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Section I: Introduction

Overview

The Galileo PPS Expert Monitoring Module (EMM) is a prototype system implemented on the

SUN workstation that will demonstrate a knowledge-based approach to monitoring and diagnosis

for the Galileo spacecraft Power/Pyro subsystems. The prototype will simulate an analysis module

functioning within the SFOC Engineering Analysis Subsystem Environment (EASE).

Existing spacecraft monitoring & diagnosis procedures require a human expert to manually sift

through spacecraft telemetry and command sequences in order to verify spacecraft health and to

identify the causes of anomalies and faults. The Expert Monitoring Module will permit more

effective use of the expert's time by:

- automatically monitoring spacecraft health,

- verifying planned events,

- automatically diagnosing simple or frequently-encountered faults and anomalies,

- explaining the reasoning behind its conclusions.

Automated diagnosis can be implemented using traditional methods, or using more recent

knowledge-based approaches.

Purpose of D0cumcnl;

This document describes the implementation of a prototype EMM for the Galileo spacecraft

Power Pyro Subsystem. Section 2 of this document provides an overview of the issues in

monitoring and diagnosis and comparison between traditional and knowledge-based solutions to

this problem. Section 3 describes various tradeoffs which must be considered when designing a

knowledge-based approach to monitoring and diagnosis, and Section 4 discusses how these issues

were resolved in constructing the prototype. Section 5 presents conclusions and recommendations

for constructing a full-scale demonstration of the EMM. A Glossary provides definitions of terms

used in this text.
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Section 2: Monitoring and Diagnosis

Mgnit0ring and Diagnosis System_

The purpose of a monitoring and diagnosis system is to verify events and to detect, classify and

explain faults in a monitored device. The monitoring function receives data from the device, and is

able to determine whether the device is functioning normally. If abnormal behavior is detected, the

diagnosis function is invoked to classify, and possibly explain, the abnormal behavior.

A specification is transformed into a working device in three successive stages: design of the

device, implementation of the physical device, and operation. When a divergence is observed

between the behavior the operating device and our expectations, the cause can lie within one of the

following areas:

- The design is not consistent with the specification.

- The implementation not consistent with the design.

A component has failed.

The device functions correctly, but our expectation s are wrong.

- One or more of the above.

The first two causes assume a failure in the design or implementation stages of device

development. In monitoring applications it is usual to assume that the design and implementation

have been verified, and so the fault model is confined to the "operation" phase. Any diagnosis

system implicitly incorporates further assumptions about fault analysis and about the device being

diagnosed in order to make the diagnostic process manageable. For example, assumptions are

made about:

- Device behavior as explainable in terms of the functioning its primitive components.

- The granularity of the device, or the level at which components are considered to be

primitive (atomic).

- Single fault assumption (that the symptoms are caused by a single failure).

- Multiple fault assumption (the symptoms may have been caused by more than one failure).

- Nonintermittency of the failure source (the device behaves consistently over time) versus

intermittent or transient faults.

- Functional, structural hierarchy of the device (whether the device forms a subcomponent

hierarchy). Functional overloading may compromise the strict hierarchical structure.

- Whether there are feedback loops, which complicate the causal relationships between causes

and symptoms.

(C) Aura System Inc. _¢ 5 Final Report -GLL PPS Diagnostic Prototype



1/30/89 DocumentNumber00157A-AR-89

- Steady-state failure modes (that failures eventually lead to a stable system state), ff there

are divergent failure modes, then the current system state will give little indication of the

initial cause of the failure (for example, when a computer, through a program bug, begins

executing data as instructions).

The choice of assumptions made in the fault model influences the coverage and resolution

achieved by the diagnostic task.

The functional requirements for a monitoring and diagnosis system are also driven by the

anticipated interactions among the user, the device and the diagnostic system. A monitoring and

diagnosis system will at the minimum receive a real-time data stream from the device. The system

may also act upon the device by requesting tests, or commanding the device to perform corrective

or preventive actions. The system may interact with the user by querying for information,

requesting tests, providing explanations or obeying user requests to modify its own functions. The

system will also need to account for user-device interactions if the user makes inputs to the device

which alter its state.

An expert system which performs a monitoring function must ensure that data is processed at

the same rate that it arrives, otherwise the system will fall inexorably into arrears. The system will

also incorporate procedures for screening the input data for errors. A diagnostic system which

makes corrective control inputs to the device must ensure that these inputs are issued in a timely

manner.

General Model_ for Fault Diagnosis:

There are two principal approaches to fault diagnosis, fault-based and model-based. A fault-

based system has an explicit fault model, often in the form of a fault dic.tionary, specifying a

mapping from specific faults to the induced behavior. Model-based systems predict behavior from

the system design, explaining faults as deviations from expected behavior or vice-versa. These

systems have a fault model which is implicit in the "depth" of the system model. It is possible,

and often advantageous, to construct a hybrid diagnostic system which can apply either method

according to circumstance.

Traditionally, fault-based approaches have been used for diagnosis. These methods are well

understood, but difficult to realize for complex systems. More recently, sophisticated model-

based approaches have been applied to diagnosis. The model-based approaches derive from

(C) Aura System Inc. 6 Firtal Report -GLL PPS Diagnostic Prototype
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systems used for design verification, which predict the behavior of a design in order to verify that

the design satisfies the specification.

The nature of the device under diagnosis influences the choice of assumptions and feasibility of

a model-based approach. For example:

A functional or structural simulation of a biological system (e.g. human) may be

impractical, and seem absurd to the practitioner.

Processing time may be a critical factor, as in real-time systems. For example, efficient

algorithms are available to simulate digital circuits, but algorithms to simulate analog effects

(gate fanout, bus loading, etc) are extremely expensive.

In remote monitoring applications, sensor data may be imprecise, unreliable, or

insufficiently complete.

In time-critical applications, data may be valid only for a limited duration, requiring

capability for temporal reasoning.

In time-critical applications, the ability to focus attention according to priorities will be a

requirement.

Traditional diagnostic systems are generally fault-based. Knowledge-based diagnostic systems

may incorporate both fault-based and model-based diagnostic methods, and are often a hybrid of

both approaches. The following section will discuss the strengths and weaknesses of the various

types of expert diagnostic systems in light of the foregoing considerations.

Expert Diagnostic Systems.

An expert diagnostic system which interacts with the user by providing explanations must have

the facilities to understand questions and provide useful answers appropriate to the user's

expertise. If the system will receive data from the user then the system needs to verify the accuracy

and consistency of this data.

Reasoning Strategies

Diagnostic reasoning means finding a process model to solve the problem: given a set of

symptoms, identify and explain the cause of the abnormal behavior. Reasoning strategies can be

loosely assigned to one of three categories: deep reasoning, shallow reasoning, and hybrid. The

term shallow reasoning implies a method using a relatively superficial understanding of the

problem domain, such as rules-of-thumb and rote procedures. In contrast, deep reasoning

implies the use of a device model which uses basic principles and detailed knowledge of the

(C) Aura System Inc. 7 Final Report -GLL PPS Diagnostic Prototype
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structure and behavior of device components to predict normal behavior of the device. A hybrid

system will optimize for efficiency by selecting features from both approaches, often using a

hierarchical strategy.

Shallow Reasoning

For diagnostic applications, approaches which fall under this heading are fault dictionary and/or

decision tree methods, and shallow causal reasoning. These approaches require only a knowledge

of system behavior under failure. They do not directly support the generation of good

explanations.

Fault Dictionary Models: A fault dictionary is a shallow model of the device misbehavior. This

method requires explicit enumeration of all possible faults. The fault diagnosis amounts to table-

lookup or tree-search in a faults-vs-symptoms database. Though this technique is termed

"shallow", the fault dictionary may have been developed from a sophisticated model of the device,

with the possible failures compiled into a fault-tree to optimize searches at run-time. Typically,

failures are injected into a simulation, generating signatures at designated test points that are

recorded in a table. A single-fault assumption (SFA) is usuaUy made.

Decision Tree: A decision tree is a more add-hoc approach to encoding diagnostic knowledge.

It is well suited to problems having a hierarchical decomposition, where a node in the tree

represents a decision procedure to isolate the fault to one of several subnodes. The decision tree

need not enumerate all possible faults, and it is more amenable to the expression of heuristic

knowledge to optimize the efficiency of fault isolation and classification.

Shallow Causal Reasoning: This approach might be described as using "rules-of-thumb" to

hasten problem solving, and is often used to screen out simple problems before invoking a more

expensive deep analysis, or to isolate a fault to some subcomponent of the device. As with the

fault tree method, search can be optimized to look for common or critical faults f'trst, but faults

need not be enumerated in advance. The diagnostic process starts with the observations and forms

a set of hypotheses. The hypotheses are then subject to rejection, verification and refinement.

Users may be cued to run tests and provide results or other evidence.

Shallow causal models attempt to capture the field experience of an expert through associations

between observations and hypotheses. The expert knowledge is used to select a limited number of

likely hypotheses to pursue, rather than working out all possible cause-effect relationships that

might relate a symptom to its antecedents and consequences. No reason for the linkage is required

(C) Aura System Inc. 8 Final Report -GLL PPS Diagnostic Prototype
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(hence the shallowness), and therefore such systems are limited in their ability to justify their

results. If the system is to detect misbehavior automatically, then the problem of specifying

normal behavior must also be addressed. This approach was felt to be the most appropriate for the

Galileo Power/Pyro diagnostic system. We had access to a domain expert with many years of field

experience who was able to provide useful heuristics. Additionally, we had to consider the need

to perform diagnosis in real-time, a constraint which argues in favor of the relative efficiency of

the shallow reasoning approaches. As noted above, the shallow-causal reasoning approach does

not address the problem of specifying normal behavior of the system. Thus, we had to plan on

creating a separate model of the Galileo PPS to predict nominal telemetry values.

Deeo Reaching

Shallow causal reasoning describes the first generation diagnostic systems. The second

generation models the structure and/or the behavior of the device. Structure modeling refers to a

description of the design topology, or component connections. Functional modeling, by contrast,

means to simulate the behavior of the device. In many cases this is impractical to do using a purely

rule-based diagnostic system. Misbehavior can be detected automatically by comparing observed

behavior to the expectations generated by the device model. Diagnosis then consists of tracing

discrepancies down to a primitive subcomponent. This technique derives from systems which

perform design verification by comparing the predicted behavior of a design to the device

specification.

Hybrid Reasoning: Hybrid reasoning strategies are a combination of the above techniques.

Hybrid reasoning is generally adopted either for efficiency (shallow reasoning first, deep later) or

for generality or both. Such systems vary in the degree of interaction between the shallow and

deep reasoners. In the case of Galileo Power/Pyro, the shallow reasoning implemented in the

prototype may be augmented with model-based reasoning for certain classes of faults, resulting in

a hybrid system.

Section 3: Implementation Issues

Knowledge Acquisition

The acquisition of knowledge may be pursued via many sources, including human domain

experts, schematic diagrams and operating manuals, existing simulation software and diverse other

sources. The skill of interviewing human experts is very valuable to the knowledge engineer,

since domain experts are seldom able to make a detailed exposition of all the knowledge that they

(C) Aura System Inc. 9 Final Report -GLL PPS Diagnostic Prototype
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use to perform their work. The knowledge engineer must be able to organize the expert's

knowledge, understand the problem solving methods which are used, and also look for omissions

and inconsistencies which will require clarification. Knowledge acquisition systems have been

demonstrated which are able to assist the knowledge engineer in encoding the acquired knowledge

so that consistency and completeness checking can be performed automatically. One shortcoming

of these systems is that they are generally not able to perform this function on the implemented

knowledge base, and so do not support debugging and maintainence of the implemented system.

Knowledge Representjation

There are five methods for representing knowledge which are in general use. These are:

- semantic networks

- object-oriented

- production rules, assertions

- logic programming

- frame based

Semantic networks are the most general representation scheme. Nodes may correspond to

objects which may be physical or conceptual in nature. Links relate objects. For example,

membership in a class may be represented by a link of type "is-a" between an instance object and a

class object.

S-a

Animal

Bird

Mammal

Parakeet

Parakeet

Figure 1. An example of a semantic network.

Object-oriented representations are an instance of a semantic net in which every object must be a

member of a class, and instances of a class automatically inherit the attributes of their superclasses.

This is a powerful conceptual tool; for example, if parakeet is defined as a subclass of the class of

(C) Aura System Inc. Final Report -GLL PPS Diagnostic Prototype
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birds, then any rules which apply to birds will apply to parakeets as well (but the reverse will not

be true) and parakeets will inherit the attributes of birds, such as "Lays Eggs".

Production rules are used with facts or assertions, which are often object-attribute-value

triplets. Object-attribute-value triplets may be seen as a special case of semantic nets in which

links are either of type object->attribute or attribute->value. Nodes are either objects, attributes

or values. Production systems typically do not support inheritance hierarchies.

A frame is a description of an object which contains slots for all of the object's attributes. Like

attributes, slots may store values. In addition, slots may store default values, sets of rules,

procedures for obtaining the slot's value, or pointers to other frames. Frames allow richer

representations than the object-attribute-value scheme, but their added complexity is warranted

only in situations where more powerful representation is required.

Logic programming is based on the model of predicate calculus. Knowledge is represented by

expressions which are true or false. Thus, if one has a bicycle whose color is blue, then the

predicate color(bicycle, blue) would be true. It would not possible to directly obtain the color of

the bicycle, however, since blue is an independent object which participates in a "color" relation

with the bicycle. We may only ask whether a color(bicycle,blue) relation exists in working

memory. Logic programming is supported most notably by the Prolog programming language,

and despite the apparent restrictiveness noted above, it is a very powerful language.

The knowledge representation will be chosen based on the reasoning strategy. Shallow causal

reasoning will call for use of production rules, but a modeling approach using deep knowledge

calls for use of a richer set of data structures and programming primitives, provided by object and

frame-based environments. Having chosen to apply shallow causal reasoning to the Galileo PPS

diagnostic problem, we sought to represent diagnostic knowledge in the production-assertion

paradigm which is best suited to this form of reasoning.

Knowledge Tools

Knowledge tools are distinguished by their capabilities in the following areas:

- Reasoning strategy

- Knowledge representation

- Control algorithm, conflict resolution strategy

(C) Aura System Inc. 11 Final Report -GLL PPS Diagnostic Prototype
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We have already discussed the various types of reasoning strategies and knowledge

representations which may be employed. Knowledge tools for rule-based systems are

characterized by a control algorithm, which may be forward-chaining, backward-chaining, or a

combination of both, to control the execution of production rules.

Forward Chaining

A forward-chaining knowledge tool will provide a built-in control algorithm consisting of three

steps which are repeated in a loop, known as the "recognize-act" cycle. The first step is to match

facts in working memory against the patterns in the antecedent clauses of rules, keeping a list of all

the complete instantiations found, where a complete instantiation consists of a rule and facts to

match each of the patterns in its antecedent. This set of complete instantiations, referred to as the

"conflict set", represents all of the valid inferences which may be drawn from working memory.

The second step, conflict resolution, involves choosing which of these inferences to make f'trst,

since one inference may have the effect of making another one invalid. The third step is to execute

the consequent clauses of the selected instantiation, which will have the effect of modifying

working memory.

The conflict resolution strategy is a set of heuristic criteria which guide the selection of an

inference from the conflict set. Common heuristics include "most recent match first" and "most

specific match first"; some systems allow rules, or an instantiation of the rule, to specify their

own priority (often called salience). The inference engine may have its conflict resolution strategy

hardwired in, or it may provide hooks for the user to specify a resolution strategy.

Backward Chaining

A backward-chaining control algorithm looks at the consequent clauses of rules to determine if

the rule can satisfy a posted goal. All rules which meet this criterion are examined in their

antecedent clauses to determine if the rule represents a valid inference. Antecedent clauses which

are indeterminate become new posted goals, which the control algorithm attempts recursively to

satisfy. This algorithm provides a very natural means for expressing diagnostic knowledge, and

so is commonly used for diagnostic expert systems (e.g., MYCIN). For example, a knowledge

base for automobile diagnosis might include the rules:

(if battery-is-not-dead => not dead-battery-at-fault)

(if horn-does-work => battery-is-not-dead)

(C) Aura System Inc. 12 Final Report -GLL PPS Diagnostic Prototype
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In the course of diagnosing the reason a car will not start, a backward-chaining control algorithm

would try to determine if a dead battery is at fault. Based on the flu'st rule it might attempt to

determine whether the battery is dead. This new goal would bring the second rule into play,

creating the new goal of determining whether the horn works. This regression must terminate

somewhere; in this case it might terminate by asking the human operator to try to sound the car's

horn, entering the result of the experiment. This type of goal-based reasoning behavior may also

be realized in a forward chaining system through use of the hypothesize-and-test paradigm. In this

paradigm, an antecedent clause of a rule specifies what goals the rule may help to satisfy. Since

the forward-chaining control algorithm does not attempt to satisfy the other antecedent clauses of a

rule, other means must be employed to steer the inference process in a useful direction.

Development Strategy

The development plan should include plans for

-knowledge acquisition

-implementation

-verification.

-maintainence.

The knowledge to be acquired will depend on whether the reasoning strategy is to be fault-based

or model-based. If the modeling approach is used, or if the fault dictionary is to be compiled off-

line, the deep knowledge about the device and behavioral models of its primitive components will

be required. For a device which already has an operational history, the fault dictionary may be

available in the form of operation manuals, logs, etc.

It is widely agreed that the optimum implementation strategy for an expert system consists of

three phases:

- functional prototype: proof of concept, knowledge rep and problem-solving strategies.

- full-scale demonstration: implement full capability of anticipated system, verify correctness,

adequate speed, explore user interface concepts.

- integrated online system: fully integrated system with user interface, manuals, etc.

Performance of fault-based systems can be verified by exhaustively exercising each entry in the

fault-dictionary in a test-bed environment. Systems based on deep modeling require that a set of

test-cases be designed which span the space of the fault model. The knowledge representation

chosen in the implementation must be structured and documented in a way that enhances

maintenance.

(C) Aura System Inc. 13 Final Report -GLL PPS Diagnostic Prototype



1/30/89 DocumentNumber00157A-AR-89

Section 4: Implementing the EMM Prototype

Selecting a Knowledge Tool

As noted previously, there are a variety of considerations which enter into the design of a

knowledge-based system for monitoring and diagnosis. We felt that the driving consideration was

the need to integrate with the EASE workstation environment. This dictated the use of a

knowledge tool which is portable, can be extended by the user, and is capable of being integrated

into other applications. The need to integrate with EASE also made CPU-efficiency an important

goal. The EASE workstation will host a number of real-time telemetry analysis processes, and

also provide a color-graphics interface to the user. Therefore, no analysis process may depend on

getting more than a fraction of the CPU and other system resources. Also, we had decided to use

a production-rule system, since this approach has been used successfully in diagnostic

applications. The most efficient production systems employ the Rete algorithm to perform pattern

matching and conflict resolution. The complexity of pattern matching increases exponentially with

the size of the knowledge base, so it is crucial that this task be done efficiently. Production

systems which are based on the Rete algorithm include OPS5, its successor OPS83, and the

NASA-standard CLIPS. Of these, the CLIPS system also met our goals for portability and

integration, since it is written in C and the source code is provided. Based on these factors, we

chose CLIPS to implement the EMM.

Rea.5onin g Strategy

The CLIPS shell can represent knowledge only through production rules and assertions. This

can be constraining since, although it is possible to construct an object-attribute-value models

using this representation, the object-oriented concepts of class-hierarchy and inheritance are not

supported. This limitation would be more significant if we had chosen to employ deep reasoning,

however, as was discussed previously, we had decided on shallow causal reasoning due to the

requirement for real-time performance. Because shallow reasoning does not generally provide a

model of nominal system behavior, we needed to provide a separate model to make telemetry

predictions based on the command sequence which was sent to the spacecraft. The resulting

data/low in the EMM is depicted in Figure 2 below.
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telemetry

commands

_ anomaliesJ

v _etry predicts

_ PowerModel

Diagnostics

diagnoses
v

explanations

Figure 2. A dataflow diagram for the Galileo PPS Expert Monitoring Module

A second question was whether we would need incorporate uncertainty into our reasoning. We

decided that this would likely not be the case. Systems which use uncertainty, such as MYCIN,

typically must deal with evidence which is incomplete and qualitative in nature. This gives rise to

problems where there are many competing hypotheses, which must be discriminated using

heuristics based on probability and statistical factors. The Galileo engineering telemetry, by

contrast, was designed to provide data that is quantitative, discriminating and partially redundant.

Therefore we expect that cases where the telemetry is inadequate or untrustworthy will be

infrequent. Based on this premise, we chose a reasoning paradigm which is simple and quite

general: hypothesize-and-test. As we noted earlier, this paradigm is quite useful in producing

goal-directed behavior in systems with forward-chaining control, such as CLIPS. In the

hypothesize-and-test paradigm, various classes of faults are arranged as hypotheses in a

hierarchical classification, as illustrated in Figure 3.

_hunt

Regulator

Figure 3. Hypotheses arranged in a hierarchy.
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A given anomaly will suggest a set of hypotheses which are ordered by decreasing likelihood.

Each hypothesis in turn will trigger rules to either accept, reject or refine it, where refinement

consists of expanding a hypothesis into more specific hypotheses which are compatible with the

observations. A hypothesis is accepted if it is consistent with the evidence and if it cannot be

further ref'med. This method of classifying anomalies results in goal-directed search with heuristic

pruning behavior in a forward-chaining environment.

Algorithm "Accept, Reject, or Refine":

1 If current hypothesis is indicated, and no refinement is possible,

Accept hypothesis.

2 If current hypothesis is contraindicated, Reject hypothesis.

3 While plausible refinements exist,

Apply "Accept, Reject or Refine" to refinements.

The explanation generator will produce a trace of the diagnostic search as it tests hypotheses one

by one, similar to the example output below:

Ft3=NE:

RE,.ECT:

DIALOG:

FEJECT:

DIALOG:

FEFNE:

A(X;EPT:

channel69, the "+X RTGOUTPUT VOLT_, level30.85, highby 0.10

channel 70, the"-X RTG CLffPUT VOLTAC_, level30.88, highby 0.10

Iseethat cha_ne169is in alarrn. I assume thattheanomaly iscaused by one of the fotbwing _:

1)A trarc:,ducer_ hascaused a faultyreading;

2) A telemetry pmt01emhasgafolad the channel data;

3) Some other anomakxJsconditioncaused a validaJatrncondition.

The a_rrn inchannel69 isr_ due toa transducerproblembecauset_ereareetherchannets inalarm also.

Nowconsidecingthepossioililythatthereis:telemetryl:_01em

The alarminchannel69 isnota teleme_ prcYolembecause_ere am ¢_herchanneiswhicharenotinaJarm.

Now consk_ringthe_ thatthereis:anomak:x.Je<xx_lion

Isee thatchannel69 is inalarm. Thiscould indicatean und_lage-tripora dc-bus-cx,edoad.

The alarmsate dueto an undervoltage-trip,because both RTG OUtlaJtvoltages ate too high.

The example above shows the rejection of the f'trst two hypotheses, "transducer-problem" and

"telemetry-problem", because there is contrary evidence. The third hypothesis, "anomalous-

condition", is refined into the subsumed hypotheses "undervoltage-trip" and "dc-bus-overload".

The f'rrst of these matches the observed symptoms, and is therefore accepted to be the cause of the

anomaly.
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Designing the Knowledge Representation

A relational model is best adapted to the data structure provided by CLIPS, using assertions of

the form

(load "N1MS OPTICS HTR 1" type AC bus SECONDARY section SPUN value 39.6 state

OFF)

In this example, the first field identifies the object as one of type "load" and the second field is a

key which uniquely identifies this object. The rest of this structure consists of attribute-value pairs

which are common to all objects of type "load". The antecedent clauses of a CLIPS rule perform

pattern matching on these objects, for example:

(defrule is-there-an-AC-load-on

(load ?name type AC bus ? section ? value ? state ON)

=>

(fprintout t "Load " ?name" is on."))

The pattern in this rule will match any load whose type is AC and whose state is ON, and each

such match will create an independent instantiation of the inference. The symbol "?name" is a

variable which is bound to the name of the load which generated the instance. The CLIPS

inference engine uses refraction in conflict resolution to prevent the trivial loops which would arise

from rules like this one, since the antecedent clause would otherwise match on the same load over

and over again.

Kngwledge Acquisition

The knowledge acquisition effort for the EMM was targeted toward a demonstration of depth

but not to complete coverage of the fault space. Thus, the knowledge acquired is sufficient to

support anomaly detection and to diagnose certain faults of representative complexity. The

knowledge base may be partitioned into two domains, the first domain being modeling knowledge

required to predict nominal behavior, and the second domain being knowledge required to classify

faults.

The power modeling knowledge was acquired via interviews with JPL domain expert Terry

Koerner, the author of the GPWR program, which is used to simulate the Galileo power system.

The source code for this program was also a valuable aid in obtaining modeling knowledge. As

(C) Aura System Inc. 17 Final Report -GLL PPS Diagnostic Prototype



1/'30/89 DocumentNumber00157A-AR-89

implemented, the EMM power system model predicts nominal performance based on the

commands which are sent to the spacecraft, enabling the EMM to detect anomalous behavior. This

model does not constitute a device model as discussed previously, lacking among other things an

explicit model of device interconnections. The model may be considered to contain only

algorithmic knowledge of how the power system behavior may be predicted, and therefore need

not even be considered part of the knowledge base, since the model could as easily be written in a

lower-level procedural language. Such knowledge does not aid diagnostic reasoning, since it

treats the power system as a "black box". Hence, the EMM is indeed restricted to shallow causal

reasoning for the present.

The diagnostic knowledge was acquired primarily through interviews with JPL domain expert

Dick Johnson. The knowledge acquired covered a representative class of faults involving event

verification and anomaly interpretation. Not all of the knowledge has been implemented in the

current rule base, since the goal of the prototype was to demonstrate the suitability of our chosen

paradigm rather than to achieve broad coverage of the fault space.

Section 5: Conclusions and Recommendations

The prototype performed successfully on the various test scenarios, verifying events and

detecting anomalies in a simulated telemetry stream. The prototype is successful in classifying

faults which are represented in its knowledge base, moreover, it avoids a tendency to misclassify

anomalies which it has not been prepared to diagnose, demonstrating the effectiveness of our

diagnostic strategy. This success may be attributed to carefully written diagnostic rules, and also

to the fact that the Galileo spacecraft's instruments were designed to provide information that

would be complete and discriminating. Thus, we have good confidence that the diagnostics can be

expanded to cover a broad space of operational faults in the Galileo PPS.

The power system model has demonstrated the ability to accurately predict Galileo telemetry for

a broad range of scenarios. The model's chief shortcoming is the lack of knowledge to predict

probable error tolerances in the telemetry channels. Other omissions include modeling of the RTG

power output decay, the inverter efficiency curve, AC load power factors, and thermal variation

in cabling resistance. These shortcomings can be easily rectified, and in any case do not

compromise the functional goals for the prototype, since realistic scenarios are possible which do

not violate the limitations of the current model. The power model is currently implemented in

CLIPS rules, since this approach yields the best programming productivity in constructing the
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prototype. The telemetry predicts may be computed far more efficiently in procedural code,

which would be advantageous in view of the real-time constraints upon the system. Hence we

recommend that this approach be taken in developing a fully implemented version of the EMM.

Because the anomaly detection function is wholly dependent on the accuracy of the telemetry

predicts, we would also recommend that the fully implemented power model be exhaustively

verified against both the GPWR program and actual spacecraft telemetry.

It was concluded that the prototype does not adequately demonstrate event verification because

the variability in time of arrival is not represented in the test cases. It is our view that event

detection is not a proper task for a production system, nor is it efficient for the actual comparison of

received telemetry against alarm limits to be implemented in production rules, since the overhead

of the control algorithm is unnecessary and costly for these repetitive, procedural tasks. For these

reasons, it is contemplated that a full-scale version of EMM would be coupled with an telemetry

preprocessor which would apply an event detection algorithm to the telemetry stream, passing only

the completed event records on to the production system for analysis. This change will have large

impact on the knowledge base and functioning of the diagnostic system, and it is therefore a high

priority development task.

The prototype only partially addresses the problem of real-time response. We have

demonstrated that a quite spartan reasoning paradigm can be effective in Galileo PPS anomaly

diagnosis, however, a true test of the prototype's throughput was not practical, due to the fact that

Galileo telemetry is not yet available from SFOC. Thus, an important goal of the next

development phase, full-scale demonstration, is to demonstrate the ability to monitor an actual

Galileo telemetry stream in real time, while leaving adequate headroom for other processes which

may be running on the host workstation.
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Glossary

"antecedent" The conditions necessary for drawing a conclusion. In a production system, the left

hand side of a rule contains the antecedent conditions of that rule, while the right hand side

contains the consequent.

"backward chaining" A problem solving method which starts with a goal to be achieved and

recursively expands each unsolved goal into a set of simpler subgoals until either a solution

has been found or all goals have been expanded into their simplest components, when a

subgoal is solved, it backs up its solution to its parent goal. In a production system,

backward chaining starts from the consequent of the rule rather than the antecedent conditions.

"behavior" is what the physical device actually does.

"compiled knowledge" Knowledge that has been pre-processed into a form that is well suited for a

particular fault diagnosis procedure. E.g., fault dictionary.

"consequent" The conclusion of a rule or logical proposition.

"coverage" is a measure of what proportion of the fault model the diagnosis is able identify.

"deep reasoning" Reasoning from "f'trst principles", i.e., from a circuit diagram and Ohm's law.

More general than shallow reasoning.

"demon" A rule which is fired upon its antecedent conditions being met. In an environment with

backward-chaining control, demon rules are those which fire in forward-chaining discipline.

In a forward-chaining system, demon rules may simply be those which have priority over all

other rules, or which operate in all contexts.

"design" A schematic representation of a physical device which satisfies the specification.

"design verification" verifies that design's behavior satisfies the specification, similar to diagnosis.

"device" An electronic or electrornechanical system or component that is subject to fault diagnosis.

"device verification" verifies device against the faults in the chosen fault model, similar to

monitoring and diagnosis.

"diagnostic task" attempts to identify the cause of a divergence within the chosen fault model.

"expert system" A computer program that has expertise in a narrow domain. The expertise

commonly results from problem-specific knowledge rather than generalized reasoning power.

"fault dictionary" a two-dimensional table which lists the symptoms that result from each of a

number of possible faults in a specific device.

"fault model" is a subset of the faults which could occur, usually defined by assumptions such as

'the fault is a single-point failure' or 'the fault is non-intermittent'.

"fault tree" a type of decision tree in which terminal nodes are fault diagnoses.

"fault-based" an approach to fault diagnosis that is based on a known mapping from symptoms to

causes, such as a fault dictionary or fault tree.
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"forward chaining" A problem-solving method that starts with initial knowledge and applies

inference rules to generate new knowledge utilizing either one of the inferences satisfies a

goal, or no further inferences can be made.

"frame" An extremely general structure for knowledge representation, generally used in more

powerful reasoning systems.

"goal" The end to which problem-solving aims.

"granularity" The scale of the primitive, or atomic, components of the design.

"heuristic" A principle (sometimes called a rule-of-thumb) that embodies some problem solving

knowledge. A heuristic does not always guarantee success. Heuristics are commonly

implemented through rules.

"hybrid reasoning" is a process that incorporates aspects of shallow reasoning and deep

reasoning, in order to benefit from the speed of the former and the generality of the latter.

"inference chain" A tree structure showing causation from premises (leaf nodes) to a conclusion,

the root node of the inference train.

"inference engine" The algorithm by which inference rules are applied to the knowledge base to

derive conclusions. See "forward chaining" and "backward chaining".

"knowledge base" Those facts and inference rules which are domain-specific, as distinct from the

inference engine.

"metaknowledge" Knowledge which the system may possess regarding its own domain-specific

knowledge and how to apply it in problem-solving. Considered to be implicit in typical expert

systems, research continues on ways to represent this knowledge explicitly in the knowledge

base.

"model-based" An approach to fault diagnosis that is based on a model or simulation of a device.

In principle, if all of the interconnections within the device are included in the model, the

symptoms of any device behavior can be accounted for, as opposed to a fault-based diagnosis

where only the faults and symptoms compiled in the the fault dictionary can be identified.

"production system" Alternate term for expert systems based on a forward-chaining inference

engine.

"resolution" describes how specifically the cause of a divergence can be isolated. In the model-

based diagnostic approach, this is influenced by the granularity of the device model.

"rule" A representation of the relationship between a situation and an action. Rules are ordered

pairs with a left hand side (antecedent) and a right hand side (consequent).

"search space" The set of alternatives from which a solution to a problem is to be found. The set

may be explicitly or implicitly defined.

"semantic network" A system for representing objects, their properties and their relationship to

other objects, e.g., taxonomies.
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"shallowreasoning"Explanationbasedon relationshipsthatleadrelativelydirectlyfrom

symptomstocauses.Superficialknowledgewhich is validonly in acertaincontext. More

efficient thandeepreasoning.

"specification"is aformaldescriptionof thedesireddevicebehavior.

"tool" A tool for constructingknowledgesystemsis intermediatebetweenanimplementation

languagesuchasLISP andashellin termsof its powerandflexibility. Avoids limitationsof

shellswhileenhancingproductivitycomparedto LISP.
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