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Abstract

An efficient method for computing the minimum distance and predicting colli-

sions between moving objects is presented. This problem has been incorporated

[Kyriakopoulos 90b, 91] in the framework of an in-line motion planning algorithm to

satisfy collision avoidance between a robot and moving objects modeled as convex

polyhedra. In the beginning the deterministic problem, where the information about

the objects is assumed to be certain is examined. If instead of the Euclidean norm,

L1 or L_ norms are used to represent distance, the problem becomes a linear pro-

gramming problem. The stochastic problem is formulated, where the uncertainty is

induced by sensing and the unknown dynamics of the moving obstacles. Two prob-

lems are considered: First, filtering of the minimum distance between the robot and

the moving object, at the present time. Second, prediction of the minimum distance

in the future, in order to predict possible collisions with the moving obstacles and

estimate the collision time.

Key"words: Collision Avoidance, Collision Prediction, Distance Functions, Ran-

dom Search.

1 INTRODUCTION

The trajectory planning problem for navigation of mobile robots or manipulation of

robotic arms has been traditionally treated for environments of stationary or deter-

ministicaUy moving objects [Brooks 86, Chen 88, Kant 88, Khatib 85, Kyriakopoulos

88, Lozano-Perez 87, Lumelsky 87, Wu 88]. This is done because in order to satisfy

task constraints and optimize over certain criteria, all the available apriori informa-

tion has to be utilized, and therefore most of the planning has to have a global



character.

However, robots should be able to perform their tasks e_ciently, not obstructed

by and not obstructing other moving robots,vehiclesor mechanisms with which they

have loose communication. Therefore, local decision making strategiesshould be

included in the menu of the robotic motion planning algorithms.

The differencebetween the global and localmotion planning strategiesismainly

found at the amount of processed information about the task and the environment

and at the considered time length of the plan. Both of these measures are significantly

largerfor the global case which is bound to be off-lineunder the state of the art of

hardware.

An on-line strategy should then decrease the amount of information processing.

Therefore itshould be based firston the already processed information which has ob-

tained the form of an off-lineplan,and second on some additionallocalmeasurements

and estimates of measures relatedto the obstructing moving objects. Such measures

have been proposed [Kyriakopoulos 90, 90b, 91] to be the minimum distance be-

tween the robot and the moving obstacles,and the expected collision time under

the current plan.

The calculation of both the minimum distance and the expected collisiontime

has been investigated in the past [Canny 86, Gilbert 87, Gilbert 89, Kyriakopoulos

89] but in the case where fullinformation about the description of the objects and

theirmotion is available.Unfortunately, thisisnot the case in realisticenvironments

where the information isbased on measurements by a sensing system and the motion

of the objects isnot known but just observed. The uncertainty introduced by both

factors should be included in the calculation procedures.

In this paper, the major contribution is the treatment of uncertainty introduced

by both the sensing process and the unknown attitude of the moving obstacles.The

distance estimation problem is posed as a filtering problem. Finally, the issue of colli-

sion time prediction is covered in depth. Such a process is computationally expensive.

If the Lz or Leo are used, then the distance problem is linear programming as opposed

to quadratic for the case of the Euclidean norm. Linear programming for problems

of moderate complexity, such as the one at hands, performs considerably better than

quadratic.

A statement of the problem in the deterministic case is given in section 2 in order

to introduce the framework under which analysis is going to be performed. Section 3

contains the problem formulation of the stochastic case and a proposed solution for
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the minimum distance estimation. The collision time prediction is given in Section

4, while some example case with simulation results is presented in Section 5. Finally,

Section 6 includes comments on the obtained results, and some discussion on issues

that could constitute topics of future research.

2 DISTANCE FUNCTIONS- THE DETERMI_-

ISTIC CASE

2.1 Definitions

The distance between two objects at the time instant t is defined [Gilbert 85] as

d(0 = _.n{ll=,- z-ill: z, ,eK,(_),_i _ Ki(_)} (2.1)
zt3

where K_(t), Kj(t) axe compact sets of cartesian points representing the two objects.

Based on the above definition the necessary and sufficient condition so that no

collision occurs between the two objects would be

d °- d(t) < 0 Vt

where d ° > 0 is a safety constant.

Sets K_(t), Kj(t) are described by an equation of the form

K(t) = RCt) .C + {T(t)} (2.2)

where

C C _a, is a compact set and describes the shape of the object

R(t) E _a×a, is a rotation matrix

T(t) E _'_ is a translation vector.

The basic assumption adopted in this work [Kyriakopoulos 89] is that set C rep-

resenting the shape of the object is a convex polyhedron described by

C={x/zE_A.x<_b, A E N"_×3, b E _m}. (2.3)

A point x E _ after it is rotated and translated by R(t) and T(t) respectively, it

comes to a new point x' where

x'= R(t). _ + T(t).



!

Therefore K(t) since itcomes from rotation and translationof points = E C can be

described as

Kit ) -- {x/z E _ 9 A . R-'(t) . z < b- A. R"'it ) .Tit)}.

2.2 Representations of distance

Based on definitions i2.1) and (2.3) and on equation (2.2), the problem to find the

minimum distance between two solids

C_ = {x/x E _ 3 A, . x <_ b,, A, E R "_x3,b,E_R"}

Co - {y/y E _Z 3 Ao'y <_ bo, ,40 e _XS, bo E Rt}.

representing the robot and an obstacle respectively, is recasted to a mathematical

prograxnming problem of the form:

d(t) = rmn_._ llx - Yll

8.t A,(t). =(t) < b,(t) (2.4)
do(t), y(t) <_bo(t)

where

a_(t) = g,. Rz,(t)

b,(t) = b, - A, . Rzl(t) • T,(t) (2.5)
Aoit ) -- A°. RZx(t)

bo(t) = bo - Ao . Rzl(t) • To(t)

and IL(t),T,(t), Ro(t), To(t) are the rotation and translation matrices for the robot

and the obstacle describing their current configuration. In view of (2.4) and (2.5),

the distance between the solids C, and Co can be viewed as a function of their

configuration [Gilbert 85] described as a quadruple P = (Ro(t),T°(t),tL(t),T,(t)):

d = diP ) :P = _._×3 x ,_Ra x _.3x3 x _ --* R + (2.6)

and therefore a domain 7)+ of d can be defined as:

_,+= {P • v: a(e) > 0} (2.7)

The norm used in mathematical program (2.4) was not explldtly defined here. It

can be any norm because norms in _R" are equivalent. Although the Euclidean norm

is the most natural to our intuition, other norms such as ]1" ]l, and I[" IIoo can also



be used becauseof their computational efficiency.This comes from the fact that the

computation of the Euclidean norm requires the solution of a quadratic programming

problem, while this of II"Ill and II"Jloorequires solution of linear programming prob-

lems. An analysis of the above issues is presented in appendix A [Kyriakopoulos 89].

In the analysis to follow, the minimum distance is going to be associated with no

specific norm. In case that the kind of norm is significant then it will be indicated

with the form of a subscript e.g dl, d2, doo.

3 DISTANCE FUNCTIONS - THE STOCHAS-

TIC CASE

3.1 Sources of uncertainty

From (2.4) and (2.5) becomes clear that the computation of the distance between

two objects requires accurate knowledge of the parameters describing the shape of

the objects Co and C_ and these describing the configuration of them as represented

by the quadruple P. Accurate knowledge of the solid models Co and C,, and of the

configuration parameters R_(t),T,(t) of the robot is assumed herel The uncertain

information considered here is the information about the configuration Ro(t), To(t) of

the moving obstacle Co. Future work is going to incorporate uncertainties in a more

general fashion.

The uncertainty of the kinematic information of the moving obstacle Co is partially

due to the way that it is extracted. For example, in a measurement process based

on a vision system the uncertainty is mainly introduced by two kinds of noises: first,

the image intensity noise from the environment, and second, the quantization noise

of the image array of the camera.

The most eminent source of kinematic uncertainty is the lack of knowledge about

the- "attitude" of the moving obstacle. In other words the lack of knowledge about the

time evolution of its cartesian position and orientation and their first and second order

time derivatives. The assumption made here is continuity of position and orientation

and their velocities. The accelerations were assumed to be constant in time during

every sampling interval and their magnitude is going to be estimated.



3.2 Estimation of kinematic parameters

Naturally, the assumptions made about the models of uncertainty are necessary in

order to enable the creationof models of motion of the moving object,and the sensing

process. The models presented here are for the two dimensional case. Future work

isgoing to incorporate the full3-D case which adds complexity just to the formulas.

On the other hand, the 2-D case perfectlyserves the navigation problem considered

here.

The equations of motion of the moving obstacle are :

_=_ p_=_ e=vo

b= = a= b_ = ay be=as (3.1)

6= = 0 &y = 0 &s = 0

where

p=, p_, ps define the cartesian position and orientation in 2-D

v=, v_, ve are the translational and rotational velocities and

az, a_, as axe the translational and rotational accelerations.

The above equations constitute a set of state equations, and can be written in a

matrix form:

= A. X (3.2)

where X = [p= v= a= p_ v_ a_ 0 vs as],A E 9_ xg.

The measurement model is described 1)3• an equation of the form:

z = h(.X:') + v (3.3)

where z 6 _" is a vector of parameters of several geometric features of the object.

These parameters are extracted by the sensing process (e.g vision). The dependency

of z on X is given by the, nonlinear in general, function h(X). The corrupting noise v

is assumed to be white and Gaussian, and independent of X. _ assumption about

the Gaussian property of the noise although not accurate, is attributed to the Central

Limit Theorem, because the noise under consideration is as an aggregation of many

independent sources of noise [Durrant 88]. The mean and the covariance matrix of

noise are respectively

E{v} =o

C(,, v_)= E(,,_. vi)= R_. &j.



A variation of the Kalman filterproposed [Athans et.al68] may well be used to

get a close to optimal estimate _" of state vector X. The selectionof this specific

filterwas clone because itisa second order filterwhich normally gives better results

in terms of bias errors.The utilizationof Kalrnan filterprovides, at every instant t_:

• f((tJti), the optimal estimate of state X based on measurements up to and

including tl,and

• P(ti/t,) the error covariance matrix.

The prediction equations for the future, based on the information up to and in-

cluding tl, are

.2(tit,) = t > t,
(3.4)

P(tlt,) = A. P(t, lt,) + P(t, lt,) . A r

The above Ricatti equation does not induce any kind of computational difficulty

because it is homogeneous and can be solved analytically.

3.3 Bounds of distance functions

From (2.6), it becomes evident the fact that the dependency of d on quadruple P =

(P_(t),To(t),R,(t),T,(t)) implies its dependence on the motion vector X. This comes

from the fact that Ro(t) and To(t) explicitly' depend on X. In fact, in the 2-D case:

cosO -sinO ] (3.5)Ro(t) = Ro(0(t))= sinÜ cos8

To(t)=To(p=(t),t,y(t))=[ P=]p_ (3.6)

Assuming that R,(t) and T,(t) are well known at t, the distance d becomes a function

of the random variable X, or :

d = d(X)

and as a matter of fact d is a random variable, too. From the discussion at the end

of section 2.2 it becomes obvious that d(X) is not given in a closed form, but it is

an outcome of a mathematical programming stage. Additional investigation [Clarke

83, Gilbert et.al 85] has shown that d although uniformly Lipschitz continuous, is

not differentiable everywhere on its domain 7_+ defined by (2.7). However, P+ can

be viewed as a subset of _" and by Rademachers theorem [Clarke 83], function



d(X) is differentiable almost every where (a.e), i.e except on a subset of points with

Lebesgue measure zero. From the geometry of the problem, we can easily see that

the set of points of nondifferentiability is not dense on _ and therefore there exist

open neighborhoods where d(X) is differentiable everywhere and analytic. In the

discussion to follow, this is going to be mathematically more evident.

As a matter of fact, function d(X) can be approximated by a Taylor expansion

up to the second order (due to the Gaussian noise) around the expected value ._" of

X:

O_d(R)
ad(_') _(X R) rd(X) _ d(R) + (X - R) r • _ + - • •(X - R) (3.T)

Taking expected values in both sides of (3.7),

E(d(X)) >_ d(X)+ 2.,m,_ _ ,. tr(P(t)) (3.8)

where A,,,,_(-) denotes the minimum eigenvalue of a matrix.

In order to make possible the utilizatiou of (3.8), the Hessian of d(X) has to be

explicitly found, in order to get the eigenvalues in closed form. This would be more

efficient for an on-line distance estimation scheme.

3.4 Derivatives of distance functions

The analysis that follows considers the 2-D case and is consistent with the develop-

ment of [Gilbert et.al 85]. The 3-D extension is straightforward.

Define r/_ : 7 '+ x Co × C,..--* R + by:

_.(P,wo,_,) = IIRo.wo+ po- R_. ,0, - p, llo (3.9)

where a defines the kind of used norm. Let

L= [L_]=R°'w°+p°-R''w'-p'L_

Case a = 2: In this case

and

r12(P, wo,w,) = (L_ + L_) _/2

Vx_(P, _o,_,) = (=,r__o,o, z_, o.o.
rt2 r/2

-M_. L_ + My. L_

972

,0,o)r (3.1o)

8
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where

Figure 1: Singular Configuration

M_ = w_ . sinO + w_, • cosO

M, = w_. cosO - w_ . sinO

W o = [W_ W_o]T

the Hessian can be found by further differentiation and is given in appendix B with

its eigenvalues.

Based on [Clarke 75, Gilbert et.al 85] it can be proved that in the case that P is

nonsingular i.e when

w(P) = ((wo,w,) _ co × c, : ,7_(P,Wo,W,)= a(P)}

issingleton,then

Vxd(X) = Vx_(e, w;, w;)

(3.13)

where

D (w;,w;) _ w(P).

A typical case of singular configuration is demonstrated on figure 1.

Case a -- 1: In this case

ox(P,wo,w,) -[L=I + IL,,I

9
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and

_ n n__
Vxrh(P, wo, W,.) f (sgn(L_),O,O,sgn(Ly),O,O,._,-,-, (3.14)

where

o,7__.._._= -(w_g,,(L_,) + w_gn(L,)) . _ir,O+ (_g,',(L,,) - _g_(L=)). co_0 (3.15)
ao

Similarly, the Hessian is very easy to obtain and is given in appendix B with its

eigenvalues.

In appendix C the following theorem is proved:

Theorem 3.1 :If

and

dl(P) _- mi'n{ll=,- zjlll :
t ,3

.., _ g,(P),zj _ KAP))

rh(P, Wo,w,)= IIRo.wo + po- R,..w,- p, lll

W(P) _- {(Wo, W,.) E Co × C,. : rh(P, Wo, W,.)= dx(P)}

is singleton, then

where

Vxd(X) = Vx.q,(P,,,,;, ,,.,;)

(_;,_o;) e w(P).

Caq¢ a = _x_: In this case

,7=(P,wo,w,) = m_x{IL=l,IL_l) (3.16)

and

o,o.o,o.o, o,0]"= [o,o,o,
if n_,(P,Wo,W,) = IL=I

if n=(P, Wo,W,) = IL_l
(3.17)

where

o_._.._= ]" _gn(L=)•{-w_ ¢o_e- wgsin0)

The Hessian is given in appendix B with its eigenvalues.

In appendix C the following corollary is proved using the theorem 3.1 :

Corollary 3.2 :If

o_(P, wo,W,3 IL=I
if w(P, wo,_,) = IZ=l

(3.18)

d_(P) = min{ll-_- _jll_ :
t ,3

z, _ K,(P),_j e gAP)}

10



and

[L_I Ro- + -R_. -

I

L = L_
Wo po w, p_

d

_(P,_o,_,)= llLll_= max{IL.l,IL_I}

_(L) = argmin{IL_[,[Lul }

w(P) _ {(Wo,_Or)eCo× cr: .=(P, Wo,w,)= d=(P)}

axe singleton, with W(L) = {e) and W(P) = {(w_, w:).}.thetx

Vxd(X) = Vxe'(P,w:,w:).

3.5 Distance Estimation Algorithm

In summary, the steps of the distance estimation (prediction) algorithm are given:

• KALMAN FILTER provides f((t/ti), P(t/t_) t > ti( equation (3.4))

• from a mathematical programming stage d2(X) (or dt(X')) is obtained ( equa-

tion (2.4))

• from one of (B.1),(B.2),(B.3) ,_,,i_ \ ;_x2 ] is obtained,and

• from (3.8) a lower bound for E(d(X)) is obtained.

4 PREDICTION OF COLLISION TIME

The prediction of collision time is going to be based on two kinds of information.

First, the future motion of the robot which is preplanned and therefore accurately

known. Second, the motion of the moving obstacle, as can be "optimally" predicted

by (3.4). It is worthwhile noticing the fact that distance, as a function of time, is

not necessarily differentiable. Additionally, the future time-evolution of d(t) is not

convex. Finally, we are not interested just in a local minimum of d(t), but in the first

time instant tc that d(t) becomes zero, or mathematically,

tc = inf {d(t) = 0}
t_[t+.t,+73

(4.t)

where t; is the present time, and T is the time horizon of interest.

II



The characteristics of the above problem do not permit the use of stochastic

approximation methods. Additionally some methods that have recently appeared,

[Gilbert 89] although they give accurately the collision time based on the considered

information, they seem to have computational problems that do not enable their use

in on-line schemes. For those reasons, another method, the accelerated expanding

subinterval random search (AESRS) [Saxidis 77] was utilized with modifications

to accommodate the problem. The convergence properties of this method have well

been investigated, and its performance experimentally verified. The basic idea of

AESRS is the following:

Obtain the lower bound d(t/) from (3.8) and set d,_i,_ = d(ti). Split the interval

fl = [t/, t_ + T] of concern in N subintervals fl/C 12 such that I2i f_ f_j = 0, i # j .

Define a probability density function (pdf) p(p) over fl by:

N N

p(_) = _ = _(k)Vk(_), _k_ a_, E _k= 1 (4.2)
k_l k_l

where each Pk(_) is defined only on f_k. The pdf's Pk(_k) can be chosen to be any

distribution, but in this work were chosen to have uniform distribution for practical

reasons. Initially _(k) = _0(k) = _r"

From (4.2) a random time instant t_ E 12 is obtained, and from (3.8) a lower

bound d(t,) is obtained for the distance. If d(t_) < d,,,i,, then it is assumed to be a

``successful" iteration. The weights _i(k) are updated by a stochastic approximation

reinforcement algorithm, based on the frequency of "successful" iterations in the

particular k -th bin,

< d,,.,in =_
d(t,) -

> drain =_

{ Z/(k)= b,_,(k)+ 3",[1- Z,_,(k)]_i(j) = b__t(j) + "r#_i-l(j)

_i(k) "- /_i_1(]¢) k -- 1,..,N

j # k (4.3)

In the above equations 3"i and _0(k) must satisfy Dvoretzky's conditions for conver-

gence
i i

2
lira 3", = O, il.im _ 3'.i = c_, Jim _-ts < _, [l_o(k)ll < oo

'_ "_ j=l _oo j_l

therefore 3'i -- ! and fl0(k) = -_.
s

The definition of t¢ in (4.1) suggests that the following amendments to the above

algorithm should be done to achieve better performance.

A) Consider figure 2. The present time is ti = 2sec and the time hodzon of

interest is Th = 6_ec. A histogram of N = 12 bins represents Pk(#k), while the dashed

12
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llne is d(t/t, -- 2) t E [2, t, + Th]. The lower bound of the predicted distance d(t/t,)

is computed using (3.8) not everywhere but only at random instants t_ produced by

Assume that a trial time instant t, - 7sec is randomly produced by the probability

of (4.2). Then d(t_/ti) = 0. Then a candidate collision time t_ = t, = 7 has been

found and the search interval fl is modified to fl = [t_ = 2, G = 7]. Then the new

search interval is being divided in N subintervals and therefore a finer grid is obtained

(figure 3). Since the grid becomes finer and finer the uniform distribution for pk(_o_)

is satisfactory. The shape of the distribution of _(k) k = 1, .., N in the new interval,

is similar to this of the previous distribution providing the search with "memory".

B) Consider figure 4. The present time is t = 3-, all the information processing

has been done based on sensing info at t, = 2sec and the time horizon of interest is

T_ = 4aec. A histogram of N = 8 bins represents p_(_o_), while the dashed line is

d(t[ti- 2) t E [2, t_ + Thl.

When a new measurement d(t_+_ = 3) arrives (figure 5), the distribution of/_(k)

for the bins that available from the previous search (i.e [3,6] in figure 4), is not

changed because due to the Lipschitz continuity of d(.) w.r.t. ¢, small changes of

$(ti/t_) produce, bounded changes of d(t,./t_). The distribution over [ti, t_+_] (i.e of

14
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at time t = 3 +.

time interval [2,3] in figure 4) is uniformly distributed along the new extension (i.e

time interval [6,7] in figure 5).

In this search dl was used, as measure of distance, because it is computationally

faster, while it gives the same collision time as du.

Finally an issue of interest is the selection of the time horizon T of search. It

should be based on a number of criteria depending on safety and performance issues.

In this work a reasonable and safe selection was considered:

IT=n. , V= d(ti+1)-d(ti)

where n is a positive integer.

5 SIMULATION RESULTS

The case study considers a mobile robot endowed with a vision and motion control

system and a moving obstacle (figure 6). The vision system "traces" the edges of

the moving polyhedron representing the obstacle, and the parameters of their math-

ematical description, constituted the measurement vector z of equation (3.3). The
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Figure 6: Environment with a mobile robot and a moving obstacle

measurement noise v was assumed to be white, Gaussian, with zero mean and diag-

onal covariance matrix with diagonal elements equal to 0.1.

The Kalman filter output behaved well especially in the straight line motions. The

lower bounds of E(d2(X)) calculated by (3.8), are plotted in figure 7(a), while the

error is plotted in figure 7(b). As expected, the lower bound underestimates and is

close enough to the actual distance. The maximum absolute error is 7cm in a range

of actual distances of 20m.

The collision time was calculated using the modified AESRS that was outlined in

the previous chapter. As a metric, dl(t) was used. Therefore using a SUN 3-150 we

were able to perform 30 iterations/sec. At time instants t = 4, 5, 6 sec the collision

time was found to be tc = 7, 6.8, 6.69 sec respectively, while the actual collision time

is tc = 6.63 sec.

6 DISCUSSION- FUTURE RESEARCH

A theoretical analysis of the distance estimation and collision time prediction prob-

lems between moving polyhedra was presented along with simulation results. The

L6
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whole analysis was based on an uncertainty model including sensing and attitude un-

certainty.The computational efficiencyresultingfrom the use of Li and Loo metrics

aud the heuristicamendments to AESRS was verifiedwith a simulation study. Future

research should include application of the above resultsin real time systems. Such

an effortiscurrently in progress in the NASA-CIRSSE Laboratories of RPL

The above analysis should be extended for the case of nonconvex objects that can

be decomposed to a number of convex ones. Further investigationisalso needed for

the calculationof the collisiontime. Although the modified AESRS performed well,it

reallymakes big use of CPU. Therefore, eithersome parallelizablescheme of AESRS

should be developed.

Decision schemes for collisionavoidance, using the information calculated here in

the framework described in the introduction have been reported [Kyriakopoulos 90b,

91].Further applicationsare under development and resultsare going to be reported

in the near future.

APPENDIX A

In (2.4) the distance computktion problem between two convex polyhedra was

stated as the mathematical programming problem:

d - min_._ I1=- yll,

s.t A,.z<b,

Ao .y <_ b°

where integer a defines the kind of sought distance, z, y E _, A. E _,.xz, b_ E _"_,

Ao E _t×3, bo E _l. Integers m, l are the numbers of the sides of the polyhedra

representing the robot and the obstacle respectively.

If we set z ix T yT]T L [bT T T= = bo] , O = [Z3x3

M = I A_ 0,,,x3

[ Ot_3 ._

-I3x3] (I is the identity matrix),

]
then the above problem is written in the standard mathematical programming form

d = rain: lID- zl[= (A.1)
s.t M.z<L

m

a=2

Mathematical programming problem (A.1) is equivalent to

d= min= zr . Q . z

s.t M.z<L

18



with Q = D T •D E _xe and becomes a quadratic programming problem. Q is

positivesernidefinite.Therefore more than one minimizing vectors may exist,with

allof them corresponding to the same minimum.

a=_.=_].I

Ifa new vector of unknowns w 6 "_ isdefined

= IDa.:I=

with Di the i-th row of D, then the mathematical programming problem (A.1) is

equivalent to

d= minz,,, 3, Ei=I Wi

s.t wi >_ Di • z i = 1,2,3

w_ >_ -Di. z i=1,2,3

M.z<L

and becomes a linearprogramming problem of 9 variablesand m + I+ 6 constraints.

More than one minimizing vectors may exist,with allof them corresponding to the

same minimum.

a_---OO

Ifa new unknown w E _ isintroduced, such that

w = max IDi" zl = max Izi- Y'I
i=1,2"3 /=1,2,3

with Di the i-th row of D, then the mathematical programming problem (A.1) is

equivalent to

min z,_,w

w>__Di.:

w > -Di" z

M.z<L

i = 1,2,3

i = 1,2,3

and becomes a linear programming problem of 7 variables and m + I + 6 constraints.

More than one minimizing vectors may exist, with all of them corresponding to the

same minimum.

APPENDIX B

In this appendix, the derivation of the eigenvalues of the Hessian of the distance

function is presented for two cases of norms.
i

a = 2: If G = M_:L_, + MyL= then direct differentiation of (3.10) gives:

02rl2(X) 1 [ L_-L_L_-LvG ]
= --. -L,_L. L= L_G

OX 2 ,73 -L_G L=G G(G- _)

19



Setting F =-Gt/_ and B = _/_(G- I)-G 2 ,

(o%2(x),_ -B - (B2- 4. r)½
,X,,,i., OX 2 j = 27132 < 0

a=l: Direct differentiation of (3.13) in conjunction with (3.15) gives:

(B.1)

0

= 0

0

0 0

0 0

where

0% -(,qso,.,(L=)+ ,,,_o_o,',(L,,))co_O (w_son(L,,) ,.,,':son(L.))si.O
082

and therefore

f0%,(X)_ minD, 0=ra_i._ _-_ )= "-_'.-
a=oo: Direct differentiation of (3.16) in conjunction with (3.18) gives:

(B.2)

0

= 0

0

0 0

0 0

where

0271oo = S sOrt(L=). {wo=sin8 -w_ cos8}

002 [ sgn(L_) {-w=osinS-w_ocosS}

,=(p,_o, _.) = IL=I
noo(P,_o,w.) = IL=I

and therefore

_,.,,.(o",oo(x) _,oo}ax. 2 ) = rninfo, _ . (B.3)

APPENDIX C

Some definitions, theorems and lemmas that axe going to be utilized in the proof

of the theorem are presented here. Most of those results are based on [Clarke75]

[Clarke83] [Cilb851.

Consider f : O --+ _, be locally Lipschitz, where O C _". We say that f admits

a Frechet derivative XYf at x E 0 if

lim f(x + 6x) -f(x) =< V f, 6x >
8-o II&ll
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where <, > denotes the inner product. The usual (one-sided) Directional deriva-

tive of f at z in the direction v is

f'(z;v) = lira f('_ + tv) - f(z)
riO t

The Generalized gradient of f at z is

of(z) = co{w: vf(z,) --, w, vf(z,) exists, z, -, _}

where co denotes the convex hull. Finally the Generalized directional derivative

f°(z; v) is defined as:

f°(x;v) = lira

y---*z

t£O

supf(z + tv) - f(x)

Definition C-l: A function f(x) is said to be regular at z provided:

(i) f'(x; v) exists Vv.

(ii) f'(z; v) = f°(x; v) Vv.

Proposition C-2: Let f be Lipschitz near z then f is regular at z.

Proof." The proof is given in [Clarke83](proposition 2.3.6).$

Proposition C-3: Let f : X --* _, with X finite dimensional. Then Of is upper

semicontinuous Vz E X.

Proof: The proof is given in [Clarke83](proposition 2.1.5).1.

The following theorem is key to our development

Theorem C-4: Let U be a sequentially compact space, and let g : _n × U ---*

have the following properties:

(a) g(z, u) is upper semicontinuous in (z, u).

(b) g is locally Lipschitz in z, uniformly for u in U.

(c) g_(z,u; .) = g'_(z,u; .), the derivatives being w.r.t z.

(d) a_g(z, u) is upper semicontinuous in (a'. u).

If we let f(x) = m_x._u{g(x,u)) then:
(1) f is locally Lipschitz.

(2).f'(z; v) exists.

(3) f'(z;v) = f°(z;v) = max{¢, v : ¢ E i)_g(z,u),u • M(z) }, where M(z) = {u •

U: g(x,u) = f(z)}.

(4) Of(z) = co{0,g(z, u):u • M(z)}. (co(.) denotes the convex hull of a set).

Proof." The proof is given in [Clarke75](Theorem 2.1).1.
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Finally, the following proposition is the last pieceof the proof under development.

Lemma C-5: The following are equivalent:

(a) Of(x) = {C}, is a singleton. (b) _Tf(.r) exists, _7f(z) = (, and _Tf is continuous

at x relative to the set upon it exists.

Proof: The proof is given in [Clarke75] (Proposition 1.13).1_

Lemma C-6: The following results are true for

 l(P, too,w,) = IIRo.Wo+ po- •to, - p, ll,

a)rh(P, too, w,) is continuous and convex on its domain.

b)rh is Locally Lipschitz.

too, = wo,
d)OpTh (P, Wo, w_ ) is upper-semi-continuous.

Proof." (a) and (b) can be easily derived from the definition of Th.

(c) From C-2 r/1 is regular, and from definition C-1 QED.

(d) The domain of rh can be viewed as a subset of _. From proposition C-3 the

sought result is obvious. I-

Proof of Theorem 3.1 : Lemma C-6 in conjunction to theorem C-4 gives the fol-

lowing results for function

d_(P) = min{rh(P, Wo, W_) : Wo E Co, W, E C_}

1)dl is locally Lipschitz.

2)dl'(P; P') exists.

3)dl'(P;P') =rain{< Vp_l(P, wo, w_),P' >: (Wo, W_) e W(P)} where

W(P) = {(wo, w,) E Co × C_ :vl(P, wo, W_)=d_(P)}

4)Od_(P) = co{ < Verb(P, Wo, wr),P' >: (w,,, w,) E W(P)}.

From lemma C-5 the following statements are shown to be equivalent:

Odt(P)=(_},singleton; X7d_(P) exists; Vdl(P)-_.

Result

When the configuration of Co and C, is such that there is only one pair of points

(wo. , w:) minimizing dr(P) (i.e when W(P) is singleton) then according to the above

results Vpdt(P)= _7p_t(P, wo,w;). Q.E.D.I.

Before continuing with the proof of corollary 3.2 the following lemma is proved:

Lemma C-T: Let fl,f2 : X _ R. with X finite dimensional. If fl,f2 are

continuous, convex and Lipschitz continuous then the following results are true for

"22



Ih

function f : X ---* R defined by

f(z) = max{f1(x),f2(z)}

a)f is continuous and convex on its domain.

b)f is Locally Lipschitz.

c)f:(x;.)= fax;.)
d)O_f(x) is upper-semi-continuous.

Proof."

(a) The coninuouity of f is obvious. Consider z E X such that z = A. xx + (1 - A) -z2

where zl, x2 E X. Then f(z) = .£(z) i _ (1,2}, but since f_ is convex,

f (A. x, + (I - A). x2) = f(z) = f,(x) <_A. fi(x,)+ (I - A). fi(x2)

but since f(zj) > fi(xj) i,j E {1,2},

f(A. x, + (1 - A) .x2) <_,\.f(x_) + (1 --A). f(z2).

Thus f isconvex.

(b) Since fi is Lipschitz then there exists constant cl > 0 such that

I/,(_) - :,(v)l <__11_- vllx w,v _ x (c.1)

where II. IIx is the induced norm of space X. Assume that

f(x) = f,(z) (C.2)

f(Y) = fj(Y) (C.3)

if i = j then f/(y) = fj(y). Otherwise, fj(y) > fi(z) (from C.2). Therefore, in general

fi(Y) -- fj(Y) <- 0 (C.4)

Consider now,

1(_) - f(v) (c.:__,_):_(_)_ L(v) = A(_) - f_(v)+ f_(v) - fay) (_') A(x) - f_(v)

therefore

{C.1)

If(z) - f(Y)[ < [f,(x) - f,(yl[ < _llz - vllx ie {1,2}

23



and

If(=)- f(y)l< cll=- yllx c= max
-- i=I,2

thereforef isLipschitz.

(c) & (d) are proved the same way as in lemma C-6@

Proof of Corollary 3.9 : We follow the same steps as in the theorem of Theorem

3.1.

From Lemma C-7, Theorem C-4 and Lemma C-5 we come to the conclusion that

when the configuration of Co and C, is such that there is only one pair of points

(w_, w_) minimizing dc_(P) (i.e when W(P) is singleton) then

Vpd,(P) - Vprloo(P, w;, w_.). (C.5)

Similarly, when L(P, w_, w_.) = [L, L_] T is such that only one of L,, L_ (denote it

as _') maximizes r/(P) (i.e when W(L) is singleton) then

v:l.(.p,w;, w;)= vpe'(P,w;,_;). (c.6)

From (C.5,C.6) the following result is obtained

Vpd,(P) = v _,e'(P, w;, w:).
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