x10-2 0.05 25 25

0 0° ,90° 2° - 25 25

6* 0.5 2.5x10-2 0.05 25 25

* 0 indicates fiber orientation angle and 6 indicates ply thickness.

The subscripts f and m stand for fiber and matrix; absence of a letter
subscript indicates a ply-level property. The units are psi and inches
where appropriate.
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7.3.1 Postbuckling of Spherical Shell

All input properties and statistical parameters are the same as in section

7.2.1 for the graphite—epoxy spherical shell. The difference here is that a

geometric nonlinear solution is included, one that follows the nonlinear path

past the snap through point (or limit point) and into the postbuckling range.

The modified—Riks method [86,91] is used, as the regular Newton—Raphson

method with load step control cannot trace this type of postbuckling curve.

Once again, the Monte Carlo method is utilized to verify the first-order

second—moment probabilistic results. Since the Monte Carlo method solves the

nonlinear problem completely for each sample (or simulation) of the random

variables, if the modified—Riks method is used in conjunction with the Monte

Carlo method, each sample would result in a different set of load step sizes due

to the self adjusting mechanism of the Riks method. The statistics used to

estimate the mean and variance from the simulation results at each load step

rely on all the variable responses residing at the same load value. For this

reason the modified—Riks method was not used with Monte Carlo to verify the

geometric nonlinear results. 	 Instead, the Newton—Raphson method with

constant load step size was used during this verification stage. 	 Since the

Newton—Raphson method could not pass the first limit point (zero—slope), then

the solution was stopped there. Figures 7.22 through 7.25 contain the

comparisons of the Monte Carlo and first—order second—moment solutions for

mean and variance displacement and stress responses, and the agreement is very

good.
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Next, using the first—order second—moment method combined with the

modified—Riks technique, the responses throughout the postbuckling range,

including the limit points, are calculated and presented in Figures 7.26 and

7.27. Figures 7.26a and b exhibit the w--displacement mean and COV. It is

evident that at the limit points the COV is very large, almost 0.5. Figures

7.27a and b contain the oxx stress mean and COV. Again near a zero slope

point on the stress curve the COV was quite large, almost 0.5. Figures 7.28 and

7.29 illustrate the results in a different format. Here the squares indicate mean

response while the stars are the mean plus or minus one standard deviation (one

sigma) points. The influence of the limit points is more apparent in this

format.

The increase in variance at the limit points occurs since the buckling

behavior of the structure is more sensitive to any changes in stiffness or load at

these points. It should be noted that while the displacement COV begins at

about .05 before the limit points, it becomes quite small after the limit points,

settling to a value of about .01. As for the stress, the initial COV is .10, and

after the limit points is still quite large, in the range of .07 to 1.6.

7.3.2 Postbuckling of Flat Panel Under Axial Compression

The problem under consideration here is a flat, rectangular

graphite—epoxy panel loaded in axial compression. An experimental study was

performed on a series of these panels by Starnes and Rouse [92]. Figure 7.30

shows a typical panel with fixture and the resulting failure mode. The loaded

ends of the panels were clamped by fixtures and the unloaded edges were simply

supported by knife—edge restraints to prevent the panels from buckling as wide
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(a)	 Panel fixture

(b)	 Panel failure mode

Figure 7.30 Flat rectangular graphite—epoxy panel under axial compression
[92].
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columns. The geometry, boundary conditions, and layup are given in Figure

7.31, and the material properties and statistics are supplied in Table 7.3.

A previous deterministic analytical study was performed on the panel

(denoted as Panel C4 in [92]) by this author in reference [93]. Comparisons

were made between analytical and experimental results. In general the

comparisons were very good, even deep in the postbuckling range. In order to

pass the critical buckling load, a geometric imperfection of a small percentage of

the plate thickness (typically 1 to 5) times the normalized linear buckling mode

was added to the original geometry of the panel. The purpose of the previous

analysis was to study the effect of shear deformation on postbuckling response

and failure prediction. The purpose of this analysis is to study the variability of

the panel results.

The probabilistic analysis of this panel assumed a fully correlated

random field for each random function in each layer thus allowing the uniform

variance solution to be used. An attempt was made to employ the random field

techniques; however, the computational expense was too high due to eight

random functions in 24 layers, 1625 degrees of freedom in the model, and a

nonlinear analysis. The random field method took 8.3 hours per load step (on a

Convex computer), whereas the uniform variance method only 5.8 minutes per

load step. Since 13 load steps were required to reach the failure load and

immense storage is required for the random field method with this many layers,

it was concluded that for this size problem the uniform variance method was

much more realistic.

The end shortening postbuckling response is shown in Figure 7.32. The

load P is normalized by the analytical buckling load P cr , and the end
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Table 7.3

Material Properties for Graphite—Epoxy Flat
Panel Under Axial Compression Problem

Random Standard Coefficient of
Variable Mean Deviation Variation

E 11 19.0x106 9.5x105 0.05

E22 1.89x106 9.45x104 0.05

G 12 0.93x106 4.65x104 0.05

1/ 12 0.38 1.9x10-2 0.05

G 13 0.93x106 4.65x104 0.05

G 23 0.25x106 1.25x104 0.05

0 t45°,0°,90° 2° —

*
6 5.5125x10-3 4.167x10-3 0.05

* 8 indicates fiber orientation angle and 6 indicates ply thickness.

The units are in psi and inches where appropriate.
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shortening deflection u by the analytical end shortening u cr at buckling. A 1%

plate thickness geometric imperfection was used. The analytical results

compare favorably with the experimental results. In addition, the plus or minus

one standard deviation points indicate the variation in the data. It should be

noted that in [93], it was shown that one of the reasons for the good agreement

here is the inclusion of the shear deformation in the element formulation.

Figure 7.33 contains the out—of—plane deflection w near a point of maximum

deflection normalized by the panel thickness t. Figure 7.34 shows the

longitudinal surface strains e near a point of maximum out-of--plane deflection

normalized by the analytical buckling strain e cr . In this comparison only the

reduced integration Gauss point closest to the experimental strain gage was

used to calculate the strains. Interpolation has been shown to improve

agreement with the experimental results. For all three of these plots the

COV is typically around 2%, except for the w displacement prior to and at

buckling which was large.

In order to understand the failure mode, it is necessary to see the

nonlinear buckling mode shape. An analytical contour plot of the out—of—plane

deflection at an applied load of 2.1 P cr is shown in Figure 7.35a. A moire fringe

pattern photograph from reference [92] of the out—of—plane deflections at the

same load is shown in Figure 7.35b. Both patterns indicate two longitudinal

half—waves with a buckling—mode nodal line at panel midlength.

In References 92 and 93, it was determined that the failure mode was

primarily due to transverse shear stress T13 (Txz 
in 0° ply) along the midlength

(nodal line) of the panel. In later work it has been found that although -r 	 is
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(a) Contour plot of analytical
	

(b) Photograph of moire—fringe
results	 pattern

Figure 7.35 Comparison of experimental and analytical out—of—plane
displacement patterns at applied load of 2.1 Pcr for the
graphite—epoxy panel.
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the primary failure mechanism, other stresses such as all and T12 also cause

failure along the nodal line region in other layers.

Proceeding with the analysis, Figure 7.36a shows a contour plot of the

01 11 stress in the third layer of the laminate (a 0° ply) at an applied load of 2.1

P cr . High compressive axial stresses occur along the longitudinal edges of the

panel. The redistribution of the axial ( Qll ) stresses for this 0° ply along the

panel midlength is shown in Figure 7.36b for three different load levels. The y

coordinate is measured from one side of the panel and normalized by the panel

width b. The longitudinal membrane strain is redistributed to the edges of the

panel after buckling. Typical COV values are .05 at P/P cr = 1.0, and range

from .08 to .16 for the higher loads. The plus or minus one standard deviation

points are shown in the figure. The material allowables for axial stress are 203

ksi in tension, and 165 ksi in compression, so the axial stress at this location is

well below this.

The distribution of the transverse shear stress T13 in the third layer of

the laminate (a 0° ply) is shown in Figure 7.37a for a load of 2.1 P cr . It is

observed that high transverse shear stress develops along the nodal line of the

panel. Figure 7.37b shows the redistribution of the T13 stress for three different

applied loads. At the experimental failure load of 2.1 P cr , the T13 stress

approaches the material allowable value of 9 ksi. The COV for the T13 stress

was typically .055 except at the critical buckling load when it reached a value of

.12.

It is of interest to determine the most significant random variables in the

variance for the 7- 13 stress. Figure 7.38 contains the peak mean r13 stress,

along with the COV for the combined and individual random variables for
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increasing load values. It is observed that the T13 stress variance is most

influenced by G 13 , with the ply thickness effect increasing as the buckling load

is passed and bending effects become more important.

Even though for this graphite—epoxy composite panel a first ply failure

does not represent overall panel failure, reliability analysis was performed for

first ply failure. For simplicity the maximum stress failure criterion was

selected, although other failure criteria may be more suitable such as maximum

strain or a quadratic polynomial criterion, such as the Tsai—Wu criterion. In

this analysis, since the material allowables , accuracy was a question, a very

simple example reliability calculation was determined suitable in which the

failure criterion was based on exceeding the transverse shear strength of 9 ksi.

The strength and stress were selected to be Normal distributed, with the stress

mean and COV from the finite element results and the strength COV assumed

to be 0.10. Appendix B describes the reliability theory used here [23]. Figure

7.39 is a plot of the probability of safety curve (probability of non—failure of

first ply) versus load for the r13 failure mode. Based on the first-order

second—moment probabilistic finite element results and the assumed strength

statistics, approximately 100% reliability against first ply failure exists at a

load step of 1.65 P cr . It is believed that the reliability analysis for first ply

failure used in conjunction with a progressive failure analysis, in which the

damage due to local failures is progressively accumulated, would be a very good

criterion for design of these panels to exclude any failures. Another option

would be to determine the system reliability, in which individual ply

reliabilities are combined into the overall laminate structure reliability.
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7.4 Material Nonlinear Analyses

Material nonlinearity has been included in a fashion such that combined

material and geometric nonlinearity can be studied. The classical example of an

isotropic cylindrical shell roof under self weight is analyzed and compared with

results in the literature for all three cases of geometric nonlinearity, material

nonlinearity, and combined nonlinearities. The same example is then used to

validate the mean and variance statistics of the first—order second—moment

probabilistic method by comparison to Monte Carlo results for the combined

nonlinearity case.

Two material nonlinear composites were then selected for study. First,

an ARALL laminate (patented by Alcoa), composed of aramid epoxy layers in

between layers of isotropic aluminum, was analyzed. Second, a single layer

Boron/Aluminum composite is modeled using the orthotropic plasticity

formulation. Both materials were then employed in a model of a tension

specimen with a hole.

7.4.1 Cylindrical Shell Roof Under Self Weight

The cylindrical shell roof under self weight problem described in Figure

7.40 is a classical test example in the literature. The shell has free longitudinal

edges and is supported at both ends on rigid diaphragms. Ideal plasticity is

assumed for the material nonlinear behavior. The material properties and

statistics are given in Table 7.4.

In order to validate the plasticity model shell formulation, the

deterministic results for this problem are compared to those obtained by Ramm

and Sattele [94]. In their work a 3x3 mesh of bicubic 16—node degenerated shell
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Figure 7.40	 Cylindrical shell roof under self weight problem description.
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Table 7.4

Material. Properties and Statistics for Cylindrical Shell Roof Under
Self Weight Problem

Random	 Standard	 Coefficient of
Variable	 Mean	 Deviation	 Variation	 A

E	 21000	 1050	 0.05
	

2440 3800

v	 0.0	 —	 —

*
0'Y 	 4.2	 0.21	 0.05

	
2440 3800

Material is isotropic; v is not considered random. Units are in N/mm 2 and
mm where appropriate.

* or Y stands for yield stress.
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elements was used with a total of 441 degrees of freedom. The cubic element

uses 4x4 Gauss integration in the plane of the element and a 7 point Simpson's

rule integration in the thickness direction. Figure 7.41 contains the results

obtained by Ramm and those for the present study for the center node

deflection w A at the free edge. Various mesh refinements of biquadratic 9—node

elements were used here to study agreement with the Ramm solution. Full

integration for the biquadratic element consists of 3x3 Gauss points. This

element is known to have locking (over—stiffening) problems when used to

model thin shells, and this is typically remedied by using either fully reduced

integration on all terms (2x2) or selective reduced integration in which 3x3

integration is used for the in—plane terms and 2x2 integration for the transverse

shear terms. Studying the figure, the 4x4 element mesh with full 3x3

integration obviously exhibits locking for the combined nonlinear results and

thus is too stiff. Using fully reduced integration, the geometrical nonlinear

elastic, and linear elastoplastic solutions agree well with the reference. However

the combined nonlinear solution is too soft. By refining the mesh the locking

effects are reduced such that for a 6x6 biquadratic mesh with 3x3 integration

the results compare very favorably with those obtained by Ramm. The degrees

of freedom in the three biquadratic meshes are as follows: 4x4 mesh — 405

d.o.f., 5x5 mesh — 605 d.o.f., and 6x6 mesh — 845 d.o.f. Eight gauss integration

points through the thickness were used. In addition, it is of interest to note the

stiffening effect due to the geometrical nonlinearity and the softening effect due

to the elastoplasticity.

The cylindrical shell problem is used next to validate the first—order

second—moment probabilistic finite element mean and variance response by
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comparison with Monte Carlo results. The input statistics are given in Table

7.4, and to save computation time the 4x4 model with 2x2 integration is used.

The comparisons are given in Figures 7.42 — 7.45, and are made for the

combined nonlinear solution, with 1500 Monte Carlo simulations. The

deterministic solution yields at a load of 1.4x10 3 , and five load steps past yield

are shown. More load steps are not used as the expense of the Monte Carlo

solution prohibits this. The Monte Carlo solution required 43.4 hours CPU time

while the first-order second—moment method only used 5.3 minutes. Obviously

the perturbation method is computationally advantageous.

7.4.2 ARALL Laminate Tension Specimen with Hole

ARALL laminates are high strength hybrid composites for aerospace

applications developed by Alcoa. Figure 7.46 illustrates the concept of bonding

thin sheets of high strength aluminum alloys using high strength aramid fibers

in a special epoxy resin. The benefits include significant increases in fatigue and

fatigue crack growth properties over monolithic aluminum, and the outer

aluminum layers provide impact damage and moisture protection that would be

a problem for typical fiber composite materials. In addition, increases in

strength and lower densities are achieved as compared to monolithic aluminum

[96].

It is desired to model the nonlinear structural behavior of this hybrid

composite. Figure 7.46 also shows the description of the analytical model used

to represent the stiffness of this material. The aramid epoxy layers are divided

into fiber—rich and resin—rich layers with stiffness given for each sublayer.

Table 7.5 gives the properties and statistics for the aluminum, aramid epoxy
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Table 7.5
Material Properties and Statistics for ARALL-1 Laminate

Constituents

Random Standard Coefficient of
Variable Mean Deviation Variation

Aluminum 7075-T6L

E 10.4x106 5.2x105 0.05

V 0.3 1.5x10-2 0.05

7.8x104 3.9x103 0.050Y

6* 1.2x10-2 6.0x10-4 0.05
Aramid Epoxy fiber-rich lavers

E ll	 12.549x106	 6.2745x105	 0.05

E22	 0.76525x106	 3.82625x104	 0.05

G 12	 0.28955x106	 1.44775x104	 0.05

1/12 	 0.3458	 1.729x10-2	 0.05

G 13	 0.28955x106	 1.44775x104	 0.05

G 23	 0.26462x106	 1.3231x104	 0.05
*

4	 0°,90°	 2°	 -

6*	5.6x10-3	 2.8x10	 0.05
Aramid Epoxy resin-rich lavers

E 11	 2.1972x106	 1.0986x105	 0.05

E22	 0.48219x106	 2.41095x104	 0.05

G 12	 0.15717x106	 7.8585x103	 0.05

1/12 0.3749 1.8745x10-2 0.05

G 13 0.15717x106 7.8585x103 0.05

G 23 0.15576x106 7.7880x103 0.05
*

4 0°,90° 2° -
*

b 1.416x10-3 7.08x10-5 0.05

U  inmcaies yieiu stress, v inaicates uDer orientation angle, anu c inuicates

ply thickness.
Units are in psi and inches where appropriate.
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fiber—rich, and aramid epoxy resin—rich layers. Experimental tension test

results [96] are compared to the analytical results in Figure 7.47. From the

figure it is observed that the aramid epoxy behavior is linear and the analytical

linear comparison is very good. The 7075—T6(L) aluminum behavior is elastic

perfectly—plastic: and the analytical model with a yield stress of 78 ksi agrees

very well except near the point of first yield. As for the ARALL-1 results (-1

indicates 7075—T6(L) aluminum is used) the analytical model with ideal

plasticity for the aluminum layers and linear elastic aramid epoxy layers

generally exhibits the same behavior as the experimental results except the 0

degree laminate analytical model underpredicts the stiffness after yield and the

90 degree laminate model overpredicts the stiffness after yield. For the purpose

of this example the analytical model is considered acceptable and will be used to

study the mean and variance response of an ARALL tension specimen with a

hole.

Figure 7.48 shows the finite element model and dimensions of the tension

specimen with a hole problem. The same material properties and material

model from the previous discussion are used in this problem. The probabilistic

analysis assumed a fully correlated random field for each random function in

each layer, thus allowing the uniform variance technique to be used here. Again

the computational expense of discretized random fields in each layer in a

nonlinear analysis forced this assumption. Figure 7.49 contains the mean and

standard deviation of the longitudinal 
Eyy 

strain at the hole edge (point A in

Figure 7.48) for the case where all aramid epoxy layers are aligned at 90 degrees

to the load. The figure also shows the breakdown of standard deviations for all

the significant random variables. Since the fibers are 90 degrees to the load and
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to the strain Evy , then the aluminum properties tend to dominate. It is

interesting to note that even though no bending occurs in this problem, the ply

thickness of the aluminum layers is dominant after yield. The aluminum yield

stress and elastic modulus are also important. Figure 7.50 contains similar

results except now the fibers are aligned with the loading direction. While the

aluminum yield stress and ply thickness random variables are still significant,

the aramid E 11 and ply thickness random variables are now equally important.

These results illustrate the role the individual random variables play in the

total variability of this type of ARALL structure.

7.4.3 Boron/Aluminum Tension Specimen with Hole

A Boron/Aluminum laminate was selected to illustrate the use of the

macroscopic orthotropic plasticity formulation. The same problem dimensions

(except for thickness) were used as in the last example, however, as shown in

Figure 7.51, a different mesh was used that placed gauss points along the

x—axis. Rizzi, Leewood, Doyle, and Sun [75] conducted an experimental and

analytical study of this specimen, and provided experimental measurements for

the orthotropic elastic constants as well as the a id values in the yield criterion

and the hardening parameters in the isotropic work hardening model. These

values are all stated in Table 7.6 and are used in the present analytical model.

It should be noted that the a id values used in this study differ from those given

in the reference by a factor of 2/3 due to a minor difference in the formulations.

Figure 7.52 contains a comparison of the analytical results from the present

study and experimental results from reference [75] for the longitudinal strain

Eyy along a radial line (x—axis) 90 degrees to the loading. The agreement is
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Figure 7.51 Finite element model and dimensions of Boron/Aluminum
tension specimen with hole.

170



Table 7.6

Material Properties and Statistics for Boron/Aluminum Laminate

Random	 Standard	 Coefficient of
Variable	 Mean	 Deviation	 Variation

E 11 29.4x106 1.47x106 0.05

E22 19.1x106 9.55x105 0.05

G 12 7.49x106 3.745x105 0.05

1/ 12 0.169 8.45x10-3 0.05

G 13 7.49x106 3.745x105 0.05

G 23 7.49x106 3.745x105 0.05

*
QY 13.5x103 6.75x102 0.05

H 60.0x103 3.0x103 0.05

4 0° 2.0° -

6* 7.95x10-2 - 0.05

* Oly indicates yield stress, H indicates hardening modulus, 4 indicates ply

orientation angle, b indicates ply thickness.

The values of the aid constants in the yield criterion are:

3 a-0.001	 3 a -1.0	 3a	 ---0.01
11 -	 -	 12 -

a44 - a55 - a66 = 1.9

The hardening model used was Y(a) = H [ a + [ Ŷ] ^J 1
H

A = 5.8

Units are in psi and inches where appropriate.
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slightly worse than that obtained in [75], but is probably due to the difference

in element formulations and the classical incremental plastic stress routine used

versus the radial return algorithm used here. Yielding occurs after 1000 lbs,

and the agreement worsens as the loading is increased. However, the results are

still considered quite good.

Using the random variable statistics stated in Table 7.6, the first—order

second—moment probabilistic method was used to evaluate the mean and

variance of the Eyy strain response. Once again the probabilistic analysis

assumed a fully correlated random field for each random function which allowed

the uniform variance technique to be used here. Figure 7.53 shows the

analytical mean Eyy strain for the 2500 lb and 1000 lb load values with the plus

or minus one standard deviation points included. It is obvious that the

sensitivity of E yy to the random variables increases both with the load and as

the location moves closer to the hole. Figure 7.54 is a plot of both the mean

and standard deviation of the E	 strain at the location A on the model versus
yy

load. The breakdown for each random variable is presented as well. Since only

a single layer is used, then the ply thickness could not be considered a variable

here. The most significant random variable is the plastic hardening modulus H,

with E22 and the yield stress important as well. Note that E 22 is significant

since the fibers are 90 degrees to both the loading direction and to Eyy . This

example could obviously be extended to include the aid plastic yield coefficients

and the hardening parameter A as random variables since they are also

experimentally measured quantities with uncertainties.
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8. CONCLUSIONS AND RECOMMENDATIONS

8.1 Summary and Conclusions

A probabilistic finite element analysis procedure for laminated composite

shells is developed. Full geometric nonlinearity for large deformation and

rotation and rate—independent anisotropic plasticity are included. A

degenerated 3--D laminated composite shell element with first—order shear

deformable kinematics and a total Lagrangian finite element formulation is used

in the deterministic analysis. The first—order second—moment technique for

probabilistic finite element analysis of random fields is employed to determine

mean and variance of displacement, strain, and stress fields. Random variables

built into the model include ply stiffnesses, orientation angles, and ply

thicknesses. Fiber and matrix stiffnesses and volume ratios can be selected as

random variables with the use of the Aboudi micromechanics model. Monte

Carlo simulation was used to verify selected results.

Many problems were investigated either to verify the second—moment

method's accuracy or to investigate and quantify variability in certain

structures. It was concluded very early that the second—order perturbation of

the second—moment method required too much computational expense and

storage and returned only a slight correction to the mean values. By comparing

the results with the Monte Carlo method, it is concluded that the first—order

second—moment method for estimating structural response mean and variance is

quite accurate as long as the input coefficient of variations are less than 0.15.

The method maintains this accuracy when a significant number of independent

random variables are assumed, as is typically the case in layered composite

problems. A few large degree of freedom and large number of layer nonlinear
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problems were studied to test the probabilistic method's ability to deal with

practical (aerospace industry) size models. The random field techniques for the

larger models become far too costly both from computational and storage

viewpoints. However, the assumption of a fully correlated field for each random

variable in each layer (uniform variance) led to more realistic computational

expense.

The inclusion of transverse shear deformation proved to be critical in

modeling laminated composites, especially into the postbuckling range. It was

demonstrated that the modified Riks arc length method works quite well with

the second—moment probabilistic method and allowed mean and variance

calculations to be made beyond zero—slope limit points, which often exist in

shell structures.

As for material nonlinear problems, the radial return algorithm was

installed in a manner such that combined geometric and material nonlinear

problems can be solved quite efficiently. The plasticity analysis is performed

here in combination with the geometric nonlinearity and resulted in very little

increase in iterations per load step. ARALL and Boron/Aluminum plasticity

problems were investigated and the variability of these composites were

quantified for a tension specimen with a hole.

An approximate reliability calculation against first ply failure was made

for a composite panel loaded in axial compression into its postbuckled state. By

assuming the stress and strength to have Normal distributions, the mean and

variance of the stress could be used directly in a linear (maximum stress)

performance function to estimate probability of safety.
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8.2 Recommendations

The natural and most important step to be added to the computational

procedure developed herein is to efficiently and optimally integrate it with the

first and second—order reliability estimation methods. Thus calculation of the

mean and variance response would become optional if reliability computations

are desired. The sensitivity derivatives already computed in the program would

simply be used directly to compute the safety indices, and in this way the

original random variables can be assumed to be any known distribution

functions with specified mean, variance, and correlation. The loss in accuracy

in calculating small probabilities of failure by using the mean and variance

response directly would be avoided in this manner.

With the improved reliability algorithm installed, more detailed and

accurate laminated composite reliability calculations could be made. More

generally accepted failure criteria, such as the Tsai—Wu, Tsai—Hill, and

maximum strain criteria could be used. Laminate failure could be studied by

combining the individual first ply failure probabilities into a system reliability

problem. More detailed stress analysis may be required, leading to a

global—local approach combining other theories such as the layer—wise theories

of Reddy [97]. Stiffener elements could be added to model the effects of

stiffened composite plates and shells. Also, design optimization could be

performed by optimizing the reliability index, with selected random variables

used as design variables.

The generality of the formulation could be improved by broadening the

range of loading and problem types. The addition of thermal loads, random

loads and geometry, and transient analysis are obvious extensions. 	 The
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inclusion of plasticity and other nonlinear behavior at the constituent level of a

micromechanics theory is also a possibility. Due to the realization that the

mechanics of the interphase region in a metal matrix composite is very critical,

a micromechanics theory which includes this region is essential.
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APPENDIX A

In this appendix, a few relevant terms are defined and the basic method

for determining reliability is described. This brief review is only meant as an

aid to the reader. Most of the definitions involved in the initial part of this

section are based on material from reference [56].

In general terms, a random variable is one whose value is uncertain or

undetermined. For this reason problems without random variables are often

considered to be deterministic. The distribution function controls the

probability of a random variable having certain values. Two distribution

functions are of major importance: the cumulative distribution function (CDF),

and the probability density function (PDF). The CDF of a random variable U

is given by

FU(u) = P[U < u] (A.1)

which means the probability that the random variable U is less than or equal to

some deterministic value u. The PDF is defined as

HUM
fu ( u )- --a u

so that
	

(A.2)

u
P[U < u] = F U (u) = j fU(z)dz

The weighted averages or moments of random variables can also be used

to describe their distribution. The expected value of a function r(U) is defined
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as

ODr
E[r(U)] =-

J 
r(u)fU (u)du (A.3)

mf

E[U] = µU = J ufU(u)du

--m
(A.4)

Using this definition, important moments can be defined such as mean and

variance. The first moment, called the mean, is the central measure of the PDF

and is given by

The second moment (central), called the variance, is a measure of the dispersion

or spread of the distribution from its mean and is defined as

VarU =- E[U —	 f u—	 f udu	 A.5

--m

The standard deviation and coefficient of variation are parameters which are

often utilized. The standard deviation is given by

QU -	 ar	 (A.6)

and the coefficient of variation (COV) by
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COV -U
µU

(A.7)

When two random variables have a probabilistic relationship, this

becomes a family and the relationship is defined by their joint distribution

functions. For example, the joint CDF of two random variables U and V is

defined as

FUV(u,v) - P[U < u,V < v]
	

(A.8)

where the comma indicates the intersecting areas of the individual CDFs.

Moments can also be defined for two random variables. The expectation of a

function of U and V (first moment) is given by

rm m
E[r(U,V)] - J J r(u,v)fUV(u,v)dv (A.9)

The second central moment, or covariance,

Cov(U,V) = E[(U —,uU)(V — It-V)] = J 
IM J IM(u — µT1 )(v — AV)fTTV(u)v)dv
-m -M

and corresponding correlation coefficient,
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_Cov UV
PUV - 01UorV

are dimensional and dimensionless measures of linear dependence between the

two random variables.

A random function is an extension of these ideas in which this function

varies with one or more variables but for specific values of the variables its

value is uncertain. If the variable is restricted to time only, then the random

function is called a random process. If the variables are only spatial

coordinates, then the function is called a random field. In the present study

random fields are the focus, however it is also shown that if a random field

becomes very highly correlated, this reduces to or becomes equivalent to a

single random variable. A random function has an infinite number of

distribution functions, often referred to by "orders", which imply moments. For

example, the second —order CDF of a random field U (x), where x refers to

spatial coordinates, evaluated at x  and x 2 is given by

FU 1 U 2 ( u l)u 2 ' x l,x2) = P1U 1 = U (x l) 5 u V U 2 = U ( x2) ^ u21

(A.11)

A homogeneous (or stationary if x refers to time) random function U(x) of order

two is one whose second —order CDF and PDF are dependent only on the

difference (x 1 —x2) and not on the actual values of x l and x2 . When the

function has a constant mean and an autocovariance dependent only on this

difference (x 1 —x2), then it is termed homogeneous in the wide sense.
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Autocovariance refers to the covariance of a single random function evaluated

at two points, given mathematically by

Cov ( U ( x l ), U (x2 )) = 

JOD  

J fUIU2(u l) u2 ;x l ,x2 )du Idu2

--M --M

(A.12)

In the present study only random fields which are homogeneous in the wide

sense have been considered. However, the methods can easily be applied to

inhomogeneous fields in which the mean is a function of the actual spatial

coordinates, for example.

Having defined some basic probabilistic principles and terms, the next

step is to describe the framework typically used to estimate reliability. The

description to follow is modeled after the original ideas developed by Hasofer

and Lind [78] and discussed by Wirsching and Wu [83]. Let g(U i ) = 0 be the

limit state function in which U i are the random variables. Each U i is

transformed to a reduced coordinate u  according to

ui = ( Ui — µ) l Ui (A.13)

where (pI o- are the mean and standard deviation respectively of Ui . Equation

(A.13) is then substituted into g(U i ) so that the limit state function is now

expressed in terms of the reduced coordinates, g l (ui ). The generalized safety

index A is defined as the minimum distance from the origin of the reduced

coordinates to the limit state surface. Thus in mathematical terms the problem

becomes the following constrained minimization problem
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Q = min V Z' i	 ( A.14)

subject to the constraint g l (ui ) = 0. The design point is also defined as the

point on g l (ui ) = 0 closest to the origin. Typically, various optimization

schemes are employed to solve the problem stated above.

The probability of failure P f can be easily determined using the safety

index Q and the standardized Normal cumulative distribution tables (0) as

P f = 0(-Q) (A.15)

If g(U i ) is linear in the Up and all U  are Normal, then P f is exact. Otherwise

P f is only an approximation.

Extensions to the above basic method have been developed by R,ackwitz

and Fiessler [79], Chen and Lind [80], and Wu [81-85] which provide

improvements to the estimate of Pf. These improvements allow for other

distributions than the Normal, and also nonlinear limit state functions. The

recent Wu method has proven to be the most accurate and also the most

complex.

In the process of solving the constrained minimization problem,

derivatives of the limit state function with respect to random variables are

required. Since the limit state function is typically a function of the structural

response (e.g. displacement, strain, stress, etc.), then by the chain rule of

differentiation, derivatives of the response with respect to the random variables

are needed. Since the latter derivatives are already determined in the process of

calculating the variance using the second—moment probabilistic finite element
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method, then they can now be used directly to estimate reliability. In this way

an efficient procedure for reliability estimation incorporating the probabilistic

finite element method is achieved.
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APPENDIX B

The Monte Carlo simulation method is considered to be a mature

subject, with widespread use since the onset of rapid computers. The term

"simulation", as used in the present context, is the technique of using a

computer to evaluate a given deterministic model numerically. Monte Carlo

simulation, in a general sense, can be defined as any simulation involving the

use of random numbers for solving certain stochastic problems. In the following

paragraphs, a brief description of the Monte Carlo simulation method is

presented. Most of the content of this review is based on the material in

reference [1].

Using the Monte Carlo simulation procedure, the computer is used to

generate n independent statistical samples for each random variable, which are

then fed into the model. Each sample can be thought of as an independent

deterministic experiment, which is processed by the model to yield the results of

the experiment. Each "sample" is drawn from a pre—selected probability

distribution, so that the sample distribution is appropriate. After the

simulation process, the output data is statistically analyzed to estimate the true

characteristics of the model.

Many probability distribution functions exist in the statistical literature.

In this study the random variables were all assumed to follow the Normal

distribution, whose probability density function (PDF) is defined as

1	 —(u — µU) 2

a 	 2c 
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where µU and au are the mean and standard deviation of the random variable

U. In the process of generating random numbers, the Uniform distribution

becomes important. This distribution gives an equal probability of any number

within the prescribed interval, and its PDF is defined as

fU(u) _ a	 if a < u < b	 (B.2)

0	 elsewhere

Therefore once independent random numbers have been generated from the

Uniform distribution, they can be transformed into random variables from any

other distribution. Many random number generators and distribution sampling

schemes exist in the literature, and the reader is therefore referred to [1].

When correlation between random variables exist, such as in the case of

a random field, then the independent random variable samples produced from

the random number generator/ sampling scheme must be transformed into

correlated random variable samples. In this study a method proposed by

Shinozuka [6] is used, in which the Choleski decomposition of the covariance

matrix is utilized to perform this transformation.

Since in the present work the mean and variance are the distribution

parameters of the structural response under study, then it is necessary to

estimate these moments using Monte Carlo techniques. With this in mind, the

sample mean is defined as
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n
E	 u.i

U(n) = i=1 n (B.3)

such that U(n) is an unbiased estimator of the actual mean /j U . The sample

variance is defined as

n

2	 E [u
i — O(n)] 2

s (n) =_i l	 n —	 (B.4)

such that s2 (n) is an unbiased estimator of the actual variance o- 2
U. The strong

law of large numbers guarantees if a sufficiently large sample size n is taken,

that U(n) N µU will be true. Thus it is obvious that the Monte Carlo

simulation method requires a large sample size to be accurate, so that when this

method is combined with the finite element method, considerable computational

expense is the result. For this reason the Monte Carlo method is not attractive

in performing probabilistic finite element analysis. However, it is considered

quite accurate when large enough samples are taken, and for this reason it is

used to check selected results of the second—moment probabilistic finite element

method.

198



REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Publicreporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other 

all 
of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports. 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (07040188), Washington, DC 20503

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 1993 Final Contractor Report

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Nonlinear Probabilistic Finite Element Models of Laminated Composite Shells

W U-510-01-50

NAG3-9336- AUTHOR(S)

S.P. Engelstad and J.N. Reddy

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
REPORT NUMBER

Virginia Polytechnic Institute and State University

Blacksbury, Virginia 24061-02
E-7579

9- SPONSORINGIMONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration

Lewis Research Center NASA CR-191069
Cleveland, Ohio 44135-3191

11. SUPPLEMENTARY NOTES

Project Manager, Dale A. Hopkins, Structures Division, NASA Lewis Research Center, (216) 433-3260.

12a. DISTRIBUTIONIAVAILABILITY STATEMENT
	

12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 24

13. ABSTRACT (Maximum 200 words)

A probabilistic finite element analysis procedure for laminated composite shells has been developed. A total Lagrangian

finite element formulation, employing a degenerated 3-D laminated composite shell element with the full Green-

Lagrange strains and first-order shear deformable kinematics, forms the modeling foundation. The first-order second-

moment techniques for probabilistic finite element analysis of random fields is employed and results are presented in

the form of mean and variance of the structural response. The effects of material nonlinearity are included through the

use of a rate-independent anisotropic plasticity formulation with the macroscopic point of view. Both ply-level and

micromechanics-level random variables can he selected, the latter by means of the Aboudi micromechanics model. A

number of sample problems are solved to verify the accuracy of the procedures developed and to quantify the vari-

ability of certain material type/structure combinations. Experimental data is compared in many cases, and the Monte

Carlo simulation method is used to check the probabilistic results. In general, the procedure is quite effective in

modeling the mean and variance response of the linear and nonlinear behavior of laminated composite shells.

14. SUBJECT TERMS

Finite element method, Nonlinear analysis, Probabilistic analysis, Composite laminates,

Shell structures, Structural reliability

98. SECURITY CLASSIFICATION	 18. SECURITY CLASSIFICATION 	 19. SECURITY CLASSIFICATION
OF REPORT	 OF THIS PAGE	 OF ABSTRACT

Unclassified	 Unclassified	 Unclassified

15. NUMBER OF PAGES

200
16. PRICE CODE

A09
20. LIMITATION OF ABS

NSN 7540-01-280-5500
	

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102



National Aeronautics and
Space Administration

Lewis Research Center
Cleveland, Ohio 44135

o ficlel Business
Penalty for Vrtvst• UN 9300

FOURTH CLASS MAIL

ADDRESS CORRECTION REQUESTED
U.s.MAI LfM^

Postage and Fees Paid
Nalional Aeronaulirs and
Space Admm,slrah()n

NASA 451

NASA


