ļ

1.07

N93-22087

4.0 MANNED TRANSFER VEHICLES

4.1 Lunar Transfer Vehicle Studies – Joseph Keeley, Martin Marietta

Lunar transportation architectures exist for several different mission scenarios. Direct flights from Earth are possible, as the Apollo demonstrated. clearly program Alternatively, a space transfer vehicle could be constructed in space by using the Space Station as a base of operations, or multiple vehicles could be launched from Earth and dock in LEO without using a space station for Similarly, returning personnel support. could proceed directly to Earth or rendezvous at the Space Station for a ride back home on the Space Shuttle. Multiple design concepts exist which are compatible with these which can support scenarios and requirements of cargo, personnel, and Regardless of the mission objectives. ultimate mission selected, some technologies will certainly play a key role in the design and operation of advanced lunar transfer vehicles. Current technologies are capable of delivering astronauts to the lunar surface, but improvements are needed to affordably transfer the material and equipment that will be needed for establishing a lunar base. Materials and structures advances, in particular, will enable the development of more capable cryogenic fluid management and propulsion systems, improved structures, and more efficient vehicle assembly, servicing and processing.

Advanced materials such as aluminumlithium and graphite epoxy composites are anticipated to reduce the weight of vehicle structures and increase the payload mass fraction of space transfer vehicles. Even without optimizing the component design to most advantageously use the improved properties of these materials, a comparison of the weights of system elements indicates that component dry mass could be reduced by 15% to 55%. The greatest weight savings are available on items such as tanks and Lunar Excursion Vehicle lander legs.

Additional studies are needed to assess and prioritize technology development efforts. The assessment of alternative concepts must include more than just life cycle costs. Performance, schedule and other factors, such as operational life, producibility, maintainability, and fault tolerance. are also key discriminators. Nonetheless, affordability is undeniably important, and a careful examination of the life cycle costs of aeroassisted vs. all-propulsive systems reveals that payoffs may exist for the use of aerobrakes for reusable manned lunar transfer vehicles. If aerobrakes are used as part of the propulsion system, advanced structural and material sciences will play a development. their kev role in

PRECEDING PAGE BLANK NOT FILMED

- di i

LUNAR TRANSFER SYSTEMS TECHNOLOGIES

Joseph Keeley (303) 977-8614

MARTIN MARIETTA

PRECEDING PAGE BLANK NOT FILMED

Agenda

Space Transfer Objectives

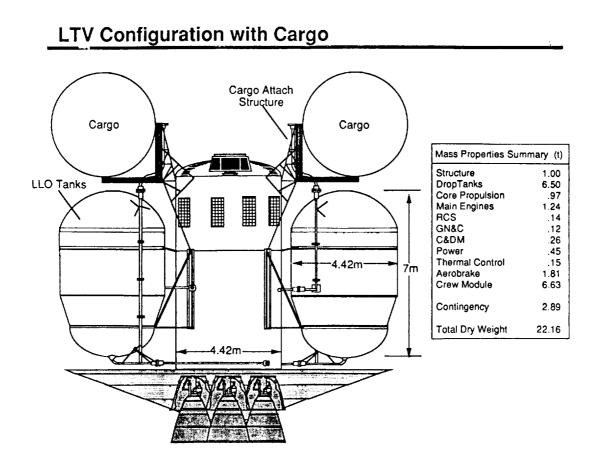
Lunar Transfer Concept

Technology Applications/Benefits

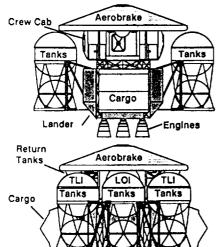
Aerobrake Technology

"Design of Experiments" for Materials

Program Summary

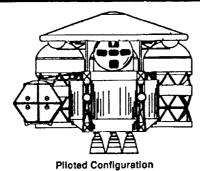

Lunar Transfer Options

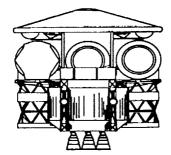
To the Moon


- Direct Flight and Return (Apollo)
- Space Based (90 Day SEI Study)
- Ground Based Rendezvous & Docking in LEO

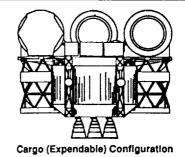
From the Moon

- Return Direct to Earth (Apollo)
- LEO Rendezvous at Station/Shuttle Deorbit/Landing

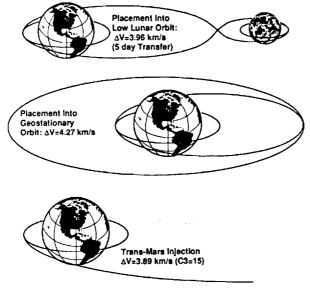

Single Propulsion Lunar Transportation System



- Single Stage Yields Low Life Cycle Cost
 - Single Propulsion System
 - Single Crew Module
 - High Reusability Of Elements
- No Aerobrake Penetrations
- Piloted Configuration Supports 33.0 mt "Cargo-Only" Requirement
- Single Stage Yields Lowest Number of Mission Failure Modes
 - No Crew Transfers
 - No Cargo/Crew Transfer
- Potential For Reusable "Cargo-Only Vehicles"
- · 25 ft x 100 mt ETO Capability Requirement


Side View

LTS Configuration Family


Cargo (Reusable) Configuration

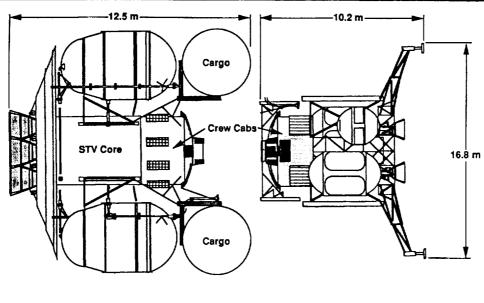
- Single Propulsion System
- Common Propulsion/Avionics Core
- Single Crew Module
- + Large Cargo Platform ~ 14.8 m x 10.5 m
- Rigid Aerobrake 13.7 m
- Piloted Cargo 14.6 t
- w/Propellant Mass 174.0 t
- Expendable Cargo 33.0 t (max 37.4 t)
 w/Propellant Mass 146.5 t (max 161.3 t)
- Reusable Cargo 25.9 t
- w/Propellant Mass 169.3 t

STV as HLLV Upper Stage

• Several STV DRMs Require Similar ∆Vs

- Future HLLV's Will Need a Generic High Energy Capability
- Any New HLLV Will Be At Least 27.6' Diameter (Same as ET)
- Upper Stage (STV) Should Be Designed to Maximize Payload To Commonly Used Destinations: GEO, LLO, X-Mars
- Burning Upper Stage to LEO Drives Stage to Different Design

STV Objectives


- Define the Preferred Concept(s) and Programmatics of a Space Transfer Vehicle System to Accomplish Unmanned Delivery and Manned Exploration Missions
- Evolve from an Initial Vehicle that Captures National Unmanned Earth Orbit and Planetary Missions (DOD and NASA)
- Identify Critical Technology Requirements and Provide Technology and Advanced Development Program Planning Data

Expand Space Transfer Vehicle Interfaces/Interactions For: Operating at Space Station, or LEO Node A Range of Launch Vehicles Manrated Reusable Vehicles

- NASA & Air Force Joint Use

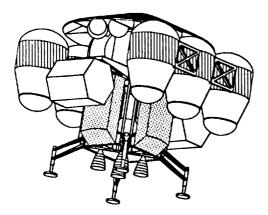
Provide a Cost-Effective Space Transfer Vehicle System Capable of Meeting National Goals for Unmanned Space Transfer and Meeting the Needs of a Manned Exploration Program Leading to Human Presence on the Moon and Evolution to Mars

LTV/LEV Configuration

Lunar Transfer Vehicle (LTV)

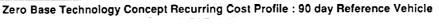
Lunar Excursion Vehicle (LEV)

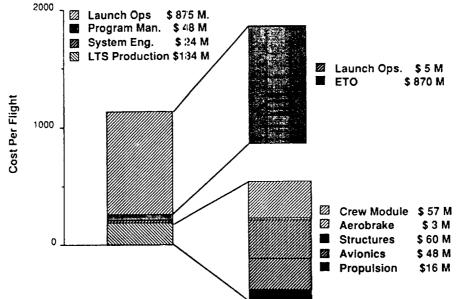
STV As HLLV Upper Stage


Payload Capabilities to LLO (4 km/s)	34.6		
(All Masses in tonnes)			
<u>Height</u> (m)	82.3		
Gross Mass	2,172		
Stage-Q			
2 Advanced Solid Rocket Boosters	1,214.5		
Stage-1			
External Tank & SSME Engine Pod	780.5		
Stage-2 (Ignited Sub-Orbital)			
Usable Propellant	106.1		<u> </u>
Inert Mass	14.6		
Total Engine Thrust (kN)	392		
Specific Impulse (sec)	468		
Payload Fairing (ALS Design)	20.4		
CTV Dennegende Deterstal II			
STV Represents Potential U	pper		
Stage Candidate to Support			
Stage Candidate to Support On-going HLLV Development	nt 📘		
		111	

STV Technology & Advanced Development Areas

- Cryogenic Fluid Management
- Avionics, Power, Software and Vehicle Health Mgt
- Cryogenic Engines and Propulsion
- Vehicle Structure and Tankage
- Aerobrake
- Flight Operations
- Ground Operations
- Advanced Propulsion
- Vehicle Assembly, Servicing & Processing
- Crew Module
- Environmental Control & Life Support System
- Lunar and Mars Surface Operations

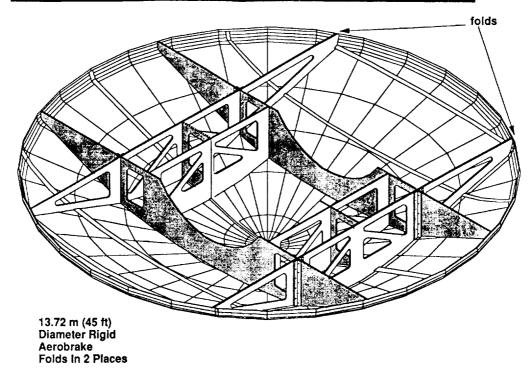

STV Space-Based Zero Base Technology Concept

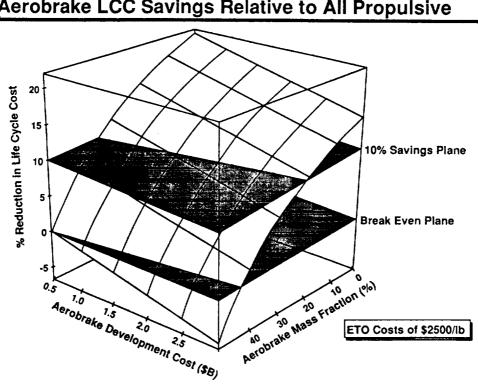

STV Phase 1 Lunar Study Reference Vehicle With State-Of-The-Art Technology

- RL10A-4 Engine (Man-Rated & Space-Base Certified)
- Aluminum Tanks and Structure
- Centaur Cryogenic Fluid Management/Wet Tanks
- Off-The-Shelf Aluminum/Mylar MLI
- Space Station Avionics
- Nickel Zinc Batteries
- Apollo Thermal Protection System
- Hydrazine Auxiliary Propulsion
 System

Tech./Adv. Dev. Cost & Perform. Benefits

STV Technology & Adv. Dev. Assessment Criteria


• Cost	Life Cycle Cost - Recurring and Nonrecurring Recurring Savings per Vehicle DDT&E and R&T Costs Cost Benefit - LCC/R&T Cost Net Present Value @ 5%
Performance	Satisfy Operation Requirements Satisfy Safety Requirements Reliability STV Impacts Launch Vehicle and Infrastructure Impacts Robust Design - Large Margins
• Schedule	Readiness Level 6 by STV Preliminary Design Review Risk - Lead Time
• Other	Operational Life - Reusability Producibility Maintainability Adaptability Ability to Man-Rate Fault Tolerance Capability Ability to Space-Base


Ì

Aeroassist vs All Propulsive

Objectives	Determine Relative LCC Benefits of Aeroassist as a Function of: Aerobrake Mass Fraction ETO Cost per Pound Aerobrake Development Cost
Ground Rules	 Return to LEO From Lunar Mission Rigid AB, 5 Reuses Concept Single Propulsion Module Single Crew Compartment AB Stays in LLO for Aeroassist Version TEI/LEO Propellant Tanks Stay in LLO for All Propulsive Version
	 ASE Engines; Isp = 476 sec. Piloted Vehicle Missions Only, 21 Flights 14.6 t Cargo in Addition to Crew △V from Aeroassist = 3150 M/Sec (10,332 ft/sec) AB Recurring Cost = \$12M AB Development Cost = Variable ETO Cost (\$/lb) = Variable AB Weight Fraction = Variable AB Weight Fraction Definition: <u>AB Str/TPS Mass</u> Total Entry Mass

LTV Aerobrake

Aerobrake LCC Savings Relative to All Propulsive

LTV Aerobrake Technology Needs

Aerobrake/Aeroassist Structures/Materials

- TPS Rigid/Flexible, Temps to 3500°F, Reusable, Human Safe, Repairable in Space, Propellant Resistant, High Q
- Backup Structure Stiff, Heat Resistant > 600° F Light Weight, Foldable
- Hinge and Lock Mechanisms Erectable, Automated Foldout/Lock Up, Failure Redundant, Backup/Dual System, Human Operator Backup
- NDE/NDI Pre Flight Configuration, Mfg Inspection, In Flight or Space-Based Certification

Thermal Control

Solar Cells - Flex Deployment/Retraction

Debris/Environment Protection

Aerobrake Summary

Results

- d - s - s - n - h - h

Ē

Rigid vs Flexible

Rigid Retained as Baseline

- 3-Piece Hinged Concept Minimizes Rigid A/B on-Orbit Assembly Operations
- Rigid Brake Technology More Mature
 Flexible Brake Technology Should Be Developed Since It Offers Better (Lower Cost) ETO Manifesting, Fewer Joints, and Assembly Advantages
- Aerobrake vs All Propulsive Life Cycle Cost Payoffs Exist for Aerobraking Over a Wide Range of Aerobrake Efficiencies

Issues

- Flight Testing Prior to Full Scale Vehicle Flights
- Reusability
- Shape Wake Heating / Packaging

Structures DOE Analysis

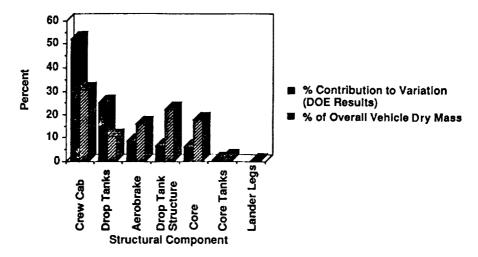
- Evaluated Structural Components of the STV Phase I Configuration
 Core Structure, Aerobrake, Drop Tanks, Crew Cab, Core Tanks, Lander Legs and Drop Tanks Support Structure
- Evaluated Three Materials
 - Aluminum, Aluminum-Lithium and Composites (Graphite Epoxy)
- Maintained Same Design Configuration for All Materials
 - Did Not Optimize Component Design for Al-Li or Composites
 - Composite Sizing Based on Constant Material Properties, Not
 - Adjusted for Ply Direction or Minimum Ply Thickness
- DOE L27 Matrix Used to Evaluate Combinations of the Seven
 - Structural Components with the Three Materials
 - Response is the Vehicle Dry Mass
 - 15% Growth Factor Included in Dry Mass
- All Pressure Vessels Sized for Burst Pressure

Structural Component Mass Summary

Structural Component Mass (kg) Based on Material Selection

Component	Aluminum s 9=12:85g/cm3	Aluminum-20 Elihium e=2.70 g/cm ³	Composites: et=180.g/cm ³		
્રભાર શાવલામાર	6235	5078	4979		
Accordia	5768	4521	4194		
Doodenke	4965	2634	2412		
Graw (CII)	11644	8290	7978		
Section 1991	951	501	458		
Lancerlegs	239	118	105		
nopliank Suppon Shudure	7493	6305	6165		

- Aluminum-Lithium Structure Reduces Component Dry Mass By 16 to 50%
- Composite Structure Reduces Component Dry Mass By 18 to 56%

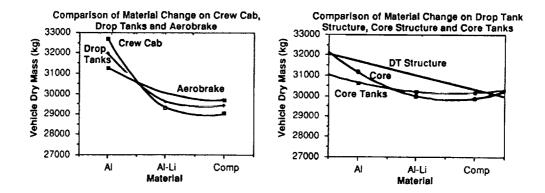

* Composite Structure Not Optimized - Greater Mass Reduction Possible if Structure Redesigned

ł

-

Structures DOE Analysis Results

- DOE Reduced Number of Analysis Combinations from 343 to 27 343 = 7 Components with 3 Combinations
- Comparison of Component DOE Results to the Percent of Overall Vehicle Mass Indicates Which Component Was Influenced Most by Materials Change

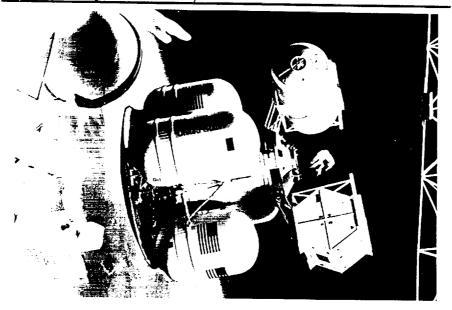


Comparison of Structural Material Changes

- Comparison of Materials Change on Vehicle Components - Aluminum Structure Is the Heaviest Option

-

- Overall Vehicle Dry Mass Reduced Approximately 28% By Using **Advanced Structures**
- Vehicle Dry Mass Reduction Trends Illustrated in Graphs



LTS Program Overview

LTS SUMMARY	lc	1995	199	5 1 1	997	1998	1999	2000	2001	2002	2003	
SCHEDULE	Y	1234	1 1 1		234	1 2 3 4	1 2 3 4	1 2 3 4	1234	+	1 2 3 4	2004
Reference Milestones	.		<u> </u>	┷╍┻┻┻	A/B Demo						1. 12/3/2	[12]3]
Program Milestones		ØB ATP ∇	SRR ▼	0 С/D АТР V	SDA V			Compnt (Qual	C/Ground Tests V	Fit Test ▽	1st Car Missic V	
Phase B Concept Definition				Δ			CD	R B/L				
Tech / Adv. Development				. 7.=	<u>.</u>			\wedge		N-Rosel		
Phase C/D Design & Dev						PDR	с	DR				
LTS Design						Δ_		Δ				
- Subsystem Development					Ċ.		i fin		Ans	·*	10000000	for a start of
+LTS Qual Testing (STA, FTA, PTA, GTV)					_			4		^		
•Operational Support Eqmt						SDR AP		<u>∧cdr</u>			C/18CO	STATE:
•KSC Facilities					\wedge		s Review		<u>∧</u> C/A		Literati	3.

Lunar Transportation System Overview

LTS (90 Day Reference) At LEO

Program Flexibility & Schedule Is Technology Limited

- Study Developing Technology Roadmaps
 - Technology Assessment
 - Improvement Schedules
 - Prioritization
- Schedule & Vehicle Flexibility/Evolution Are Constrained By Technology Maturity.
 - RL-10 vs. ASE

1

- Propulsive vs. Aeroassist
- Expendable Upper Stage vs. Advanced Avionics Architecture
- Operations Intensive vs. Autonomy

Aggressive Technology & Advanced Development Program Required To Meet All Objectives.

- Early Flight Tests For Technology Validations

The STV Study Will Identify The Required Technology Accelerations And Improvements Incorporated via Planned Staged Insertion.