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The objective of this delivery order was to make modifications in in-

frared radiative transfer modeling programs and inversion techniques for

remote sensing of the Earth's atmosphere and planetary atmospheres. The

work on this delivery was based on the involvement of several UAH stu-

dents, working primarily under the supervision of Dr. M. Abbas of MSFC.

The periods worked by the students were:

Student Name

C.-H. Lin

C. Keffer

R. Cleary
C. Noun

A. Joshi

K.-H. Kim

I. Sawaneh

Period Worked

10/90-12/90

6/91(2 weeks)

12/91-5/92

12/91 and 6/92

2/92-5/92

2/92-9/92

6/92-9/92

The purpose of this work was to assist with the development of an-

alytical techniques for the interpretation of infrared observations. We

have (1)helped to develop models for continuum absorption calculations

for water vapor in the far infrared spectral region; (2) worked on models

for pressure-induced absorption for 02 and N2 and their comparison with

available observations; and (3) developed preliminary studies of non-local

thermal equilibrium effects in the upper stratosphere and mesosphere for

infrared gases.

These new techniques were employed for analysis of balloon-borne far

infrared data by Traub's group at the Harvard-Smithsonian Center for As-

trophysics. The empirical continuum absorption model for water vapor in

the far infrared spectral region, and the pressure-induced N_ absporption

model were found to give satisfactory results in the retrieval of the mixing

rations of a number of stratospheric trace constituents from balloon-borne

far infrared observations. A presentation on this work was presented at

the Spring meeting of the American Geophysical Union, and a full paper



has beenaccepted for publication in the Journal of Geophysical Research.

Copies of the presentation abstract and the accepted paper are attached.
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Abstract

We retrieve mixing ratio profiles of Os, H21°O, H2170, H2XSo, HF, and HC1 from far-

infrared thermal emission observations of the limb in the 80-220 cm- 1 spectral region._ The

observations were made with a balloon-borne Fourier-transform spectrometer as a part of

the 1983 Balloon Intercomparison Campaign (BIC-2). A subset of the data was analyzed

previously using the method in Traub et al. [1982, 1991]; in the present paper, we_mm an

alternative method of calibration and analysis, given in Ab/_s et a/. [1985]. The retrieved

constituent profiles are compared with the measurements made with other instruments on

the BIC-2 flights. The results for the concentrations of H21_O and H21sO obtained in this

study indicate no isotopic enhancement or depletion with a standard deviation of about

20%.

1. Introduction

Far-infrared thermal emission spectroscopy provides a powerful tool for studies of

stratospheric thermal structure and constituent distributions,via the numerous rotational

transitions in this spectral region. Stratospheric limb observations of thermal emi_ion

spectra having high spectral resolution and high sensitivitycan be analyzed to retrieve

verticalprofilesof temperature and constituent species abundances. Some recent r_u_ts

from far-infraredspectra obtained with high altitude balloon-borne instruments include:

H20, H2170, H2XsO, HDO, 160160180, 160180180 [Abbo_l et 0.[., 1984b, 1985; Carli and

Park, 1988; Dinelli et al., 1991; Guo et al., 1989; Rir_sland et a/., 1991]; CO [Abbas et al.,

1988]; HCN [Abbas et al., 1987b, Carli and Park, 1988]; HF, HCI [Carli and Park, 1988;

Park and Oarli, 1991]; O(aP) [Lin et al., 1987]; HOel [Chance et aL, 19891; HO,, OH,



HsO2 [ Traub et al., 1990; Chance et al., 1991a; Park and Carli, 1991]; HBr [Park et el.,

1989; Traub et al., 1992].

After the surprising measurements indicating an enhancement in stratospheric heavy

ozone concentrations [e.g.,Maursberger, 1981, 1987; Ab_z_s et aL, 1987c; Gol_r# et

al.,1989], there has been a considerable amount of interest in observing the isotopic

distribution of other constituents, in paxticulax of water vapor. Theoretical considerations

[Kaye, 1987, 1990] indicate a small depletion in the stratospheric H21sO distribution

relative to normal water vapor. Measurements by Carli et _. [1990] from far-infrmmd

thermal emission observations and Rinsland et aL [1991] from middle infrared solar

absorption observations showed no enhancements or small depletions indicating a_reement

with the theoreticalpredictions. Inconsistent with with the two latterinvestigations,the

results obtained by Guo et aL [1989] showed substantial relative enhancements in the

H21So concentration.

We report here the resultsof an analysis which was carried out with two objectives

in mind. The firstobjective isto analyze the existing set of 1983 far-infraxedspectrL for

Os, H20, HF, and HCf using a method of calibration,angle determination, and anaJysis

which was developed independently from that originallyused on a subset of thisdat_ The

second objective is to analyze the spectra for HslZO and HslSo, which has not been done

previously,and to compare these resultswith those of other investigations.

2. Observations

Fax-infrared stratospheric limb thermal emission spectra were obtained with a double-

beam Fourier-trmnsform spectrometer [Traub et aL, 1982, 1991] launched on a bMloon

flightfrom Palestine, Texas, on June 23, 1983, as part of the Balloon Intercomparimon

Campaign (BIC-2). The spectra analyzed in this paper were obtained between about 10

am and 10 pm localtime at a floataltitude of about 37 kin. The fieldof view isa circular

beam with 0.3deg fullwidth at half maximum, which corresponds to a verticalresolution

of about 2 km at the limb. The telescope pointing direction is controlled in a_imuth to

about ldeg by the gondola, and in elewtion by a single-axisstabilization system which

employs a gyroscope for short term reference (gondola sway) and an inclinometer for long

term reference (gondola tilt). --

The usable spectral range is about 80 to 220 cm -I, and the unapodized spectral

resolution is0.032 cm -l . A complete limb-scan sequence comprises spectral observations

at seven angles: a black-body reference,a high-elevation background scan, and fivescmmB

neax the limb with tangent heights from 21 to 37 kin. Three segments of the observed,

calibrated,summed spectra from a complete limb sequence axe shown in Figs. 1-3. Selected
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spectral features due to the rotational lines of Os, H21eO, H2170, H21sO, HF, HCl, and

O2 are identified.

3. Calibration and Angle Determination

One purpose of the present paper is to give an alternative analysis of the observations

discussed above. In this section we discuss common and different features in both the

calibration and the angle determination.

That part of the calibration, which is common to both methods, is as follows. Raw

spectra are intensity-calibrated by subtracting a "cold" background spectrum and dividing

by the difference of a "hot" reference blackbody spectrum and the cold spectrum. The cold

spectrum is derived from an upward-looking atmospheric spectrum; the narrow emi_ion

lines are clipped off numerically, and the result smoothed so as to preserves all instrumental

features, such as the filter bandpass and window interference fringes. The hot spectrum is

derived from a spectrum of the on-board blackbody, similarly smoothed. Raw spectra of

the stratosphere are converted to an absolute flux scale by subtracting a cold spectrum,

dividing by the difference of the hot and cold spectra, and multiplying by the PIanck

function corresponding to the measured temperature of the reference blackbody. These

temperatures were measured with 3 thermistors which were calibrated by the manufacturer

and checked before installation by a water-ice triple point measurement; the measurement

precision was smaller than 1 K. Nadir-referenced limb-viewing angles were measured by an

on-board single-axis platform which was referenced to a low-drift gyro and inclinometer

[Coyle et al., 1986; Traub et al., 1986]; the precision of pointing was about 0.02deg.

The first method (hereafter _Method 1") is as follows. (a) The onion-peel, non-linear

least-squares retrieval method is the same as used to obtain all previously published profiles

from the FIRS-1 and-2 instruments, as discussed in previous publications [e. g., Traub eta/.,

1982, 1991]; (b) The intensity calibration of the data relies on the in-flight determination

of the reference black-body temperature. (c) The pointing angles are controlled by the on-

board pointing system [Coyle et al., 1986; Traub et al., 1986]. Method 1 was employed to

retrieve constituent profiles from data obtained by FIRS-1 flown on BIC-2, and by FIRS-2

on subsequent balloon flights. In particular, profiles from BIC-1 have been published for

H20 [Mureray et aI., 1990], Os [Robbins et al., 1990], HF [Mankin et al., 1990], and HCI

[Farmer et al., 1990]. These 4 papers show that the FIRS-1 profiles are in very good

agreement with those of the other investgators in the BIC campaign, with the exception

of H20, for which the FIRS-1 profile is higher than average. Thus, except for the reasons

cited in the following paragraph, we have, a priori, no reason to doubt the accuracy of

Method 1.
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The second method (hereafter "Method 2"), constituting the alternative analywis

discussed in thispaper, isas follows. (a) The onion-peel, non-linear least-squaresinversion

technique is the same as that discussed in previous publications IAbbas et aL, 1984a,b;

1985; 1987a,b,c, 1988}. (b) The flux intensityscale iscalibrated using the observed t_uxes

at the peaks of saturated emission lines. (c) The pointing angles are obtained from an

analysis of three observed 02 linesat 83.469, 85.349, and 106.421 cm -I.

The reasoning behind our Method-2 adjustment of the intensityscale is the following.

In principle,the intensity of any optically thick spectral llne should depend only on the

atmospheric temperature profile.However, we found that the observed peak intensitiesof

fullysaturated H20 lines,which should reflectatmospheric temperatures in the vicinityof

the balloon floatheight, were slightlysmaller than the values calculated with the radiative

transfer model. In order to match the peak intensitiesof the observed and calculated

lines,the obgserved spectra were multiplied by a factor of 1.02 to 1.03, depending on the

wavenumber. This implies that the reference blackbody isactually about 3 to 4 K warmer

than the thermisters indicated.

The reasons for employing the pointing angles retrieved from the observed spectra are

two-fold. (_)The mixing ratio profileof H20 (and to a much lesserextent Os, HI_, and

HCI) retrievedby employing the nadir angles from Method I appeared to be systematically

higher than the average of other experiments on the same gondola. (iz)More striking

however, we found that the three observed O2 lineswere poorly matched by the calculated

lineswhen we used the standard O 2 mixing ratio and the nadir angles from Method 1. This

discrepency could arise partly from errors in the AFGL 02 line-broadening coe_cients,

since these parameters are subject to considerable uncertainties [Chance et aL, 1991b]. The

broadening coe_cient of the 83.469 cm -l line of O2 at 245 K (priv. comm. by Nolt et al.,

citedin Chance et aL [1991b]) islargerthan the AFGL value by about 16_. Experimental

data on the other two linesemployed in the present analysis are not available. Hdwever,

errors of the order of the above magnitude in the broadening coefficientsare not sufficient

to explain the mismatch between the observed and calculated 02 lines.

Another possibilityisthat the assumed altitude of the balloon is in error. We believe

that this isunlikely to be a significanteffectin the present case because, according to our

published error analyses icf.Murcra!/ et aL, 1990; Robbins et aL, 1990; Man_'n et aL_1990;

Farmer et aL, 1990] the uncertainty in mixing ratio at any point in the profileisonly about

3-4% for H20, Os, HF, or HCI; of the seven other error sources identifiedin these BIC-2

studies, the estimated contribution iseither about the same amount (from, for example,

pointing uncertainty) or substantially larger (from pressure broadening uncertainty).

Recognizing the above uncertainties, we procede nevertheless, in the spirit of a
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numerical experiment. The results for the retrieved pointing angles are as follows. From the

lowest to highest viewing angle, initially corresponding to nadir angles of 86.0, 86.5, 87.2,

88.1, and 91.0deg, we find the best-fit angles to all be revised in the sense of viewing lower,

by amounts .14(.02), .18(.01), .26(.02), .45(.05), and .95(.20)deg, respectively. Values in

parentheses are the rms scatter of the three oxygen lines used in the calculation. The

average shift is 0.40deg downward. (For completeness, we note that neither the magnitude

nor the systematic variation of these angular offsets can be explained by any knenwn

properties of the pointing platform.)

In Chance et aL [1991bIitwas pointed out that the oxygen line broadening coefIicient8

in the AFGL catalog might be represented better by values which were about 20_

larger, although it was not recommended that this correction be adopted until more

extensive laboratory measurements be undertaken. To see what effectsuch a chanse in

the broadening parameter might have, we repeated the above calculation with broadeninE

parameters which were 20% larger, and found the best-fltangles to again be shifted in

the sense of viewing lower in altitude,but now by amounts .04(.12), .I0(.03),.17(.06),

.21(.12), .56(.60)deg, respectively. Here again the values in parentheses axe the rms

scatter of the three lines. The average shift is 0.22deg downward. Clearly the lazger

broadening parameters give shifts which are about half"the nominally required v_lues,

which suggests that perhaps the broadening parameters are indeed too small. However,

the increased broadening parameter stillrequires that the viewing angles be shifted by

substantial (albeit smaller) amounts; also, the rum scatter is larger, indicating poorer

overall agreement between the three oxygen lines. In conclusion, this exercise shows us

that (s_the magnitude of the angle correction increases with tangent altitude,and (is')part

of the correction (but not all of it) might be assiEnable to broadening parameter error.

In the remainder of this paper, we adopt the oxygen-derived angles as determined by the

nominal broadening coefficients,to give nadir angles of 86.00 - 0.14 = 86.86, etc.,and use

these alternativeviewing angles to derive mixing ratio profilesfor the SAO BIC-2 species,

plus two water vapor isotopes.

4. Abundance Analyses

The radiative transfer model and the analytical techniques employed in obtaining the

resultspresented in this paper have been discussed in several previous publications [e_g.,

Abbas et aL, 1984b, 1985, 1987a I. The model isbased on fulllayer-by-layer and line-by-

line calculations including the Earth's curvature and atmospheric refraction effects.The

calculated spectra are convolved with a Hamming function having a fullwidth at half"

maximum of 0.064 cm- i. The molecular spectral data are from the Air Force Geophysical

Laboratory 1986 edition of the trace gas compilation HITRAN [Rothman et aL, 19871,



which was updated to accommodate recent data for HF and HCI [A'.Chance, priv. comm.

1991]. The temperature-pressure profileused in the analysis was obtained from radiosonde

measurements near the balloon path. The spectral linesemployed are listedin Table 1.

In addition to the spectral linecontribution of atmospheric constituents, the radiance

calculations include pressure-induced N2 absorptions with maximum at about g0 cm -I,

a_ud water vapor continuum absorptions throughout the analyzed spectral region. The

pressure-induced N2-N2 and N2-O2 absorptions were calculated using a model developed

at Goddard Space Flight Center IS. L. Bjoraker, priv. comm. lgg0]. An empirical model

for continuum water vapor absorption in the 80-220 cm -I spectral region was constructed

from the currently availableobservations and employed in the calculations.

The iterativeinversion method employed is a nonlinear least-squares fittingtechnique

which proceeds by successively retrieving mixing ratios from the top to the lower levels

at tangent heights corresponding to the observation angles. A set of frequencies around

suitablespectral linesischosen for each observation angle such that the weighting functions

are narrow and sharply peaked at the tangent heights. The spectral linesemployed in the

analysis are isolated,and have small values of the lower state energy in order to minimize

the temperature dependence of the line strength. The effectof a finitefieldof view on

radiative transfer and inversion calculations isnegligibly small and isignored.

5. Constituent Distributions

Using the inversion technique discussed above, vertical profilesof Os, H21eO, H21sO,

H2170, HF, and HCf have been derived. These profilesare compared with (s)those obtained

earlierusing Method-1 calibrationon a subset of the present data, (s's_those obtained from

other data sets but using a Method-2 analysis for water isotopes, and (ifi')those obtained

independently by other groups. We expect that there could be real differences between

the resultsof the current analysis and the previously-published (Method 1) results,owing

to the fact that the current data base covers the fullflight (11.0 hours of observation,

looking both west and north from the balloon), whereas the previous results covered only

the designated intercomparison part of the flight(1.5 hours, looking west).

5.1. Ozone

The ozone profile obtained from the 17 lines in Table 1 is shown in Fig. 4, and a

comparison of the observed and calculated spectra for the ozone line at 114.16 cm -1 is

shown in Fig. 5. The average uncertainty (1 standard deviation) of points in the retrieved

profile is about 16%; this is the quadrature sum of the fitting errors (4 to 10%), pointing

errors (6 to 11% of column), and line parameter errors (6°_ of column).



For comparison we also show the results obtained from other BIC experiments ca_ed

out on the same flight IRobbins et aL, 19901: Atmospheric Environment Service (AES)

in situ electrochemical ceil sondes experiment; National Physical Laboratory (NPL) mid-

infrared atmospheric emission grating spectrometer; and Of[ice National d'Etudes et de

l_.echerches Aerospatial (ONERA) infrared grille absorption spectrometer. The present

profile is in general agreement with these other profiles.

Comparing the profilesfrom this work and the original analysis (Smithsonian Astro-

physical Observatory, SAO) We see that the present profileyields smaller mixing ratkm at

high altitudes and larger mixing ratios at low altitudes. This may be a reflectionof the

corresponding 02 curves, which have qualitativelysimilar shifts.Quantitatively, as noted

in Robbina et aL [1990] the originalanalysis of SAO data gave a curve which differedfrom

the BIC-2 weighted mean value (derived from 7 experiments on 2 days) by about +4_

offset,with an rms scatter of 12_. By coincidence, the results of the present analysis

deviate by essentiallyidenticalamounts. Thus, on balance, although the present analysis

clearlyyields an ozone profilewhich isweaker at high altitude and stronger at low altitude

than the originalanalysis,there stillisno significantdifferencein shiftor rms with respect

between either of these profilesand the BIC-2 "standard" ozone profile.

5.2. Water Vapor (H21sO)

The verticalprofilefor H21sO retrieved from the 11 linesin Table 1 isshown in Fig. 6.

The average standard deviation is about 15%, calculated in the same way as for ozone,

above. Also shown for comparison in Fig. 6 are the measurements made by other groups

in the BIC 2 campaign [Murera!t et al., 1990]: AES, atmospheric emission measurements

in ascent in the 6.3/_m region; Denver University (DU), infrared emission measurements

in the 25-26 _m region; NPL, mid-infrared emission measurements in the 1339-1350 cm -I

region; and SAO. The measurements by AES, NPL, and SAO were made on the balloon

flight on June 20, 1983, while the DU measurements were made three days earlier on June

17.

The present profile for H2160 is lower than that of the original SAO analysis, dropping

from an average of roughly 5 ppmv to 3.5 ppmv. Part of this drop is attributable to

the different methods of analysis, and part is likely due to the fact that the lines used

in the original analysis were highly saturated, so the results were quite sensitive to both

the intensity scale factor and the broadening coefficients. The present profile clearly falls

well within the range of water profiles measured by the other BIC 2 experiments in Fig. 6,

instead of being well above the range as was the case from the original analysis. (But

of course this does not insure that the result is correct, because the other measurements

shown have considerable scatter themselves. Indeed, on a climatological basis, one might



expect to see a monotonic increase with height, from about 3.5 ppmv near 20 km to about

4.8 ppmv near 40 kin, which does not match any of the curves shown in Fig. 6.)

A comparison of the observed (solid line) and synthetic (dashed line) spectra for a

typical lineof H2160 isshown in Fig. 7, indicating a good fitof the peak intensities,the

continuum, and the lineshapes.

5.3. H2_"O

The present retrieval of H21SO is based on I0 spectral lines identified in Table 1.

The derived profile,with the mixing ratios normalized to their natural abundances in

accordance with the HITRAN data base, is shown in Fig. 8. The error bars relm_nt

the total standard deviation of the measurement, calculated as the quadrature sum of

the random and systematic errors. Also shown on the same figure is the simultaneously

measured H21sO mixing ratio profile(circles)discussed just above. The next fig_-eshows

a comparison of the observed (solidline)and the synthetic spectra (dashed line)inclicating

a good fitof some linesemployed in the analysis.

In Fig. 8 we see that the H21so and H21SO profilesaxe almost identical.No enhancement

or depletion of the heavier isotope is seen. The ratio of the two profiles is essentially

unity, with an average standard deviation of the ratio of about 20%. This result is in

good agreement with two previous findings: Rin.sland et al. [1991], from an analymis of the

ATMOS Spacelab 3 infrared solar absorption spectra in the 1414 to 1690 cm -1 region; and

Carli et al. [1991], from balloon-borne fax-infraxed observations in the 46 to 72 cn_ -1 made

on a flight on October 5, 1982, during BIC 1. Both of the above referenced studies reported

small depletions or no enhancements in the stratospheric H21so profile relati_m_to tim

simultaneously measured H21eO profile. The result of no enhancement or a small depletion

in stratospheric heavy isotopic water vapor is consistent with theoretical considerations

[Ka!/¢, 1990].

The enigmatic results presented by Guo, Abba_, and ]Volt [1989] indicating significant

enhancements in the H2zeO concentrations are therefore inconsistent with tl'uree studies=

Carli et al. [1991] from the same data set; Rin_land et al. [1991] from a different d&ta _et;

and the present study.

The reason for the discrepancy in the result obtained by Guo et al. [1989] is not clear.

It may be noted that the water vapor mixing ratios obtained by Rinsland et a/_[1991]

are generally higher by about 35-40% than those obtained by Carli et al. [1991] from a

different data set. The H21SO profile obtained by Guo et al. [1989] is almost identical to

the profile obtained independently by Carli et al. [1991] from the same data set with a

different retrieval method (see Fig. 3 of Carli et al.). Also, the H_lSO absolute mixing

ORIGINAL PAGE IS
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ratio profiles of Guo et al. [1989] and of Rinsland et al. [1991] generally overlap within the

error bars. The H2ieO profile of the latter reference, however, is 35-40% higher over moat

of the altitude range.

5.4. H2170

The isotope H2170 was retrieved using the 7 lines listed in Table 1. The vertical p1_l_le

is shown in Fig. 10, along with that of the normal isotope. The error bars repreeentthe

total standard deviation from random and estimated systematic error. The next figure

shows a comparison of observed (solid line) and synthetic spectra (dashed line) calculated

with the retrieved mixing ratio profile, indicating a good fit between the two spectra.

A comparison of the mixing ratio profiles of H21eO and H21TO indicates that the

concentrations of these two isotopes are essentially the same, within the uncertainti_.

As in the previous case, the ratio of the two profiles is close to unity, with an average

standard deviation of the ratio of about 20%.

This result is consistent with those of Rinaland et al. [1991] obtained from ATMOS

observations, and of Carli et al. [1991] obtained from BIC-2 observations, both of which

reported small depletions or no significantdeviation from the normal distribution within

the error bars.

5.5. Hydrogen Fluoride and Hydrogen Chloride

The HF profilein Fig. 12 is derived from the two isolated lines given in Table 1. The

average standard deviation isabout 16°_. A comparison of the observed and synthetic ]IF

spectral lineat 204.54 cm -I isshown in the next figure.

In Fig. 13 the other HF profiles are as follows: SAO, as previously published, from

BIC-2; Instituto di Ricerca sulla Onde Electromagnetiche (IROE), from thermal emimion

measurements with a balloon-borne far infrared spectrometer on October 5, 1982, during

BIC 1; University of Liege (UL), from middle infrared absorption measurements with a

grating spectrometer in the 4040 cm -l region, from observations made on June 17, 1983;

and the model prediction of K'o and Sze [WMO, 1985]. In contrast with case for ozone, the

HF results here are not systematically shifted with respect to the SAO values, but instead

there appears to be more scatter on both the high and low sides. The reason for this is not

clear, but may be in part due to the steepness of the HF profile, which makes the lower

layers relatively minor contributors compared to those above, making the retrieval more

sensitive to noise.

The HCI profile retrieved from four spectral lines in Table 1 is shown in Fig. 14. Plots

(.)FP("..R QiJAL_I'Y

9



of the observed and calculated spectra for one line axe shown in the next figure. Also

shown on Fig. 14 axe: the average of the 5 profilesobtained by the BIC-2 experiments

carried out by University of Liege, ONERA, AES, SAO, and IROE; and the model profile

calculated by Ko and ,Sze[WMO, 1985, Vol. III.As originallyanalysed with Method 1,the

SAO mixing ratiosfor HCI tended to fallabout 15_0 above the mean curve drawn through

the HCI profilesmeasured by 5 independent instruments in BIC-2 [Farmer eta/., 1990 I.

However in the present analysis,using Method 2, the 3 upper data points fallclearlybelow

the average curve, echoing the general pattern observed for the other species discussed in

this paper.

6. Conclusions

In this paper we presented the results of an analysis which was carried out with two

objectives in mind. The firstobjective was to analyze an existing set of 1983 far-_

spectra for Os, H20, HF, and HCI using a method of calibration,angle determination, mad

analysis which was developed independently from that originallyused on a subset of this

data. The second objective was to analyze the spectra for H21zO and H21SO, which had

not been done previously,and to compare these resultswith those of other investigations.

We find the following results. The current analysis (Method 2) gives _ ratio

profilesof Os, H20, HF, and HCI which are often shifted significantlywith respect to

the original analysis (Method 1). The shiftsaxe usually in the direction of a mean value,

as determined from the other experiments which flew simultaneously, but in a few canes

the shiftseither overcompensate or seem to add noise. Overall, the Method-2 calibration

seems to generally improve the derived profiles,but the improvement isnot universal,mad

there isno explanation for why the on-boaxd temperature and angle parameters should be

in error by the implied amounts.

On the other hand, the determination of isotope ratios of water should be relatively

independent of the above caveats, since some of the systematic effects of scaling drop

out when ratios of abundances are taken. We find that there is no evidence for either

enhancement or depletion of stratospheric water isotopes H2180 and H21rO with respect

to the main isotope, with a standard deviation of about 20%.
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List of Figures

Fig. 1. A limb sequence of the observed (solid line) thermal emission spectra in the 90-

95 cm -1 region with tangent heights varying from 21 to 37 km, plotted along with the

calculated spectra (dashed line) using retrieved constituent profiles. Some of the Os lines

employed in the analysis for retrieval of the mixing ratios are identified.

Fig. 2. A limb sequence of the observed (solid line) thermal emission spectra in the 105-

110 cm -1 region with tangent heights from 21 to 37 km, along with the calculated spectra

(dashed line) using retrieved mixing ratio profiles. Some isolated lines of H21eO, H21So,

Os and O2 are identified.

Fig. 3. A limb sequence of the observed spectra (solid line) in the 197-202 cm -1 region

with tangent heights from 21 to 37 kin, plotted along with the calculated spectra (dashed

line) using retrieved mixing ratio profiles. A group of three H2170 spectral lines employed

in the analysis is identified.

Fig. 4. The O3 profile retrieved from the BIC-2 far-infrared data analyzed in this work.

Also shown for comparison are the results obtained by other BIC-2 experiments on the

June 20, 1983 balloon fight: NPL, ONERA, AES, and SAO with the original (Method 1)

analysis.

Fig. 5. Comparison of the observed and synthetic O3 line at 114.16 cm -1 for a limb

sequence of five angles with tangent heights at 21, 24, 28, 32, and 37 km with increasing

radiance for lower altitudes.

Fig. 6. The H20 profile retrieved from the BIC-2 far-infrared data analyzed in this work.

Also shown for comparison are the results obtained by other BIC-2 experiments on the

June 20, 1983 balloon fight: AES, NPL, and SAO with an alternative analysis. The DU

measurements were made on June 1T, 1983.

Fig. 7. Comparison of an observed and synthetic (dashed curve) H20 line at 155.74 cm -I

analyzed in thiswork for a limb sequence of fiveangles with tangent heights at 21, 24, 28,

32, and 37 km with increasing radiance for lower altitudes.

Fig. 8. The H2180 mixing ratioprofileretrievedfrom the BIC-2 far-infrareddata analyzed

in thiswork, normalized by the standard isotope ratio as given by the HITRAN data base.

Also shown for comparison isthe normal H2isO profileretrieved in thiswork (from Fig. 6).

Fig. 9. Comparison of an observed and synthetic (dashed curve) H21SO line at 207.10

cm -1 analyzed in this work for a limb sequence of fiveangles with tangent heights at 21,

14



24, 28, 32, and 37 km with increasing radiance for lower altitudes.

Fig. 10. The H2170 mixing ratio profile retrieved from the BIC-2 fax-infrared data analyzed

in this work, normalized by the standard isotope ratio as given by the HITRAN data base.

Also shown for comparison is the normal H21eO profile retrieved in this work (from Fig. 6).

Fig. 11. Comparison of three observed and synthetic (dashed curve) H21_O lines at 201.28,

201.44, and 201.74 cm -1, analyzed in this work for a limb sequence of five angles with

tangent heights at 21, 24, 28r 32, and 37 km with increasing radiance for lower altitudes.

Fig. 12. The HF profileretrievedfrom the BIC-2 far-infrareddata analyzed in this work.

Also shown for comparison are the results obtained by other BIC-2 experiments on the

June 20, 1983 balloon fight:SAO, with the originalanalysis (Method 1), IROE from data

obtained on October 5, 1982, and UL.

Fig. 13. Comparison of the observed and synthetic (dashed curve) ]IF line at 204.,54-¢m -z

for a limb sequence of five angles with tangent heights at 21, 24, 28, 32, and 37 kna with

increasing radiance for lower altitudes.

Fig. 14. The HCI profileretrieved from the BIC-2 far infrared data analyzed in this work.

Also shown for comparison isthe average profilecompiled from the results obtained by

other BIC-2 experiments UL, ONERA, AES, SAO, and IROE.

Fig. 15. Comparison of the observed and synthetic (dashed curve) HCI line at 186.390

cm -1 for a limb sequence of five angles with tangent heights at 21, 24, 28, 32, and 37 km

with increasing radiance for lower altitudes.
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Table 1. Center Frequencies (cm -1) of the Analyzed Spectral Lines

Os H2 leO H2 IsO H2170 HCf HF

84.1759

84.2687

84.8324

90.2037

90.6415

90.8682

91.0349

97.7587

102.7913

106.6300

109.3157

112.6753

112.7948

113.5147

113.6321

114.1614

115.3057

122.8439 91.4520

130.8519 98.0350

152.4981 121.2990

155.7379 125.7380

158.9109 147.3110

160.1753 165.4180

178.6202 168.4930

198.0182 172.8910

210.8833 200.3660

212.6339 207.1080

214.8745

152.7300

176.6940

180.7670

201.2790

201.4410

201.6750

207.7350

124.8269 163.9362

145.2225 204.5404

145.4399

186.3896
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