

BUILT-UP AI-LI STRUCTURES FOR CRYOGENIC TANK AND DRY BAY APPLICATIONS

W. Barry Lisagor NASA Langley Research Center

ADVANCED LAUNCH SYSTEM

Structures, Materials & Manufacturing

Built-up structures for ALDP #3104

Machined	Built-up
thick plate	sheet metal

Responsible Org: NASA/LaRC Execution: LaRC/Rockwell/GD Funding (\$M): 4.9 0.4 0.1 1.5 2.0 Prior 91 FY 90 92 93 ∆TC Built-up panel (1) domplete concepts defined SPF and RSW (2) parameters established 3) Test stiffener and column buckling panels (4) Materials characterization and properties (6) Fab and test subscale barrel section

Objectives:

- Demonstrate the cost benefits of built-up cryotank & dry bay structures
 - Conventional Al alloys
 - Low density Al-Li alloys
 Evaluate alternative low
 - Evaluate alternative low-cost stiffener and joining concepts

Payoffs:

Lower weight/lower system costs

8.9

Total

- Significant reduction in tank costs
 - Reduced scrap rate/lower
 material costs
 - Reduction in major machining costs
 - · Avoid thick plate issues

TASK #3104 BUILT-UP STRUCTURE FOR CRYOTANKS

Program Participants

Organization

Key activity

SPF/RSW

- NASA -LaRC
- Martin Marietta
- Reynolds

Alternate forming & joining methods
 SPF of chemistry modified Weldalite[™]

- Weldalite stiffener extrusions

- Rockwell
- General Dynamics
- SPF of AI & AI-Li alloys
- RSW of AI & AI-Li alloys

ACTIVITY OR MILESTONE NAME	Activity Start	Activity Finish Date	1989					1990				1991				1	99	2	T	1	99:	3	1
	Date		۱	2	3	4	1	15	3	14	1		2 3	14	1	1	2	3 4	Ι	11	2]	3 4]
1.0 STRUCTURAL CONCEPTS & COST STUDIES	2/88	9/92				1	<u>ــــــــــــــــــــــــــــــــــــ</u>	Γ.	÷	a da a d	سبال. ر	-	<u>д</u> .,	-			-	1	T.		Т	Т	3
1.1 DEFINE DESIGN CRITERIA					Γ	Γ	Г	L	Γ	Τ.	Г	Ι	Γ	Т	Т	Ι.	Ι	I	Ι	Т		Ι	1
1.2 DEFINE BUILT-UP CRYOTANK STRUCTURE								L		Γ	L	Τ	Τ		T	Т	Т		Т			T	
1.3 DEFINE BUILT-UP INTERTANK STRUCTURE												<u>.</u>						_	1	_1	_		
1.4 COST BENEFITS ANALYSIS												1					1		1	_	_	_	
													1	1		1	_		1	-	4	+	-
2.0 SPF OF HIGH STRENGTH AI & AHLI ALLOYS	10/88	1/91	E			1				1	1	1	T	1			1		1	_	_	1	_
2.1 MATERIAL SELECTION						Γ	Г	Γ			Г	L		Γ	Т		1		1				_
2.2 ESTABLISH SPF PARAMETERS								1		T	Т	Т		Т	Т								
2.3 SPF PROCESS OPTIMIZATION	T			Γ	Г	Г	Т	Γ	۱.	Т	T	Τ	Т	Т	Τ		I					Τ	
2.4 POST-SPF PROPERTIES			Γ		Γ	Γ	T	Т	Т	T	T	Т	T	Т	Т	T	Т	Т	T	T	Т	Т	7
		1	Γ		Г	T	1	T	T	T	Т	Т	T	T	Т	T		T	T	-1	T	Т	
3.0 RSW OF HIGH STRENGTH AL & AI-LI ALLOYS	6/89	5/92	F		1	1	1	1	1	J.,	1	-		.1			٦T	Т	Т	-1	Т	Т	٦
3.1 DETERMINE RSW PARAMETERS			1		Ľ	Г		Г	1	Т	T	Т	T	Т	Т	Т	1		T		1	Т	٦
3.2 WELD CERTIFICATION	-	1	1		t	t	17		1	1	1	T	1	1-	T	1	-1	-1-	T	1	1	+	٦
3.3 TAQUCH LA ARRAY		1	\square		Г	T	T	1	T	T	T	T		T	T		1	T	T	1	1	T	
3.4 RSW SKIN EFFECTS	1	1	t		t	1-	+	t	1-	1-	┮	Ŧ			T		1		1	1	1	+	1
3.5 ENVIRONMENTAL EFFECTS		1	T		1-	T		T	1	1	\uparrow	T		1	1		1		T		1	T	٦
3.6 INSPECTABILITY & RELIABILITY			1	1	T	t	T	1-	1	1	T	T	T	1	Т				T	-1	T	T	-
		f		1	1	t	1	1	1-	1		T	1	1	T		٦	-	1	-	-1	T	-
4.0 ALTERNATE FORMING & JOINING	6/90	12/92	1	1	t	T	1	T	F	1	1	1	1	1	1	<u> </u>	i		-1	-1	1	T	-
4.1 EXTRUDE & ROLL FORM STIFFENERS	1		1		T	1	1	1-	T	Т	T	Т	Т	Τ	Т							1	-
4.2 ESTABLISH ADHESIVE & WELD BONDING TECH			1	1-	t	T	1	1-	T	1	Т	T	1	1	1	Т			Т		1		7
4.3 MATERIALS CHARACTERIZATION & PROPS			1	1	T	1-	1	1	T	1	T	1	1	T	1	1				1		1	
		1	t	1	t	t	1-	t	1	1-	1	1	1	1	1	1	-1	1	T	†		+	1
5.0 FAB & TEST ELEMENTS & SUBCOMPONENTS	9/89	6/93	$t \rightarrow t$	1-	t	F	1	1-	1	1	1.	1	1	1	1	<u> </u>		1	1	-	7	T	-
5.1 COMPLETE SINGLE STIFFENER TESTS		1	\top	1	t	t	Т	T	Т	Т	L	Т	Т	Т	T	Т	Τ		Т				
5.2 FAB ALU DEMO PART	-	1	1-	1-	t	t	1	Т	1	1	T	1	T	1	1	1			1			1	-
5.3 COMPLETE MULTIPLE STIFFENER TESTS		1	t	1-	t	T	1	T	1	1	T	1	1	1	T	1			1			1	-
5.4 COMPLETE COLUMN BUCKLING TESTS		1	\mathbf{T}	t	1	t	┮	1	\uparrow	Ŧ	+	1			╈	T		-1	ī		-1		-
5.5. FAR & TEST FULL THICKNESS STRUCTURAL COMP.		1	\mathbf{T}	t	t	t	+	+	1			1	1	1	T	1	-1	~	1			T	-
		1	t	1-	1-	1-	+	t	$^{+}$	╈	╈	+	-†	-†-	1	t	1		-1	-	-1	1	-
A AUTOMATION & SCALE-UP	1/93	12/93	1	┢	+	ϯ	+	+	╈	+	+	t	+	$^{+}$	1	-†	-		-1	-1		-	=
A 1 PROCESS SELECTION		1		t-	1-	1-	1	t	t	t	+	+	-	+	╈	+						T	-
6.2 DEVELOP SCALE-UP PLAN	-	1	1	t	t	t	+	t	$^{+}$	+	t	+	-†	-†-	1	t	-1	-	1				-
6.2 PROJECTED FAR COST		+	+	┢	+	╉	+	╋	╋	+	╉	┥	+	+	+	-+	-	-				1	_
0.3 FRUELIEU FAB. UUSI		1	1	1	Т.						1.	1	_1	1	1	_1	. 1	_1				Ĺ	۰

ADP TASK #3104 BUILT-UP ALUMINUM CRYOTANKS

BENEFITS OF USING AL-LI ALLOYS FOR CRYOGENIC TANKS

SPECIFIC PROPERTIES VERSUS TEMPERATURE FOR SELECTED AL ALLOYS IN T8 TEMPER

EXPERIMENTAL VERIFICATION OF SUPERPLASTIC FORMING PROFILE

RESISTANCE SPOT WELDS OVERLAP SHEAR STRENGTHS

Ē

284

BUILT-UP STRUCTURE APPROACH TO REINFORCE FUSION WELDS

2090-T6(SPF)/2090-T8 AI-LI COMPRESSION PANELS Tested at NASA LaRC

SUPERPLASTICALLY FORMED AI-LI MULTIPLE STIFFENED PANEL

i

286

PERFORMANCE BENEFITS USING AL-LI (G.D.)

- · Direct substitution of Al-Li for conventional Al alloys can add 6000 lbs of payload to the baseline 11/2 stage vehicle. Redesigning the structure to take full advantage of the higher properties of AI-Li alloys could add >12000 lbs in payload savings.
- Weight savings of ~10% achievable by making the propellant tank of the 11/2 stage vehicle from Al-Li.
- · Weight savings of ~5% achievable by making the adapter and thrust structure of the 11/2 stage vehicle from Al-Li.
- · High raw material costs of Al-Li are the primary driver in selecting the appropriate fabrication approach.
- Dependent on the material substitution approach and fabrication method the increased cost of using Al-Li could range from \$0.5M to \$4.0M per vehicle.
- In the baseline 11/2 stage vehicle the cost performance for AI-Li ranges from \$150/lb to \$750/lb of payload increase compared with the current projected payload performance of \$1500/lb using other alternatives.

ALDP BUILT-UP STRUCTURE FOR CRYOGENIC TANKS #3104

STATUS

- SPF OF AI-LI ALLOYS
 - Post-forming mechanical properties determined
 3' x 5' multiple stiffener panel formed
- RSW OF AI-LI ALLOYS
 - RSW schedules optimized using taguchi design of experiments RSW strength of AI-Li alloys exceeds standard military specs
- STRUCTURAL TESTING
 - Crippling panels tested and shown to meet design req'ts
 Stiffener design selected for column buckling panel
- COST/TRADE STUDIES
 - Cost analysis comparing roll forming, brake forming, extrusion and SPF fabrication methods near completion
- · Current program focus assessing the benefits of Al-Li built-up dry-bay structures (intertank, fwd adapter, aft skirt)

8.3.2 Orbital Lessons Learned - A Guide to Future Vehicle Development by H. Stan Greenberg, Rockwell International

ł